OdinMP/CCp - A Portable Compiler for C
with OpenMP to C with POSIX threads

Christian Brunschen

LUND INSTITUTE OF TECHNOLOGY

Lund University

[
Department of Information Technology

OdinM P/CCp

A Portable Compiler
for C with OpenMP
to C with POSI X threads

Master of Science Thesis
Christian Brunschen
1999-07-23

Department of Information Technology, Lund University

Abstract

The subject of my Master Thesisin Computer Science has been to write a compiler which
implements the OpenM P specification for C, and generates C code using POSIX threads (a.k.a.
pthreads) to implement the parallelism.

| first approached the problems by attempting to develop a mechanical way to manually
translate an OpenMP program into an equivalent program using pthreads. In this process, | had to
solve a number of conceptual problems — pthreads offer a granularity of parallelism at the level of
one function, which is quite radically different from what OpenMP offers.

Likewise, | had to investigate, understand and solve such problems as thread initialization,
how to implement threadprivate variables, or how to handle the fact that source code can come in
more than one file. Also, while the main focus was to investigate the viability of doing this at all,
| could not entirely lose sight of performance issues, both regarding memory use and overhead
introduced into the code by the translation.

Though performed manually, the resulting scheme for translating was quite mechanic and
suitable for implementation in software. My next task, thus, was to write a compiler for C with
OpenMP, which would generate much the same code as | had generated manually. This compiler
should also be reasonably portable, and still generate code which would run with reasonable
performance. To write the compiler itself, | succumbed to the lure of Java, for which a number of
good supporting tools are available for the purpose of writing compilers.

The result is a working compiler called OdinMP/CCp, which implements all the mandatory
parts of the OpenMP specification. It generates code that offers quite reasonable performance,
and it has the advantages that is can be used on for platform that offers support for POSIX
threads.

1 Introduction

The purpose of thisarticle isto present and discuss the OdinMP/CCp subproject of the OdinM P
project, which aims to create afreely available, portable set of implementations of the OpenM P
[1] standard for paralel computing, for avariety of different platform/language combinations.

Parallel computing offers a solution for problems which are too large for a single processor
to handle: divide the problem into parts, let one processor handle each part concurrently — so that
the parts are solved in parallel — and combine the part-results into a result for the whole problem.

OpenMP is a set of directives which, when added to sequentially written code (code which
is written to run on only one processor), instructs the compiler how to divide the problem into
parts to prepare it for parallel processing.

In this article, | will give a brief overview of parallel computing in general, describe the
basic concepts, problems and their most common solutions. Likewise, | will present a cursory
look at the prevalent programming models for parallel computer systems.

| will then discuss OpenMP, giving both a general introduction and some more detailed
examples. Following this, | will detail how one can manually parallelize a sequentially written
program in a semi-mechanical way, according to OpenMP primitives.

The main part of this article will describe the automatic compiler, which is the main result
of this thesis work. It takes standard ANSI C [2] language code, annotated with OpenMP
directives, and generates a corresponding program in which all OpenMP constructs have been
replaced with equivalent code in ANSI C using the POSIX threads library [3], also known as
‘pthreads’. | will cover the tools that | have used, design decisions and my reasons for making
them, problems that | have stumbled over along the way and their solutions, and of course the end
result.

Finally, | will present performance and overhead measurements for code as generated by
OdinMP/CCp, and compare it to a commercial OpenMP implementation.

My main focus in designing and implementing OdinMP/CCp has been completeness and
correctness rather than performance, especially for the translation process itself, though | have
taken reasonable care not to introduce any unnecessary performance overhead in the resulting
program. Alas, the speed of the OdinMP/CCp compiler itself is less than stunning, perhaps in
some part due to the choice of Java as the implementation language. However, the resulting
programs run well and correctly, and exhibit performance and speedup consistent with that
generated in the manual parallelization process also described in this article. This speedup trails
somewhat behind what platform-dependant compilers can generate, but this is not surprising,
given that the OdinMP/CCp compiler generates C source code as output and thus does not have
access to whatever ‘shortcuts’ might be possible on the underlying architecture.

2 Parallel Computing

I will present a cursory look at some of the basic concepts in parallel computing. More detailed
information is available in many places, for instance [4] and [5].

2.1 Quick Overview

A simple model of a computer can be sketched something like this: A processing unit (CPU)
which is connected to a memory unit, usually some sort of secondary storage, and a number of
input/output devices — keyboard, mouse, monitor, network interface, etc.

Primary Voni
onitor

Storage

Figure 1, Simple Model of a Computer System

The function of the CPU can be roughly described as reading a series of commands from

memory, and acting on those instructions one at atime. This means that the overall performance

of the system islimited by the speed at which the CPU can process this series of instructions. One

way to increase the system'’s performance is, obviously, to increase the speed at which the CPU
operates — and this is indeed one of the things that is constantly happening. However, we often
need more power than a single CPU can supply on its own. One solution to this problem that
immediately pops up is that of trying to let several CPUs share the work — letting each work on a
piece of the whole problem simultaneously with the others. This solution is generally referred to
asparallel computing or multiprocessing, because instead of the computer operating on only one
series of instructions, the computer now has several CPUs — multiple processors — each executing
a series of instructions parallel with the others.

However, one important distinction can be drawn between parallel systems where all
processors work on ttsme instruction stream — such that all processors perform the same
actions, but on different data — and those where each processor works on its own distinct series of
instruction. These two concepts are caliadjle Instruction, Multiple Data (SMD) andMultiple
Instruction, Multiple Data (MIMD), respectively.

TheSMD model is highly useful, but also limited to those applications where the problem
can be divided intexactly identical parts.MIMD is much more flexible, since it allows different
parts of the problem to be handled in different manners — indeed, different CPUs may be working
on completely different parts of the problem at the same timeMTk model is thus the one
that is used for general-purpose multiprocessing systems.

2.2 Programming Models

Now that we have a computer system that is capable of performing several different actions at
once, of processing multiple instructions simultaneously, we need a good model for programming
it — after all, our problem does not divide itself into suitable parts on its own. The basic model is
one of several concurreptocesses (or threads) executing simultaneously, within the context of a
common computer system. One problem that needs to be addressed in such a system is that of
communication between different processes, such as for the purpose of synchronization, or the
exchange of data within the problem domain. Consider a simulation of planets in a solar system,
where each planet’s location and motion are handled by separate processes. In order to calculate
the planet’'s behavior, each process needs access to the location data for each other planet — and
thus, needs information from each other process — to calculate how the gravitational forces act
between the planets. So there definitely needs to be a way to transport data between different
processes on different processors. Furthermore, no process can be allowed to begin calculating

the next step in the simulation before all the information it needsis available, i.e., before all other
processes have finished cal culating the previous step of the simulation, so we need to be able to
synchronize the processes.

2.2.1 Message Passing

One model, which lendsitself to consideration, is one where each processor has direct access
only to its own assigned dice of information, but where each processor can send an arbitrary
message to another processor.

Figure 2, Message Passing

In our planetary simulation above, at the end of each step of the simulation, each process would
send a message containing the information needed by the other processes for the next simulation
step, to each other process. And each process can only begin calculating a new step in the
simulation when it has received the messages with the current position information from each
other process. So Message Passing offers both data distribution and process synchronization.

For many applications, Message Passing is avery good model. However, for problems
where the same data has to be accessed by many processes, alot of messaging ensues, which has
to be handled in the program by the programmer.

A standard Application Programmer’s Interfad@\PI) for message passing exists, called
Message Passing Interfa¢elPl) [6].

2.2.2 Shared Memory

The second prevalent model in parallel computing is one where all processors conceptually
access the same, shared memory space. Communication between processesis easily achieved by
simply reading from and writing to the same addresses, the same variables, in this shared
memory.

Shared Memory

Figure 3, Shared Memory

Let us take another look at our planet simulation. Each process would have immediate access to

the information cal culated by each other process, simply by reading from the appropriate location

in memory — the correct entry in an array, perhaps — exactly as the problem might be solved in a
traditional serial program (i.e., one which runs in only one process). Through the use of a special
instruction usually called ‘Test and Set’, specific locations in shared memory can be designated
as ‘locks’, which in turn can be used to build higher-level primitives for synchronization. So
Shared Memory also offers both data distribution and process synchronization.

3 OpenMP

3.1 Quick Overview

OpenMP [1] is a specification of a standardized set of compiler directives, which a programmer
can add to the source code of an existing program, written with sequential execution in mind. The
OpenMP directives allow the compiler to parallelize the code in question according to those
directives, for execution on a shared-memory multiprocessor system. The OpenMP specification
also includes library routines for accessing and modifying some of the execution parameters in
the running program, such as the number of threads to be used. The full text of the OpenMP
specification is available on the World-Wide Web, latitg://www.openmp.org.

3.2 Why OpenMP?

Prior to the introduction of OpenMP, there was no standard way to easily parallelize a program
for use on a shared-memory multiprocessor system. While a well-entrenched standard existed for
message-passing, programmers who wanted to use shared-memaory systems had to either use non-
standard, non-portable APIs or write cumbersome code for an underlying low-level multi-
processing API, such as POSIX threads. Such programs are often excellently portable, but in the
process the programmers’ attention is diverted from solving the main problem, to the details of
making the solution multiprocessing-capable. OpenMP changes this, solving several of the
problems in this process:

e OpenMP is a widely accepted industry standard. Programmers developing to the
OpenMP specification can expect their programs to be portable to a wide variety of
different shared-memory multiprocessing systems, and makers of shared-memory
multiprocessing systems have a well-defined API which, if they support it, makes their
systems immediately viable for most of their prospective clients.

* OpenMP is non-invasive — it does not force the programmer to radically change their
programming style. Programs can be written for correct sequential execution first, and

OpenMP directives and constructs can be added later, without influencing the execution
of the program in the sequential case. Thus, programmers can separate the work they do
on solving the actua problem from the work to parallelize the solution.

e OpenMP defines a user-guided parallelization process. This means that the compiler
does not have to perform vast analysis of the code, it can and should rely only on the
information in user-supplied directives when parallelizing the code. This gives the user
complete control over what should be paralldlized and how, while at the same time
making the compiler much less complex.

e OpenMPis sufficiently complete. While freeing the user from the detailed labor of
parallelizing the program, OpenMP still offers sufficient control over the paralelization
and execution of the program, should the user have regquirements above the default
behavior of OpenMP.

3.3 Quick and Dirty OpenMP Tutorial

OpenMP usesthe #pr agrma C compiler extension mechanism, defining an OpenMP directiveto
have the form#pr agma onp directive-name [clause] clause] ...] new-ling'. Each directive

starts with#pr agnma onp, in order to reduce the risk for conflict with other pragma directives.
Following that is the directive name (only one directive name can be specified in one directive),

optionally followed by a number afauses which affect the directive. Finally, a new-line
concludes the directive.

3.3.1 Parall el Construct

The basic unit of parallel execution in OpenMP ispglae al | el construct. This consists of a
par al | el directive followed by a compound-statement:

#pragma onp paral |l el [clauses]

I ¥
}

The paralé directive accepts the following clauses:

e if(expression)
Run in parallel only if expression evaluates to a non-zero value, otherwise run
sequentially

* shared(list),private(list), firstprivate(list)
These specify whether the variables named in list should be shared between threads,

private to each thread, or ‘firstprivate’- where each thread gets a private copy, which is
initialized from the current value of the corresponding variable outside the parallel

region
e copyi n(list)

For each of thehr eadpri vat e (see section 3.3.7 for more information about the

t hr eadpr i vat e directive) variables itist, copy the master thread’s value to the
thread’s private copy

e reduction(operator: list)
Each of the variables inst will be marked for reduction bgperator: Each thread will

work in its own private copy of the variables, and the results will be combined at the

end byoperator.

3.3.2 For Construct

The f or construct is used to divide iterations of afor loop among the threads that are currently
running. Thereisan implied barrier (see section 3.3.6 for information about synchronization
constructs) at then end of each for construct, unless removed by specifying the nowait clause.

Thefor construct consists of afor directive followed by afor loop in canonical form:
#pragma onp for [clauses]
for (var = |ower_bound; var < upper_bound, var += increnent)

st at enent;

(Other variations of the for loop header are also allowed, see the OpenM P specification,
Section 2.4.1, page 11, for details.)
Thefor construct accepts these clauses:
» private(list), firstprivate(list), |astprivate(list)
Identical to those available for the parallel construct. Lastprivate functions analogoudy
tofirstprivate: after the for loop has been executed, the value generated by the thread
which ran the last iteration of the loop is copied out to the variable outside the for loop
e reduction(operator : list)
asfor the paralel construct
 ordered
makes it possible to use the ‘ordered’ construct within this for loop, see below
e schedul e(kind [, chunk_size])
selects the kind of scheduler and granularity of scheduling to be used
e nowait
removes the implietarrier at the end of the for construct, allowing the participating
threads to continue working without having to wait for slow threads

3.3.3 Secti ons Construct

Thesect i ons construct is used to let each thread in the currently active team perform a
different task, all at once. If there are more sections in a sections construct than there are
processors in the team executing it, each processor may be called upon to execute more than one
of the sections. There is an implibarier (see section 3.3.6 for information about
synchronization constructs) at then end of each sections construct, unless removed by specifying
thenowait clause.

The sections construct takes the form of a sections directive followed by a compound-

statement, containing a series of sections, as below:
#pragma onp sections [clauses]

[#pragnma onp section]
structured-block

[#pragma onp section
structured-block

]
}
The sections construct accepts these clauses, which function identically on the sections
construct as on the for construct:
e private(lig), firstprivate(list), |astprivate(list)
e reduction(operator : list)
e nowait

3.3.4 Si ngl e construct

The si ngl e construct is used to specify that, even within aparallel region, a certain piece of
code is only to be executed by one of the threads (though not necessarily the master thread). As
with the for anc sections constructs, there is an implied barrier at the end of each single construct,
which can be removed using the nowait clause.

The single construct takes the following form:
#pragma onp single [clauses]
structured-block

The single construct accepts these clauses, which function identically on the sections
construct as on the for and sections constructs:

e private(lig), firstprivate(list)

* nowait

3.3.5 Combined Parallel Work-Sharing Constructs

The combined parallel work-sharing constructs combine the parallel construct with awork-
sharing construct.

Par al | el For Construct

#pragma onp parallel for [clauses]
for(var = | ower_bound; var < upper_bound; var +=incr)
statement

Paral | el Secti ons Construct
#pragma onp parall el sections [clauses

[#pragnma onp section]
compoud-statement
[#pragma onp section
compound-statement

]

}

Each accepts the same clauses that either of the parallel or the work-sharing construct in
question would accept, with the exception of nowai t , since the implied barrier in the parallel
construct can not be removed.

No, thereisno par al I el si ngl e construct — starting parallel execution just to let only
one of the threads in the team execute the code inside it is not a useful exercise.

3.3.6 Master and Synchronization Constructs
OpenMP also defines a number of Constructs for synchronization purposes:

Mast er Construct
#pragma onp master
compound-statement
Only the master thread of the current team will execute the compound-statement.

Critical Construct
#pragnma onp critical [(name)]
compound-statement

Each thread waits at the entry to acritical construct, until no other thread is executing a
critical region with the same name. All unnamed critical regions map to the same unspecified
name.

Barri er Directive

#pragma onp barrier

Specifies apoint which all threads in the current team must reach before any one of them
can proceed. Note, thisis not a statement.

At omi ¢ Construct

#pragma onp atomc

var op= expression

This ascertains that the assignment is performed atomically, that is, by only onethread at a
time.

FI ush directive

#pragma onp flush [(list)]

This synchronizes the calling thread’s view of the shared variabliess with shared
memory. If no list is specified, flushes all currently visible shared variables. After two threads
have each flushed the same variable (and before either of them attempts to change it again), both
threads have the same view of that variable.

Or der ed construct
#pragma onp ordered
compound-statement

This can only be used within a for construct which has the ordered clause speficied upon it.
In that case, it ensures that ttlenpound-statement will be executed in exactly the same order as
it would, were the loop executed sequentially.

3.3.7 Threadpri vat e Directive

The final directive specified by OpenMP is ther eadpr i vat e directive:

#pragma onp threadprivate (list)

The threadprivate directive is used lexically outside of any function definition, to mark file-
scope visible variables as being private to each thread. All references to threadprivate-marked
variables go to the copy of that variable which belongs to the current thread.

3.4 A Small Example

After this highly theoretical introduction, an example — albeit a small one — will hopefully help
clear up any confusion. On the left in Figure 4, we have a simple program, written for traditional,
sequential execution, with comments to indicate where parallelization might be possible. On the
right in the same figure, the same program has been annotated with OpenMP directives, which
take the form of compiler pragmas. As you can see, the actual code is unchanged; a compiler
could simply ignore the OpenMP pragmas, in which case the results — from compiling the
sequential program on the left, and from compiling the OpenMP-annotated program on the right —
would be identical. This is quite intentional, of course.

#define N 10000

typedef int array_t [N;
extern void foo();
extern void bar();

int main(int argc, char **argv) {
int i;

#define N 10000 large_array_t v;
typedef int array_t [N];
extern void foo(); #pragnma onp parall el Q
extern void bar();
#pragma onp for @
int nain(int argc, char **argv) ({ for (i =0; i <N i++) {
int i; v[i] = 0;
large_array_t v; }
}
/* this could be parallelized */
for (i =0; i <N i++) { printf("initialized array\n"); e
v[i] = 0;
} #pragnma onp paral l el Q
{
printf("initialized array\n"); e #pragnma onp sections
/* these could run in parallel */ #pragma onp section 9
foo();
bar(); foo();
}
#pragma onp section G

bar ();

Figure4, A Smple OpenM P Example

So, how did we get from the sequential program on the left, to the OpenM P program on the right?
Here’s a quick run-down:

First, we note that thieor loop at®can be parallelized. So, we take the code that we want
to run in parallel, and place it inside a ‘parallel construc@a,t OpenMP’s construct for
parallelizing execution. A parallel construct consists of #fpg agma onp paral | el ’ line,
and a compound statement, that is, a normal series of statements enclosed by a pair of curly
braces ‘ and }°), as usual. Conceptually, a parallel construct stattara of threads at its
beginning, lets every thread in the team execute the code inside the compound statement — this is
called the ‘parallel region’ — then waits until all threads are finished, and puts them to rest.

Now we have a number of threads, each to run the code inside the parallel region — in this
case, thd or loop. But we don’t want each thread to execute all iterations of the loop, we want
each thread to grab a ‘chunk’ of the loop and just run that. Well, OpenMP has a construct for this,
not surprisingly called the ‘for construct’. We place one of the@.aFhe for construct consists
of the #pragnma onp for’line, followed by a simple for loop — basically, one where an index
variable loops through a range of numbers. The OpenMP compiler will now assign each of the
threads in the currently active team an appropriately sized chunk of the total range of the loop, so
that each thread only executes part of the loop, but that all threads together will execute the whole
loop. This ends both the for construc@t and the parallel region defined Q/

At G, we have @ri nt f statement — this obviously shouldn’t be done more than once, so
we'll just keep it like it is.

Now, we happen to know thibo() andbar () are functions which do totally unrelated
work, and that there are no interdependencies between them — they could be run in any order to
get the correct result. In fact, we can even run them in parallel — so, let's do that. Parallel
execution is commenced by placing the code in question inside a parallel region; this is done by

wrapping the code inside #gragma omp parallel { ... } ' construct a®, like before.
As you can see, it is quite possible to have several different parallel regions in your program.

Now, what we want to do is to [ebo() andbar () run in parallel; but they are not just
different iterations of the same for loop as we ha@irbut instead we want to run to completely
different code snippets, in parallel. Well, OpenMP has a construct for this also, the ‘sections
construct’. This explicitly marks up what parts of the code can be run in parallel, by grouping the
code into ‘sections’, which can then be run in parallel, as you can @arid®.

The for and sections constructs are examples of what OpenMP calls ‘work sharing
constructs’ — they take some amount of work, and share it between threads. We have already seen
that program execution after a parallel construct does not proceed until all threads in the team
have finished executing the code in the parallel region — there is, in OpenMP parlance, an
‘implied barrier’ at the end of each parallel construct. There is also, by default, an implicit barrier
at the end of each work sharing construct. This means that, unless you specifically request
otherwise, you can rely on all iterations of a parallelized for loop to have been run, in any code
that might follow the for construct.

A note to the prospective OpenMP programmer who prefers to place his opening brace at
the end of the line: You can't do that here; #firagma omp ... ' constructsexplicitly include
an end-of-line, so yohave to put the opening brace for the ensuing compound statement on the
next line.

Now, you may quite correctly observe that it is a bit cumbersome, if you only want to run a
for loop in parallel, to have to wrap that inside two constructs — the parallel construct which starts
parallel execution, and the for construct which divides out the iterations between the threads. The
designers of OpenMP apparently agree with you here, because they have defined ‘combined
parallel work-sharing constructs’ which, as the name suggests, combine a parallel construct with
a work-sharing construct. So, in order to parallelize a for loop, rather than having

#pragma onp parall el

#pragma onp for
for (i =0; i <N i++) {
foo();

you would have

#pragma onp parallel for

for (i =0; i <N i++) {
foo();

}

which is much less crowding.
4 OdinMP/CCp

4.1 Whatis it?

OdinMP is a project at the Department of Information Technology at Lund Institute of
Technology, with the goal of producing a set of freely available, portable implementations of the
OpenMP standard for a variety of platforms. OdinMP/CCp is one of these implementations,
implementing the OpenMP specification for the ANSI C programming language [2], producing

10

code in C using the POSIX thread library, generally known as ‘pthreads’ [3], as the underlying
threading mechanism. The suffix ‘CCp’ is an acronym of ‘filono C with pthreads’.

4.2 Why OdinMP/CCp?

OdinMP/CCp has the big advantage of being quite portable and platform-independent. All it
requires of its target platform is that the POSIX threads library be available, which these days is
more the rule than the exception for Unix-derived systems, as well as becoming more and more
commonplace in other computing environments. Thus, a program written with OpenMP can be
compiled and used on such systems, using OdinMP/CCp, even if no platform-specific OpenMP
implementation is available.

Further, we regard OpenMP to be a good development in multiprocessing, one that should
be spurred on and made available to programmers and researchers as widely as possible.
OdinMP/CCp is a vehicle to ‘spread the word’ about OpenMP among people with different
platforms and budgets, professionals and hobbyists alike.

OdinMP/CCp can also be used in development of a platform-specific OpenMP compiler,
both for comparisons regarding execution, and as a prototype, since it is available with full source
code.

4.3 Why might you use OdinMP/CCp?

One very simple example of this would be a home-built multiple-Pentium® PC running Linux™.
No OpenMP-capable C compiler is available for this platform, but Linux has good support for
POSIX threads. Using OdinMP/CCp, (some of) the power of this low-cost shared-memory
multiprocessor can be harnessed.

Likewise, an experimental multiprocessing system or one in development may have good
use for an existing OpenMP implementation for evaluation or development purposes.

OdinMP/CCp can also be used to perform compiler-neutral performance comparisons
between different platforms.

5 Parallelization Overview

In this section | will give an overview of the basic principles employed by OdinMP/CCp in
translating the OpenMP constructs and directives into C code with POSIX thread library calls.
This is intended to introduce some of the major concepts, rather than provide a detailed look (I
will provide that later in this paper). Much is omitted for clarity, and any hames used here are
illustrations only.

5.1 Parall el construct

In the POSIX threads API, starting a thread requires designating a function for the new thread to
run. So, anything that we want to be able to run in parallel must be inside, or called from, the
function that each thread in the system runs. OdinMP/CCp’s basic paradigm for parallelization
works as follows:

1. OdinMP/CCp defines a functidrhr ead_spi nner, which waits (on a condition lock) for
work, and calls hr ead_f unct i on to perform the actual task. Unless of course
t hread_spi nner is told to finish spinning, in which case it returns, ending that thread’s
life.

2. OdinMP also defines a functidrhr ead_f unct i on, which is basically a large, initially
empty,sw t ch statement.

3. Each parallel region in the program is assigned a unique identifying number. The code inside
the parallel region is moved from its original place in the program, intevthech

11

statement insidet hr ead_f unct i on, whereit will be selected by its associated number.
The parale construct is replaced with code which

» adlocates ateam of threads

» tellseach of the threads in the team to execute the paralldl region in question

e runsthe parallel region itsalf (asthe master thread of the team)

» waitsfor dl the other threads in the team to finish.

Thisisillustrated in Figure 5.

void foo() {
I...

<allocate a team of threads>
/I each of these threads will be running, waiting for work

for (i = 0; i < n_threads; i++)
<tell thread i torun parallel region 1>

<run parallel region 1 myself>
for (i = 0; i < n_threads; i++)

<wait for thread i to finish running parallel region 1>

...
}

void foo() { int main(int argc, char ** argv) {
... <create n_threads threads, each running thread_spinner()>
#pragna onp parallel
foo();
rintf("hello world\n”);
} prine) N <end all threads>
...
} . . .
void thread_function(<region to run>) {
int main(int argc, char **argv) { switch (<region to run>) {
foo(); case 1:

{
printf("hello world!\n");
break;

}

void thread_spinner() {
while (<keep running>) {
<wait for work>
if (<have work>)
thread_function(<region to run>);
else if (<end, please>)
break;
}
}

Figure5, Parallel Construct

5.2 For construct

Thef or construct divides the iterations of afor loop into smaller dices, hands them to the
different threads, which run the dicesin pardlel. To do this, we first extract the range, increment
etc. of the whole loop from the for loop header. Then each thread loops around:

e Fetchadice of the shared loop

« If there’s no slice for us, then we are done and exit the loop

« Otherwise, iterate over the space of the slice

This is illustrated in Figure 6. The arrows indicate how OdinMP/CCp extracts information from
the for loop header to find the loop index varia@)(the loop initialization value@), the
boundary value®) and the incremen®@®).

12

{
/1 the loop index, nade private automatically
int i;
A struct { int from to, increment, is_done }

/ ﬂ
...
B loop ={ 0, , 1, 0}, /1 this describes the whole | oop
#pragma orp for [- « /1 this is shared between threads
slice ={ 0, 0, 0,J0 };

for (i =0; i < LiHH) [l this is the part of the |oop which
e /1 this thread gets to run

fool); while (1) {
slice = <fetch a slice from/oop>;
Il if (slice.is_done) // we're done with the loop, proceed
break;

I/l here's the original loop, with the for loop head exchanged
@ for (i = slice.from;
_éi < slice.to;

i += slice.increment) {
foo();

} /1 while(1)
}

Figure6, For Construct

13

5.3 Sections construct

Thesect i ons construct hands each section to a different thread, until each section has been
executed. We achieve this much like we did for thef or construct. We gather information about
how many sections there are to be run, and give each section a unique number within this

sect i ons construct. Each thread then loops around:

+ Fetch a slice of the sections — i.e., fetch the number of a section to run

« If there’s no slice for us, then we are done and exit the loop

« Otherwise, execute the appropriate section.

Again, this is illustrated in Figure 7:

struct { n_sections, next_section }
sections = { 3, 0}; // this describes how many sections we have
/1 and which sections have yet to be run
Il this is shared between threads

1o, struct { int section, is_done }
slice ={ 0, 0}; /1 this tells is which section
#pragma onp sections /1 this thread gets to run
{ T00(); } s while (1) { . .
#pragma onp section ~ slice = <fetch a slice from sect/ons>;
{ bar(); } if (slice.is_done) // we're done with all sections, proceed

#pragma onp section break;

{ baz(); } =—— . . .
switch (slice.section) {

case 0:

... Pl §R00); }

break;

case 1:

——tpar(); }

break;

} /1 while(1)

...

Figure 7, Sections Construct

5.4 Singl e construct

Thesi ngl e construct works similarly to its cousins, except that only the first thread that
attempts to execute it, actually does. Hence the ‘slice’ that each thread gets is either permission to
execute the code in tls@ ngl e region, or not; no need to loop. Figure 8 should illustrate it:

...
...
if (<this single has yet to be executed by this teanp) {
#pragma onp single <mark this single as having been executed by this teanp
foo(); P f00();
}
1o }
...

Figure 8, Single Construct

14

5.5 Parall el work-sharing constructs

A paralel work-sharing construct is handled as you might expect: apar al | el construct
immediately wrapped around the corresponding work-sharing (for or sections) construct.

5.6 Threadprivate directive

The threadprivate directive marks an otherwise global variable as being private to each thread.
This meansthat for each thread other than the main thread in the program, a copy of each
threadprivate variable must be made, and each access to a variable that is marked as threadprivate
must go to the current thread’s copy rather than the master thread’s one.

OdinMP achieves this by allocating copies of the threadprivate variables in each thread
other than the main thread. Each thrigmtliding the main thread also has a set of pointers to its
threadprivate variables. Each reference to a threadprivate variable is then replaced by an
expression which dereferences the current thread’s pointer to the threadprivate variable in
question.

6 A More Detailed Look at OdinMP Parallelization

| will present the process of parallelization and handling of OpenMP constructs, directives and
clauses in detail, with examples as generated by the actual OdinMP compiler. The list of OdinMP
types and symbols, as found in Appendix A, is very helpful for understanding this chapter, as is
the OpenMP specification.

6.1 POSIX Threads, a Quick Introduction

The POSIX threads API offers a variety of features for controlling multi-threaded execution of a
program. OdinMP/CCp fortunately only uses a few of those, which | will briefly describe here.
Full documentation for pthreads is available framitg://www.opengroup.org/unix/

6.1.1 Thread Creation and Termination

Pthreads defines a data typghr ead_t , which uniquely identifies a thread of execution. This
is an opaque data type, in that the programmer who uses pthreads need never concern himself
with the contents of any variable of typehr ead_t .

To create a new thread, pthreads defines a routine with the following prototype:
int pthread create(pthread t *thread, pthread attr_t *attr,
void *(*start_routine)(void *), void *arg);

This declarept hr ead_cr eat e to be a function returning an integer, which takes as its
arguments

1. apointer to @t hr ead_t variable thread

2. apointer to gt hread_attr _t variable,attr

3. apointer to a function taking a pointer to void as an argument and returning a pointer

to void, start_routine

4. a pointer to voidarg

pt hr ead_cr eat e starts a new thread with attributes according to the pthread attribute
setattr points to, and stores the thread ithaéad. The new thread will execute the routine
start_routine, which will be called witharg as its argument. The newly created thread will
terminate when it reaches the endtaft_routine.

" The pthreads API was first defined in the IEEE POSIX 1003.1c standard, and is now a part of ‘The Single
UNIX Specification’ from the Open Group (abh#p://www.opengroup.org)), which is what | refer to in
this document.

15

6.1.2 Synchronization

Pthreads offers two facilities for synchronization between threads. mutual-exclusion locks (called
mutexes), and conditions.

A mutex is defined by avariable of type pt hr ead_nut ex_t . It can belocked by a call
toi nt pthread_nutex_| ock(pthread_nutex_t *nutex),and unlocked by calling
i nt pthread nutex_unl ock(pthread nmutex_ t *nutex).Whileamutex islocked
by one thread, no other thread can lock it. A call to pthread_mutex_lock will not return until the
mutex has been successfully locked; thus, the calling thread will wait until no other thread has the
mutex in question locked. This ensures that only one thread at atime can execute whatever code
is bracketed by locking and unlocking a mutex.

A condition carriesthe type pt hr ead_cond_t . Conditions are used in conjunction with
mutexes, to wait for a certain event or signal that a certain even has occurred.

A thread that wishesto wait for a condition to occur cals
int pthread_cond_wait (pthread_cond_t *cond,
pt hread_nut ex_t *mut ex) . Thisplacesthe calling thread in a queue of threads which
wait for cond to occur. While the thread is waiting, mut ex is unlocked; after
pt hread_cond_wai t returns, mut ex has been re-locked.

To signal that a condition has occurred, athread calls
i nt pthread_cond_signal (pthread_cond_t *cond) or
int pthread cond_broadcast (pthread cond t *cond). Thedifference between
themisthat pt hr ead_cond_si gnal only informs one of the threads that are waiting for
cond, whereas pt hr ead_cond_br oadcast tellsall threads.

L et me give an example to make things clearer:

[*variabl es */

int x, vy;
pthread_mutex_t mut;
pt hread_cond_t cond;

[* Thread 1: */
/* wait until x >y */
pt hread_nut ex_I ock(&mut) ;
while (I'x >vy) {
pt hread_cond_wai t (&cond, &mut);

/* operate on x and y */
pt hr ead_nmut ex_unl ock(&t) ;

/* Thread 2: */

pt hread_mut ex_I| ock(&t) ;

/* modify x and y */

if (x >y) pthread_cond_broadcast (&ond);
pt hr ead_nut ex_unl ock(&mut) ;

The variables x and y are protected by a mutex, mut — any thread that wants to work or
y has to locknut first. There is also a conditiaond, which is used to signal thais greater than
y.

Thread 1 wishes to work onandy, so it locksmut (0). However, it requireg to be
greater thaiy to be able to do its work; so it lays itself in a Io@)(which, whilex is not greater
thany, waits @) for some other thread to signal tkahd has occurred. Onamnd has occurred

16

and XiGS indeed greater than y, thread 1 can proceed to operate on x and y (@) and finally unlock
mut ().

Thread 2 a'so works with x and y, so it locks mut (9). After it has finished modifying them
(@), it checks whether x is greater than y and if so, tells any waiting threads that cond has
occurred (0). Finally, it unlocks mut (0).

6.2 Project File Structure

A program is built from a set of input source files, written in C. OdinMP parses these, and
generatesits own set of C language sourcefilesasaresult. A ssmple program will go through the
following transition:

Filesin Project: Filesin Project:

« foo.c « foo.c

« foo.h e main.c

e man.c e odinmp.c
Original project OdinMP project

Since all preprocessing will be done by OdinMP/CCp, header files ‘disappear’ from the
project; but an additional source file — ‘odinmp.c’ — is generated.

6.3 Common Source File Changes
Each source code file will go through the following changes:

/* Type Definitions and External Declarations for OdinMP use
omitted for brevity */ o

voi d foo() void foo()
{
) o
} }
int mai n (intargc, char **argv) int odi nnp_ori gi nal _nmai n(int argc, char **argv)
{
) /]
} }

/* Generated extra code: */
void odinmp_thread_samp_c(odinmp_thread_data_t * odinmp_td)

e

switch (((odinmp_thread_info_t *) (odinmp_td))->run_region) {
}
void odinmp_thread_init_samp_c(odinmp_thread_data_t * odinmp_td, int i)
if (((odinmp_thread_info_t *) odinmp_td)->id == 0) {
odinmp_thread_init(odinmp_td, i + 1);
}else {
odinmp_thread_init(odinmp_td, i + 1);
}

int pai n (int argc, char **argv)

® 000 00

odinmp_parse_env();
odinmp_parse_args(&argc, argv);
odinmp_init();

atexit(odinmp_atexit);

return odinmp_original_main(argc, argv);

Figure 9, Common Sour ce File Changes

e Such type defnitions and external symbol declarations as OdinM P/CCp needs, are added
before the file's source code (at bu@b.

17

» If thisfile contains afunction called mai n, thisis renamed to
odi nnp_ori gi nal _mai n (@), and anew mai n function is defined (@), as you
can seein the figure, which sets up the OdinM P/CCp environment before running
odi nnp_origi nal _nmain
» Two ‘standard’ functions are defined:
» odinnp_thread filenane c() (at®)
= odinnp_thread_ init_filenane c() (at®)
wherefilename_c represents the file’s name with all non-alphanumeric characters
replaced with underscores, thus creating function names which are unique to each file
We will return to these functions later.

6.4 Parallel Construct
When OdinMP/CCp encounters a parallel region such as

voi d foo() {
int s, p, fp, rdx;
o
#pragma omp parallel shared(s) private(p) \
firstprivate(fp) reduction(+ : rdx)

bar();

}
I ¥

}

the following occurs:
* Theparalld regionis assigned a unique identifying number; that is, unique to the
whole project, not just to the current file. (In the example below, thisidentifying
number is zero, ‘0", as it will always be for the first / only parallel region in a project.)
« If the parallel construct contains any firstprivate variables, or shared variables which
are not globally visible, then OdinMP/CCp declares a structure
odi nnp_par _0_shm t to hold a pointer to each of those variables. In our example

it will look like this:
typedef struct {
int (*s); /* shared variable */
int (*fp); /* firstprivate variable */
} odinnp_par_0_shmt;
« If there are any reduction variables in the parallel construct, then OdinMP/CCp
declares a structuredi nnp_par _0_prm_t to hold a working copy of each

reduction variable. In our example it will look like this:
typedef struct {
int rdx;
} odinnp_par_0_prmt;
e The entire parallel region is replaced by the following code:
void foo ()
{
int s, p, fp, rdx;
.. %
[* # pragma omp */

/* we need a loop counter and an id */
int odinmp_i, odinmp_id;

18

/* for allocating a teamof threads */

odi nnp_team t *odi nnp_t eam

odi nnp_teamlist_t *odinnmp_tl;

odi nnp_thread_data_t *odi nnp_td, *odi nnp_naster_td;

/* initialize the pointers to the shared variables */
odi nnp_shared_data. par_0.s = &s;

/* initialize pointers to firstprivate variables, if any */
odi nnp_shared_data. par_0.fp = &f p;

/* allocate a team of threads */

/* ok, let’s allocate as many as we can get */

odi nnp_t eam = odi nnp_al | ocat e_t eam (0)

odi np_naster _td = odi nnp_t hread_dat as[odi nnp_t eam >i ds[0]] ;

/* for each thread, initialize the private data, and di spatch

the thread */

for (odinmp_i = 0; odinnp_i < odinnp_team>n; odinnp_i ++) {
odi nnp_id = odi nnp_t eam >i ds[odi nnp_i];
odi nnp_td = odi nnp_t hread_dat as[odi nnp_i d] ;

((odinnp_thread_info_t *) (odinnp_td))->run_region = 0;
if (((odinnp_thread_info_t *) (odinnp_td))->team {
odi nnp_tl =
(odinnp_teamlist_t *) malloc (sizeof (odinnp_teamlist_t));
odi nnp_t | ->next = ((odinmp_thread_info_t *) (odinnp_td))->teans;
((odinnp_thread_info_t *) (odinnp_td))->teans = odinnp_t|

((odinnp_thread_info_t *) (odinnp_td))->team = odi nnp_t eam

/* copy data fromnaster thread into those threadprivate
variables that are listed in the copyin clause, if any */

/* initialize reduction variables */
odi nnp_td->par_0.rdx = 0;

odi nnp_di spatch (odinnp_td);
}

odi np_t hread (odi nnp_t hread_dat as[odi nnp_t eam >i ds[0]]) ;

/* wait for all other threads to finish running this region */
for (odinnp_i = 0; odinnp_i < odinnp_team >n; odinnmp_i++) {
odi nmp_id = odi nnp_t eam >i ds[odi nnp_i] ;
odi nnp_td = odi nnp_t hread_dat as[odi nnmp_i d] ;
if (odinm_i != 0)
odi np_wai t_fini shed (odi nnp_id);

((odinnp_thread_info_t *) (odinnmp_td))->run_region = -1

if (((odinnp_thread_info_t *) (odinnp_td))->teans) {
odinnp_tl = ((odinnp_thread_info_t *) (odinnp_td))->teans;
((odinnp_thread_info_t *) (odinnp_td))->teans = odinnp_tI| ->next;
((odinnp_thread_info_t *) (odinnmp_td))->team = odi nnp_t|->t eam
free (odinnp_tl);

} else
((odinnp_thread_info_t *) (odinnp_td))->team= ((void *) 0);

/* reduce the reduction variables */
rdx = rdx + odi nnp_td->par_0.rdx;

19

/* deal | ocate team of threads */
odi nnp_free_team (odi nnmp_t ean ; o
}

L
}

The above code does the following: At Q, OdinMP/CCp initializes the pointersin the
shared memory structure, to point to those shared variables which are not globally
visible (and thus not directly accessible fromodi nnp_t hr ead_sanp_c()). At @,
OdinMP/CCp similary initalizes the pointers to the ‘originals’ of the firstprivate
variables. A@, OdinMP/CCp allocates a team of threads, as many as it can get hold
of, and marks the current thread as the master thread of that team.
At this point, all threads in the team (other than the current thread) are waiting in
odi nnmp_t hread_spi nner () at BULLET.
Then, for each thread in the newly allocated team, OdinMP/CCp tells it to run the
correct parallel region (@) and tells it what team it is a member of @ it copies
in the master thread’s values of any threadprivate variables named in the copying
clause to this parallel construct (in this example, there aren’t anﬁ.,k&ue reduction
variables (private to each thread) are initialized, and fina@mhe freshly initialized
thread is dispatched to do its assigned work, by setting the condition that the thread in
guestion has work to do. The affected thread will therochlhnp_t hr ead() ,
which will in turn callodi nnp_t hr ead_sanp_c() .
Now, the current thread itself executes the pertinent parallel region as the master thread
of the team, by callingdi nnp_t hr ead() at®.
After returning from that, OdinMP/CCp will attempt to ‘collect’ all threads in the team:
It waits for the thread to finislﬂ), resets that thread’s team informati@)(and
finally reduces that thread’'s working copy of each reduction variable into the master
copy @). Finally, after all threads have been collected, the team is empty and thus can
be deallocated — @®.

e Further, in the generated routiodi nnp_t hread_sanp_c() (in Figure 9,
Common Source File Changes,@), a case is added, selected by the identifying
number chosen above (0 in this example), as follows:

voi d odi nnmp_t hread_sanp_c (odinnp_thread_data_t * odinnp_td)

{
switch (((odinnmp_thread_ info_t *) (odinnp_td))->run_region) {
case O: Q
/* outer scope: variables */
{

/* declare & define variables here */

int fp = (*odi nnp_shared_dat a. par_0. f p); ()
int p; G
/* original code of parallel region here */
bar ();
(D
}
br eak;

}

As mentioned abovedi nnp_t hr ead_sanp_c() will be called from

20

odi nnmp_t hread_spi nner () whenaparalle region defined in samp.cisto be
executed by that thread. This code will execute the parallel region as follows: First, the
relevant part of the switch statement is selected by the case label with the same number
as we have assigned to the corresponding paralel region (@). OdinMP/CCp then
opens a hew stack frame, and on that frame declares and thus allocates each private
variable for the parallel region (9 and @). Those that are also firstprivate get

initialized (at 9) through the corresponding pointer that was set before the current
thread was dispatched. And then OdinM P/CCp just includes the code of the parallel
region for the current thread to run, at ©.

6.5 For Construct
A for construct like

void foo() {
int s; /* shared */
int a=0, b=100, ¢ = 3; /* loop | ower bound, upper bound, and increment */
int i, j; /* | oop counters */
int fp =0, flp =20, Ip; /* FirstPrivate, First&lLastPrivate, LastPrivate */
int rdx = 0; /* reduction variable */

[* .. %]
#pragnma onp parall el

#pragma onp for \
private(j) firstprivate(fp, flp) lastprivate(flp, Ip) \
reduction(+ : rdx) ordered

for (i =a; i <b;, i +=¢)
rdx += bar(i, j, s, fp, &lp, &p);

[* .0 *

generates the following code:
/* # pragma onp */
{

/* private vari abl es;
if a variable is also firstprivate, then initialize it
fromthe correspondi ng outer variable
if a variable is a reduction variable, then initialize it
corresponding to the reduction operator */

int odinnp_flp_fp = (*odi nnp_shared_dat a. par_0.fp); (A)

int odinmp_flp_flp = (*odi nnp_shared_data. par_0.fl p);

int odinmp_flp_Ip;

int odinmp_rdx_rdx = 0;

int j;

int i;

/* odi nnp variables */

/* wsc info etc */ o

odi nnp_for_slice_t odinnp_slice = {OL, OL, 0, O, 0, O};

odi nnp_wsc_info_t odi nmp_wsc_i nf o;

int odi nmp_i n_order = 0;

/* for slice fetching */

odi nnp_teamt *odinnp_team = ((odi nnp_thread_info_t *) (odinnp_td))->team @
pt hread_rmut ex_t *odi nnp_t eam | ock = &odi nnp_t eam >| ock;

21

/* record info about this work sharing construct */

odi nnp_wsc_info.next = ((odinnp_thread_info_t *) (odinnp_td))->wsc_info;
((odinnp_thread_info_t *) (odinnp_td))->wsc_info = &odi nnp_wsc_i nf o;

odi nnp_wsc_i nfo.type = odi nnp_wsc_type_for;

odi nnp_wsc_i nfo. u.wsc_for.slice = &dinnp_slice;

pt hread_nut ex_I ock (odi nnp_t eam | ock);

/* find the lap list, if any */
for (odinnp_wsc_info.u.wsc_for.lap_list = odinnp_team >for_| aps[0];
odi nnp_wsc_i nfo.u.wsc_for.lap_list &&
odi nmp_wsc_info.u.wsc_for.lap_list->ap > odi nnp_td->for_0. odi nnp_| ap;
odi nnp_wsc_info.u.wsc_for.lap_list =
odi nmp_wsc_info.u.wsc_for.lap_list->next);

if ('odinnp_wsc_info.u.wsc_for.lap_list ||
odi nnp_wsc_info.u.wsc_for.lap_list->lap != odi nnp_td->for_0. odi nnp_| ap) {

odi nmp_wsc_info.u.wsc_for.lap_list = (odinnmp_for_lap_list_t *)
mal | oc (sizeof (odinnp_for_lap_ list_t));
odi nmp_wsc_info.u.wsc_for.lap_list->ap = odi nnp_td->for_0. odi nnp_| ap;
odi nmp_wsc_info.u.wsc_for.lap_list->n_left_to_ | eave = odi nnp_t eam >n;
odi nnp_wsc_i nfo.u.wsc_for.lap_list->for_data.lb =
(*odi nnp_shar ed_dat a. par_0. a);
odi nmp_wsc_info.u.wsc_for.lap_list->for_data.incr =
(*odi nnp_shared_dat a. par_0.c);
odi nmp_wsc_info.u.wsc_for.lap_list->for_data.b =
((*odi nnp_shar ed_dat a. par_0. b)) ;
odi nmp_wsc_info.u.wsc_for.lap_list->for_data.scheduler.type =
odi nnp_schedul er_stati c;
odi nnp_wsc_i nfo. u.wsc_for.lap_list->for_data. schedul er.chunk_size =
(odi nnp_wsc_info.u.wsc_for.lap_list->for_data.b -
odi nmp_wsc_info.u.wsc_for.lap_list->for_data.lb) / (double) odinnp_team >n
odi nnp_wsc_info.u.wsc_for.lap_list->for_data. chunk_size =
odi nnp_wsc_i nfo.u.wsc_for.lap_list->for_data. schedul er. chunk_si ze

odi nmp_wsc_info.u.wsc_for.lap_list->next = odi nnp_team >for_| aps[0];
odi nnp_team >for_| aps[0] = odi nmp_wsc_info.u.wsc_for.lap_|list;

/* if an ordered clause is specified on for construct */
odi nnp_wsc_info.u.wsc_for.lap_list->for_data.in_order = O;
odi nmp_wsc_info.u.wsc_for.lap_list->for_data.next_in_order = 0;
pthread_mutex_init (&odi nmp_wsc_info.u.wsc_for.lap_list-
>f or _data. order_l ock, ((void *) 0));
pt hread_cond_init (&odi nnmp_wsc_info.u.wsc_for.lap_list-
>f or _dat a. new_order, ((void *) 0))

}

pt hr ead_rut ex_unl ock (odi nmp_t eam | ock);

while (1) {
/* fetch a slice */

/* reset slice */
odi np_slice. | ast
odi nnp_sl i ce. done
odinnmp_slice.lb =
odi nnp_slice.incr
odinmp_slice.b = 0;

{

ee

nmoinun

odi nnp_wsc_info.u.wsc_for.lap_list->for_data.incr;

int i = ((odinmp_thread_info_t *) (odinnp_td))->id

22

+ odinmp_slice.i * odinmp_team >n

odinnp_slice.lb =
(long long int) (odinnp_wsc_info.u.wsc_for.lap_list->for_data.lb +
i * odinnp_wsc_info.u.wsc_for.lap_list->for_data.chunk_size);

if (odinmp_slice.lb < odinnp_wsc_info.u.wsc_for.lap_list->for_data.b)

odi nnp_slice.b =
(long long int) (odinnp_wsc_info.u.wsc_for.lap_list->for_data.lb
+ (i + 1) * odinnmp_wsc_info.u.wsc_for.lap_list->for_data.chunk_size);
if (!'(odinnmp_slice.b < odinnp_wsc_info.u.wsc_for.lap_list-
>for_data.b)) {
odi nnp_slice.b = odi nnp_wsc_info.u.wsc_for.lap_list->for_data.b
odi nnp_slice.last = 1;

odi nnp_slice.in_order =i;
odi np_slice.i++

} else {
odi np_sl i ce. done = 1;

}
}
i f (odinnp_slice.done) { (N
/* increnent |ap counter */
odi nmp_t d->f or _0. odi nnp_| ap++
/* ... and exit the while(l) |oop */
br eak;
}
/* here’s the original loop, with the for |oop head exchanged
and variable references replaced as wel |l */ (0]

for (i = odinmp_slice.lb
i < odinnmp_slice.b;
i += odi nnp_slice.incr)
odi nnp_rdx_rdx += bar (i, j, (*odinnmp_shared_data.par_0.s),
odi nnp_fl p_fp, &odinnp_flp_flp, &odinm_flp_Ip);

/* update order counter */

pt hread_mut ex_I ock (&odi nnp_wsc_i nfo.u.wsc_for.lap_list- (:
>f or _dat a. order _| ock) ;

odi nnp_wsc_i nfo.u.wsc_for.lap_list->for_data.in_order++;

pt hread_cond_broadcast (&odi nnp_wsc_info.u.wsc_for.lap_list-
>f or _dat a. new_order);

pt hread_mut ex_unl ock (&odi nnp_wsc_info.u.wsc_for.lap_list-
>f or _dat a. order _I| ock) ;

/* did we run the last iteration ? */ ‘3
if (odinmp_slice.last) {
/* yes, so copy data out fromlastprivate variables */
(*odi nnp_shared_data. par_0.flp) = odinmp_flp_flp;
(*odi nnp_shared_data. par_0.1p) = odinnmp_flp_Ip;
}
} [* while(l) */

/* restore work sharing construct info */
((odi nnp_thread_info_t *) (odinnp_td))->wsc_info = odi nnp_wsc_i nfo. next;

pt hread_mut ex_| ock (odi nnp_t eam | ock)
/* reduce reduction variables */

(*odi nnp_shared_dat a. par _0.rdx) = (*odi nnmp_shared_data. par_0.rdx) +
odi nnp_r dx_rdx;

23

/* update the lap list */

if (--odinmp_wsc_info.u.wsc_for.lap_list->n_left_to_|eave == 0) {
odinnp_for_lap_list_t *oll = odinnp_team >for_| aps[0];
if (oll == odinnmp_wsc_info.u.wsc_for.lap_list) {
odi nnp_t eam >for_| aps[0] = ol | ->next;
} else {
while (oll->next !'= odinnp_wsc_info.u.wsc_for.lap_list)
oll = oll->next;

ol | ->next = odi nmp_wsc_info.u.wsc_for.lap_|ist->next;
free (oll);

pt hr ead_rut ex_unl ock (odi nmp_t eam | ock) ;
/* barrier at the end of parallel for
renmove this section if nowait is specified */ ‘b
odi nnp_barrier (odi nnmp_team
&odi nnp_team >for_barriers[0]);

At Q, aprivate copy of each private variable is alocated. Those that are also marked as
firstprivate are initialized from the corresponding shared variable. Also, a private working copy
of each reduction variable is allocated and initialized according to its reduction operator. At &,
OdinMP/CCp declares a variable to hold the information for the current slice to be run,
information about this work-sharing construct, and ordering information. OdinMP/CCp then
declares some variables it uses as shortcuts to the current thread’s team, and the team’s mutual-
exclusion lock, a®. The work-sharing construct information is then initializQ:).(

Now, OdinMP/CCp locks the team'’s mut@j(— to ensure that only one thread in this
team eecutes the following code at a time. It then searches for an existing ‘lap desﬁptor' (

‘Laps’ are used to keep track of the various time a given team of threads executes the same
work sharing construct — for instance, a for construct might be situated inside another loop, or the
for construct might be in a subroutine that is called several times from within the same parallel
region. Conceivably, two threads in the same team might be executing different laps of the same
work-sharing construct simultaneously, so the team needs to keep tadctheflaps which
currently have active threads on this work-sharing construct, hence it keeps lap descriptors in a
linked list. Laps are numbered sequentially, starting with zero.

If OdinMP/CCp can find@) a lap descriptor matching the lap that the current threads
wants to run, then the current thread is not the first to enter this lap; thus, this lap is already
initialized and everything is fine. If, however, no matching lap descriptor can be founoﬂmen (
the current thread is the first in its team to enter this lap, so it allocates a new lap descriptor and
initializes it (setting the lap number, the loop bounds and increment, and scheduling information).
If the ordered clause has been specified on the current for construct, then the necessary
information for that is initialized as well, 0. Finally, the team’s mutex is unlocked to let
another team in the thread get at the lap descriﬂ()r (

At @, the current thread enters an ‘infinite’ loop which repeats the process of fetching,and
then doing, work. First, the information about the current slice is r&)et&{econd, using the
appropriate scheduler as specified in the ‘schedule’ clause (or the default scheduler, as in this
example), the slice information for the current thread is fetcW®d I(will not go into detail on
this process now.

If the slice information indicates that there is no more work with this thread @;do (
then it exits from the ‘infinite’ loop and resumes executid®aOtherwise it stays inside the

24

loop, proceeding to execute its slice of the for loop (@), using the slice information provided by
the scheduler.
At @, order information is updated if the ordered clause is specified on the current for
construct. Then it is checked whether the just-executed dlice contained the secuentialy last
iteration of the loop (@), in which case datais pushed out from any variables marked as
lastprivate to their shared counterparts outside the for construct. The ‘infinite’ loop Qds at
After having exited from the ‘infinite’ loop, OdinMP/CCp restores the work-sharing
construct information for the current thre@) since it it now exiting from the current for
construct. It then locks the team mutex ag®®) and reduces its working copies of any
reduction variables into the master cop)@atLikewise, it notes that it is exiting the current lap,
and checks whether it might be the last thread in the team to @)sﬁ it is, then this laps’
information is no longer needed and can be deallocated. All team-critical work being done, the
team’s mutex is once more unlock@)(
Finally, unless the ‘nowait’ clause is specified on the for construct, OdinMP/CCp waits at
® for all other threads in the team, by means of a barrier.

6.6 Secti ons Construct
For the following code snippet

void foo ()

{
int s; /* shared */
int p; /* private */
int fp =0, flp=20, Ip; /* FirstPrivate, First&LastPrivate, LastPrivate */
int rdx = O; /* reduction variable */

I* .. %
#pragnma onp parall el

#pragma onp sections \
private(p) firstprivate(fp, flp) lastprivate(flp, Ip) \
reduction(+ : rdx)

{
{ _
rdx += sectionl (fp, & lp, & p, &p);
}
#pragma onp section
rdx += section2 (fp, &lp, & p, &p);
}
#pragma onp section
rdx += section3 (fp, & lp, & p, &p);
}
}

}
[* ..

OdinMP/CCp generates the following code:

/* # pragma onp */ {
/* private vari abl es;
if a variable is also firstprivate, then initialize it
fromthe correspondi ng outer variable
if a variable is a reduction variable, then initialize it
corresponding to the reduction operator */

25

i nt
int
int
int
int

odinnp_flp_fp =

(*odi nnp_shar ed_dat a. par_0. f p) ;

odi nmp_flp_flp = (*odi nnp_shared_data. par_0.fl p);

odi nnp_f 1 p_I p;

odi nnp_rdx_rdx =

p

0;

/* odinnp variables */

/*

wsc info etc */

odi nnp_sect _slice_t odinnp_slice;
odi nnp_wsc_info_t odi nnp_wsc_info

/* for slice fetching */
nnmp_team<t *odinmp_team = ((odi nnp_thread_info_t *) (odi nnp_td))->team

odi

/* record info about this work sharing construct */

odi nnp_wsc_info.next = ((odinnp_thread_info_t *) (odinnp_td))->wsc_info;
((odinnp_thread_info_t *) (odinnp_td))->wsc_info = &odi nnp_wsc_i nf o;

odi nnp_wsc_i nfo.type = odi nnp_wsc_type_sect;

pt hread_mut ex_| ock (&odi nnp_t eam >| ock)

for (odinnp_wsc_info.u.wsc_sect.lap_list = odi nnp_team >sect _| aps[0];
odi nnp_wsc_i nfo. u.wsc_sect.lap_list &

odi nmp_wsc_i nfo.u.wsc_sect.lap_list->lap > odi nnp_td->sect_0. odi nnp_I ap;
odi nnp_wsc_i nfo. u.wsc_sect.lap_list =

odi nnp_wsc_i nfo. u. wsc_sect.lap_list->next)

if (lodinmp_wsc_info.u. wsc_sect.lap_list |

odi nmp_wsc_info.u.wsc_sect.lap_list->lap != odi nnp_td->sect_0. odi nnp_I ap) {

odi nnp_wsc_i nfo.u.wsc_sect.lap_list = (odinnp_sect_lap_list_t *)
mal | oc (sizeof (odinnp_sect_lap_list_t));
odi nmp_wsc_info.u.wsc_sect.lap_list->ap = odi nnp_td->sect_0. odi nnp_I ap;
odi nmp_wsc_info.u.wsc_sect.lap_list->n_left_to_|l eave = odi nnp_t eam >n
odi nnp_wsc_i nfo.u.wsc_sect.lap_list->sect_data.n_left = 3;
odi nmp_wsc_i nfo.u.wsc_sect.lap_Ilist->next = odi nnp_team >sect _| aps[0] ;
odi nnp_t eam >sect _| aps[0] = odi nnp_wsc_i nfo. u.wsc_sect.lap_list;
}

pt hread_mut ex_unl ock (&odi nnp_t eam >I ock)

wh

>sect _

l'e (1) {

/* reset slice */

odi nnp_slice.last =
odi nnp_slice. done =

0;
0,

pt hread_nut ex_I| ock (&odi nnp_t eam >| ock) ;

if (odinnp_wsc_info.u.wsc_sect.lap_list->sect_data.n_left > 0) {
odi nnmp_slice.section = 3 - (odinnmp_wsc_info.u.wsc_sect.lap_list-

data.n_left--)

odi nnp_slice.done = 0
/* are we performng the sequentially |ast section? */
odi nmp_slice.last = (odinnp_slice.section == 2);

} else {

odi nnp_slice.section = 0;
odi nnp_slice.done =1
odi nnmp_slice.last = 0;

}

pt hread_nmut ex_unl ock (&odi nnp_t eam >l ock) ;

if (odinnmp_slice.done) {
/* increnent the |lap counter */
odi nnp_t d- >sect _0. odi nnp_I ap++;

26

OO0 0060 © 0 0

/* ... and exit the while(l) |oop */
br eak;

switch (odi nnp_slice.section) {
case O:

{
odi nnp_rdx_rdx += sectionl (odinnmp_flp_fp, &odinnp_flp_flp,
&odi nnp_flp_Ip, &p);
}

br eak;
case 1:

{
odi nnp_rdx_rdx += section2 (odinnmp_flp_fp, &odinnp_flp_flp,
&odi nnp_flp_I p, &p);
}

br eak;
case 2:

{
odi nnp_rdx_rdx += section3 (odinmp_flp_fp, &odinnp_flp_flp,
&odinnp_flp_ | p, &p);
}

br eak;
defaul t:

)

}

/* did we just execute the |ast section? */
if (odinmp_slice.last) {
/* yes we did, copy out the lastprivate variables */
(*odi nnp_shared_data. par_0.flp) = odinmp_flp_flp;
(*odi nnp_shared_dat a. par_0.1p) = odi nnp_fl p_I p;
}
}

/* restore work sharing construct info */

((odi nnp_thread_info_t *) (odinnp_td))->wsc_info = odi nnp_wsc_i nfo. next;

pt hread_mut ex_| ock (&odi nnp_t eam >| ock)

/* reduce reduction variables */
(*odi nnp_shared_dat a. par_0.rdx) = (*odi nmp_shared_data. par_0.rdx) +
odi nnp_r dx_rdx;
/* update the lap list */
if (--odinnp_wsc_info.u.wsc_sect.lap_list->n_left_to_|eave == 0) {
odi nnp_sect _lap_list_t *oll = odinnp_team >sect_| aps[0];

if (oll == odinnmp_wsc_info.u.wsc_sect.lap_list) {
odi nnp_t eam >sect _| aps[0] = ol | - >next;
} else {
while (oll->next != odinnp_wsc_info.u.wsc_sect.lap_list)
oll = oll->next;
ol | ->next = odi nmp_wsc_i nfo.u.wsc_sect.|ap_|ist->next;

free (oll);

pt hr ead_rut ex_unl ock (&odi nnp_t eam >l ock) ;
/* barrier at the end of sections
renmove this if nowait is specified */
odi nmp_barrier (odi nnp_team
&odi nnp_t eam >sect _barriers[0]);

27

O 606 o

This codeis quite similar to that generated for afor construct, not entirely surprisingly
perhaps. At 0 aprivate copy of each private variable is allocated. Those that are aso marked as
firstprivate are initialized from the corresponding shared variable. Also, a private working copy
of each reduction variable is allocated and initialized according to its reduction operator. At&,
OdinMP/CCp declares a variable to hold the information for the current dlice to be run and
information about this work-sharing construct. OdinMP/CCp then declares avariable it usesasa
shortcut to the current thread’s tean®it The work-sharing construct information is then
initialized @).

Now, OdinMP/CCp locks the team'’s mut@j(— to ensure that only one thread in this
team executes the following code at a time. It then searches for an existing ‘lap desﬂptor’ (
and if necessar;@) allocates and initializes on@O. Finally, the team’s mutex is unlocked to
let another team in the thread get at the lap descrﬂgnr (

At 0, the current thread enters an ‘infinite’ loop which repeats the process of fetching,and
then doing, work. First, the information about the current slice is r&)et‘l'(hen the team'’s
mutex is once more Iockeo(). If there is work left to be done by this team)(then we fetch a
slice for this threac@) and check wether this also happens to be the last section in this sections
construct@), otherwise the slice is set to indicate that we are done%rm@w we can
unlock the team’s mute@). If the slice information indicates that there is no more work with
this thread to do@), then it exits from the ‘infinite’ loop and resumes executid®at
Otherwise it stays inside the loop and proceeds to the switch state@,mvhtch selects which
of the section@, @, 10 execute according to the information in the slice we fetched earlier.

At 0, OdinMP/CCp checks whether the just-executed slice contained the secuentially last
section, in which case data is pushed out from any variables marked as lastprivate to their shared
counterparts outside the for construct. This concludes the ‘infinite’ loop.

After having exited from the ‘infinite’ loop, OdinMP/CCp restores the work-sharing
construct information for the current thref® since it it now exiting from the current for
construct. It then locks the team mutex ag¥®) énd reduces its working copies of any
reduction variables into the master cop)%tLikewise, it notes that it is exiting the current lap,
and checks whether it might be the last thread in the team to &)sﬁ it is, then this lap’s
information is no longer needed and can be deallocated. All team-critical work being done, the
team’s mutex is once more unlock@)(

Finally, unless the ‘nowait’ clause is specified on the construct, OdinMP/CCp weks at
for all other threads in the team, by means of a barrier.

6.7 Singl e Construct
For the following code snippet

void foo ()
{
int s; /* shared */
int p; /* private */
int fp = 0; [* FirstPrivate */

I* .. 0%
#pragma onp parall el

#pragma onp single private(p) firstprivate(fp)
single_thread(&p, &fp);

}
}

28

[* o0

OdinMP/CCp generates the following code:

/* # pragma onp */ {
/* private vari abl es;
if a variable is also firstprivate, then initialize it
fromthe correspondi ng outer variable */
int odinmp_flp_fp = (*odi nnp_shared_dat a. par_0.fp); Q
int p;

/* odinnp variables */

/* wsc info etc */ e
odi nnp_sing_slice_t odinnp_slice;

odi nmp_wsc_info_t odi nnp_wsc_i nfo;

/* record info about this work sharing construct */ G
odi nnp_wsc_info.next = ((odi nnp_thread_info_t *) (odinnp_td))->wsc_info;
((odinnp_thread_info_t *) (odinnp_td))->wsc_info = &odi nnp_wsc_i nf o;

odi nnp_wsc_i nfo.type = odi nnmp_wsc_type_si ng;

/* fetch a slice */

((D)
odi nnp_teamt *team = ((odinnmp_thread_info_t *) (odinnmp_td))->team
int |ap;
pt hread_nut ex_I ock (& eam >| ock); G
lap = team >sing_l aps[0]; (F)
if (!lap)
I ap = odi nmp_t d- >si ng_0. odi nnp_| ap;
odi nnp_slice.do_it = odinnp_td->sing_0.odinnmp_|lap >= | ap; @
t eam >si ng_l aps[0] = ++odi nnp_t d- >si ng_0. odi nnp_I ap;
pt hread_mut ex_unl ock (& eam >l ock); 0
} /* fetch a slice */
if (odinmp_slice.do_it) { o
/* original code of single region cones here */
single_thread (&, &odinnp_flp_fp); o
}
}
/* restore work sharing construct info */
((odinnp_thread_info_t *) (odinnp_td))->wsc_info = odi nnp_wsc_i nfo. next; @
/* barrier at the end of single
renmove this section if nowait is specified */ o

odi nnp_barrier (((odinnmp_thread_info_t *) (odinnp_td))->team
& (odinnmp_thread_info_t *) (odinnp_td))->team >sing_barriers[0]);

This codeis principally similar to that generated for for and sections constructs, but much
simpler. At 0. private copy of each private variable is allocated. Those that are also marked as
firstprivate are initialized from the corresponding shared variable. At O, odinM P/CCp declaresa
variable to hold the information for the current dice to be run and information about this work-
sharing construct. The work-sharing construct information is then initialized (@).

Now, OdinMP/CCp prepares to fetch the dice (@) for the current thread. To this purpose,
it locks the team’s muteM&) — to ensure that only one thread in this team eecutes the following
code at a time. It then checks which lap in order is next supposed to have a thread execute the
single construcl@). OdinMP/CCp notes that permission to execute the code, is the same as

29

asking whether that lap is the same as thislap (@). Finally, the team’s mutex is unlocked to let
another team in the thread get at the lap descr@()r (

At 0, the current thread checks its assigned slice to see if it should do any work, and if so,
it executes the codﬂ). OdinMP/CCp restores the work-sharing construct information for the
current thread@), since it it now exiting from the constructf and finally, unless the ‘nowait’
clause is specified on the construct, wai@®safor all other threads in the team, by means of a
barrier.

6.8 Master Construct
A master construct such as

void foo ()

{
I* .. 0%
#pragnma onp parall el
#pragma onp master

printf("only the master thread runs this");

[* o0 %
}
will be converted into
if (odinnmp_is_naster()) { 0
printf ("only the master thread runs this"); @
}

This checks (by means of thei nnp_i s_mast er () function, a@) whether the
calling thread is the master thread of its current team, and executes the code in the master region
@) if this is the case.

6.9 Critical Construct
A critical construct like

void foo ()
{
[* o0 %]
#pragma onp parall el
#pragme onp critical (bar)

printf("in critical region");

[* o0 %

will be converted into

pt hread_nut ex_I| ock (&odi nnp_crit_bar);
{

printf ("in critical region");

30

pt hr ead_nut ex_unl ock (&odi nmp_crit_bar);

Generally, if a name ‘bar’ is specified on the critical construct, then a mutex
‘odinmp_crit_bar’ is declared; otherwise the shared mutex ‘odinmp_crit_odinmp_default’ will be
used. Either way, the mutex in question is Iocl@d,(then the critical code is execut@X, at
which point @) the mutex gets unlocked.

6.10 Barri er Directive
A barrier directive like

void foo ()

{
[* ... %
#pragma onp parall el
[* o0 %
#pragma onp barrier
[* o0 %

[* ... %]
will be converted into

odi nnp_thread_data_t *odinnp_td = odi nnp_sel f_data ();

0
if (((odinmp_thread_info_t *) (odinnp_td))->team!= ((void *) 0)) { (5]
odi nnp_barrier (((odinnmp_thread_info_t *) (odinnmp_td))->team e
&((odi nmp_thread_info_t *) (odinnmp_td))->team >barriers[0]);
}

}

First, the thread information for the current thread is fetc@)ﬂ if the team information
for the current thread is set, then we are currently executing in pa@u;ea(ld so, we call
odinmp_barrier()@) for the appropriate barrier variable (one is declared for each barrier
directive in the program) on the current team.

6.11 At omi ¢ Construct
An atomic construct like

void foo ()

t

Int a;

I* .. %

#pragma onp parall el
[* ... 0%
#pragma onp atom c
a += 3;
[* .. %]

[* ... %]
becomes

31

pt hread_nut ex_I ock (&odi nnp_at om c¢_I ock);
(*odi nnp_shared_dat a. par_0.a) += 3;
pt hr ead_nut ex_unl ock (&odi nmp_at om c_| ock);

This simply brackets the statement at O inaciitica region defined by locking (9) and
unlocking (@) the global mutex odi nnp_at om ¢_| ock.

6.12 Fl ush Directive
The Flush directive, used as below:

#pragma onp flush

is transformed into the following code:
odi nmp_sync_nenory();

The implementation of the odi nnp_sync_nenory() function is platform-dependant,
since it must ask the underlying platform to synchronize the current thread's view of memory
with the global view.

odi nnp_sync_nenory() is also called implicitly from , among other places, within
odi nnp_barri er (), to implement the implicit flush specified in the OpenMP specification.

6.13 Or der ed Construct
An ordered construct like the following

#pragnma onp ordered
{

printf ("ordered execution within parallel for |oop");

}
becomes

{

odi nnp_thread_data_t *odinnp_td = odi nnp_sel f_data (); Q
if (((odinmp_thread_info_t *) (odinnp_td))->wsc_info != ((void *) 0) &&
((odinnp_thread_info_t *) (odinnp_td))->wsc_info->type == @
odi nnp_wsc_type_for) {
odi nnp_wsc_info_t *wsc_info = (((odi nnmp_thread_info_t *) (odinnp_td))- G
>wsc_i nfo);
odinnp_for_lap_list_t *lap_list = wsc_info->u.wsc_for.lap_list; Q
pt hread_mutex_l ock (& ap_list->for_data.order_| ock); G
while (lap_list->for_data.in_order != wsc_info->u.wsc_for.slice- ()
>in_order) {
pthread_cond_wait (& ap_list->for_data.new order, & ap_list- @
>f or _dat a. order _| ock) ;
pt hread_mut ex_unl ock (& ap_list->for_data. order_| ock); 0
}
}
/* original code here */
{

32

printf ("ordered execution within parallel for |oop"); ()

Since an ordered construct must only be called from dynamically within afor construct,
OdinMP/CCp first fetches the current thread’s informatﬁ) @nd checks that this is the case
(@). If it is, then it fetches the work-sharing construct information for closer inspe@ﬁqras
well as the current lap descript@]{. Then the current thread locks the orderin mlﬁ)c(
While the ordering information indicates that it is not the current thread’s tuéett(waits
for its turn to arrive@), after which it unlocks the ordering mut@I. Finally, at®, the code
is executed.

7 Building the OdinMP/CCp Compiler

The OdinMP/CCp compiler accepts full ANSI C with OpenMP extensions as input, and generates
ANSI C with calls to the POSIX threads library, a.k.a. pthreads. In this chapter, | will offer a
cursory overview over the construction of the OdinMP/CCp compiler. | will not go into any great
detail, however.

7.1 Tools used to build the Automated Parallelizer

7.1.1 JavaCC: The Java Compiler Compiler

When searching for a foundation upon which to build OdinMP/CCp, | needed a good ‘compiler
compiler’ or similar. Having had prior experience with yacc and lex, | searched for something
different, and found JavaCC [7], The Java Compiler Compiler, from SunTest (distributed today
by Metamata, Inc.). This is a simple yet powerful LL(1) parser generator, which also happened to
include a complete grammar for ANSI C. | decided to use this as a starting point.

7.1.2 JTB: Java Tree Builder

Java Tree Builder (JTB) [8], from Purdue University, is a preprocessor for JavaCC. It takes a
simple JavaCC grammar and processes it, generating classes to describe each non-terminal node
in the grammar and rewriting the grammar so that the resulting parser will build a tree of nodes
corresponding to the parsed data. Each node class implements access methods for visitors. A
skeleton depth-first visitor class, which walks through the whole node tree, is also generated; this
can be used as a starting point for writing other visitors.

The approach supported by JTB suited me very well, since it meant that the changes to the
grammar could be separated from the code which actually worked with the parsed program — |
could place this in a visitor specific to the task.

7.2 The C Grammar

The C grammar | use is basically the sample C grammar distributed with JavaCC, but
adapted to support OpenMP directives and constructs.

7.3 Supporting Classes

Besides writing a suitable visitor class to operate on the parsed OpenMP-annotated ANSI C code,
| had to write a small framework of supporting classes which help me build and maintain the data
structures | need to generate the code. | will present a brief overview of these classes below.

33

7.3.1 Decl

A Decl handles collecting type and modifier information in a C declaration, and is used to
construct the Synmbol sdeclared.

7.3.2 Symbol

A Synbol holds a declared symbol’'s name and type information, as well as convenience
methods for acessing and changing them.

7.3.3 SymbolTable

Not surprisingly, &8ynbol Tabl e holds associations between names and their respective
symbols.

7.3.4 OmpSymbolAttributes

Each symbol may be ‘marked’ with a number of attributes by OpenMP — shared or private, for
instance — and these attributes are stored in instances@ftlSy mbol At t ri but es class,
one for each affected symbol on the construct that so marks a symbol.

7.3.5 ConstructDescriptor and its Subclasses

For each OpenMP construct and directive, | have written a corresponding

Const ruct Descri pt or subclass, which holds all the pertinent information about the
construct, and can generate the appropriate code. There is a

Par al | el Construct Descri pt or to handle a parallel construct, a

For Const ruct Descri pt or that handles a for construct, and so on. Each

Const ruct Descri pt or also keeps track of which symbols it marks with any particular
OmpSynbol Attri butes.

7.3.6 ClauseHandler and its Subclasses

| found it useful to factor out the handling of clauses on OpenMP constructs, from the handling of
the constructs themselves. So, for each construct than handles clauses, there exists a

Const ruct d auseHandl er class which sets up the

Construct Const ruct Descri pt or according to the clauses specified. The usefulness of

this is especially apparent when considering a combined parallel work-sharing construct such as
the parallel for construct, such as a parallel for construct. In this case, OdinMP/CCp generates
both aFor Const ruct Descri pt or and aPar al | el Const ruct Descri ptor, and uses

aPar al | el For Cl auseHandl er to distribute the clauses between the two as appropriate.

7.4 The DataBuildingVisitor

TheDat aBui | di ngVi si t or class is slightly misnamed; | initially thought | would use two
different visitors, one to build the data necessary to generate the code and another one to actually
generate the code, but as it turned out | only needed one. Since | am reluctant to introduce new
bugs into my code, | have allowed it to keep its name, slightly misrepresenting as it is.

Basically, theDat aBui | di ngVi si t or walks through the node tree, parsing the C code,
building type and symbol tables, and at the same time generating equivalent code as its result.
When it encounters an OpenMP directive or construct, a suifabigt r uct Descr i pt or (or,
in the case of combined parallel work-sharing constructsCowst r uct Descri pt or s) is
created, as well as any necessdrguseHandl er . Then thatConst r uct Descri pt or is
asked to supply the code for itself.

7.5 The OdinMP class

To pull thisal together, the Cdi nMP class contai ns the main method to run the OdinMP/CCp
compiler, fetching arguments from the command line or passed as Java properties. It then parses
each source file specified, and letsa Dat aBui | di ngVi si t or walk through the parse tree.
Then, for each input source file a corresponding output file is generated, and finally the shared
odi nnp. c fileisgenerated as well.

8 Measurements, Results and Other Lessons

Code equivalent to that generated by OdinMP/CCp, but written by hand prior to the development
of the OdinM P/CCp compiler, has been evaluated regarding performance on a small number of
different platforms; these results are, however, too informal to be presented here. Generally,
OdinMP/CCp-compiled code will make use of the multiprocessing capabilities of the underlying
platform to a useful extent. However, as can be seen in section 6, OdinMP/CCp generates quite a
bit of code to handle OpenMP constructs. So, in order for OdinMP/CCp to give measurable
improvements, the execution time of the code inside the constructs should be larger than that used
by the OdinMP/CCp added code. Basicaly, for small problems, | expected OdinM P/CCp to offer
little, if any, speedup, whereas as the problem domain increased, OdinMP/CCP’s overhead would
shrink in comparison to what was gained.

After | finished development of the OdinMP/CCp compiler, | have been able to perform
measurements on some of the actual code generated by OdinMP/CCp.

8.1 Speedup

Overall speedup is, of course, one of the most interesting and important figures. To measure this,
| took the Molecular Dynamics sample program [9] from the OpenMP ARB web site and
translated it from FORTRAN to C. The resulting program is included in Appendix B. It was run
for a dataset of 2048 particles, both in simple sequential execution — without any involvement
from OdinMP/CCp, i.e. with no parallelism at all — as well as parallelized by OdinMP/CCp, for a
variety of numbers of processors, on a SUN Enterprise 10000 (using 250MHz SPARC
processors). Much to my pleasure, the OdinMP/CCP-compiled version exhibits near-linear
speedup, achieving a speedup of 7.2 on 8 processors. The full results of the run are tabulated in
Table 1, and plotted in Figure 10.

ideal | OdinMP/CCp
1 1.00
1.96
2.90
3.86
4.79
5.39
6.67
7.28

Table 1, Speedup, md, Sun Enterprise 10000

DN |WIN

35

Speedup, md, Sun Enterprise 10000

i =
6 //
T

"

speedup

1 2 3 4
—e—ideal —#—OdinMP/CCp |

5
#threads

Figure 10, Speedup, md, Sun Enterprise 10000

| also ran the same program on a SGI Origin 2000 with MIPS R12000 processors at 300 MHz,
comparing the resulting execution times and speedups that could be achieved with different
combinations of C compiler and OpenMP implementation. On the Origin | had access to SGI's
‘cc’ compiler, which implements OpenMP itself, as well as ‘gcc’, the GNU C compiler. So, | ran
the same problem (md, with 2048 particles) for the combinations:

1. SGlcc, no parallelism

2. GNU gcc, no parallelism

3. SGl cc, SGI OpenMP

4. SGl cc, OdinMP

5. GNU gcc, OdinMP
All compilations were done with —O3 optimization. The resulting execution times are Tabulated
in Table 2, and plotted in Figure 11.

#threads cC gcc cc-omp cc-odinmp gcc-odinmp
1 32.80 28.67 33.36 42.17 33.36
2 32.80 28.67 16.81 21.09 16.71
3 32.80 28.67 11.24 14.17 11.40
4 32.80 28.67 8.44 10.59 8.39
5 32.80 28.67 6.80 8.53 6.74
6 32.80 28.67 5.97 7.13 5.81
7 32.80 28.67 4.97 6.24 5.15
8 32.80 28.67 4.39 5.36 4.28

Table 2, Execution Times (s), md, SGI Origin 2000

36

Execution Time, md, SGI Origin 2000

45.00

40.00

35.00

X o o o O O O o

£ 30.00 v\
) | \ —i L L L L L |
e
i= 25.00
c \
2 20.00
=}
: N
x 15.00
| \

10.00

N\
—x
5.00 — % %
0.00
1 2 3 4 5 6 7 8

—e—cc —m—gcc #threads

cc-om cc-odinmp

—¥—gcc-odinmp

Figure 11, Execution Times, md, SGI Origin 2000

One of the things we can see from these figuresis that the combination of OdinM P and gcc

results in almost exactly the same execution times and speedup as are offered by SGI's own
OpenMP compiler. In fact, if we plot the speedups (in this case, the execution time with one
process / the execution time with n processes, for the same compiler combination) for the three
OpenMP variations above, we get the figures in Table 3 and the graph in Figure 12.

ideal cc-omp cc-odinmp gcc-odinmp
1 1.00 1.00 1.00
2 1.98 2.00 2.00
3 2.97 2.98 2.93
4 3.95 3.98 3.97
5 4.90 4.94 4.95
6 5.59 5.91 5.74
7 6.71 6.76 6.47
8 7.60 7.87 7.80

Table 3, Speedups, md, SGI Origin 2000

37

Speedup, md, SGI Origin 2000

Speedup
O P N W » O O N 00 ©
|1

1 2 3 4 5 6 7 8
—eo—ideal ——cc-omp #threads
cc-odinmp gcc-odinmp

Figure 12, Speedups, md, SGI origin 2000

The offered data suggests that OdinM P indeed makes good use of the multiprocessing capabilities
offered by the underlying platform, on two such different systems as a bus-based shared-memory
machine (the SUN Enterprise 10000) and a CC-NUMA machine (the SGI Origin 2000).

8.2 Overhead

For completeness, | attempted to measure the overhead injected by OdinMP at the beginning and
end of a parallel region, and compare this to similar overhead injected by SGI's OpenMP
compiler. For this purpose, | wrote a small program which measures the time taken to execute a
piece of code both for the case where the code in question is inside a parallel region, and the case
where it is in a sequential region. Code for this program is included in Appendix C.

I ran a small test suite, measuring the overhead as reported by my program as compiled
with SGI's cc using its OpenMP implementation, and GNU gcc with OdinMP, respectively, for
different numbers of threads. Measurements were repeated several times, and the lowers overhead
figures selected, to give the results tabulated in Table 4 and plotted in Figure 13.

Overhead (us)
#threads| cc-omp gcc-odinmp
1 54.55 1.81
2 79.94 102.26
3 102.77 135.41
4 122.22 191.06
5 145.62 235.00
6 142.12 294.72
7 135.22 334.23
8 211.52 376.64

Table 4, Parallel Region Overhead

38

Parallel Region Overhead
400.00 ~
350.00 /.//-
300.00 /I
- 250.00
X /
o 200.00 /., /,0
=
= 150.00 /—.\‘/
100.00 %
50.00 /
0.00 :
1 2 3 4 5 6 7 8
‘ —e—cc-omp —#—gcc-odinmp ‘ #threads

Figure 13, Parallel Region Overhead

One can note that for the case of only 1 thread, OdinMP’s overhead is less than that generated by
SGI's OpenMP implementation — alas, this is of course largely irrelevant when the goal is to

make use of multiple processors. However, even for greater numbers of threads, OdinMP’s
overhead is within approximately a factor of 2, compared to SGI's cc. Considering that OdinMP
does not have the luxury of making any assumptions whatsoever about the underlying platform, |
find these figures to be quite encouraging.

9 Conclusion

The purpose of this project was to investigate the viability, and if possible produce an
implementation, of a C-to-C compiler for OpenMP. It would take OpenMP-annotated C code as
input and generate C code with calls to the POSIX threads library ‘pthreads’ as output, and it
would be portable and usable on different platforms, while giving reasonable performance. In the
process | had to find a suitable set of tools with which to write the compiler.

The result that | lay before you is the OdinMP/CCp compiler, which achieves all of the
above. It offers a conformant implementation of the OpenMP standard for the C programming
language. It will effortlessly port to most modern Unix systems, and can be ported to any other
platform rather painlessly, by virtue of being written in platform-independent Java. The code
generated by OdinMP/CCp performs reasonably similarly to code generated by a commercial
OpenMP implementation.

39

Appendix A Generated Code

A.1 Common Types
The following types are made available to the generated code:

/[* Common stuff for all parsed files follows! */
/* Cenerated private & shared nenory data types: */
#def i ne ODI NMP_NUM THREADS 4
#defi ne ODI NMP_NUM PROCESSCRS 4

These define the ‘number of processors’ which OdinMP/CCp will report, as well as the
default number of threads to be used unless overridden by the OMP_NUM_THREADS
environment variable.

typedef struct _odinnmp_teamt odinnp_ teamt;
typedef struct _odinnp_thread data t odinnp_thread data t;
typedef struct _odi nnmp_shared _data t odi nnp_shared data t;

These will be used later.

typedef struct {

long long int |b;

long long int incr;

long long int b;

int [ast, done;

int i;

int in_order;
} odinnp_for_slice_t;

This will hold information about which slice of a for loop each thread is assigned during

parallel execution of a for loop.

typedef enum {
odi nnp_schedul er _runtine = 0,
odi nnp_schedul er _static = 1,
odi np_schedul er _dynamic = 2,
odi nnp_schedul er _gui ded = 3
} odi nnp_schedul er _type_t;
This identifies the runtime scheduler type.

typedef struct {
odi nnp_schedul er _type_t type;
doubl e chunk_si ze
} odi nnp_schedul er _t;
This holds both type and chunk size information about the runtime-selected scheduler.

typedef enum {
odi nnp_barrier_state_enpty = 0,
odi nnp_barrier_state waiting_for_join,
odi nnp_barrier_state waiting_for_depart
} odinnp_barrier_state_t;
This holds information about the state of a barrier.

typedef struct {
pt hread_cond_t all _j oi ned;

40

pt hread_cond_t all _departed,;

int n_left_to_join;

int nleft to depart;

odi nnp_barrier_state_t state;
} odi nnp_barrier_t;

This defines the barrier itself: condition variables for when all threads have joined, and

when al threads have departed from the barrier, respectively, aswell as counters that keep track
of state transitions.

typedef struct {
long long int |b;
long long int incr;
long long int b;
doubl e chunk_si ze;
odi nnp_schedul er _t schedul er

pt hread_rnutex_t order _| ock
pt hread_cond_t new order;
int in_order;

i nt next_in_order;

} odinnp_for_data_t;

This holds al the pertinent information about afor construct: The initid value, the final
value, and the increment; the chunk size, the scheduler to use; and variables used with the
‘ordered’ clause and ‘ordered’ construct.

typedef struct _odinmp for lap_ list_t {
odi nnp_for_data_t for_data;
int |ap;
int n_left to_leave;

struct _odinnp_for lap list_t *next;
} odinnp_for lap list _t;
This holds information about one lap of execution of a for construct.

typedef struct {
int section;
int |ast;
i nt done;
} odinnp_sect_slice_t;
Slice information for a sections construct.

typedef struct {
int n_left;
} odi nnp_sect _data_t;
Information about one sections construct.

typedef struct _odinnp_sect lap_list t {
odi nnp_sect _data_t sect_data;
int |ap;
int n_left to_leave;

struct _odinnp_sect lap_list_t *next;

} odinnp_sect lap_list_t;
This holds information about one lap of execution of a sections construct.

41

typedef struct {
int do_it;
} odi nnp_sing_slice_t;
The dlice for asingle construct

typedef struct _odinnmp_teamlist t {
odi nnp_teamt *team
struct _odinnp_teamlist_t *next;
} odinnp_teamlist_t;
A list of teams.

enum {
odi nnp_wsc_type_none = 0,
odi nnmp_wsc_type_for,
odi nnp_wsc_type_sect,
odi nnp_wsc_type_si ng
} odinnp_wsc_type_t;
To keep track of what current work-sharing construct is being executed.

typedef struct _odinnmp_wsc_info_ t {
odi nnp_wsc_type_t type;
struct _odinnmp_wsc_info_t *next;

uni on {
struct {
odinmp_for_lap_list_t *lap_Ilist;
odi nnmp_for_slice_t *slice;
} wsc_for;

struct {
odi nnp_sect _lap_list_t *lap_list;
} wsc_sect;
Py
} odi nnp_wsc_info_t;
Work sharing construct information: what type it is, and datafor the different types of
work sharing constructs.

typedef enum {
odi nnp_t hread_state_waiting for_work,
odi nnp_t hread_state_has_work_to_do,
odi nnp_t hread_st at e_wor ki ng,
odi nnp_t hread_state_fini shed_work,
odi nnp_thread_state_exiting

} odinnp_thread state t;

The different states that athread can bein.

typedef struct {
pt hread_mutex_t | ock;
pt hread_cond_t work_avai |l abl e;
pt hread_cond_t finished_work;
pt hread_cond_t stopped_spi nni ng;
pthread_t pthread_id;
odinnp_thread_state t state;

int id;
int run_region;

42

odi nnp_wsc_info_t *wsc_info;
i nt tdepth;

odi nnp_teamt *team
odinnmp_team |ist_t *teans;
} odinnp_thread_info_t;
Thread information: alock, condition variablesto signal certain thread states, id, pthread
id, information about what parallel region to run, a pointer to whatever work sharing construct it
might be running, and pointers to the current topmost team, and alist of other teams the thread
might bein.

A.2 Generated types
The following types are generated:

[* typedef */ struct _odinnp_thread data_t {
odi nnp_thread_info_t thread_info;

1* A/ 0

3
o Each parallel region and work sharing construct will add whatever private data they need,
at

/* typedef */ struct _odinnp_shared_data_t {
/* A */ e

b
At @, each paralel region will add a struct of pointers to such shared variables as are not
globally visible within the file.

[* typedef */ struct _odinnp_teamt {
pt hread_mutex_t | ock;

int id;
int *ids;
int n;

/* A*/ e

} /* odinmp_teamt */ ;
At Q, for each work sharing construct, we add a barrier and alap descriptor list pointer.

A.3 Externally Declared Symbols
Thefollowing externa symbols are available for use by OdinMP/CCp code:

/* External declarations for Odi nMP/ CCp: */
extern odi nnp_teamt odi nnp_mai n_t eam

Team identifier for the main team.

extern odi nnp_shared_data_t odi nnp_shar ed_dat a;
Holds pointers to shared variables.

extern odinnp_thread_data_t **odi nnp_t hread_dat as
Holds an array of pointers to thread data, one for each thread.

extern int odi nnp_num_t hr eads
How many threads are currently running.

extern int odi nmp_num_threads_al |l ocated
How many threads are currently allocated.

extern int odi nnp_debug;
Should we print debug information?

extern int odinnmp_tim ng;
Should we print timing information?

extern pthread_key_t odi nnp_pt hread_key;
The pthread key with which we identify OdinMP/CCp’s thread-specific data.

extern odi nnp_schedul er _type_t odi nnp_runti me_schedul er _type
Identifies the runtime scheduler chosen by the user

extern void odi nmp_printf(char *fnt, ...);
For printing debug messages.

extern void odi nnp_t hread(odi nnp_thread_data_t *odi nnp_td);
The global thread action function.

extern void odi nnmp_thread_init(odinnp_thread_data_t *td, int i);
Initializes a thread.

extern odi nnp_thread_data_t *odi nnp_sel f _data();
Returns the thread-specific data for this thread.

extern void odi nnp_start_thread(odi nnp_thread_data_t *td);
Asks OdinMP/CCp to start a new thread.

extern void odi nnp_stop_thread(odi nnp_thread_data_t *td)
Asks OdinMP/CCp to stop a thread.

extern int odinmp_get_num_threads(void);
Asks OdinMP/CCp how many threads are currently running.

extern void odi nnp_set_num_t hreads(i nt numthreads);
Sets the number of threads for OdinMP/CCp to use.

extern odinnp_thread_data_t *odinnmp_al |l ocate_thread_data();
Allocates thread-specific data for one thread.

extern odinnp_teamt *odi nnp_all ocate_tean(int max_num_t hreads);
Allocates a team of threads.

extern int odinnmp_get_thread_num();
Returns the current thread’s number.

extern int odinnp_is_master();
Returns wether the current thread is the master thread of its topmost team.

extern void odi nnp_di spatch(odi nnp_thread_data_t *td);
Tells OdinMP/CCp to tell a specific thread to run a specified parallel region.

extern void odi nnp_free_tean{odi nnp_teamt *team;
Deallocates a team of threads.

extern void odi nnp_wait_for_work(odi nnp_thread_data_t *td);
A request for something to do from an idle thread.

extern void odi nnp_fini shed_work(odi nnp_thread_data_t *td);
Notifies OdinMP/CCp that the calling thread has finished executing its parallel region.

extern void odi nnmp_wai t_finished(int id);

Waits until the thread specified by id has finished work.

extern void odi nnp_t hread_spi n(odi nnp_t hread_data_t *td);
The global thread spinning function, which repeatedly waits for work, executes the
specified paralel region, then tells the system that work has been finished.

extern void *odi nnp_t hread_pt hread(voi d *data);
The function which is handed to pthread_create, and which contains the whole life cycle of
athread.

extern void odinnp_init ();
Initializes OdinM P/CCp.

extern void odi nnmp_atexit();
Cleans up after OdinMP/CCp.

extern voi d odi nnp_conpl ai n();
Complains about erroneous conditions during program execution.

extern int odinmp_get_num procs();
Returns the number of processors for which this program was compiled.

extern void odi nnp_barrier(odinnp_teamt *team odinnp_barrier_t *b);
Implements a barrier; waits until all threadsin team have reached the barrier, and only then
lets any of them proceed.

extern voi d odi nnmp_sync_nenory()
Synchronizes the calling thread’s view of memory with the global one. Used for flush.

extern voi d odi nnmp_parse_env ();
Parses the OpenMP environment variables (OMP_NUM_THREADS, OMP_SCHEDULE)
and tells OdinMP/CCp about their values.

extern void odi nnp_parse_args (int *argc, char **argv);
Parses command-line arguments for OdinMP/CCp use.

45

Appendix B Molecular Dynamic Program

B.1 md.c

/**

* This programinplenents a sinple nolecular dynam cs sinul ation
using the velocity Verlet tinme integration schene. The particles
interact with a central pair potential

Aut hor ; Bill Magro, Kuck and Associates, Inc. (KAlI), 1998

Parallelismis inplemented via OpenMP directives.

* ********************************'k'k**********************************/

L T I

#i ncl ude <mat h. h>

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/tinme. h>
#i ncl ude <uni std. h>

#i ncl ude "onp. h"

#i f ndef RAND_MAX
#defi ne RAND_MAX Ox7fff
#endi f

#define ndim 3
#define nparts 2048
#def i ne NSTEPS 20

#undef LONGDOUBLE

#i f def LONGDOUBLE

typedef | ong doubl e real 8;
#define RBF "% 15. 7Le"

#el se

typedef doubl e real 8;
#define RBF "% 15. 7e"
#endi f /* LONGDOUBLE */

double t() {
struct tineval tv;
gettineofday(& v, ((void *)0));
return (double)tv.tv_sec + (double)tv.tv_usec/1000000. O;

}
typedef real 8 vnd_t[ndim ;

/* statement function for the pair potential and its derivative
This potential is a harmonic well which snmoothly saturates to a
maxi mum val ue at PI/2. */

real 8 v(real 8 x) {
if (x < MPl_2)
return pow(sin(x), 2.0);
el se
return 1.0;

46

}

real 8 dv(real 8 x) {
if (x < MPl_2)
return 2.0 * sin(x) * cos(x);
el se
return 0.0;

/**

*

* Initialize the positions, velocities, and accel erati ons.

EE I Sk kS b S S R SRRk S kS R S R R R S SRRk S o O R S S

/
void initialize(int np, int nd,

vnd_t box, vnd_t *pos, vnd_t *vel, vnd_t *acc)
{

int i, j;
real 8 x;

srand(4711L);
for (i =0; i <np; i++) {
for (j =0; j <nd; j++) {
X = rand() % 10000/ (real 8) 10000. 0;

pos[i][j] = box[j]*x;
vel[i][j] = 0.0;
acc[i][j] = 0.0;

}
}
}

/* Conpute the displacenent vector (and its norm between two
particles. */
real 8 dist(int nd, vnd_t box, vnd_t rl1, vnd_t r2, vnd_t dr)
t
int i;
real 8 d;

d = 0.0;

for (i =0; i <nd; i++) {
dr[i] = r1[i] - r2[i];
d +=dr[i] * dr[i];

}

return sqgrt(d);

}

/* Return the dot product between two vectors of type real*8 and | ength
n */
real 8 dotr8(int n, vnd_t x,vnd_t vy)
{

int i;

real8 t = 0.0;

for (i =0; i <n; i++) {

to+= x[i]*y[i];

47

}

return t;

}

/**

*

* Conmpute the forces and energies, given positions, masses,
* and velocities

Rk S Sk Sk S b S S S SRR S b S R R S S I SRR I S S S R Ik b S S

/
void conmpute(int np, int nd,
real 8 *box,
vnd_t *pos, vnd_t *vel,
real 8 mass, vnd_t *f,
real 8 *pot _p, real 8 *kin_p)

real 8 x;

int i, j, k;
vnd_t rij;
real 8 d;

real 8 pot, kin;

pot

0.0
kin 0.0

/* The conputation of forces and energies is fully parallel. */
#pragma onp parallel for default(shared) private(i,j,k,rij,d)
reduction(+ : pot, kin)

for (i =0; i <np; i++) {

/* compute potential energy and forces */
for (j =0; j < nd; j++)
flillj] = 0.0;

for (j =0; j <np; j++) {
ifoo =) A
d = dist(nd, box, pos[i],pos[j].rij);
/* attribute half of the potential energy to particle
pot = pot + 0.5 * v(d);
for (k = 0; k < nd; k++) {
fLiT[kl = f[i][k] - rij[k]* dv(d) /d;

}
}
}

/* conmpute Kkinetic energy */
kin = kin + dotr8(nd,vel[i],vel[j]);

inorl

}

kin = ki n*0. 5*nass;
*pot _p = pot;
*kin_p = kin;

}

/**

*

* Performthe tine integration, using a velocity Verlet algorithm

EE IR R I R S S I R R R I R R R R R R I R I R I O I O R I

/

voi d update(int np, int nd, vnd_t *pos, vnd_t *vel, vnd_t *f, vnd_t *a,
real 8 mass, real 8 dt)

{

int i, j;
real 8 rnass;

rmass = 1.0/ nass;

/* The time integration is fully parallel */
#pragma onp parallel for default(shared) private(i,j)
firstprivate(rnmass, dt)

for (i =0; i <np; i++) {

for (j =0; j <nd; j++) {
pos[i][j] = pos[i][j] + vel[i][j]*dt + O.5*dt*dt*a[i][j];
vel[i1[j] = vel[i][j] + 0.5*dt*(f[i][j]l*rmass + a[i][j]);
} afi][j] = f[i]l[j]*rmass;

}
}

/******************

* main program

******************/

int main (int argc, char **argv) {
/* simulation paranmeters */

real 8 mass
real 8 dt =
vnd_t box;
vnd_t position[nparts];

vnd_t velocity[nparts];

vnd_t force[nparts];

vnd_t accel [nparts];

real 8 potential, kinetic, EO;
int i;

i nt nsteps = NSTEPS;

double t0O, t1;

if (argc == 2)
nsteps = atoi(argv[1]);

< ndin i++)

for (i =0; i
= 10.0;

box[i]
to =t();

/* set initial positions, velocities, and accel erations */
initialize(nparts, ndi mbox, position,velocity, accel);

49

/* conmpute the forces and energies */

conput e(npart s, ndi m box, position, vel ocity, nmass,
force, &otential, &i netic);

EO = potential + Kkinetic;

/* This is the main time stepping |oop */
for (i = 0; i < nsteps; i++) {
conput e(npart s, ndi m box, position, vel ocity, nmass,
force, &otential, &inetic);
printf(RBF " " RBF " " RBF "\n",
potential, kinetic, (potential + kinetic - EO)/EOQ);
updat e(nparts, ndi m position,velocity, force, accel, nass, dt);

}

tl =t();
printf("execution time with %d threads: %f s\n",

#ifdef _OPENMP

onp_get _max_t hreads(),

#el se

1

#enaif

}

tl - t0);

exit (0);

50

Appendix C Overhead Measurement Program

C.1 nop.c

voi d *nop(void *p) {
return p;

}

C.2 spin.c
extern void *nop (void *);

extern int spin_factor;

void spin(double jLimt) {

int i1;

double j;

doubl e d;

for (i = 0; i < spin_factor; i++)
for (j =

0.0; j <jLimt; j +=1.0)
nop(&d) ;

C.3 overhead.c

#i ncl ude <sys/tine. h>
#i ncl ude <uni std. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

int spin_factor = 1000;
extern void spin (double);

double t() {

struct tineval tv;

gettinmeofday(& v, ((void *)0));

return (double)tv.tv_sec + (double)tv.tv_usec/1000000. 0O;
}

int main (int argc, char **argv) {
int i;
double t0, t1, dt1t0, t2, t3, dt3t2;
int num= 100;
double dt1tO_iter, dt3t2_iter;
double diff, diff_iter;

for (i =1; i < argc; i++) {

if (!strcop(argv[i], "-n")) {
if (argc <= (i+1)) {
fprintf(stderr,"need argunment to '-n"\n");
exit(1);
}
num = atoi (argv[++i]);

} else if (!strecnp(argv[i], "-f")) {
if (argc <= (i+1)) {
fprintf(stderr,"need argunment to '-f’'\n");
exit(1l);

51

}

spin_factor = atoi(argv[++i]);

}
}
printf("Parallel:\n");
t0 = t();
for (i =0; i < num i++) {

#pragma onp parall el
spi n(1000. 0);
}

tl =t();
dt1t0 = t1 - tO;

printf ("tinme : 9%45.99 s = %45.99 s = %45.9g us\n"
dt1t0, dt1t0 * 1000.0, dt1t0 * 1000000.0);

dt1tO_iter = dt1t0 / num
printf ("time / iteration : %5.99 s = %45.99 nms = %5.9g us\n"
dt1tO0_iter, dt1tO_iter * 1000.0, dt1tO_iter * 1000000. 0);

printf ("\nSequential:\n");

t2 =t();

for (i =0; i < num i++) {
spi n(1000. 0);

}

t3 = t();

dt3t2 =t3 - t2;

printf ("tine : 945.99 s = %45.99 nms = %5.9g us\n"
dt3t2, dt3t2 * 1000.0, dt3t2 * 1000000.0);

dt3t2_iter = dt3t2 / num

printf ("tinme / iteration : %5.99 s = %45.99g ns = %5. 99 us\n"
dt3t2_iter, dt3t2_iter * 1000.0, dt3t2_iter * 1000000. 0);

printf("\n");
diff = dt1t0 - dt3t2;
diff _iter = dtltO_iter - dt3t2_iter;

printf ("overhead : 9%45.99 s = %45.99 nms = %5.99g us\n"
diff, diff * 1000.0, diff * 1000000.0);

printf ("overhead / iter. : 9%5.99 s = %45.99g ns = %5. 99 us\n"
diff _iter, diff_iter * 1000.0, diff_iter * 1000000.0);

52

Appendix D Installing and Using OdinMP/CCp

This Appendix reproduces the HTML document which describes how to install and use
OdinMP/CCp.

Installing and Using OdinM P/CCp

Prerequisites

These ingtallation instructions assume that you have fetched the OdinM P/CCp archive, odi nnp-
1.0.tar.gz.

|nstalling
1 Fetch the OdinM P/CCp archive and place it in atemporary location, such as
tempdir/ odi nnp-1.0.tar. gz .
2. Toingtall OdinMP/CCp, choose where you wish to install OdinMP/CCp -

call thisinstall-root . A good choice for install-root would be, for instance, / usr/ | ocal
, 1 opt , or perhaps your home directory.

3. cd to install-root

4, Unpack the OdinMP/CCp archive:
gzcat tenpdir/odinnmp-1.0.tar.gz | tar -xvf -
hiswill create asubdirectory odi nnp beneath the current directory, which contains all
the necessary OdinMP files.

Y ou have now unpacked the OdinMP/CCp files.

Mandatory Configuration

Before you can begin using OdinMP/CCp, you must inform the OdinM P/CCp system whereit is
installed:
1 Open the fileinstall-root/ odi nnp/ bi n/ odi nnp_pr ep in atext editor. Near
the top, there is an area which reads something like
BHHRH S RH R H TR H R R AR R R R R R R R R R R AR R R
Edit this to point to the directory where you installed
Odi nMP/ CCp
#
$odi nnp_honme = "I NSTALLDI R/ odi nnp";
#
RHHRH S RH SR H SR H R R R R R R R R R R R R R AR R R
Replace INSTALLDIR’ (or whatever isin its place) with 'install-root’ . If your install-
rootis/ usr/ | ocal , then theline should read exactly
$odi nnp_hone = "/usr/ | ocal / odi nmp";
2. Similarly, open thefile install-root/ odi nnp/ bi n/ &di nMP, and perform the
same editing actions on that as you did with odi nnp_pr ep above.

Requirements and Optional Configuration
To run, OdinMP/CCp requires two things.

Per| version 5

The programsin install-root/ odi nnp/ bi n/ are Perl version 5 programs. They expect Perl
version 5 to be installed somewhere in your search path, so that it can be found by /usr/bin/env .

53

If the programs won't immediately run on your system, modify the top line of each program to
point to the correct location for Perl version 5.

Java 1.1 or newer

A Javaruntime, version 1.1 or newer, which must be in the program search path, such as
identifed by the PATH environment variable. Thisis used by the install-

root/ odi nnp/ bi n/ Gdi nMP program. If necessary, you can edit install-

root/ odi nnp/ bi n/ di nMP to explicitly point out the javainterpreter you require.

Running OdinM P/CCp

Consider that you have aprogram f oobar , compiled fromfilesf oo. ¢ and bar . ¢, which you
wish to parallelize through OdinMP/CCp. Here is a description, step by step, of what you need to
do.

cd to thedirectory containing the original sourcefiles

This places you in the directory which contains the original source files for your program foo.c
and bar.c .

Preparefor OdinMP/CCp parall€elization

Run the command

odi nnp_prep --output=foobar --targetDirectory=foobar_parallel foo.c
bar. c

Thiswill create adirectory caled f oobar _paral | el , andinthat directory amakefi | e and

symbolic linksto the files 'onp. ¢’ and 'onp. h’ as supplied with OdinMP/CCp.
cd to foopar_parallel

This places you in the same directory asthe generated makefi | e.

make

Thiswill call upon OdinMP/CCp to walk through the files specified on the odinmp_prep
command line, parallelizing each one, and generating a corresponding output file in the current
directory. Each generated C source file will be compiled, and finally all object files get linked to
form the resulting program.

A Simple Example

The NAS benchmark suite for OpenMP includes a program called 'laplace’. To build this
program, a Makefile is provided:

#

Makefile for Laplace
#

OPT = -g

OPT = - x4

BJ = lap.o

I NCL=Il ap. h

CC=gcc

LDLIBS = -I'm
OWPCC = onpcc

PROGRAM = | ap-onp | ap-seq
all: $(PROGRAM

| ap-onp: | ap.c second.o
$(OWPCC) $(CFLAGS) -0 lap-onmp lap.c second.o $(LDLIBS)

| ap-seq: |ap.c second.o
$(CC) $(CFLAGS) -0 |ap-seq lap.c second.o $(LDLIBS)

cl ean:
rm-f $(PROGRAM

Since OdinM P does not provide an 'onpcc’ command, a slightly different approach must be
taken. To build 'lap-odinmp’ (the OdinM P-compiled version of the laplace program), we would
use the following rules instead:

odi nnp_ccd/ makefil e:
LI BS=$(LDLI BS) odi nnp_prep --targetDirectory=odi nnp_ccd
--output=../lap_odinnp |lap.c second.c

| ap- odi nnp: odi nnp_ccd/ makefil e
cd odi nnp_ccd; neke

Thefirst rule will prepare the OdinM P build directory (‘odinmp_ccd’), with a makefileto create
"./lap-odinmp’ from the source files lap.c’ and 'second.c’, linking the .

The second rule will build lap-odinmp by changing to the OdinM P build directory and building
the program there. Since this rule depends on the existance of the makefile in the OdinMP build
directory, thiswill be created if it does not already exist.

Specificson the Provided Programs

odinmp_prep

Synopsis

odi np_prep [- - out put =output] [- - t ar get Di r ect or y=targetDirectory]

[- -t ar get Debug=(al ways]|runti neJnever)] [- - t ar get Ti m ng=(al ways|r unti nejnever)]
source-files

Description

odi nnp_pr ep prepares a project of C language source code files for OdinM P parallelization, by
the following steps:
» createsthe directory targetDirectory. If no targetDirectory is specified, it defaults to
‘'odinmp_ccd'.
» creates amakefile inside targetDirectory with a dependancy of each of the source-filesto
the corresponding file in the directory that odinmp_prep was called from.
« configuresthe makefi | e to call Gdi nMP with thet ar get Debug and t ar get Ti ni ng
options as specified on the command line. Their respective default valueisnever .

55

« configuresthe makef i | e to build aresulting program called output. If output is not
specified, it defaultsto a. out .

OdinMP

Synopsis

Qdi nMP [- -t ar get Di r ect or y=targetDirectory]

[--target Ti m ng=(al ways|runti nenever)] [- -t ar get Debug=(al ways|runti me|never)]
[- - cpp=cpp] [- - cc=cc] [- - nunPr ocessor s=numProcessors] [- - nuniThr eads=numThreads]
source-files

Description

OdinMP performs the actual compilation from C with OpenM P directives, to C with pthreads
library calls.

Files are read from the current directory and generated to targetDirectory. If targetDirectory is
not specified, it defaults to ‘odinmp_ccd'.

The'targetTiming’ option specifies whethet OdinMP/CCp will include timing code in the
generated code, and whether timing will actualy be performed. If targetTiming is 'never’, no code
is generated. If targetTiming is runtime’, code is generated which will allow the resulting
program to print timing information if called with the --odinmp_timing’ command line option. If
targetTiming is 'aways), the generated code will always measure and report timing information.
The default value for targetTiming is 'never.

The 'targetDebug’ option specifies whethet OdinM P/CCp will include debugging code in the
generated code, and whether debugging messages will actually be printed. If targetDebug is
'never’, no codeis generated. If targetDebug is 'runtime’, code is generated which will alow the
resulting program to print debug information if called with the --odinmp_debug’ command line
option. If targetDebug is aways), the generated code will always print debugging information.
The default value for targetDebug is 'never.

The'- - cpp=cpp’ option specifies an alternate C preprocessor to use for preprocessing the input C
source files. The default is’install-root/ odi nnp/ bi n/ cppp’.

The'- - cc=cc’ option selects an alternate C compiler to use for compiling the generated C source
files. The default is’install-root/ odi nnp/ bi n/ ccc’.

cPpp

Synopsis
cppp [options] < input > output
Description

cppp reads un-preprocessed C source code from its standard input, preprocessesit, and prints the
result to its standard outpui.

cppp isimplemented as a Perl script which wraps around various different C preprocessors. By
setting the variable '$cpp’ at the top of the script, one of severa underlying C preprocessors can
be sdlected. The purpose of cppp isto insulate OdinM P from the particular semantics of how the
underlying C preprocessor accepts and generates data.

56

The environment variable ODI NVP_CPP can be used to override the contents of the $cpp variable
specified in the script at runtime.

ccc

Synopsis
ccc [options] source-files
Description

ccc compilesthe C source code specified into object files, or links the object files specified into
an executable.

ccc isimplemented as a Perl script which wraps around various different C compilers. By setting
the variable '$cc’ at the top of the script, one of severa underlying C compilers can be selected.
The purpose of ccc isto insulate OdinM P from the particular semantics of how the underlying C
compiler wants its arguments.

The environment variable ODI NMP_CC can be used to override the contents of the $cc variable
specified in the script at runtime.

57

Appendix E The OdinMP/CCp Source Code Distribution

This appendix reproduces v

erbatim the html document which describes how to unpack and

compile OdinM P/CCp from its source code distribution.

The OdinM

Requirements

P/CCp Source Code

To build OdinMP/CCp from source, you need:
e A JavaDevelopment Kit, Javaversion 1.1 or newer
e Perl version 5, available from The Perl Institute.
e JavaCC - the Java Compiler Compiler - available from MetaMata Inc.
e JIB - the Java Tree Builder for JavaCC - available from Purdue University.
* GNU make, avaliable from The Free Software Foundation and its mirror sites.
e A suitabledirectory in your Java class path

* And, of course, the

OdinMP/CCp source archive itself, odinmp-1.0-src.tar.gz.

Unpacking the OdinM P/CCp Sour ce Code Archive

The odinmp-1.0-src.tar.gz archive will, when unpacked, create a directory called ‘odinmp’,
populated with the files necessary to build OdinM P/CCp.

OdinMP/CCp isimplemented as a set of classesin the 'se.lth.dit.odinmp’ package and its
subpackages. This means that, in order to successfully compile the java code, the java source files

must bein adirectory 'se/ |

t h/ di t/ odi nnp’ beneath a directory that isin your Java Class Path,

usually identified by the CLASSPATH environment variable. For instance, if your CLASSPATH is
set to include a directory named ‘java’ in your home directory, you would create the directory
your-home-directory/ j ava/ se/ | t h/ di t , and then unpack the OdinMP/CCp source archivein
this location - generating the directory your-home-directory/ j ava/ se/ | t h/ di t/ odi nnp,
which is exactly what the Java compiler expects.

Code L ayout

Thesefilesareincluded in t

he distribution:

c.jtb

The Java Tree Builder / JavaCC grammar for C with OpenMP directives

OdinMP.java

The Java language source file for the OdinMP class, which implements the
OdinMP main program

* ConstructDescriptor.java

The various OpenM P Construct descriptor classes

*ClauseHandler.java

Classes which handle clauses on constructs

Decl.java

Classes used to parse a part of a Declaration

Symbol.java

Class to hold information about a Symbol

Symbol Table.java

A Classto hold atable of Symbols

OmpSymbol Attributes.javal

The class that handles symbols with OpenM P attributes (shared, private,
reduction, ...)

Incremental Reader .java

Reads files in increments, used for generating code

Spacing.java

Class that helps OdinM P/CCp generate dightly less ugly code

Symbol Fetcher.java

An interface between ClauseHandlers and the DataBuildingVisitor (see

58

below)

OdinMP.in,
odinmp_prep.in, Source files for the OdinM P, odinmp_pre, cppp and ccc programs
cppp.in, ccc.in

Perl scripts which comment out / in the print statements to debug the

dodebug.pl, nodebug.pl |y vpICCp classes

visitor/DataBuildingVisitor[The visitor that builds the internal datafrom the node tree generated by the
java parser

visitor/* Supporting classes for the DataBuildingVisitor
makefile The makefile (for GNU make) that builds the whole system
supporting/* Supporting C language files used by OdinMP/CCp when generating code

Building OdinM P/CCp

To build OdinMP/CCp, stand in the unpacked source directory (dir-in-

classpath/ se/ | t h/ di t / odi nnp), make certain that you have all the necessary tools (as
mentioned above) in your search path, and simply give the command 'make’ (or 'grake’, if you
have GNU make installed under that name). Thiswill use JTB to create the syntax tree classes
from c.jtb aswell as create atree-building grammar, jth.out.jj. JavaCC will then work on that to
generate the C Parser and supporting classes. Finally, all Java classes will be compiled together.

To ingtal the resulting system, use 'make | NSTALLDI R=install-root/ odi nnp i nstal | . This
will ingtall OdinMP/CCp in the install-root/odinmp directory, ready to use.

To create agzipped tar archive of the ingtallation package, use make package’. Thiswill
generate thefile 'odi nnp- 1. 0. t ar. gz’ in the OdinM P/CCp source code directory.

59

Appendix F References

1 The OpenMP ARB: OpenMP C and C++ Application Program Interface, Version 1.0 — October 1998
OpenMP Consortium Document Number 004-2229-001
Available on the WWW at kttp://www.openmp.org/

2 Brian W. Kernighan and Dennis M. Ritchie : The C Programming Language, Second Edition
Prentice Hall, Inc., 1988, ISBN 0-13-110362-8 (paperback), 0-13-110370-9 (hardback)

3 The Open Group: The Single UNIX Specification, Version 2 - 6 Vol Set for UNIX 98
Open Group Publication Set Document Number T912
Also available on the WWW athitp://www.opengroup.com/unix/

4 David E Culler, Jaswinder Pal Singh, with Anoop Gupta: Parallel computer architecture: a
hardware/software approach
Morgan Kaufman Publishers, Inc., 1999, ISBN 1-55860-343-3

5 Kai Hwang, Zhiwei Xu: Scalable parallel computing: technology, architecture, programming
WCB/McGraw-Hill, 1998

6 The Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
Available on the WWW at kttp://www.mpi-forum.org#

7 Sriram Sankar, Sreenivasa Viswanadha, Rob Duncan, Juei Chang: JavaCC, The Java Compiler Compiler
Available on the WWW at kttp://www.metamata.com/JavaCC/

8 Dr. Jens Palsberg, Kevin Tao, Wanjun Wang: The Java Tree Builder
Available on the WWW at kttp://www.cs.purdue.edu/jth/

9 Bill Magro: A simple molecular dynamics simulation, using the velocity Verlet time integration scheme
Kuck and Associates, Inc. (KAI), 1998
Available on the WWW at kttp://www.openmp.org/samples/nl.f

60

