|   |       | _ |
|---|-------|---|
|   |       |   |
| _ | <br>- | - |
|   |       | _ |

# From Blue Gene to Cell Power.org Moscow, JSCC Technical Day November 30, 2005

Dr. Luigi Brochard IBM Distinguished Engineer Deep Computing Architect Iuigi.brochard@fr.ibm.com





# **Technology Trends**

- As frequency increase is limited due to power limitation
- Dual core is a way to :
  - > 2 x Peak Performance per chip (and per cycle)
  - But at the expense of frequency (around 20% down)
- Another way is to increase Flop/cycle

|          |      |   | _ |  |
|----------|------|---|---|--|
|          |      | _ |   |  |
| _        | 1000 | - |   |  |
|          |      |   |   |  |
| <u> </u> |      | _ |   |  |
|          |      |   |   |  |
| -        |      |   |   |  |
|          | -    |   |   |  |

# **IBM** innovations

- POWER :
  - FMA in 1990 with POWER: 2 Flop/cycle/chip
  - Double FMA in 1992 with POWER2 : 4 Flop/cycle/chip
  - Dual core in 2001 with POWER4: 8 Flop/cycle/chip
  - Quadruple core modules in Oct 2005 with POWER5: 16 Flop/cycle/module
- PowerPC:
  - VMX in 2003 with ppc970FX : 8 Flops/cycle/core, 32bit only
  - Dual VMX+ FMA with pp970MP in 1Q06
- Blue Gene:
  - Low frequency, system on a chip, tight integration of thousands of cpus
- Cell :

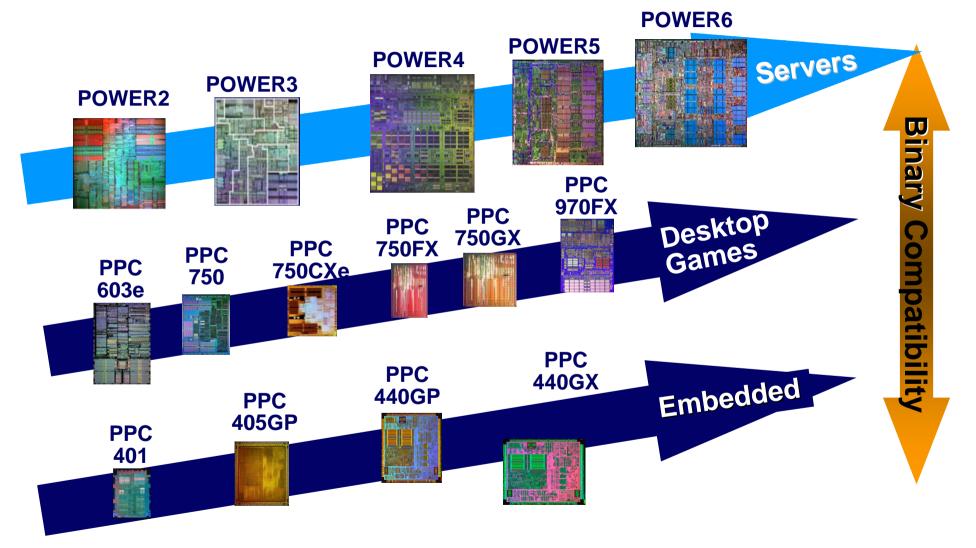
▶ 8 SIMD units and a ppc970 core on a chip : 64 Flop/cycle/chip



# **Technology Trends**

- As needs diversify, systems are heterogeneous and distributed
  - GRID technologies are an essential part to create cooperative environments based on standards

| _ | 10001 100 | <br>  | - |
|---|-----------|-------|---|
|   |           | -     | - |
|   |           |       |   |
|   |           | <br>- |   |
|   |           |       |   |
|   |           |       |   |
|   |           |       |   |


# **IBM** innovations

- IBM is :
  - a sponsor of Globus Alliances
  - contributing to Globus Tool Kit open souce
  - a founding member of Globus Consortium
- IBM is extending its products
  - Global file systems :
    - Multi platform and multi cluster GPFS
  - Meta schedulers :
    - Multi platform and multi cluster Loadleveler
- IBM is collaborating to major GRID projects
  - DTF in US
  - DEISA in Europe



### **PowerPC : The Most Scalable Architecture**

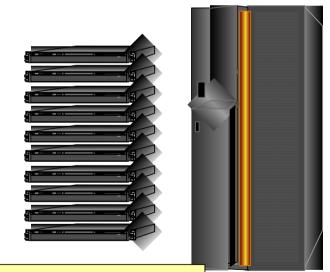
IBM eServer pSeries™



© 2004 IBM Corporation

| _ |                                                                                                                 |
|---|-----------------------------------------------------------------------------------------------------------------|
| _ | the second se |
|   |                                                                                                                 |
|   |                                                                                                                 |
|   |                                                                                                                 |
| - |                                                                                                                 |
|   | _                                                                                                               |

# POWER5 Improves High Performance Computing


- Higher "Sustained/Peak FLOPS" ratio compared to POWER4
  - Increased rename resources allow higher instruction level parallelism (from 72 to 120)
- Significant reduction in L3 and memory latency
- Improved memory bandwidth per FLOP
- Simultaneous Multi Threading (SMT)
- Fast barrier synchronization operation
- Advanced data prefetch mechanism
- Stronger SMP coupling and scalability

|   | _      |   |  |
|---|--------|---|--|
|   |        |   |  |
|   |        |   |  |
| - | -      | - |  |
|   | - A. I | _ |  |
|   | _      | _ |  |
|   |        |   |  |

#### **POWER5 p575 Overview**



POWER5 IH System 2U rack chassis Rack: 24" X 43 " Deep, Full Drawer



12 Servers / Rack 96/192 Processors / Rack

|                     | POWER5 IH Node                   |
|---------------------|----------------------------------|
| Architecture        | 8 or16 POWER5<br>1.9 or 1.5 GHz  |
| L3 Cache            | 144MB / 288MB                    |
| Memory              | 2GB - 256GB DDR1                 |
| Packaging           | 2U (24" rack)<br>12 Nodes / Rack |
| DASD / Bays         | 2 DASD (Hot Plug)                |
| I/O Expansion       | 6 slots (PCI-X)                  |
| Integrated SCSI     | Ultra 320                        |
| Integrated Ethernet | 4 Ports<br>10/100/1000           |
| RIO Drawers         | Yes ( 1/2 or 1 )                 |
| LPAR                | Yes                              |
| Switch              | HPS and Myrinet                  |
| OS                  | AIX & Linux                      |

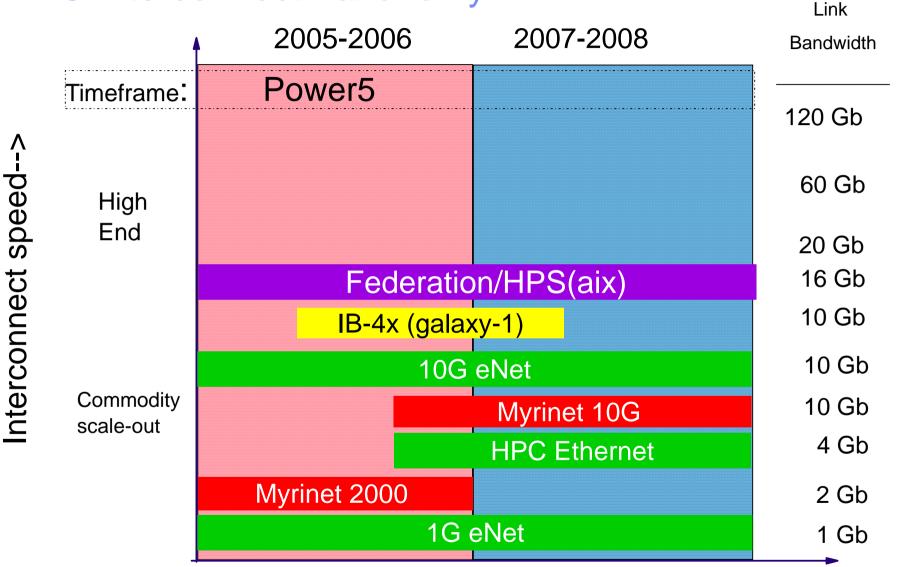
|   |     | _ |                          |
|---|-----|---|--------------------------|
| _ | 100 | - | terminal designed        |
|   |     |   |                          |
|   |     |   | C                        |
|   |     |   | the second second second |
| _ | _   | - |                          |
|   | -   |   |                          |

### p575 Sustained Performance

p5-575 8 way Benchmark publications

p5-57516 way Benchmark publications

| Sq IH/ p5-575        | 1w    | 8w   | Sq IH/ p5-575        | 1w    | 16w  |
|----------------------|-------|------|----------------------|-------|------|
| SPECint_2000         | 1,456 |      | SPECint_2000         | 1,143 |      |
| SPECfp2000           | 2,600 |      | SPECfp2000           | 2,185 |      |
| SPECint_rate2000     |       | 167  | SPECint_rate2000     |       | 238  |
| SPECfp_rate2000      |       | 282  | SPECfp_rate2000      |       | 385  |
|                      |       |      |                      |       |      |
| Linpack DP           | 1.776 |      | Linpack DP           |       |      |
| Linpack TPP (n=1000) | 5.872 | 34.5 | Linpack TPP (n=1000) |       |      |
| Linpack HPC          | 7,120 | 56,6 | Linpack HPC          |       | 87,3 |
| STREAM standard      |       | 41,5 | STREAM standard      |       | 42,6 |
| STREAM tuned         |       | 55,7 | STREAM tuned         |       | 55,8 |


|   |   | - 16 R |  |
|---|---|--------|--|
| _ | - | _      |  |
|   |   | _      |  |
|   |   | _      |  |
|   |   |        |  |
|   |   |        |  |
|   |   | 100    |  |

### p575 Peak Performance and Memory Bandwidth

| Processor Type        | Frequency | Peak Perf by node/rack<br>GFlops | Memory BW<br>Byte/Flop |
|-----------------------|-----------|----------------------------------|------------------------|
| p575 single core DDR1 | 1.9 GHz   | 60 / 720                         | 1,6                    |
| p575 dual core DDR1   | 1.5 GHz   | 90 / 1150                        | 1.1                    |



# **HPC Interconnect Taxonomy**



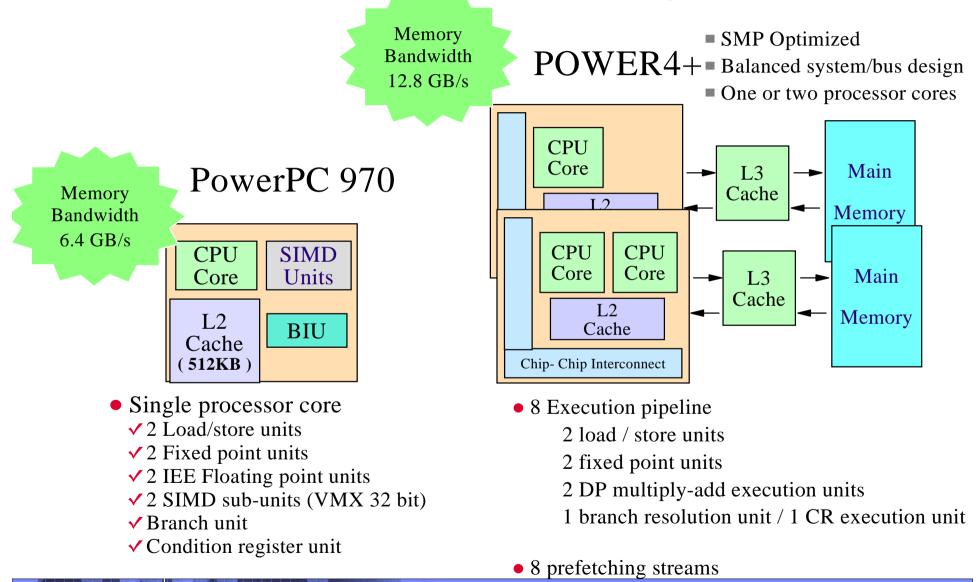
© 2004 IBM Corporation



# IBM HCA for Power5 (Galaxy1)

Power5 processor Bus (GX)

GX I/F IB **IB-compliant** Uses IB link and RIO-G physical layers to Transport. Transport Conforms to HCA transport IBM I/OArchitecture remote I/O (QPs, CQs, EQs, Tunneling packets. Memory Regions Conforms to etc) Load/Store protocol over IB. Mux/Steering logic LPE/HSS LPE/HSS 4x/12x IB DDR ports




### Power PC 970



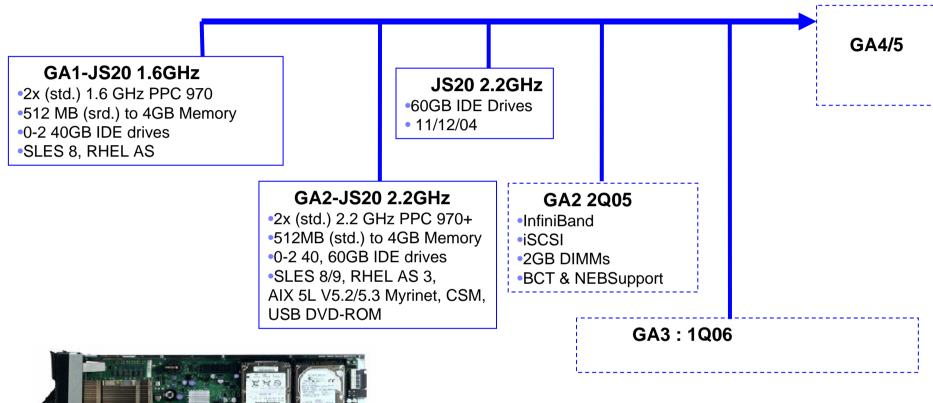


# **PowerPC 970 and POWER4 Comparaison**



© 2004 IBM Corporation




# **BladeCenter Server Overview**

- Enterprise-class shared <u>infrastructure</u>
  - Shared power, cooling, cabling, switches means reduced cost and improved availability
  - Enables consolidation of many servers for improved utilization curve
- High performance and density: 16 blades in a 7U rack
  => 192 processors in a 42U rack
- Available in 2 way or 4 way Xeon(HS20, HS40), 2 way Opteron (JS20) or 2 way PowerPC (JS20)

Scale out platform for growth



# BladeCenter JS20 Roadmap





\* All statements regarding IBM future directions and intent are subject to change or withdrawal without notice.



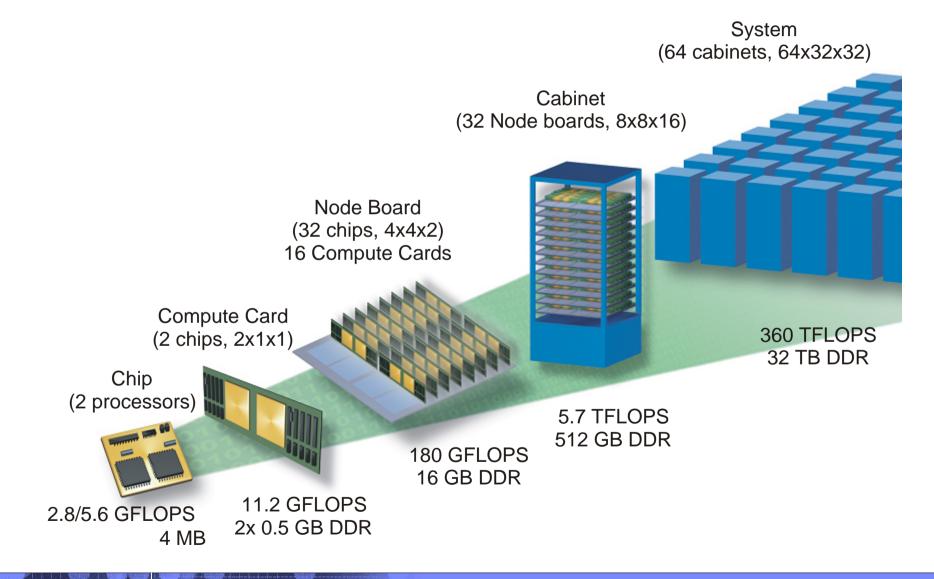
# Blue Gene





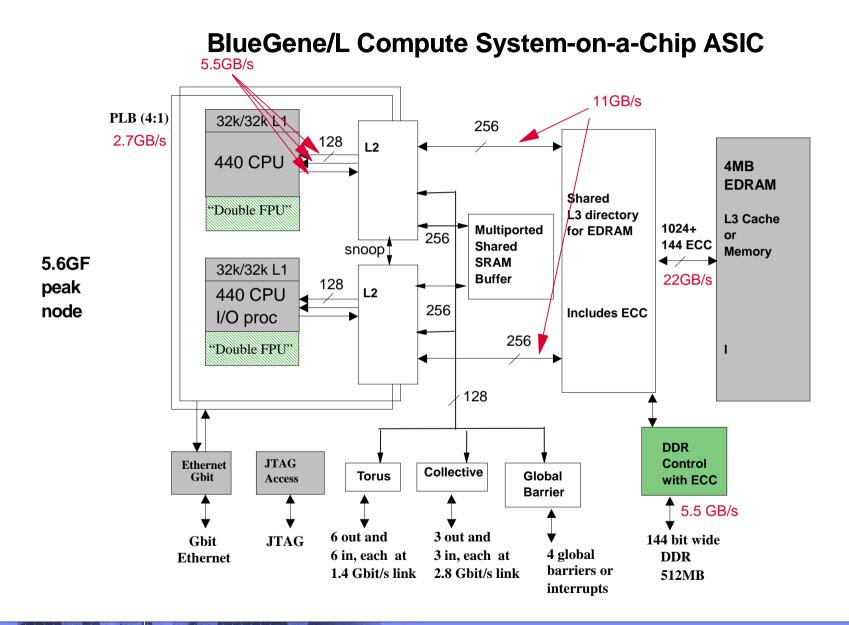
# **BlueGene/L Project Motivations**

- Traditional supercomputer-processor design is hitting power/cost limits
- Complexity and power are major driver for cost and reliability
- Integration, power, and technology directions are driving toward multiple modest cores on a single chip rather than one highperformance processor
  - Optimal design point is very different from standard approach based on high-end superscalar nodes
  - Watts/FLOP will not improve much from future technologies.
- Applications for supercomputers do scale fairly well
  - Growing volume of parallel applications
  - Physics is mostly local



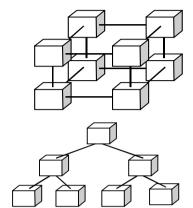

### **IBM** approach with **Blue** Gene

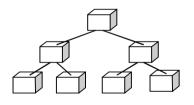
- Use embedded system-on-a-chip (SOC) design
  - Significant reduction of complexity
    - Simplicity is critical, enough complexity already due to scale
  - Significant reduction of power
    - Critical to achieving a dense and inexpensive packaging solution.
  - Significant reduction in time to market, lower development cost and lower risk
    - Much of the technology is qualified.
- Utilize PowerPC architecture and standard messaging interface (MPI).
  - > Standard, familiar programming model and mature compiler support.
- Integrated and tighly coupled networks
  - To reduce wiring complexity and sustain performance of applications on large number of nodes
- Close attention to RAS (reliability, availability, and serviceability) at all system levels.

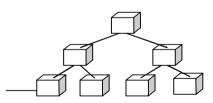


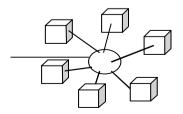

# **BlueGene/L**




© 2004 IBM Corporation




#### **Blue Gene Networks**









#### **3 Dimensional Torus**

- 32x32x64 connectivity
- Backbone for one-to-one and one-to-some communications
- 1.4 Gb/s bi-directional bandwidth in all 6 directions (Total 2.1 GE
- ~100 ns hardware node latency

#### **Collective Network**

- Global Operations
- 2.8Gb/s per link , 68TB/s aggregate bandwidth
- Arithmetic operations implemented in tree
  - Integer/ Floating Point Maximum/Minimum
  - Integer addition/subtract, bitwise logical operations
- Latency of tree less than 2.5usec to top, additional 2.5usec t
- Global sum over 64k in less than 2.5 usec (to top of tree)

#### **Global Barriers and Interrupts**

Low Latency Barriers and Interrupts

#### **Gbit Ethernet**

- File I/O and Host Interface
- Funnel via Global Tree network

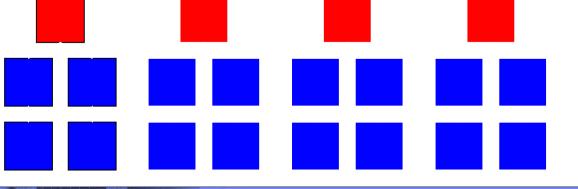
#### **Control Network**

Boot, Monitoring and Diagnostics



|   |   | - | _ |  |
|---|---|---|---|--|
| - |   |   |   |  |
|   |   |   |   |  |
|   | - |   |   |  |
|   |   |   |   |  |
| - | - |   |   |  |
| _ |   |   |   |  |

### BG/L is a well balanced system


| System     | Memory<br>Bandwidth<br>GB/s<br>Byte/Flop | Memory<br>Latency<br>ns<br>cycles | Network<br>Latency<br>us<br>cycles | Network<br>Barrier<br>128 cpu<br>us<br>cycles |
|------------|------------------------------------------|-----------------------------------|------------------------------------|-----------------------------------------------|
| BG/L       | 2.2                                      | 110                               | 3.35                               | <b>6,75</b>                                   |
|            | 0,39                                     | 77                                | 2345                               | 4725                                          |
| Opteron    | 6                                        | 120                               | 4.98                               | <b>39</b>                                     |
| Infiniband | 0,34                                     | 264                               | 17900                              | 85800                                         |
| POWER5     | 41                                       | 120                               | 4.8                                | <b>29,5</b>                                   |
| Federation | 0,67                                     | 228                               | 8160                               | 50150                                         |

(\*) POWER5 barrier is based on 8 way node, Opteron is based on 4 core blades



# BlueGene/L Software Hierarchical Organization

- Compute nodes dedicated to running user application, and almost nothing else - simple compute node kernel (CNK)
- I/O nodes run Linux and provide a more complete range of OS services – files, sockets, process launch, signaling, debugging, and termination
- Service node performs system management services (e.g., heart beating, monitoring errors) - transparent to application software



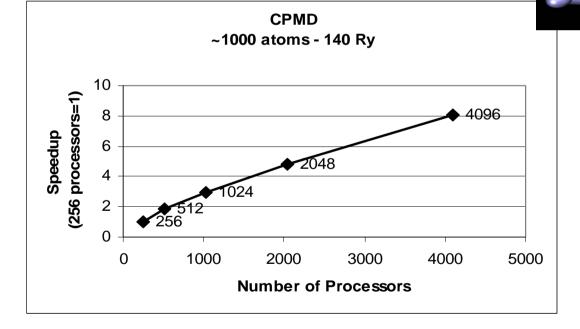


#### Programming Models and Development Environment

#### Familiar Aspects

- SPMD model Fortran, C, C++ with MPI (MPI1 + subset of MPI2)
  - Full language support
  - Automatic SIMD FPU exploitation
- Linux development environment
  - User interacts with system through FE nodes running Linux compilation, job submission, debugging
  - Compute Node Kernel provides look and feel of a Linux environment POSIX system calls (with restrictions)
- Tools support for debuggers (Etnus TotalView), MPI tracer, profiler, hardware performance monitors, visualizer (HPC Toolkit, Paraver, Kojak)

#### Restrictions (lead to significant scalability benefits)

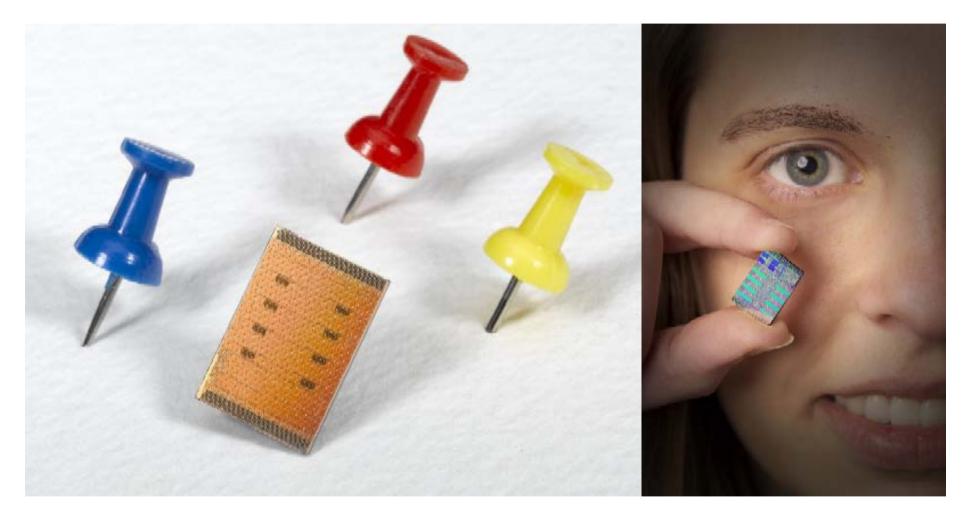

- Strictly space sharing one parallel job (user) per partition of machine, one process per processor of compute node
- Virtual memory constrained to physical memory size
- Same environment as other IBM POWER systems

IBM eServer pSeries™



#### CPMD - Alessandro Curioni, Salomon Billeter, Wanda Andreoni

Developed at IBM Zurich and other Universities from Car Parinello method for Molecular Dynamics Uses Plane Wave Basis functions, FFT, MPI\_Collectives Demo – Si/SiO2 Interface <u>% peak ~ 60 % VNM</u> Ongoing project : IBM/LLNL PdH Hydrogen Storage




10 sec/step on 2048 BG/L 25 sec/step on 1400 Xeon Cluster at LLNL.



### Systems and Technology Group

# Cell



© 2005 IBM Corporation

# **Cell History**

- IBM, SCEI/Sony, Toshiba Alliance formed in 2000
- Design Center opened in March 2001
  - Based in Austin, Texas
- Single CellBE operational Spring 2004
- 2-way SMP operational Summer 2004
- February 7, 2005: First technical disclosures
- November 9, 2005: Open Source SDK Published



SONY

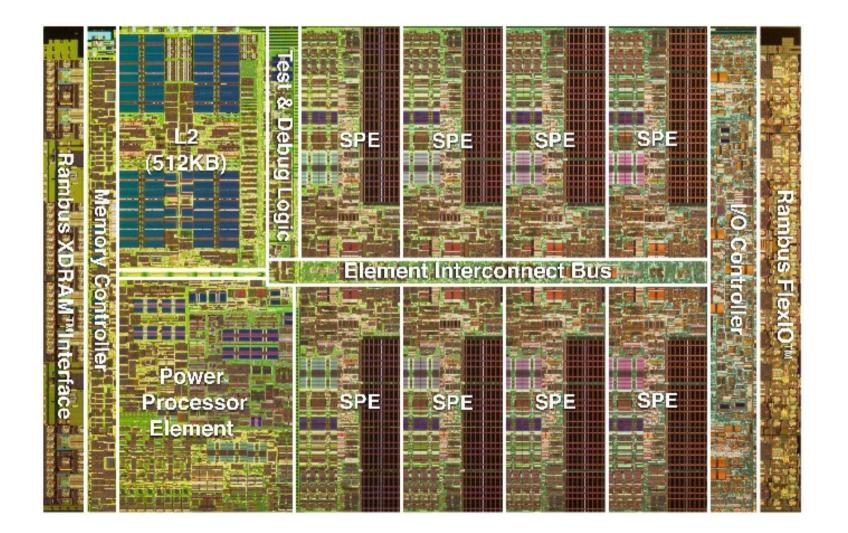
TOSHIBA





© 2005 IBM Corporation



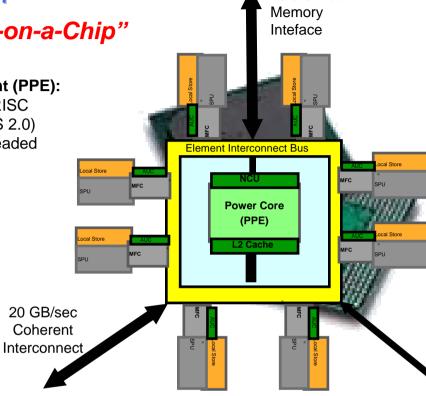

| _ |  |
|---|--|
|   |  |
|   |  |
| _ |  |
|   |  |

# **Cell Highlights**

- Supercomputer on a chip
- Multi-core microprocessor (9 cores)
- 3.2 GHz clock frequency
- 10x performance for many applications
- Initial Application Sony Group PS3

| _ | 100 | - |   |
|---|-----|---|---|
|   |     |   |   |
|   |     |   |   |
|   |     |   | - |
| - | _   | _ |   |
| _ | _   |   |   |

### Cell Broadband Engine – 235mm<sup>2</sup>




© 2004 IBM Corporation



#### Cell Processor "Supercomputer-on-a-Chip" Power Processor Element (PPE): •General Purpose, 64-bit RISC Processor (PowerPC AS 2.0) •2-Way Hardware Multithreaded •L1 : 32KB I ; 32KB D •L2 : 512KB •Coherent load/store •VMX

•3.2 GHz



### Synergistic Processor Elements (SPE):

•8 per chip

I/O Bus

•128-bit wide SIMD Units

- •Integer <u>and</u> Floating Point capable
- •256KB Local Store
- •Up to 25.6 GF/s per SPE ---200GF/s total \*

#### **Internal Interconnect:**

 Coherent ring structure 96B/cycle
 300+ GB/s total internal interconnect bandwidth
 DMA control to/from SPEs supports >100 outstanding memory requests
 5 GB/sec

**External Interconnects:** 

•25.6 GB/sec BW memory interface

- •2 Configurable I/O Interfaces
  - •Coherent interface (SMP)
  - •Normal I/O interface (I/O & Graphics)
  - •Total BW configurable between interfaces
  - •Up to 35 GB/s out
  - •Up to 25 GB/s in

#### Memory Management & Mapping

25.6 GB/sec

•SPE Local Store aliased into PPE system memory •MFC/MMU controls SPE DMA accesses

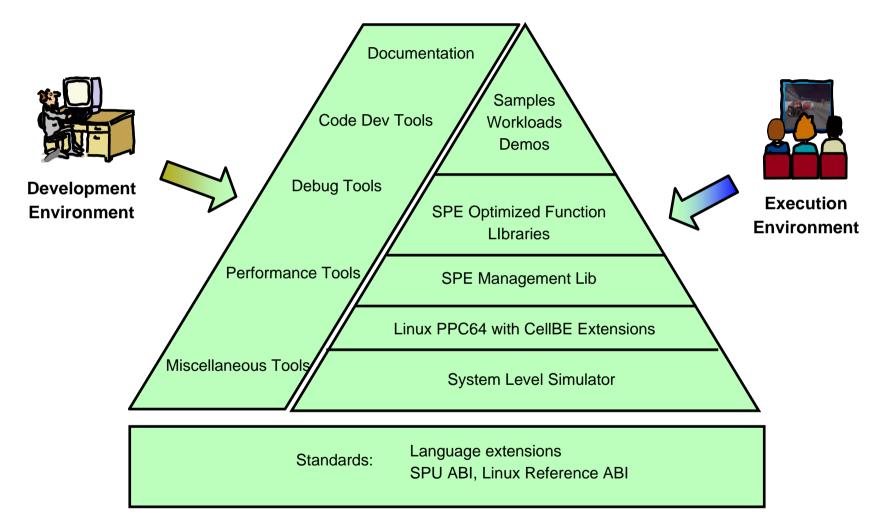
•Compatible with PowerPC Virtual Memory architecture

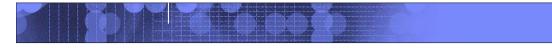
•S/W controllable from PPE MMIO •Hardware or Software TLB management

•SPE DMA access protected by MFC/MMU





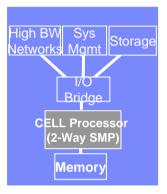

# **Cell BE Processor Initial Application Areas**


- Cell excels at processing of rich media content in the context of broad connectivity
  - Digital content creation (games and movies)
  - Game playing and game serving
  - Distribution of dynamic, media rich content
  - Imaging and image processing
  - Image analysis (e.g. video surveillance)
  - Next-generation physics-based visualization
  - Video conferencing
  - Streaming applications (codecs etc.)
  - Physical simulation & science
- Cell is an excellent match for any applications that require:
  - Parallel processing
  - Real time processing
  - Graphics content creation or rendering
  - Pattern matching
  - High-performance SIMD capabilities

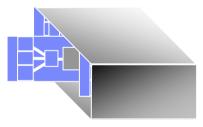


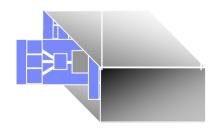
### **Cell Alpha Software Development Environment**

Distributed on IBM alphaworks & Barcelona Super Computer sites Nov 9th





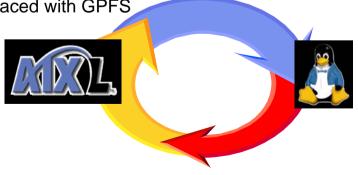





# Cell Based Blade

- First Prototype "Powered On"
- 16 Tera-flops in a rack (est.)
  - ( equals 1 Peta-flop in 64 racks )
- Optimized for Digital Content Creation, including
  - Computer entertainment
  - Movies
  - Real-time rendering
  - Physics simulation

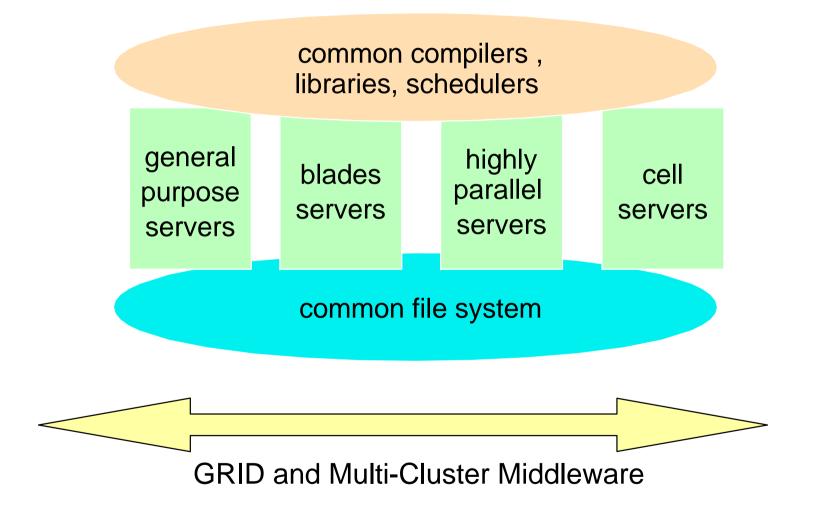


#### **16 TFlop rack**









# **IBM common Software solutions for POWER**

- Same Front end tools for POWER/POWERPC:
- -XLF/C/C++, ESSL/pESSL, libmass : compilers, libraries
- ->Parallel Environment: MPI library and environment
- -LL: job scheduler within and across AIX/Linux clusters
- -> introduction of new features in checkpoint/restart and job migration
- Same system tools for all platforms:
- -CSM :
  - -single management for AIX/Linux clusters
- -GPFS :
  - -interoperable parallel file system within and across AIX/Linux clusters
  - -> possibility to licence GPFS to any vendor or customer
  - -> for Linux x86/IA/ppc architecture
- -TSM/HSM or HPSS :
  - -backup/archive/migrate solutions interfaced with GPFS





### **IBM** integrated heterogeneous solutions



© 2004 IBM Corporation



# Questions ?

