OpenMP Fortran Application Program
Interface

Version2.0 Draft 9

Line Numbers Added: Fri Jun 16 09:33:53 CDT 2000

© 00 N O

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Contents

Introduction [1]
Scope

Execution Model
Compliance

Organization

Directives [2]
OpenMP Directive Format
Directive Sentinels
Fixed Source Form Directive Sentinels
Free Source Form Directive Sentinel
Comments Inside Directives
Comments in Directives with Fixed Source Form
Comments in Directives with Free Source Form
Conditional Compilation
Fixed Source Form Conditional Compilation Sentinels
Free Source Form Conditional Compilation Sentinel
Parallel Region Construct
Work-sharing Constructs
DODirective
SECTIONSDirective
SINGLE Directive
WORKSHARRBiIrective
Combined Parallel Work-sharing Constructs
PARALLEL DQDirective
PARALLEL SECTIONSDirective
PARALLEL WORKSHARHrective
Synchronization Constructs and the MASTERDirective
MASTERDirective
CRITICAL Directive
BARRIER Directive

Version2.0 Draft 9

Page

w NN R

© ©O© W 0 00 W 0O oo o o o O

=
N

N NN NDNDNEFEPE P P PR
W NN P PO O O N N O Ww

36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

Contents OpenMP Fortran Application Program Interface

ATOMICDirective
FLUSHDirective
ORDEREMDirective
Data Environment Constructs
THREADPRIVATBirective
Data Scope Attribute Clauses
PRIVATE Clause
SHAREDClause
DEFAULTClause
FIRSTPRIVATE Clause
LASTPRIVATE Clause
REDUCTIONClause
COPYINClause
COPYPRIVATEClause
Data Environment Rules
Directive Binding

Directive Nesting

Run-time Library Routines [3]

Execution Environment Routines
OMP_SET_NUM_THREABS8broutine
OMP_GET_NUM_THREABSnNction
OMP_GET_MAX_THREAPBS&nNction
OMP_GET_THREAD_NUWnNction
OMP_GET_NUM_PROES8nction
OMP_IN_PARALLELFunction
OMP_SET_DYNAMIGubroutine
OMP_GET_DYNAMIEunction
OMP_SET_NESTEBubroutine
OMP_GET_NESTEBunction

Lock Routines
OMP_INIT_LOCKand OMP_INIT_NEST_LOCKSubroutines
OMP_DESTROY_LOGHKd OMP_DESTROY_NEST_LOGKbroutines
OMP_SET_LOCKNnd OMP_SET_NEST_LOCS8ubroutines
OMP_UNSET_LOC#hd OMP_UNSET_NEST_LOGUbroutines

Page

23
25
26
27
27
30
31
32
32
33
33
34
36
37
38
40

41

43
43
44
44
45
45
46
46
46
47
47
48
48
50
50
50
51

Version2.0 Draft 9

71

72
73
74
75

76
77
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98
99

100
101
102
103

OpenMP Fortran Application Program Interface Contents
Page

OMP_TEST_LOCKnd OMP_TEST NEST_LOCRunctions 51
Timing Routines 52
OMP_GET_WTIMEunction 52
OMP_GET_WTICKunction 53
Environment Variables [4] 55
OMP_SCHEDULEnNnvironment Variable 55
OMP_NUM_THREAE®vironment Variable 55
OMP_DYNAMIEnvironment Variable 56
OMP_NESTEIEnNvironment Variable 56
Appendix A Examples 57
Executing a Simple Loop in Parallel 57
Specifying Conditional Compilation 57
Using Parallel Regions 58
Using the NOWAITClause 58
Using the CRITICAL Directive 58
Using the LASTPRIVATE Clause 59
Using the REDUCTIONClause 59
Specifying Parallel Sections 61
Using SINGLE Directives 61
Specifying Sequential Ordering 62
Specifying a Fixed Number of Threads 62
Using the ATOMICDirective 63
Using the FLUSHDirective 63
Determining the Number of Threads Used 64
Using Locks 64
Using Nestable Locks 65
Nested DODirectives 67
Examples Showing Incorrect Nesting of Work-sharing Directives 68
Binding of BARRIER Directives 70
Scoping Variables with the PRIVATE Clause 71
Examples of Invalid Storage Association 71
Examples of Syntax of Parallel DOLoops 74

Version2.0 Draft 9

Contents OpenMP Fortran Application Program Interface

104 Page
105 Examples of the ATOMICDirective 75
106 Examples of the ORDEREMDirective C e e e 76
107 Examples of THREADPRIVATEData 77
108 Examples of the Data Attribute Clauses: SHAREDand PRIVATE 80
109 Examples of the Data Attribute Clause: COPYPRIVATE Ce e 82
110 Examples of WORKSHARRBirectiveo 84
111 Appendix B Stubs for Run-time Library Routines 87
112 Appendix C Using the SCHEDULEClause 93
113 Appendix D Interface Declaration Module 97
114 Example of an Interface Declaration INCLUDEFile 97
115 Example of a Fortran 90 Interface Declaration MODULE 99
116 Example of a Generic Interface for a Library Routine 103

117 Appendix E Implementation Dependent Behaviors in OpenMP Fortran 105

118 Appendix F New Features in OpenMP Fortran version 2.0 107
119 Appendix G Glossary 109
120 Tables

121 Table 1. SCHEDULElause Values C e e e 14
122 Table 2. Reducation Variable Initialization Values Ce e 35

iv Version2.0 Draft 9

123
124
125
126

Copyright © 1997-2000 OpenMP Architecture Review Board. Permission to copy
without fee all or part of this material is granted, provided the OpenMP Architecture
Review Board copyright notice and the title of this document appear. Notice is given
that copying is by permission of OpenMP Architecture Review Board.

127

128
129
130
131
132
133
134
135

136

137
138
139
140
141
142
143
144
145
146

147

148
149
150
151
152
153
154

155

Introduction [1]

Version2.0 Draft 9

This document specifies a collection of compiler directives, library routines, and
environment variables that can be used to specify shared memory parallelism in
Fortran programs. The functionality described in this document is collectively known
as the OpenMP Fortran Application Program Interface (API). The goal of this
specification is to provide a model for parallel programming that is portable across
shared memory architectures from different vendors. The OpenMP Fortran API is
supported by compilers from numerous vendors. More information about OpenMP
can be found at the following web site:

http://www.openmp.org

The directives, library routines, and environment variables defined in this document
will allow users to create and manage parallel programs while ensuring portability.
The directives extend the Fortran sequential programming model with
single-program multiple data (SPMD) constructs, work-sharing constructs and
synchronization constructs, and provide support for the sharing and privatization of
data. The library routines and environment variables provide the functionality to
control the run-time execution environment. The directive sentinels are structured so
that the directives are treated as Fortran comments. Compilers that support the
OpenMP Fortran API include a command line option that activates and allows
interpretation of all OpenMP compiler directives.

1.1 Scope

This specification describes only user-directed parallelization, wherein the user
explicitly specifies the actions to be taken by the compiler and run-time system in
order to execute the program in parallel. OpenMP Fortran implementations are not
required to check for dependencies, conflicts, deadlocks, race conditions, or other
problems that result in incorrect program execution. The user is responsible for
ensuring that the application using the OpenMP Fortran API constructs execute
correctly.

Compiler-generated automatic parallelization is not addressed in this specification.

Introduction [1] OpenMP Fortran Application Program Interface

156 1.2 Execution Model

157 The OpenMP Fortran API uses the fork-join model of parallel execution. A program
158 that is written with the OpenMP Fortran API begins execution as a single process,
159 called the master thread of execution. The master thread executes sequentially until
160 the first parallel construct is encountered. In the OpenMP Fortran API, the PARALLEL
161 and END PARALLELdirective pair constitutes the parallel construct. When a parallel
162 construct is encountered, the master thread creates a team of threads, and the master
163 thread becomes the master of the team. The statements in the program that are

164 enclosed by the parallel construct, including routines called from within the enclosed
165 statements, are executed in parallel by each thread in the team. The statements

1§ enclosed lexically within a construct define the lexical extent of the construct. The
167 dynamic extent further includes the routines called from within the construct.

168 Upon completion of the parallel construct, the threads in the team synchronize and
169 only the master thread continues execution. Any number of parallel constructs can be
170 specified in a single program. As a result, a program may fork and join many times
171 during execution.

172 The OpenMP Fortran API allows programmers to use directives in routines called

173 from within parallel constructs. Directives that do not appear in the lexical extent of
174 the parallel construct but lie in the dynamic extent are called orphaned directives.
175 Orphaned directives allow users to execute major portions of their program in parallel
176 with only minimal changes to the sequential program. With this functionality, users
177 can code parallel constructs at the top levels of the program call tree and use

178 directives to control execution in any of the called routines.

179 1.3 Compliance

180 An implementation of the OpenMP Fortran API is OpenMP compliant if it recognizes
181 and preserves the semantics of all the elements of this specification as laid out in

1 chapters 1, 2, 3, and 4. The appendixes are for information purposes only and are not
1t part of the specification.

184 The OpenMP Fortran API is an extension to the base language that is supported by
185 an implementation. If the base language does not support a language construct or
186 extension that appears in this document, the OpenMP implementation is not required
187 to support it.

188 All standard Fortran intrinsics and library routines and Fortran 90 ALLOCATEand
1§ DEALLOCATEstatements must be thread-safe in a compliant implementation.

190 Unsynchronized use of such intrinsics and routines by different threads in a parallel
191 region must produce correct results (though not necessarily the same as serial

192 execution results, as in the case of random number generation intrinsics, for example).

2 Version2.0 Draft 9

193
194
195
196
197

198
199
200
201

202
203
204
205

206

207

208

209

210

211

212

213

214

215

OpenMP Fortran Application Program Interface Introduction [1]

Unsynchronized use of Fortran output statements to the same unit may result in
output in which data written by different threads is interleaved. Similarly,
unsynchronized input statements from the same unit may read data in an interleaved
fashion. Unsynchronized use of Fortran 1/O, such that each thread accesses a
different unit, produces the same results as serial execution of the 1/O statements.

In both Fortran 90 and Fortran 95, a variable that has explicit initialization
implicitly has the SAVEattribute. This is not the case in FORTRAN 77. However, an
implementation of OpenMP Fortran must give such a variable the SAVEattribute,
regardless of the version of Fortran upon which it is based.

The OpenMP Fortran API specifies that certain behavior is “implementation
dependent”. A conforming OpenMP implementation is required to define and
document its behavior in these cases. See Appendix E, page 105, for a list of
implementation dependent behaviors.

1.4 Organization
The rest of this document is organized into the following chapters:
= Chapter 2, page 5, describes the compiler directives.
= Chapter 3, page 43, describes the run-time library routines.
< Chapter 4, page 55, describes the environment variables.
= Appendix A, page 57, contains examples.
< Appendix B, page 87, describes stub library routines.
< Appendix C, page 93, has information about using the SCHEDULEIlause.
= Appendix D, page 97, has examples of interfaces for the run-time library routines.

= Appendix E, page 105, describes implementation-dependent behaviors.

Version2.0 Draft 9 3

216 Directives [2]

217 Directives are special Fortran comments that are identified with a unique sentinel.
218 The directive sentinels are structured so that the directives are treated as Fortran
219 comments. Compilers that support the OpenMP Fortran API include a command line
220 option that activates and allows interpretation of all OpenMP compiler directives. In
221 the remainder of this document, the phrase OpenMP compilation is used to mean
222 that OpenMP directives are interpreted during compilation.

223 This chapter addresses the following topics:

224 = Section 2.1, page 5, describes the directive format.

225 = Section 2.2, page 9, describes the parallel region construct.

226 = Section 2.3, page 12, describes work-sharing constructs.

227 = Section 2.4, page 19, describes the combined parallel work-sharing constructs.
228 = Section 2.5, page 21, describes synchronization constructs and the MASTER

229 directive.

230 = Section 2.6, page 27, describes the data environment, which includes directives
231 and clauses that affect the data environment.

232 = Section 2.7, page 40, describes directive binding.

233 = Section 2.8, page 41, describes directive nesting.

234 2.1 OpenMP Directive Format

235 The format of an OpenMP directive is as follows:

236 sentinel directive_name [clause[[,] clause]...]

237 All OpenMP compiler directives must begin with a directive sentinel. Directives are
238 case-insensitive. Clauses can appear in any order after the directive name. Clauses
239 on directives can be repeated as needed, subject to the restrictions listed in the

240 description of each clause. Directives cannot be embedded within continued

241 statements, and statements cannot be embedded within directives. Comments

242 preceded by an exclamation point may appear on the same line as a directive.

243 The following sections describe the OpenMP directive format:

Version2.0 Draft 9 5

Directives [2] OpenMP Fortran Application Program Interface

2 = Section 2.1.1, page 6, describes directive sentinels.
2 = Section 2.1.2, page 8, describes comments inside directives.
2 = Section 2.1.3, page 8, describes conditional compilation.

247 2.1.1 Directive Sentinels

248 The directive sentinels accepted by an OpenMP-compliant compiler differ depending
249 on the Fortran source form being used. The I$OMP sentinel is accepted when

250 compiling either fixed source form files or free source form files. The C$OMPand

251 *$OMP sentinels are accepted only when compiling fixed source form files.

252 The following sections contain more information on using the different sentinels.

253 2.1.1.1 Fixed Source Form Directive Sentinels

254 The OpenMP Fortran API accepts the following sentinels in fixed source form files:
255 ISOMP | C$OMP | *$OMP

256 Sentinels must start in column one and appear as a single word with no intervening
2]7 white space (spaces and tab characters). Fortran fixed form line length, case

258 sensitivity, white space, continuation, and column rules apply to the directive line.
259 Initial directive lines must have a space or zero in column six, and continuation

260 directive lines must have a character other than a space or a zero in column six.

261 Example: The following formats for specifying directives are equivalent (the first line
262 represents the position of the first 9 columns):

263 C23456789

264 ISOMP PARALLEL DO SHARED(A,B,C)

265 C$OMP PARALLEL DO

266 C$OMP+SHARED(A,B,C)

267 C$OMP PARALLELDOSHARED(A,B,C)

268 2.1.1.2 Free Source Form Directive Sentinel

269 The OpenMP Fortran API accepts the following sentinel in free source form files:

6 Version2.0 Draft 9

OpenMP Fortran Application Program Interface Directives [2]

270 ISOMP

271 The sentinel can appear in any column as long as it is preceded only by white space
272 (spaces and tab characters). It must appear as a single word with no intervening

273 white space. Fortran free form line length, case sensitivity, white space, and

274 continuation rules apply to the directive line. Initial directive lines must have a space
275 after the sentinel. Continued directive lines must have an ampersand as the last
276 nonblank character on the line, prior to any comment placed inside the directive.

277 Continuation directive lines can have an ampersand after the directive sentinel with
278 optional white space before and after the ampersand.

279 One or more blanks must be used to separate adjacent keywords in directives in free
280 source form, except in the following cases, where blanks are optional between the
281 given pair of keywords:

282 END CRITICAL

283 END DO

284 END MASTER

285 END ORDERED

286 END PARALLEL

287 END SECTIONS

288 END SINGLE

289 END WORKSHARE

290 PARALLEL DO

291 PARALLEL SECTIONS

292 PARALLEL BLOCK

293 Example: The following formats for specifying directives are equivalent (the first line
294 represents the position of the first 9 columns):

295 123456789

296 ISOMP PARALLEL DO &

297 ISOMP SHARED(A,B,C)

298 ISOMP PARALLEL &

299 ISOMP&DO SHARED(A,B,C)

300 ISOMP PARALLEL DO SHARED(A,B,C)

301 In order to simplify the presentation, the remainder of this document uses the !$OMP
302 sentinel.

Version2.0 Draft 9 7

Directives [2] OpenMP Fortran Application Program Interface

303 2.1.2 Comments Inside Directives

3 The OpenMP Fortran API accepts comments placed inside directives. The rules

3 governing such comments depend on the Fortran source form being used.

3@ 2.1.2.1 Comments in Directives with Fixed Source Form

3 Comments may appear on the same line as a directive. The exclamation point

3 initiates a comment when it appears after column 6. The comment extends to the end
3 of the source line. If the first nonblank character after the directive sentinel of an

3 initial or continuation directive line is an exclamation point, the line is ignored.

3 2.1.2.2 Comments in Directives with Free Source Form

3 Comments may appear on the same line as a directive. The exclamation point

3 initiates a comment. The comment extends to the end of the source line. If the first
3 nonblank character after the directive sentinel is an exclamation point, the line is
3 ignored.

316 2.1.3 Conditional Compilation

317 The OpenMP Fortran API permits Fortran lines to be compiled conditionally. The
318 directive sentinels for conditional compilation that are accepted by an

319 OpenMP-compliant compiler depend on the Fortran source form being used. The !$
320 sentinel is accepted when compiling either fixed source form files or free source form
321 files. The C$and *$ sentinels are accepted only when compiling fixed source form.
322 During OpenMP compilation, the sentinel is replaced by two spaces, and the rest of
323 the line is treated as a normal Fortran line.

324 In addition to the Fortran conditional compilation sentinels, a C preprocessor macro,
3 _OPENMPcan be used for conditional compilation. OpenMP-compliant compilers

3 define this macro during OpenMP compilation to have the decimal value YYYYMM

3 where YYYYand MMare the year and month designations of the version of the

3 OpenMP Fortran API that the implementation supports.

329 The following sections contain more information on using the different sentinels for
330 conditional compilation. (See Section A.2, page 57, for an example.)

331 2.1.3.1 Fixed Source Form Conditional Compilation Sentinels

332 The OpenMP Fortran API accepts the following conditional compilation sentinels in
333 fixed source form files:

8 Version2.0 Draft 9

334

335
336
337
338
339
340
341
342

343

344
345
346

347
348
349
350

351

352
353

354

355
356
357
358
359
360
361

362

363
364

OpenMP Fortran Application Program Interface Directives [2]

$ | C$|*$

The sentinels must start in column 1 and appear as a single word with no intervening
white space. Fortran fixed form line length, case sensitivity, white space,
continuation, and column rules apply to the line. After the sentinel is replaced with
two spaces, initial lines must have a space or zero in column 6 and only white space
and numbers in columns 1 through 5. After the sentinel is replaced with two spaces,
continuation lines must have a character other than a space or zero in column 6 and
only white space in columns 1 through 5. If these criteria are not met, the line is
treated as a comment and ignored.

Example: The following forms for specifying conditional compilation are equivalent:

C23456789
I$ 10 IAM = OMP_GET_THREAD_NUM +
$ & INDEX

#ifdef _OPENMP
10 IAM = OMP_GET_THREAD NUM +
& INDEX
#endif

2.1.3.2 Free Source Form Conditional Compilation Sentinel

The OpenMP Fortran API accepts the following conditional compilation sentinel in
free source form files:

'$

This sentinel can appear in any column as long as it is preceded only by white space.
It must appear as a single word with no intervening white space. Fortran free source
form line length, case sensitivity, white space, and continuation rules apply to the
line. Initial lines must have a space after the sentinel. Continued lines must have an
ampersand as the last nonblank character on the line, prior to any comment appearing
on the conditionally compiled line. Continuation lines can have an ampersand after
the sentinel, with optional white space before and after the ampersand.

2.2 Parallel Region Construct

The PARALLELand END PARALLELdirectives define a parallel region. A parallel
region is a block of code that is to be executed by multiple threads in parallel. This is

Version2.0 Draft 9 9

365
366

367

368

369

370

371

372

373

374

376

377

379
380
381

W W wwww

388
389
390
391
392
393
394
395
396

Directives [2] OpenMP Fortran Application Program Interface

10

the fundamental parallel construct in OpenMP that starts parallel execution. These
directives have the following format:

ISOMP PARALLEL [clause[[,] clause]...]

block

I$SOMP END PARALLEL

clause can be one of the following:

- PRIVATE(list)

- SHARED(ist)

« DEFAULT(PRIVATE | SHARED | NONE)

e FIRSTPRIVATE(list)

< REDUCTION({operator]| intrinsic_procedure_name}: list)
= |F(scalar_logical_expression)

- COPYIN(list)

< NUM_THREADSC(alar_integer_expression)

For information about the PRIVATE, SHAREDDEFAULT FIRSTPRIVATE, REDUCTION
and COPYINclauses, see Section 2.6.2, page 30. For an example of how to implement
coarse-grain parallelism using these directives, see Section A.3, page 58.

When a thread encounters a parallel region, it creates a team of threads, and it
becomes the master of the team. The master thread is a member of the team. The
number of threads in the team is controlled by environment variables, the
NUM_THREADS8ause, and/or library calls. For more information on environment
variables, see Chapter 4, page 55. For more information on library routines, see
Chapter 3, page 43.

The number of physical processors actually hosting the threads at any given time is
implementation dependent. Once created, the number of threads in the team remains
constant for the duration of that parallel region. It can be changed either explicitly by
the user or automatically by the run-time system from one parallel region to another.
The OMP_SET_DYNAMId@brary routine and the OMP_DYNAMI@nvironment variable
can be used to enable and disable the automatic adjustment of the number of threads.
For more information on the OMP_SET_DYNAMI@brary routine, see Section 3.1.7,
page 46. For more information on the OMP_DYNAMI@nvironment variable, see
Section 4.3, page 56.

Version2.0 Draft 9

OpenMP Fortran Application Program Interface Directives [2]

397 Within the dynamic scope of a parallel region, thread numbers uniquely identify each
398 thread. Thread numbers are consecutive whole numbers ranging from zero for the
399 master thread up to one less than the number of threads within the team. The value
400 of the thread number is found by a call to the OMP_GET_THREAD_NUidrary routine
401 (for more information see Section 3.1.4, page 45). If dynamic threads are disabled

402 when the parallel region is encountered, and remain disabled until a subsequent,

403 non-nested parallel region is encountered, then the thread numbers for the two

404 regions are consistent in that the thread identified with a given thread number in the
405 earlier parallel region will be identified with the same thread number in the later
406 region.

407 block denotes a structured block of Fortran statements. It is non-compliant to branch
408 into or out of the block. The code contained within the dynamic extent of the parallel
409 region is executed by each thread. The code path can be different for different threads.
410 The END PARALLELdirective denotes the end of the parallel region. There is an

411 implied barrier at this point. Only the master thread of the team continues execution
412 past the end of a parallel region.

413 If a thread in a team executing a parallel region encounters another parallel region, it
414 creates a new team, and it becomes the master of that new team. This second parallel
415 region is called a nested parallel region. By default, nested parallel regions are

416 serialized; that is, they are executed by a team composed of one thread. This default
417 behavior can be changed by using either the OMP_SET_NESTERun-time library

418 routine or the OMP_NESTEBNnvironment variable. For more information on the

419 OMP_SET_NESTEDbrary routine, see Section 3.1.9, page 47. For more information on
420 the OMP_NESTEBnvironment variable, see Section 4.4, page 56.

421 If an IF clause is present, the enclosed code region is executed in parallel only if the
422 scalar_logical_expression evaluates to .TRUE. . Otherwise, the parallel region is

423 serialized. The expression must be a scalar Fortran logical expression. In the absence
424 of an IF clause, the region is executed as if an IF(.TRUE.) clause were specified.

425 The NUM_THREADS8ause is used to request that a specific number of threads are

426 used in a parallel region. It supersedes the number of threads indicated by the

427 OMP_SET_NUM_THREAMBSction or the OMP_NUM_THREARSvironment variable for
428 the parallel region it is applied to. Subsequent parallel regions, however, are not

429 affected unless they have their own NUM_THREADS8auses. scalar_integer_expression
430 must evaluate to a positive scalar integer value.

431 If execution of the program terminates while inside a parallel region, execution of all
432 threads terminates. All work before the previous barrier encountered by the threads
433 is guaranteed to be completed; none of the work after the next barrier that the

434 threads would have encountered will have been started. The amount of work done by
435 each thread in between the barriers and the order in which the threads terminate are
436 unspecified.

437 The following restrictions apply to parallel regions:

Version2.0 Draft 9 11

Directives [2] OpenMP Fortran Application Program Interface

438 = The PARALLELEND PARALLELdirective pair must appear in the same routine in
439 the executable section of the code.

4 = The code contained by these two directives must be a structured block. It is

4 non-compliant to branch into or out of a parallel region.

442 = Only a single IF clause can appear on the directive. The IF expression is

443 evaluated outside the context of the parallel region. Results are unspecified if the
444 IF expression contains a function reference that has side effects.

4 < Only a single NUM_THREADS8ause can appear on the directive. The NUM_THREADS
4 expression is evaluated outside the context of the parallel region. Results are

4 unspecified if the NUM_THREAD&Xpression contains a function reference that has
4 side effects.

4 = If the dynamic threads mechanism is enabled, then the number of threads

4 requested by the NUM_THREADS8ause is the maximum number to use in the

4 parallel region.

4 = The order of evaluation of IF clauses and NUM_THREADG8auses is unspecified.
453 Unsynchronized use of Fortran I/O statements by multiple threads on the same unit
454 has unspecified behavior.

455 2.3 Work-sharing Constructs

456 A work-sharing construct divides the execution of the enclosed code region among the
457 members of the team that encounter it. A work-sharing construct must be enclosed
458 dynamically within a parallel region in order for the directive to execute in parallel.
459 The work-sharing directives do not launch new threads, and there is no implied

460 barrier on entry to a work-sharing construct.

461 The following restrictions apply to the work-sharing directives:

462 = Work-sharing constructs and BARRIERdirectives must be encountered by all

463 threads in a team or by none at all.

464 = Work-sharing constructs and BARRIERdirectives must be encountered in the same
465 order by all threads in a team.

466 The following sections describe the work-sharing directives:

467 = Section 2.3.1, page 13, describes the DOand END Ddlirectives.

468 = Section 2.3.2, page 15, describes the SECTIONS SECTION and END SECTIONS
469 directives.

12 Version2.0 Draft 9

OpenMP Fortran Application Program Interface Directives [2]

470 = Section 2.3.3, page 17, describes the SINGLE and END SINGLEdirectives.

471 = Section 2.3.4, page 17, describes the WORKSHAR(directive.

472 2.3.1 DODirective

473 The DOdirective specifies that the iterations of the immediately following DOloop
474 must be executed in parallel. The loop that follows a DOdirective cannot be a

475 DO WHILEor a DOloop without loop control. The iterations of the DOloop are

476 distributed across threads that already exist.

477 The format of this directive is as follows:

478 ISOMP DO [clause[[,] clause]...]

479 do_loop

480 ['$OMP END DO[NOWAIT]

481 The do_loop may be a do_construct, an outer_shared_do_construct, or an

482 inner_shared_do_construct. A DOconstruct that contains several DOstatements that
483 share the same DOtermination statement syntactically consists of a sequence of
484 outer_shared_do_constructs, followed by a single inner_shared_do_construct. If an END
485 DOdirective follows such a DOconstruct, a DOdirective can only be specified for the
486 first (i.e., the outermost) outer_shared_do_construct. (See examples in Section A.22,
487 page 74.)

488 The clause can be one of the following:

489 = PRIVATE(list)

490 e FIRSTPRIVATE(list)

491 e LASTPRIVATE(list)

492 = REDUCTION({operator| intrinsic_procedure_name}: list)

493 e SCHEDULEtypel[, chunk])

494 < ORDERED

495 The SCHEDULENd ORDEREDRIauses are described in this section. The PRIVATE,
496 FIRSTPRIVATE, LASTPRIVATE and REDUCTIONlauses are described in Section
497 2.6.2, page 30.

Version2.0 Draft 9 13

498
499
500

501

a1

505
506

507

508

509
510
511
512

a1 01 01

516
517
518
519

520

521
522
523
524
525
526

527

528
529
530
531
532
533
534

Directives [2]

OpenMP Fortran Application Program Interface

14

If ordered sections are contained in the dynamic extent of the DOdirective, the
ORDEREDIlause must be present. For more information on ordered sections, see the
ORDEREMirective in Section 2.5.6, page 26.

The SCHEDULElause specifies how iterations of the DOloop are divided among the
threads of the team. chunk must be a scalar integer expression whose value is
positive. The chunk expression is evaluated outside the context of the DOconstruct.
Results are unspecified if the chunk expression contains a function reference that has
side effects. Within the SCHEDULEgype[, chunk]) clause syntax, type can be one of

the following:

type
STATIC

DYNAMIC

GUIDED

RUNTIME

Table 1. SCHEDULEClause Values

Effect

When SCHEDULE(STATIC chunk) is specified, iterations are divided
into pieces of a size specified by chunk. The pieces are statically
assigned to threads in the team in a round-robin fashion in the order
of the thread number.

When chunk is not specified, the iteration space is divided into
contiguous chunks that are approximately equal in size with one
chunk assigned to each thread.

When SCHEDULE(DYNAMIG;hunk) is specified, the iterations are
broken into pieces of a size specified by chunk. As each thread
finishes a piece of the iteration space, it dynamically obtains the next
set of iterations.

When no chunk is specified, it defaults to 1.

When SCHEDULE(GUIDED¢hunk) is specified, the iteration space is
divided into pieces such that the size of each successive piece is
exponentially decreasing. chunk specifies the size of the smallest
piece, except possibly the last. The size of the initial piece is
implementation dependent. As each thread finishes a piece of the
iteration space, it dynamically obtains the next available piece.

When no chunk is specified, it defaults to 1.

When SCHEDULE(RUNTIME)is specified, the decision regarding
scheduling is deferred until run time. The schedule type and chunk
size can be chosen at run time by setting the OMP_SCHEDULE
environment variable. If this environment variable is not set, the
resulting schedule is implementation dependent. For more
information on the OMP_SCHEDUL&nvironment variable, see Section
4.1, page 55.

Version2.0 Draft 9

535
536

537
538
539
540
541

542
543
544
545
546
547
548

549
550
551
552
553

554

555

556
557

558

559

560

561

562

563
564

565

566
567
568

OpenMP Fortran Application Program Interface Directives [2]

When SCHEDULE(RUNTIME)is specified, it is non-compliant to specify
chunk.

In the absence of the SCHEDULEIlause, the default schedule is implementation
dependent. An OpenMP-compliant program should not rely on a particular schedule
for correct execution. Users should not rely on a particular implementation of a
schedule type for correct execution, because it is possible to have variations in the
implementations of the same schedule type across different compilers.

Threads that complete execution of their assigned loop iterations wait at a barrier at
the END Ddlirective unless the NOWAITclause is specified. If an END DQlirective is
not specified, an END DQlirective is assumed at the end of the DOloop. If NOWAITis
specified on the END Ddlirective, threads do not synchronize at the end of the
parallel loop: threads that finish early proceed straight to the instructions following
the loop without waiting for the other members of the team to finish the DOdirective.
(See Section A.4, page 58, for an example.)

Parallel DOloop control variables are block-level entities within the DOloop. If the
loop control variable also appears in the LASTPRIVATE list of the parallel DQ it is
copied out to a variable of the same name in the enclosing PARALLELregion. The

variable in the enclosing PARALLEL region must be SHARED(it is specified on the
LASTPRIVATE list of a DOdirective.

The following restrictions apply to the DOdirectives:
= It is illegal to branch out of a DOloop associated with a DOdirective.

= The values of the loop control parameters of the DOloop associated with a DO
directive must be the same for all the threads in the team.

= The DOloop iteration variable must be of type integer.

= |If used, the END Ddlirective must appear immediately after the end of the loop.
= Only a single SCHEDULElause can appear on a DOdirective.

= Only a single ORDERERIlause can appear on a DOdirective.

= chunk must be a positive scalar integer expression.

= The value of the chunk parameter must be the same for all of the threads in the
team.

2.3.2 SECTIONS Directive

The SECTIONSdirective is a non-iterative work-sharing construct that specifies that
the enclosed sections of code are to be divided among threads in the team. Each
section is executed once by a thread in the team.

Version2.0 Draft 9 15

569

570
571
572
573
574
575

576

577
578
579
580
581
582

583
584

585
586
587
588
589

590

591
592

5§
595
596

Directives [2] OpenMP Fortran Application Program Interface

16

The format of this directive is as follows:

ISOMP SECTIONS [clause[[,] clause]...]
[ISOMP SECTION

block

['$OMP SECTION

block]

ISOMP END SECTIONS[NOWAIT

block denotes a structured block of Fortran statements.
clause can be one of the following:

PRIVATE(list)

FIRSTPRIVATE(list)

LASTPRIVATE(list)

REDUCTION({ operator| intrinsic_procedure_name}: list)

The PRIVATE, FIRSTPRIVATE, LASTPRIVATE, and REDUCTION:lauses are described
in Section 2.6.2, page 30.

Each section is preceded by a SECTIONdirective, though the SECTIONdirective is
optional for the first section. The SECTIONdirectives must appear within the lexical
extent of the SECTIONSEND SECTIONSlirective pair. The last section ends at the
END SECTIONSlirective. Threads that complete execution of their sections wait at a
barrier at the END SECTIONSlirective unless a NOWAITis specified.

The following restrictions apply to the SECTIONSdirective:

= The code enclosed in a SECTIONSEND SECTIONSlirective pair must be a
structured block. In addition, each constituent section must also be a structured
block. It is non-compliant to branch into or out of the constituent section blocks.

= It is non-compliant for a SECTIONdirective to be outside the lexical extent of the
SECTIONSEND SECTIONSlirective pair. (See Section A.8, page 61 for an example
that uses these directives.)

Version2.0 Draft 9

597

598
599
600

601

602

603

604

605
606

607

608

609

610

611
612

613

614
615

616

617

618
619
620
621

OpenMP Fortran Application Program Interface Directives

(2]

2.3.3 SINGLE Directive

The SINGLE directive specifies that the enclosed code is to be executed by only one

thread in the team. Threads in the team that are not executing the SINGLE directive

wait at the END SINGLEdirective unless NOWAITis specified.

The format of this directive is as follows:

ISOMP SINGLE [clause[[,] clause]...]

block

ISOMP END SINGLE [end_single_modifier]

where end_single_modifier is either COPYPRIVATE(ist)[[, | COPYPRIVATE(list)...]
or NOWAIT

block denotes a structured block of Fortran statements.
clause can be one of the following:

= PRIVATE(list)

e FIRSTPRIVATE(list)

The PRIVATE, FIRSTPRIVATE, and COPYPRIVATElauses are described in Section
2.6.2, page 30.

The following restriction applies to the SINGLE directive:

= The code enclosed in a SINGLE/END SINGLEdirective pair must be a structured
block. It is non-compliant to branch into or out of the block.

See Section A.9, page 61 for an example of the SINGLE directive.

2.3.4 WORKSHARBEiIrective

The WORKSHAR(rective divides the work of executing the enclosed code into separate
units of work, and causes the threads of the team to share the work of executing the

enclosed code such that each unit is executed only once. The units of work may be
assigned to threads in any manner as long as each unit is executed exactly once.

Version2.0 Draft 9

17

Directives [2] OpenMP Fortran Application Program Interface

18

I$SOMP WORKSHARENOWAIT
block

I$SOMP END WORKSHAHEOWAIT

A BARRIERIis implied following the enclosed code unless the NOWAITclause is
specified on the END WORKSHARIEective.

The statements in block are divided into units of work as follows:

= For array expressions within each statement, including transformational intrinsics
that compute scalar values from arrays:

— Evaluation of each element of the array expression is a unit of work.

— Evaluation of transformational intrinsics may be freely subdivided into any
number of units of work.

= |If a WORKSHARtirective is applied to an array assignment statement, the
assignment of each element is a unit of work.

= |If a WORKSHARtrective is applied to a scalar assignment statement, the
assignment operation is a single unit of work.

= If any actual argument in a reference to an elemental function is an array, the
reference is treated in the same way as if the function had been applied separately
to corresponding elements of each array actual argument. When a WORKSHARE
directive is applied to a reference to an elemental function, each application of the
function to corresponding elements of any array argument is treated as a unit of
work.

-« If a WORKSHARtirective is applied to a WHEREtatement or construct, the
evaluation of the mask expression and the masked assignments are workshared.

< If a WORKSHARtirective is applied to a FORALLstatement or construct, the
evaluation of the mask expression, expressions occurring in the specification of the
iteration space, and the masked assignments are workshared.

If an array expression in the block references the value, association status, or
allocation status of PRIVATE variables, the value of the expression is undefined,
unless the same value would be computed by every thread.

If an array assignment, a scalar assignment, a masked array assignment, or a FORALL
assignment assigns to a private variable in the block, the result is unspecified.

The WORKSHARIdhrective causes the sharing of work to occur only in the lexically
enclosed block. If these statements cause a function to be invoked, the WORKSHARE
directive does not cause work to be shared while executing that subprogram.

Version2.0 Draft 9

656

657
658
659

660
661

662
663

664

665
666
667
668

669

670
671

672
673

674
675

676

677
678

679

680

681

682

OpenMP Fortran Application Program Interface

Directives [2]

The following restrictions apply to the WORKSHAR(directive:

= block must only contain array assignment statements, scalar assignment
statements, FORALLstatements, FORALL constructs, WHEREtatements or WHERE

constructs.

= block must not contain any user defined function calls unless the function is

ELEMENTAL

= The code enclosed in a WORKSHAREND WORKSHARIEective pair must be a

structured block. It is non-compliant to branch into or out of the block.

2.4 Combined Parallel Work-sharing Constructs

The combined parallel work-sharing constructs are shortcuts for specifying a parallel
region that contains only one work-sharing construct. The semantics of these
directives are identical to that of explicitly specifying a PARALLELdirective followed

by a single work-sharing construct.

The following sections describe the combined parallel work-sharing directives:

= Section 2.4.1, page 19, describes the PARALLEL DCand END PARALLEL DO

directives.

= Section 2.4.2, page 20, describes the PARALLEL SECTIONSand

END PARALLEL SECTIONSirectives.

= Section 2.4.3, page 21, describes the PARALLEL WORKSHARIRd

END PARALLEL WORKSHAG&iEectives.

2.4.1 PARALLEL DODirective

The PARALLEL Dddirective provides a shortcut form for specifying a parallel region
that contains a single DOdirective. (See also Section A.1, page 57, for an example.)

The format of this directive is as follows:

ISOMP PARALLEL DOjclause[[,] clause]...
do_loop

[[$OMP END PARALLEL DO

]

Version2.0 Draft 9

19

683
684
685
686
687
688
689

690
691
692
693
694

695
696
697

698
699

700

701
702
703
704

705

706

707

708

709

710

711

712

Directives [2] OpenMP Fortran Application Program Interface

The do_loop may be a do_construct, an outer_shared_do_construct, or an
inner_shared_do_construct. A DOconstruct that contains several DOstatements that
share the same DOtermination statement syntactically consists of a sequence of
outer_shared_do_constructs, followed by a single inner_shared_do_construct. If an END
PARALLEL DQdirective follows such a DOconstruct, a PARALLEL DQdirective can
only be specified for the first (i.e., the outermost) outer_shared_do_construct. (See
Section A.22, page 74 for examples.)

clause can be one of the clauses accepted by either the PARALLELor the DOdirective.
For information about the PARALLELdirective and the IF clause, see Section 2.2,
page 9. For information about the DOdirective and the SCHEDULEand ORDERED
clauses, see Section 2.3.1, page 13. For information on the remaining clauses, see
Section 2.6.2, page 30.

If the END PARALLEL Ddirective is not specified, the PARALLEL DCends with the
DOloop that immediately follows the PARALLEL DQdirective. If used, the
END PARALLEL Ddirective must appear immediately after the end of the DOloop.

The semantics are identical to explicitly specifying a PARALLEL directive immediately
followed by a DOdirective.

2.4.2 PARALLEL SECTIONSDirective

20

The PARALLEL SECTIONSirective provides a shortcut form for specifying a parallel
region that contains a single SECTIONSdirective. The semantics are identical to
explicitly specifying a PARALLELdirective immediately followed by a SECTIONS
directive.

The format of this directive is as follows:

ISOMP PARALLEL SECTIONS[clause[[,] clause]...]
[ISOMP SECTION]

block

['$OMP SECTION

block]

ISOMP END PARALLEL SECTIONS

Version2.0 Draft 9

713
714
715
716
717

718

719

720
721
722
723

724

725

726

727

728
729
730

731

732
733

734

735

736

737

738

739

OpenMP Fortran Application Program Interface Directives [2]

clause can be one of the clauses accepted by either the PARALLELor the SECTIONS
directive. For more information about the PARALLELdirective, see Section 2.2, page
9. For more information about the SECTIONSdirective, see Section 2.3.2, page 15.
The PRIVATE, FIRSTPRIVATE, LASTPRIVATE, and REDUCTIONlauses are described
in Section 2.6.2, page 30.

The last section ends at the END PARALLEL SECTIONSirective.

2.4.3 PARALLEL WORKSHARHrective

The PARALLEL WORKSHARIHtective provides a shortcut form for specifying a
parallel region that contains a single WORKSHARdhrective. The semantics are
identical to explicitly specifying a PARALLELdirective immediately followed by a
WORKSHAR(hrective.

The format of this directive is as follows:

ISOMP PARALLEL WORKSHARHEause[[,] clause]...]
block

ISOMP END PARALLEL WORKSHARE

clause can be one of the clauses accepted by either the PARALLELor the WORKSHARE
directive. For more information about the PARALLELdirective, see Section 2.2, page
9. For more information about the WORKSHARMhrective, see Section 2.3.4, page 17.

2.5 Synchronization Constructs and the MASTERDirective

The following sections describe the synchronization constructs and the MASTER
directive:

= Section 2.5.1, page 22, describes the MASTERand END MASTERiirectives.

= Section 2.5.2, page 22, describes the CRITICAL and END CRITICAL directives.
= Section 2.5.3, page 23, describes the BARRIERdirective.

= Section 2.5.4, page 23, describes the ATOMICdirective.

= Section 2.5.5, page 25, describes the FLUSHdirective.

= Section 2.5.6, page 26, describes the ORDERERNd END ORDERE®irectives.

Version2.0 Draft 9 21

Directives [2] OpenMP Fortran Application Program Interface

740 2.5.1 MASTERDIrective

741
742

743

744
745

746

747
748
749

750
7
7

753

754
755

756

757
758

759

760

761
762

¥

765

The code enclosed within MASTERand END MASTERirectives is executed by the
master thread of the team.

The format of this directive is as follows:

I$SOMP MASTER
block

ISOMP END MASTER

The other threads in the team skip the enclosed section of code and continue
execution. There is no implied barrier either on entry to or exit from the master
section.

The following restriction applies to the MASTERdirective:

= The section of code enclosed by MASTERand END MASTERIrectives must be a
structured block. It is non-compliant to branch into or out of the block.

2.5.2 CRITICAL Directive

22

The CRITICAL and END CRITICAL directives restrict access to the enclosed code to
only one thread at a time.

The format of this directive is as follows:

ISOMP CRITICAL [(name)]
block

ISOMP END CRITICAL [(name)]

The optional name argument identifies the critical section.

A thread waits at the beginning of a critical section until no other thread in the team
is executing a critical section with the same name. All unnamed CRITICAL directives
map to the same name. Critical section names are global entities of the program. If a
name conflicts with any other entity, the behavior of the program is unspecified.

The following restrictions apply to the CRITICAL directive:

Version2.0 Draft 9

766
767

768
769
770

771

772

773
774

775

776

77

778
779

780
781

782

783
784
785

786

787

788
789

OpenMP Fortran Application Program Interface Directives

(2]

= The section of code enclosed by the CRITICAL and END CRITICAL directive pair

must be a structured block. It is non-compliant to branch into or out of the block.

< If a name is specified on a CRITICAL directive, the same name must also be
specified on the END CRITICAL directive. If no name appears on the CRITICAL
directive, no name can appear on the END CRITICAL directive.

See Section A.5, page 58, for an example that uses named CRITICAL sections.

2.5.3 BARRIER Directive

The BARRIERdirective synchronizes all the threads in a team. When encountered,

each thread waits until all of the others threads in that team have reached this point.

The format of this directive is as follows:

I$OMP BARRIER

The following restrictions apply to the BARRIERdirective:

< Work-sharing constructs and BARRIERdirectives must be encountered by all
threads in a team or by none at all.

= Work-sharing constructs and BARRIERdirectives must be encountered in the same

order by all threads in a team.

2.5.4 ATOMIC Directive

The ATOMICdirective ensures that a specific memory location is to be updated

atomically, rather than exposing it to the possibility of multiple, simultaneous writing

threads.

The format of this directive is as follows:

ISOMP ATOMIC

This directive applies only to the immediately following statement, which must have

one of the following forms:

Version2.0 Draft 9

23

Directives [2] OpenMP Fortran Application Program Interface

790

X
1

X operator expr

791 X = expr operator X

intrinsic_procedure_name (X, expr_list)

~ ~
E—
X X
I I

intrinsic_procedure_name (expr_list, x)

794 In the preceding statements:

795 = X is a scalar variable of intrinsic type.

796 = expr is a scalar expression that does not reference x.

7 = expr_list is a comma-separated, non-empty list of scalar expressions that do not

7 reference x. When intrinsic_procedure_name refers to IAND, IOR, or IEOR, exactly

7 one expression must appear in expr_list.

800 = intrinsic_procedure_name is one of MAX MIN, IAND, IOR, or IEOR.

801 e operator isone of +, *, -, /, . AND. , .OR., .EQV., or .NEQV. .

8 = The operators in expr must have precedence equal to or greater than the

8 precedence of operator, x operator expr must be mathematically equivalent to x

8 operator (expr), and expr operator x must be mathematically equivalent to

8 (expr) operator X.

8 = The function intrinsic_procedure_name, the operator operator, and the assignment
8 must be the intrinsic procedure name, the intrinsic operator, and intrinsic

8 assignment.

809 This directive permits optimization beyond that of the necessary critical section

810 around the assignment. An implementation can replace all ATOMICdirectives by

811 enclosing the statement in a critical section. All of these critical sections must use the
812 same unigue name.

813 Only the load and store of x are atomic; the evaluation of expr is not atomic. To avoid
814 race conditions, all updates of the location in parallel must be protected with the

815 ATOMICdirective, except those that are known to be free of race conditions.

816 The following restriction applies to the ATOMICdirective:

817 = All atomic references to the storage location of variable x throughout the program

818 are required to have the same type and type parameters.

819 Example:

820 ISOMP ATOMIC

821 Y(INDEX(l)) = Y(INDEX(l)) + B

24 Version2.0 Draft 9

OpenMP Fortran Application Program Interface Directives [2]

822 See Section A.12, page 63, and Section A.23, page 75, for more examples using the
823 ATOMICdirective.

824 2.5.5 FLUSH Directive

825 The FLUSHdirective, whether explicit or implied, identifies a cross-thread sequence
826 point at which the implementation is required to ensure that each thread in the team
827 has a consistent view of certain variables in memory.

828 A consistent view requires that all memory operations (both reads and writes) that
829 occur before the FLUSHdirective in the program be performed before the sequence
830 point in the executing thread; similarly, all memory operations that occur after the
831 FLUSHmust be performed after the sequence point in the executing thread.

832 Thread-visible variables are the following data items:

833 = Globally visible variables (in common blocks and in modules).

834 = Variables visible through host association.

835 = Local variables that have the SAVEattribute.

836 = Variables that appear in an EQUIVALENCEstatement with a thread-visible

837 variable.

838 = Local variables that do not have the SAVEattribute but have had their address
839 taken and saved or have had their address passed to another subprogram.

840 = Local variables that do not have the SAVEattribute that are declared shared in a
841 parallel region within the subprogram.

842 = Dummy arguments.

843 = All pointer dereferences.

844 Implementations must ensure that modifications made to thread-visible variables
845 within the executing thread are made visible to all other threads at the sequence
846 point. For example, compilers must restore values from registers to memory, and
847 hardware may need to flush write buffers. Furthermore, implementations must

848 assume that thread-visible variables may have been updated by other threads at the
849 sequence point and must be retrieved from memory before their first use past the
850 sequence point.

851 Finally, the FLUSHdirective only provides consistency between operations within the
852 executing thread and global memory. To achieve a globally consistent view across all
853 threads, each thread must execute a FLUSHoperation.

854 The format of this directive is as follows:

Version2.0 Draft 9 25

855

856
857
858
859
860

861

862

868

869

870

871

872

873

874

875
876

877

878

879

880

Directives [2] OpenMP Fortran Application Program Interface

ISOMP FLUSH [(list)]

This directive must appear at the precise point in the code at which the
synchronization is required. The optional list argument consists of a
comma-separated list of variables that need to be flushed in order to avoid flushing
all variables. The list should contain only named variables (see Section A.13, page
63). The FLUSHdirective is implied for the following directives:

= BARRIER

= CRITICAL and END CRITICAL
= PARALLEL

= PARALLEL DO

= PARALLEL SECTIONS

= END PARALLEL DO

= END PARALLEL SECTIONS
- END DO

= END PARALLEL

= END SECTIONS

= END SINGLE

= ORDERERNd END ORDERED

The directive is not implied if a NOWAITclause is present.

2.5.6 ORDEREMIrective

26

The code enclosed within ORDERERNd END ORDERE®irectives is executed in the
order in which iterations would be executed in a sequential execution of the loop.

The format of this directive is as follows:

I$OMP ORDERED

block

I$OMP END ORDERED

Version2.0 Draft 9

OpenMP Fortran Application Program Interface Directives [2]

881 An ORDEREMirective can appear only in the dynamic extent of a DOor PARALLEL DO
882 directive. The DOdirective to which the ordered section binds must have the ORDERED
883 clause specified (see Section 2.3.1, page 13). One thread is allowed in an ordered

884 section at a time. Threads are allowed to enter in the order of the loop iterations. No
885 thread can enter an ordered section until it is guaranteed that all previous iterations
886 have completed or will never execute an ordered section. This sequentializes and

887 orders code within ordered sections while allowing code outside the section to run in
888 parallel. ORDEREDBections that bind to different DOdirectives are independent of

889 each other.

890 The following restrictions apply to the ORDEREMirective:

891 = The code enclosed by the ORDERE@RNd END ORDERE®irectives must be a

892 structured block. It is non-compliant to branch into or out of the block.

893 = An ORDEREMirective cannot bind to a DOdirective that does not have the

894 ORDEREDIause specified.

895 = An iteration of a loop with a DOdirective must not execute the same ORDERED
896 directive more than once, and it must not execute more than one ORDERED

897 directive.

898 See Section A.10, page 62, and Section A.24, page 76, for examples using the

899 ORDEREMirective.

900 2.6 Data Environment Constructs

901 This section presents constructs for controlling the data environment during the

902 execution of parallel constructs:

903 = Section 2.6.1, page 27, describes the THREADPRIVATHlirective, which makes

904 common blocks or variables local to a thread.

905 = Section 2.6.2, page 30, describes directive clauses that affect the data environment.
906 = Section 2.6.3, page 38 describes the data environment rules.

907 2.6.1 THREADPRIVATEDirective

908 The THREADPRIVATHlirective makes named common blocks and named variables
909 private to a thread but global within the thread.

910 This directive must appear in the declaration section of a scoping unit in which the
911 common block or variable is declared. Although variables in common blocks can be

Version2.0 Draft 9 27

©O© ©O© O © ©O© O ©

Directives [2] OpenMP Fortran Application Program Interface

© ©O© © © © © © ©

© © © © OO OOOOOQ

28

accessed by use association or host association, common block names cannot. This
means that a common block name specified in a THREADPRIVATHlirective must be
declared to be a common block in the same scoping unit in which the THREADPRIVATE
directive appears. Each thread gets its own copy of the common block or variable, so
data written to the common block or variable by one thread is not directly visible to
other threads. During serial portions and MASTERsections of the program, accesses
are to the master thread’s copy of the common block or variable. (See Section A.25,
page 77 for examples.)

On entry to the first parallel region, an instance of a variable or common block that
appears in a THREADPRIVATHlirective is created for each thread. A variable is said
to be affected by a COPYINclause if the variable appears in the COPYINclause or it is
in a common block that appears in the COPYINclause. If a THREADPRIVATErariable
or a variable in a THREADPRIVATEEommon block is not affected by any COPYINclause
that appears on the first parallel region in a program, the variable or any subobject of
the variable is initially defined or undefined according to the following rules:

< If it has the ALLOCATABLEattribute, each copy created will have an initial
allocation status of not currently allocated.

e |f it has the POINTERattribute:

— if it has an initial association status of disassociated, either through explicit
initialization or default initialization, each copy created will have an
association status of disassociated,;

— otherwise, each copy created will have an association status of undefined.

« |f it does not have either the POINTERor the ALLOCATABLEattribute:

if it is initially defined, either through explicit initialization or default
initialization, each copy created is so defined;

otherwise, each copy created is undefined.

On entry to a subsequent region, if the dynamic threads mechanism has been
disabled, the definition, association or allocation status of a thread’s copy of a
THREADPRIVATErariable or a variable in a THREADPRIVATEcommon block, that is
not affected by any COPYINclause that appears on the region, will be retained, and if
it was defined, its value will be retained as well. In this case, if a THREADPRIVATE
variable is referenced in both regions, then threads with the same thread number in
their respective regions will reference the same copy of that variable. If the dynamic
threads mechanism is enabled, the definition and association status of a thread's copy
of the variable is undefined, and the allocation status of an allocatable array will be
implementation dependent. A variable with the allocatable attribute must not appear
in a COPYINclause, although a structure that has an ultimate component with the
allocatable attribute may appear in a COPYINclause. For more information on

Version2.0 Draft 9

OpenMP Fortran Application Program Interface Directives [2]

950 dynamic threads, see the OMP_SET_DYNAMI@Gbrary routine, Section 3.1.7, page 46,
951 and the OMP_DYNAMI@nvironment variable, Section 4.3, page 56.

952 On entry to any parallel region, each thread’s copy of a variable that is affected by a
953 COPYINclause for the parallel region, will acquire the allocation, association or

954 definition status of the master thread’s copy, according to the following rules:

955 = If it has the POINTERattribute:

956 — if the master thread'’s copy is associated with a target that each copy can

957 become associated with, each copy will become associated with the same target;
958 — if the master thread’s copy is disassociated, each copy will become disassociated;
959 — otherwise, each copy will have an undefined association status.

960 = If it does not have the POINTERattribute, each copy becomes defined with the

961 value of the master thread’s copy as if by an intrinsic assignment.

962 If a common block or a variable that is declared in the scope of a module appears in a
963 THREADPRIVATHlirective, it implicitly has the SAVEattribute.

964 The format of this directive is as follows:

965 I$SOMP THREADPRIVATEIist)

966 where list is a comma-separated list of named variables and named common blocks.
967 Any common block name must appear between slashes.

968 The following restrictions apply to the THREADPRIVATHlirective:

969 = The THREADPRIVATHlirective must appear after every declaration of a thread
970 private common block.

971 = A blank common block cannot appear in a THREADPRIVATHirective.

972 = It is non-compliant for a THREADPRIVATEvariable or common block or its

973 constituent variables to appear in any clause other than a COPYINclause or a

974 COPYPRIVATEclause. As a result, they are not permitted in a PRIVATE,

975 FIRSTPRIVATE, LASTPRIVATE, SHAREDor REDUCTION:lause. They are not

976 affected by the DEFAULTclause.

977 = A variable can only appear in a THREADPRIVATHlirective in the scope in which it
978 is declared. It must not be part of a common block or be declared in an

979 EQUIVALENCEstatement.

980 = A variable that appears in a THREADPRIVATHlirective and is not declared in the
981 scope of a module must have the SAVEattribute.

Version2.0 Draft 9 29

Directives [2] OpenMP Fortran Application Program Interface

982 2.6.2 Data Scope Attribute Clauses

983
984
985
986
987
988

989
990
991
992

993
994
995

996
997
998
999

10@0
10q1
1092
10@3
10

1005
1006
1007
1008

1009
1010
1011
1012
1013
1014
1015
1016

1o|7

30

Several directives accept clauses that allow a user to control the scope attributes of
variables for the duration of the construct. Not all of the following clauses are
allowed on all directives, but the clauses that are valid on a particular directive are
included with the description of the directive. If no data scope clauses are specified
for a directive, the default scope for variables affected by the directive is SHARED(See
Section 2.6.3, page 38, for exceptions.)

Scope attribute clauses that appear on a PARALLELdirective indicate how the
specified variables are to be treated with respect to the parallel region associated with
the PARALLELdirective. They do not indicate the scope attributes of these variables
for any enclosing parallel regions, if they exist.

In determining the appropriate scope attribute for a variable used in the lexical extent
of a parallel region, all references and definitions of the variable must be considered,
including references and definitions which occur in any nested parallel regions.

Each clause accepts an argument list, which is a comma-separated list of named
variables or named common blocks that are accessible in the scoping unit. Subobjects
cannot be specified as items in any of the lists. When named common blocks appear
in a list, their names must appear between slashes.

When a named common block appears in a list, it has the same meaning as if every
explicit member of the common block appeared in the list. A member of a common
block is an explicit member if it is named in a COMMOSstatement which declares the
common block, and it was declared in the same scoping unit in which the clause
appears.

Although variables in common blocks can be accessed by use association or host
association, common block names cannot. This means that a common block name
specified in a data scope attribute clause must be declared to be a common block in
the same scoping unit in which the data scope attribute clause appears.

The following sections describe the data scope attribute clauses:
= Section 2.6.2.1, page 31, describes the PRIVATE clause.

= Section 2.6.2.2, page 32, describes the SHAREDxlause.

= Section 2.6.2.3, page 32, describes the DEFAULTclause.

= Section 2.6.2.4, page 33, describes the FIRSTPRIVATE clause.
= Section 2.6.2.5, page 33, describes the LASTPRIVATE clause.
= Section 2.6.2.6, page 34, describes the REDUCTION:lause.

= Section 2.6.2.7, page 36, describes the COPYINclause.

= Section 2.6.2.8, page 37, describes the COPYPRIVATElause.

Version2.0 Draft 9

OpenMP Fortran Application Program Interface Directives [2]

1018 2.6.2.1 PRIVATE Clause

1019 The PRIVATE clause declares the variables in list to be private to each thread in a
1020 team.

1021 This clause has the following format:

1022 PRIVATE(list)

1023 The behavior of a variable declared in a PRIVATE clause is as follows:

1024 1. A new object of the same type is declared once for each thread in the team. One
1025 thread in the team is permitted, but not required, to re-use the existing storage
1026 as the storage for the new object. For all other threads, new storage is created
1027 for the new object.

1028 2. All references to the original object in the lexical extent of the directive construct
1029 are replaced with references to the private object.

1030 3. Variables declared as PRIVATE are undefined for each thread on entering the
1031 construct, and the corresponding shared variable is undefined on exit from a
1032 parallel construct.

1033 4. A variable declared as PRIVATE may be storage-associated with other variables
1034 when the PRIVATE clause is encountered. Storage association may exist because
1035 of constructs such as EQUIVALENCECOMMOQNtc. If a is a variable appearing in
1036 a PRIVATE clause and b is a variable which was storage-associated with a, then:
1037 a. The contents, allocation, and association status of b are undefined on entry
1038 to the parallel construct.

1039 b. Any definition of a, or of its allocation or association status, causes the

1040 contents, allocation, and association status of b to become undefined.

1041 c. Any definition of b, or of its allocation or association status, causes the

1042 contents, allocation, and association status of a to become undefined.

1043 See Section A.20, page 71 and Section A.21, page 71, for examples.

1044 5. If a variable is declared as PRIVATE, and the variable is referenced in the

1045 definition of a statement function, and the statement function is used within the
1046 lexical extent of the directive construct, then the statement function may

1047 reference either the SHAREDversion of the variable or the PRIVATE version.

1048 Which version is referenced is implementation-dependent.

Version2.0 Draft 9 31

Directives [2] OpenMP Fortran Application Program Interface

1049 2.6.2.2 SHAREDC/ause

1050
1051
1052

1053

1054

1055

1056
1057
1058

1059

1060

1061

1062
1063
1064
1065

1066
1067
1068
1069

1070
1071
1072

1073

1074

1075
1076
1077

1078
1079

The SHAREDxlause makes variables that appear in the list shared among all the
threads in a team. All threads within a team access the same storage area for
SHAREDdata.

This clause has the following format:

SHARED(ist)

2.6.2.3 DEFAULT Clause

32

The DEFAULTclause allows the user to specify a PRIVATE, SHAREDor NONEscope
attribute for all variables in the lexical extent of any parallel region. Variables in
THREADPRIVATEEommon blocks are not affected by this clause.

This clause has the following format:

DEFAULT(PRIVATE | SHARED| NONE)

The PRIVATE, SHAREDand NONEspecifications have the following effects:

= Specifying DEFAULT(PRIVATE) makes all named objects in the lexical extent of
the parallel region, including common block variables but excluding
THREADPRIVATRE/ariables, private to a thread as if each variable were listed
explicitly in a PRIVATE clause.

= Specifying DEFAULT(SHARED)makes all named objects in the lexical extent of the
parallel region shared among the threads in a team, as if each variable were listed
explicitly in a SHARELxlause. In the absence of an explicit DEFAULTclause, the
default behavior is the same as if DEFAULT(SHARED)were specified.

= Specifying DEFAULT(NONE)requires that each variable used in the lexical extent
of the parallel region be explicitly listed in a data scope attribute clause on the
parallel region, unless it is one of the following:

THREADPRIVATE

— A Cray pointee.

— A loop iteration variable used only as a loop iteration variable for sequential
loops in the lexical extent of the region or parallel DOloops that bind to the
region.

— Only used in work-sharing constructs that bind to the region, and is specified
in a data scope attribute clause for each such construct.

Version2.0 Draft 9

OpenMP Fortran Application Program Interface Directives [2]

1080 Only one DEFAULTCclause can be specified on a PARALLEL directive.

1081 Variables can be exempted from a defined default using the PRIVATE, SHARED

1082 FIRSTPRIVATE, LASTPRIVATE, and REDUCTIONlauses. As a result, the following
1083 example is legal:

1084 ISOMP PARALLEL DO DEFAULT(PRIVATE), FIRSTPRIVATE(l),SHARED(X),

1085 ISOMP& SHARED(R) LASTPRIVATE(l)

1086 2.6.2.4 FIRSTPRIVATE Clause

1087 The FIRSTPRIVATE clause provides a superset of the functionality provided by the
1088 PRIVATE clause.

1089 This clause has the following format:

1090 FIRSTPRIVATE(list)

1091 Variables that appear in the list are subject to PRIVATE clause semantics described in
1092 Section 2.6.2.1, page 31. In addition, private copies of the variables are initialized
1093 from the original object existing before the construct.

1094 2.6.2.5 LASTPRIVATE Clause

1095 The LASTPRIVATE clause provides a superset of the functionality provided by the
1096 PRIVATE clause.

1097 This clause has the following format:

1098 LASTPRIVATE(list)

1099 Variables that appear in the list are subject to the PRIVATE clause semantics

1100 described in Section 2.6.2.1, page 31. When the LASTPRIVATE clause appears on a DO
1101 directive, the thread that executes the sequentially last iteration updates the version
1102 of the object it had before the construct (see Section A.6, page 59 for an example).
1103 When the LASTPRIVATE clause appears in a SECTIONSdirective, the thread that
1104 executes the lexically last SECTIONupdates the version of the object it had before the
1105 construct. Subobjects that are not assigned a value by the last iteration of the DOor
1106 the lexically last SECTIONof the SECTIONSdirective are undefined after the construct.

Version2.0 Draft 9 33

Directives [2] OpenMP Fortran Application Program Interface

1107 2.6.2.6 REDUCTIONC/ause

1148 This clause performs a reduction on the variables that appear in list, with the

11@9 operator operator or the intrinsic intrinsic_procedure_name, where operator is one of
1140 the following: +, *, -, .AND. , .OR. , .EQV., or .NEQV., and intrinsic_procedure_name
1141 refers to one of the following: MAX MIN, IAND, IOR, or IEOR.

11§ This clause has the following format:

113 REDUCTION({operator| intrinsic_procedure_name}: list)

11 Variables in list must be named variables of intrinsic type. Deferred shape, assumed
1145 shape, and assumed size arrays are not allowed on the reduction clause. Since the
116 intermediate values of the REDUCTIONvariables may be combined in random order,
1147 there is no guarantee that bit-identical results will be obtained for either integer or
1148 floating point reductions from one parallel run to another.

1119 Variables that appear in a REDUCTIONclause must be SHAREDN the enclosing

1120 context. A private copy of each variable in list is created for each thread as if the
1121 PRIVATE clause had been used. The private copy is initialized according to the

11'2 operator. See Table 2, page 35, for more information.

1123 At the end of the REDUCTIONthe shared variable is updated to reflect the result of
1124 combining the original value of the (shared) reduction variable with the final value of
1125 each of the private copies using the operator specified. The reduction operators are all
1126 associative (except for subtraction), and the compiler can freely reassociate the

1127 computation of the final value (the partial results of a subtraction reduction are

1128 added to form the final value).

1129 The value of the shared variable becomes undefined when the first thread reaches the
1130 containing clause, and it remains so until the reduction computation is complete.

1131 Normally, the computation is complete at the end of the REDUCTIONconstruct;

1132 however, if the REDUCTIONlause is used on a construct to which NOWAITis also

1133 applied, the shared variable remains undefined until a barrier synchronization has
1134 been performed to ensure that all the threads have completed the REDUCTION:lause.
11%5 The REDUCTION:lause is intended to be used on a region or work-sharing construct
1136 in which the reduction variable or a subobject of the reduction variable is used only in
11§7 reduction statements with one of the following forms:

34 Version2.0 Draft 9

OpenMP Fortran Application Program Interface Directives [2]

1138 X = X operator expr

1139 X = expr operator x (except for subtraction)

1140 X = intrinsic_procedure_name (X, expr_list)

1141 X = intrinsic_procedure_name (expr_list, Xx)

1142 In the preceding statements:

1143 = X is a scalar variable of intrinsic type.

1144 = expr is a scalar expression that does not reference x.

1145 = expr_list is a comma-separated, non-empty list of scalar expressions that do not
1146 reference x. When intrinsic_procedure_name refers to IAND, IOR, or IEOR, exactly
1147 one expression must appear in expr_list.

1148 = intrinsic_procedure_name is one of MAX MIN, IAND, IOR, or IEOR.

1149 = operator is one of +, *, -, .AND. , .OR., .EQV., or .NEQV. .

1150 = The operators in expr must have precedence equal to or greater than the

1151 precedence of operator, x operator expr must be mathematically equivalent to x
1152 operator (expr), and expr operator x must be mathematically equivalent to

1153 (expr) operator X.

1154 = The function intrinsic_procedure_name, the operator operator, and the assignment
1155 must be the intrinsic procedure name, the intrinsic operator, and intrinsic

1156 assignment.

1157 Some reductions can be expressed in other forms. For instance, a MAXreduction

1158 might be expressed as follows:

1159 IF (x .LT. expr) x = expr

1160 Alternatively, the reduction might be hidden inside a subroutine call. The user should
1161 be careful that the operator specified in the REDUCTIONclause matches the reduction
1162 operation.

1163 The following table lists the operators and intrinsics that are valid and their

1164 canonical initialization values. The actual initialization value will be consistent with
1165 the data type of the reduction variable.

1166 Table 2. Reducation Variable Initialization Values

1167 Operator/Intrinsic Initialization

1168 + 0

1169 * 1

Version2.0 Draft 9 35

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179

1180
1141
1192
1183

1184

1185

11
11
11
11
11

O © 0 N O

11

(==Y

1192

1193
11
1195

1196
1197
1198
1199
1200

Directives [2] OpenMP Fortran Application Program Interface

- 0

AND. .TRUE.

.OR. .FALSE.

EQV. .TRUE.

.NEQV. .FALSE.

MAX Smallest representable number
MIN Largest representable number
IAND All bits on

IOR 0

IEOR 0

See Section A.7, page 59, for an example that uses the + operator.

Any number of reduction clauses can be specified on the directive, but a variable can
appear only once in the REDUCTION:lause(s) for that directive.

Example:

ISOMP DO REDUCTION(+: A, Y) REDUCTION(.OR.: AM)

2.6.2.7 COPYIN Clause

36

The COPYINclause applies only to variables, common blocks and variables in common
blocks that are declared as THREADPRIVATEA COPYINclause on a parallel region
specifies that the data in the master thread of the team be copied to the thread
private copies of the common blocks or variables at the beginning of the parallel
region as described in Section 2.6.1, page 27.

This clause has the following format:

COPYIN(list)

If a common block appears in a THREADPRIVATHirective, it is not necessary to
specify the whole common block. Named variables appearing in the THREADPRIVATE
common block can be specified in the list.

Although variables in common blocks can be accessed by use association or host
association, common block names cannot. This means that a common block name
specified in a COPYINclause must be declared to be a common block in the same
scoping unit in which the COPYINclause appears. See Section A.25, page 77, for more
information.

Version2.0 Draft 9

OpenMP Fortran Application Program Interface Directives [2]

1201 In the following example, the common blocks BLK1 and FIELDS are specified as

1202 thread private, but only one of the variables in common block FIELDS is specified to
1203 be copied in.

1204 COMMON /BLK1/ SCRATCH

1205 COMMON /FIELDS/ XFIELD, YFIELD, ZFIELD

1206 ISOMP THREADPRIVATE(/BLK1/, /FIELDS/)

1207 ISOMP PARALLEL DEFAULT(PRIVATE) COPYIN(/BLK1/,ZFIELD)

1208 An OpenMP-compliant implementation is required to ensure that the value of each
1209 thread private copy is the same as the value of the master thread copy when the
1210 master thread reached the directive containing the COPYINclause.

1211 2.6.2.8 COPYPRIVATECIause

1212 The COPYPRIVATEclause uses a private variable to broadcast a value, or a pointer to
1213 a shared object, from one member of a team to the other members. It is an

1214 alternative to using a shared variable for the value, or pointer association, and is
1215 useful when providing such a shared variable would be difficult (for example, in a
1216 recursion requiring a different variable at each level).

1217 This clause has the following format:

1218 COPYPRIVATE(list])

1219 Variables in the list must not appear in a PRIVATE or FIRSTPRIVATE clause for the
1220 SINGLE construct. If the directive is encountered in the dynamic extent of a parallel
1221 region, variables in the list must be private in the enclosing context. If a common
1222 block is specified, then it must be THREADPRIVATEand the effect is the same as if
1223 the variable names in its common block object list were specified.

1224 The effect of the COPYPRIVATEclause on the variables in its list occurs after the
1225 execution of the code enclosed within the SINGLE construct, and before any threads in
1226 the team have left the barrier at the end of the construct. If the variable is not a
1227 pointer, then in all other threads in the team, that variable becomes defined (as if by
1228 assignment) with the value of the corresponding variable in the thread that executed
1229 the enclosed code. If the variable is a pointer, then in all other threads in the team,
1230 that variable becomes pointer associated (as if by pointer assignment) with the

1231 corresponding variable in the thread that executed the enclosed code. (See Section
1232 A.27, page 82, for examples of the COPYPRIVATElause.)

Version2.0 Draft 9 37

Directives [2] OpenMP Fortran Application Program Interface

1233 2.6.3 Data Environment Rules

1234 A program that conforms to the OpenMP Fortran APl must adhere to the following
1235 rules and restrictions with respect to data scope:

1236 1. Sequential DOloop control variables in the lexical extent of a PARALLEL region
1237 that would otherwise be SHAREDbased on default rules are automatically made
1238 private on the PARALLELdirective. Sequential DOloop control variables with no
12|9 enclosing PARALLEL region are not made private automatically. It is up to the
1240 user to guarantee that these indexes are private if the containing procedures are
1241 called from a PARALLEL region.

1242 All implied DOloop control variables and FORALLindexes are automatically made
1243 private at the enclosing implied DOor FORALLconstruct.

12 2. Variables that are privatized in a parallel region may be privatized again on an
1245 enclosed work-sharing directive. As a result, variables that appear in a PRIVATE
1246 clause on a work-sharing directive may either have a shared or a private scope in
1247 the enclosing parallel region. Variables that appear on the FIRSTPRIVATE,

1248 LASTPRIVATE, and REDUCTIONlauses on a work-sharing directive must have
1249 shared scope in the enclosing parallel region.

1290 3. Variables that appear in a reduction list in a parallel region cannot be privatized
1291 on an enclosed work-sharing directive.

1252 4. A variable that appears in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE or

1253 REDUCTIONlause must be definable.

12|4 5. Assumed-size and assumed-shape arrays cannot be declared PRIVATE,

1255 FIRSTPRIVATE, or LASTPRIVATE Array dummy arguments that are explicitly
1256 shaped (including variably dimensioned) can be declared in any scoping clause.
1257 6. Fortran pointers and allocatable arrays can be declared PRIVATE or SHAREDbut
1258 not FIRSTPRIVATE or LASTPRIVATE

1259 Within a parallel region, the initial status of a private pointer is undefined.

1260 Private pointers that become allocated during the execution of a parallel region
1261 should be explicitly deallocated by the program prior to the end of the parallel
1262 region to avoid memory leaks.

1263 The association status of a SHAREDpointer becomes undefined upon entry to and
1264 on exit from the parallel construct if it is associated with a target or a subobject
1265 of a target that is in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or REDUCTION
1266 clause inside the parallel construct. An allocatable array declared PRIVATE must
1267 have an allocation status of “not currently allocated” on entry to and on exit from
1268 the construct.

1269 7. PRIVATE or SHAREDattributes can be declared for a Cray pointer but not for the
1270 pointee. The scope attribute for the pointee is determined at the point of pointer

38 Version2.0 Draft 9

1271
1272

1273
1274
1275
1276
1277
1278
1279

1280
1281
1282
1283
1284
1285

1286
1287

1288
1289
1290

1291

1292
1293

1294
1295

1296
1297
1298

1299
1300
1301
1302

1303
1304
1305
1306

1307

1308

OpenMP Fortran Application Program Interface Directives [2]

10.

11.

12.

13.

14.

15.

definition. It is non-compliant to declare a scope attribute for a pointee. Cray |
pointers may not be specified in FIRSTPRIVATE or LASTPRIVATE clauses.

Scope clauses apply only to variables in the lexical extent of the directive on
which the clause appears, with the exception of variables passed as actual
arguments. Local variables in called routines that do not have the SAVEattribute
are PRIVATE. Common blocks and modules in called routines in the dynamic
extent of a parallel region always have an implicit SHAREDattribute, unless they
are THREADPRIVATEcommon blocks. Local variables in called routines that have
the SAVEattribute are SHARED(See Section A.26, page 80, for examples.)

When a named common block is specified in a PRIVATE, FIRSTPRIVATE, or
LASTPRIVATE clause of a directive, none of its constituent elements may be
declared in another data scope attribute clause in that directive. It should be
noted that when individual members of a common block are privatized, the
storage of the specified variables is no longer associated with the storage of the
common block itself. (See Section A.25, page 77, for examples.)

Variables that are not allowed in the PRIVATE and SHAREDxlauses are not
affected by DEFAULT(PRIVATE) or DEFAULT(SHARED)clauses, respectively.

Clauses can be repeated as needed, but each variable and each named common
block can appear explicitly in only one clause per directive, with the following
exceptions:

« A variable can be declared both FIRSTPRIVATE and LASTPRIVATE |

= Variables affected by the DEFAULTclause can be listed explicitly in a clause to
override the default specification.

Variables that are declared LASTPRIVATE for a work-sharing directive for which
NOWAITappears must not be used prior to a barrier.

Variables that appear in namelist statements, in variable format expressions,
and in expressions for statement function definitions must not be specified in
PRIVATE, FIRSTPRIVATE, or LASTPRIVATE clauses.

The shared variables that are specified in REDUCTIONor LASTPRIVATE clauses
become defined at the end of the construct. Any concurrent uses or definitions of
those variables must be synchronized with the definition that occurs at the end
of the construct to avoid race conditions.

If the following three conditions hold regarding an actual argument in a reference
to a non-intrinsic procedure, then any references to (or definitions of) the shared
storage that is associated with the dummy argument by any other thread must
be synchronized with the procedure reference to avoid possible race conditions:

a. The actual argument is one of the following:

e A SHAREDvariable

Version2.0 Draft 9 39

1309

1310

1311

1312

1313

1314

1315

1316

1317
1318

1319
1320
1321
1322
1323

1324

1325
1326
1327

13
13
13
13
13
13
13
13

W NP O O

a1

1336

1337
1338

1339
1340

Directives [2]

OpenMP Fortran Application Program Interface

= A subobject of a SHAREDvariable

= An object associated with a SHAREDvariable

= An object associated with a subobject of a SHAREDvariable
b. The actual argument is also one of the following:

< An array section with a vector subscript

< An array section

< An assumed-shape array

= A pointer array

c. The associated dummy argument for this actual argument is an
explicit-shape array or an assumed-size array.

The situations described above may result in the value of the shared variable
being copied into temporary storage before the procedure reference, and back out
of the temporary storage into the actual argument storage after the procedure
reference. This effectively results in references to and definitions of the storage
during the procedure reference.

16. An OpenMP compliant implementation must adhere to the following rule:

< If a variable is specified as FIRSTPRIVATE and LASTPRIVATE the
implementation must ensure that the update required for LASTPRIVATE
occurs after all initializations for FIRSTPRIVATE.

17. An implementation may generate references to any object that appears or an

object in a common block that appears in a REDUCTIONFIRSTPRIVATE,
LASTPRIVATE COPYPRIVATE or COPYINclause, on entry to (for FIRSTPRIVATE
and COPYIN or exit from (for REDUCTIONLASTPRIVATE and COPYPRIVATE a
construct. Except for an object with the pointer attribute in a COPYPRIVATE
clause, if a reference to the object as the expression in an intrinsic assignment
statement would give an exceptional value, or have undefined behavior, at that
point in the program, then the generated reference may have the same behavior.

2.7 Directive Binding

An OpenMP compliant implementation must adhere to the following rules with
respect to the dynamic binding of directives:

= A parallel region is available for binding purposes, whether it is serialized or

40

executed in parallel.

Version2.0 Draft 9

1341
1342
1343

1344

1345
1346

1347
1348

1349

1350

1351
1352

1353
1354
1355

1356
1357

1358
1359
1360
1361

1362
1363

1364
1365

1366
1367

1368

1369
1370
1371
1372

OpenMP Fortran Application Program Interface Directives [2]

= The DQ SECTIONS SINGLE, MASTERBARRIERand WORKSHARdhrectives bind to

the dynamically enclosing PARALLELdirective, if one exists. (See Section A.19,
page 70 for an example.)

= The ORDEREMirective binds to the dynamically enclosing DOdirective.

= The ATOMICdirective enforces exclusive access with respect to ATOMICdirectives

in all threads, not just the current team.

= The CRITICAL directive enforces exclusive access with respect to CRITICAL
directives in all threads, not just the current team.

= A directive can never bind to any directive outside the closest enclosing PARALLEL

2.8 Directive Nesting

An OpenMP compliant implementation must adhere to the following rules with
respect to the dynamic nesting of directives:

< A PARALLELdirective dynamically inside another PARALLEL directive logically
establishes a new team, which is composed of only the current thread, unless
nested parallelism is enabled.

= DQ SECTIONS SINGLE, and WORKSHAR(drectives that bind to the same
PARALLELdirective are not allowed to be nested one inside the other.

e BLOCK WORKSHARIrectives are not allowed to be nested within a DQ SECTIONS

SINGLE, or WORKSHAR(dhrective, including any WORKSHARdirectives that are
implied by a BLOCK WORKSHARH&ective, that binds to the same PARALLEL
directive.

= DQ SECTIONS SINGLE, and WORKSHAR(rectives are not permitted in the
dynamic extent of CRITICAL and MASTERdirectives.

= BARRIERdirectives are not permitted in the dynamic extent of DQ SECTIONS
SINGLE, MASTERCRITICAL , and WORKSHARdirectives.

= MASTERirectives are not permitted in the dynamic extent of DQ SECTIONS
SINGLE, and WORKSHARMHrectives.

< ORDEREDBections are not allowed in the dynamic extent of CRITICAL sections.

= Any directive set that is legal when executed dynamically inside a PARALLEL
region is also legal when executed outside a parallel region. When executed

dynamically outside a user-specified parallel region, the directive is executed with

respect to a team composed of only the master thread.

Version2.0 Draft 9

41

Directives [2] OpenMP Fortran Application Program Interface

1373 See Section A.17, page 67, for legal examples of directive nesting, and Section A.18,
1374 page 68, for invalid examples.

42 Version2.0 Draft 9

1375

1376
1377
1378

1379
1380
1381
1382

1383
1384
1385
1386

1387

1388
1389

1390
1391

1392
1393
1394
1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Run-time Library Routines [3]

This section describes the OpenMP Fortran API run-time library routines that can be
used to control and query the parallel execution environment. A set of general
purpose lock routines is also provided.

OpenMP Fortran API run-time library routines are external procedures. In the
following descriptions, scalar_integer_expression is a default scalar integer expression,
and scalar_logical_expression is a default scalar logical expression. The return values
of these routines are also of default kind.

Interface declarations for the OpenMP Fortran runtime library routines described in
this chapter shall be provided in the form of a Fortran INCLUDE file named
omp_lib.h or a Fortran 90 MODULEamed omp_lib . This file must define the
following:

= The interfaces of all of the routines in this chapter.

e The INTEGER PARAMETER omp_lock _kind that defines the KIND type
parameters used for simple lock variables in the OMP_*_LOCKroutines.

e the INTEGER PARAMETER omp_nest_lock kind that defines the KIND type
parameters used for the nestable lock variables in the OMP_* NEST_LOCKoutines.

< the INTEGER PARAMETER openmp_version with a value of the C preprocessor
macro _OPENMHKsee Section 2.1.3, page 8) that has the form YYYYDDwhere YYYY
and DDare the year and month designations of the version of the OpenMP Fortran
API that the implementation supports.

See Appendix D, page 97, for examples of these files.

3.1 Execution Environment Routines

The following sections describe the execution environment routines:

= Section 3.1.1, page 44, describes the OMP_SET_NUM_THREAB&broutine.
= Section 3.1.2, page 44, describes the OMP_GET_NUM_THREARSction.

« Section 3.1.3, page 45, describes the OMP_GET_MAX_THREAR®ction.

= Section 3.1.4, page 45, describes the OMP_GET_THREAD_NUihction.

= Section 3.1.5, page 46, describes the OMP_GET_NUM_PRO@hction.

« Section 3.1.6, page 46, describes the OMP_IN_PARALLELfunction.

Version2.0 Draft 9 43

Run-time Library Routines [3] OpenMP Fortran Application Program Interface

1405

1406

1407

1408

= Section 3.1.7, page 46, describes the OMP_SET_DYNAMI8ubroutine.
= Section 3.1.8, page 47, describes the OMP_GET_DYNAMIfinction.

= Section 3.1.9, page 47, describes the OMP_SET_NESTEBubroutine.
e« Section 3.1.10, page 48, describes the OMP_GET_NESTEfnction.

1409 3.1.1 OMP_SET_NUM_THREADS®broutine

1410
1411

1412

1413

The OMP_SET_NUM_THREABGbroutine sets the number of threads to use for
subsequent parallel regions.

The format of this subroutine is as follows:

SUBROUTINE OMP_SET_NUM_THREA#&S[ar_integer_expression)

The value of the scalar_integer_expression must be positive. The effect of this function
depends on whether dynamic adjustment of the number of threads is enabled. If
dynamic adjustment is disabled, the value of the scalar_integer_expression is used as
the number of threads for all subsequent parallel regions prior to the next call to this
function; otherwise, the value is used as the maximum number of threads that will be
used. This function has effect only when called from serial portions of the program. If
it is called from a portion of the program where the OMP_IN_PARALLELfunction
returns .TRUE. , the behavior of this function is unspecified. For additional
information on this subject, see the OMP_SET_DYNAMI8ubroutine described in
Section 3.1.7, page 46, and the OMP_GET_DYNAMIflinction described in Section 3.1.8,
page 47, and the example in Section A.11, page 62.

Resource constraints on an OpenMP parallel program may change the number of
threads that a user is allowed to create at different phases of a program’s execution.
When dynamic adjustment of the number of threads is enabled, requests for more
threads than an implementation can support are satisfied by a smaller number of
threads. If dynamic adjustment of the number of threads is disabled, the behavior of
this function is implementation dependent.

This call has precedence over the OMP_NUM_THREARSvironment variable.

1432 3.1.2 OMP_GET_NUM_THREABSnction

1433
1434

44

The OMP_GET_NUM_THREARSction returns the number of threads currently in the
team executing the parallel region from which it is called.

Version2.0 Draft 9

OpenMP Fortran Application Program Interface Run-time Library Routines [3]

1435 The format of this function is as follows:

1436 INTEGER FUNCTION OMP_GET_NUM_THREADS

1437 The OMP_SET_NUM_THREAD& and the OMP_NUM_THREARSvironment variable
1438 control the number of threads in a team. For more information on the

1439 OMP_SET_NUM_THREADAI, see Section 3.1.1, page 44.

1440 If the number of threads has not been explicitly set by the user, the default is

1441 implementation dependent. This function binds to the closest enclosing PARALLEL
1442 directive. For more information on the PARALLEL directive, see Section 2.2, page 9.
1443 If this call is made from the serial portion of a program, or from a nested parallel
1444 region that is serialized, this function returns 1. (See Section A.14, page 64 for an
1445 example.)

1446 3.1.3 OMP_GET_MAX_THREAIBSnction

1447 The OMP_GET_MAX_THREAMBSction returns the maximum value that can be

1448 returned by calls to the OMP_GET_NUM_THREAR®ction. For more information on
1449 OMP_GET_NUM_THREADBSe Section 3.1.2, page 44.

1450 The format of this function is as follows:

1451 INTEGER FUNCTION OMP_GET_MAX_THREADS

1452 If OMP_SET_NUM_THREAIDSused to change the number of threads, subsequent calls
1453 to OMP_GET_MAX_THREA®B&II return the new value. This function can be used to
1454 allocate maximum sized per-thread data structures when the OMP_SET_DYNAMIC
1455 subroutine is set to .TRUE. . For more information on OMP_SET_DYNAMI|Gee Section
1456 3.1.7, page 46.

1457 This function has global scope and returns the maximum value whether executing
1458 from a serial region or a parallel region.

1459 3.1.4 OMP_GET_THREAD_NUWnction

1460 The OMP_GET_THREAD_NUihction returns the thread number, within the team,
1461 that lies between 0 and OMP_GET_NUM_THREARSIinclusive. (See the second

1462 example in Section A.14, page 64.) The master thread of the team is thread 0.

1463 The format of this function is as follows:

Version2.0 Draft 9 45

Run-time Library Routines [3] OpenMP Fortran Application Program Interface

1464 INTEGER FUNCTION OMP_GET_THREAD_NUM

1465 This function binds to the closest enclosing PARALLELdirective. For more information
1466 on the PARALLEL directive, see Section 2.2, page 9.

1467 When called from a serial region, OMP_GET_THREAD_NUW&turns 0. When called from
1468 within a nested parallel region that is serialized, this function returns 0.

1469 3.1.5 OMP_GET_NUM_PROEBnction

1470 The OMP_GET_NUM_PRO@Gghction returns the number of processors that are
1471 available to the program.

1472 The format of this function is as follows:

1473 INTEGER FUNCTION OMP_GET_NUM_PROCS

1474 3.1.6 OMP_IN_PARALLELFunction

1475 The OMP_IN_PARALLELfunction returns .TRUE. if it is called from the dynamic

1476 extent of a region executing in parallel, and .FALSE. otherwise. A parallel region
1477 that is serialized is not considered to be a region executing in parallel.

1478 The format of this function is as follows:

1479 LOGICAL FUNCTION OMP_IN_PARALLEL

1480 This function has global scope. As a result, it will always return .TRUE. within the
1481 dynamic extent of a region executing in parallel, regardless of nested regions that are
1482 serialized.

1483 3.1.7 OMP_SET_DYNAMIGubroutine

1484 The OMP_SET_DYNAMIG8ubroutine enables or disables dynamic adjustment of the
1485 number of threads available for execution of parallel regions.

1486 The format of this subroutine is as follows:

1487 SUBROUTINE OMP_SET_DYNAMEKc&lar_logical_expression)

46 Version2.0 Draft 9

OpenMP Fortran Application Program Interface Run-time Library Routines [3]

1488 If scalar_logical_expression evaluates to .TRUE. , the number of threads that are used
1489 for executing subsequent parallel regions can be adjusted automatically by the

1490 run-time environment to obtain the best use of system resources. As a consequence,
1491 the number of threads specified by the user is the maximum thread count. The

1492 number of threads always remains fixed over the duration of each parallel region and
1493 is reported by the OMP_GET_NUM_THREARfction. For more information on the
1494 OMP_GET_NUM_THREARfction, see Section 3.1.2, page 44.

1495 If scalar_logical_expression evaluates to .FALSE. , dynamic adjustment is disabled.
1496 (See Section A.11, page 62, for an example.)

1497 A call to OMP_SET_DYNAMI@as precedence over the OMP_DYNAMIEnvironment
1498 variable. For more information on the OMP_DYNAMI@nvironment variable, see

1499 Section 4.3, page 56.

1500 The default for dynamic thread adjustment is implementation dependent. As a result,
1501 user codes that depend on a specific number of threads for correct execution should
1502 explicitly disable dynamic threads. Implementations are not required to provide the
1503 ability to dynamically adjust the number of threads, but they are required to provide
1504 the interface in order to support portability across platforms.

1505 3.1.8 OMP_GET_DYNAMIEunction

1506 The OMP_GET_DYNAMI@inction returns .TRUE. if dynamic thread adjustment is
1507 enabled and returns .FALSE. otherwise. For more information on dynamic thread
1508 adjustment, see Section 3.1.7, page 46.

1509 The format of this function is as follows:

1510 LOGICAL FUNCTION OMP_GET_DYNAMIC

1511 If the implementation does not implement dynamic adjustment of the number of

1512 threads, this function always returns .FALSE. .

1513 3.1.9 OMP_SET_NESTEBubroutine

1514 The OMP_SET_NESTEBubroutine enables or disables nested parallelism.

1515 The format of this subroutine is as follows:

1516 SUBROUTINE OMP_SET_NESTED&lar_logical_expression)

Version2.0 Draft 9 47

15)7
1538
1539
1520

1521
1522

1523
1524
1525
1526

1527

1528
1529
1530

1531

1532

1533
1534

1535

15
15
15
15

© 00 N O

15
15
15
15
15
1545

W N P O

Run-time Library Routines [3] OpenMP Fortran Application Program Interface

If scalar_logical_expression evaluates to .FALSE. , nested parallelism is disabled,
which is the default, and nested parallel regions are serialized and executed by the
current thread. If set to .TRUE. , nested parallelism is enabled, and parallel regions
that are nested can deploy additional threads to form the team.

This call has precedence over the OMP_NESTEBnvironment variable. For more
information on the OMP_NESTEBnvironment variable, see Section 4.4, page 56.

When nested parallelism is enabled, the number of threads used to execute nested
parallel regions is implementation dependent. As a result, OpenMP-compliant
implementations are allowed to serialize nested parallel regions even when nested
parallelism is enabled.

3.1.10 OMP_GET_NESTEBunction

The OMP_GET_NESTEfinction returns .TRUE. if nested parallelism is enabled and
.FALSE. if nested parallelism is disabled. For more information on nested
parallelism, see Section 3.1.9, page 47.

The format of this function is as follows:

LOGICAL FUNCTION OMP_GET_NESTED

If an implementation does not implement nested parallelism, this function always
returns .FALSE. .

3.2 Lock Routines

48

The OpenMP run-time library includes a set of general-purpose locking routines that
take lock variables as arguments. A lock variable must be accessed only through the
routines described in this section. For all of these routines, a lock variable should be
of type integer and of a KIND large enough to hold an address.

Two types of locks are supported: simple locks and nestable locks. Nestable locks may
be locked multiple times by the same thread before being unlocked; simple locks may
not be locked if they are already in a locked state. Simple lock variables are
associated with simple locks and may only be passed to simple lock routines.
Nestable lock variables are associated with nestable locks and may only be passed to
nestable lock routines.

Version2.0 Draft 9

1546
1547
1548

1549

1550

1551

1552
1553

1554
1555

1556
1557

1558
1559

1560
1561

1562

1563
1564

1565
1566

1567
1568

1569
1570

1571
1572

1573
1574

OpenMP Fortran Application Program Interface Run-time Library Routines [3]

In the descriptions that follow, svar is a simple lock variable and nvar is a nestable
lock variable. Using the defined parameters described at the beginning of this
chapter (Chapter 3, page 43), these lock variables may be declared as the following:

INTEGER (KIND=OMP_LOCK_KIND) :: svar

INTEGER (KIND=OMP_NEST_LOCK_KIND) :: nvar

The simple locking routines are as follows:

The OMP_INIT_LOCKsubroutine initializes a simple lock (see Section 3.2.1, page
50).

The OMP_DESTROY_LOGKbroutine removes a simple lock (see Section 3.2.2, page
50).

The OMP_SET_LOCKubroutine sets a simple lock when it becomes available (see
Section 3.2.3, page 50).

The OMP_UNSET_LOC#ubroutine releases a simple lock (see Section 3.2.4, page
51).

The OMP_TEST_LOCHKunction tests and possibly sets a simple lock (see Section
3.2.5, page 51).

The nestable lock routines are as follows:

The OMP_INIT_NEST_LOCKsubroutine initializes a nestable lock (see Section
3.2.1, page 50).

The OMP_DESTROY_NEST_LOG#broutine removes a nestable lock (see Section
3.2.2, page 50).

The OMP_SET_NEST_LOCsUbroutine sets a nestable lock when it becomes
available (see Section 3.2.3, page 50).

The OMP_UNSET_NEST_LOGKbroutine releases a nestable lock (see Section 3.2.4,
page 51).

The OMP_TEST_NEST_LOCKinction tests and possibly sets a nestable lock (see
Section 3.2.5, page 51).

See Section A.15, page 64, and Section A.16, page 65, for examples of using the
simple and the nestable lock routines.

Version2.0 Draft 9 49

Run-time Library Routines [3] OpenMP Fortran Application Program Interface

5 3.2.1 OMP_INIT_LOCK and OMP_INIT_NEST_LOCKSubroutines

6 These subroutines provide the only means of initializing a lock. Each subroutine

7 initializes a lock associated with the lock variable argument for use in subsequent

8 calls.

¢ The format of these subroutines is as follows:

0 SUBROUTINE OMP_INIT_LOCK4var)

1 SUBROUTINE OMP_INIT_NEST_LOCKjvar)

2 The initial state is unlocked (that is, no thread owns the lock). For a nestable lock,

3 the initial nesting count is zero. svar must be an uninitialized simple lock variable.
nvar must be an uninitialized nestable lock variable. It is non-compliant to call this

5 routine with a lock variable that is already associated with a lock.

6 3.2.2 OMP_DESTROY_LOGHd OMP_DESTROY_NEST_LOGKbroutines

7 These subroutines insure that the lock variable is uninitialized and cause the lock
3 variable to become undefined.

9 The format for these subroutines is as follows:

0 SUBROUTINE OMP_DESTROY_LO&K)

1 SUBROUTINE OMP_DESTROY_NEST_LOGK)

2 svar must be an initialized simple lock variable that is unlocked. nvar must be an
3 initialized nestable lock variable that is unlocked.

3.2.3 OMP_SET_LOCland OMP_SET_NEST_LOCRubroutines

5 These subroutines force the thread executing the subroutine to wait until the

6 specified lock is available and then set the lock. A simple lock is available if it is

7 unlocked. A nestable lock is available if it is unlocked or if it is already owned by the
8 thread executing the subroutine.

9 The format of these subroutines is as follows:

50 Version2.0 Draft 9

OpenMP Fortran Application Program Interface Run-time Library Routines [3]

1600 SUBROUTINE OMP_SET_LOC#4ar)

1601 SUBROUTINE OMP_SET_NEST_LOGKr)

1602 svar must be an initialized simple lock variable. Ownership of the lock is granted to
1603 the thread executing the subroutine.

1604 nvar must be an initialized nestable lock variable. The nesting count is incremented,
1605 and the thread is granted, or retains, ownership of the lock.

1606 3.2.4 OMP_UNSET_LOC&nd OMP_UNSET_NEST_LOCRubroutines

1607 These subroutines provide the means of releasing ownership of a lock.

1608 The format of these subroutines is as follows:

1609 SUBROUTINE OMP_UNSET_LOGK#r)

1610 SUBROUTINE OMP_UNSET_NEST_LOGH4r)

1611 The argument to each of these subroutines must be an initialized lock variable owned
1612 by the thread executing the subroutine. The behavior is unspecified if the thread does
1613 not own the lock.

1614 The OMP_UNSET_LOCsubroutine releases the thread executing the subroutine from
1615 ownership of the simple lock associated with svar.

1616 The OMP_UNSET_NEST_LOGQKbroutine decrements the nesting count and releases
1617 the thread executing the subroutine from ownership of the nestable lock associated
1618 with nvar if the resulting count is zero.

1619 3.2.5 OMP_TEST_LOCHnd OMP_TEST_NEST_LOCRunctions

1620 These functions attempt to set a lock but do not cause the execution of the thread to
1621 wait.

1622 The format of these functions is as follows:

1623 LOGICAL FUNCTION OMP_TEST_LOCs¢ar)

1624 INTEGER FUNCTION OMP_TEST_NEST_LOGKér)

Version2.0 Draft 9 51

16
16
16

~N O Ol

16
16

©

16
16
16

N P O

1633

16
1635

1636

16y7

1638

16
16
16
16

N P O ©

16

w

16

16
16

o Ol

16
16
16
16
16

P O © 00 N

Run-time Library Routines [3] OpenMP Fortran Application Program Interface

The argument must be an initialized lock variable. These functions attempt to set a
lock in the same manner as OMP_SET_LOCKknd OMP_SET_NEST_LOCkxcept that
they do not cause execution of the thread to wait if the lock is already set.

The OMP_TEST_LOCHKunction returns .TRUE. if the simple lock associated with svar
is successfully set; otherwise it returns .FALSE.

The OMP_TEST_NEST_LOCKinction returns the new nesting count if the nestable
lock associated with nvar is successfully set; otherwise, it returns zero.
OMP_TEST_NEST_LOCkturns a default integer.

3.3 Timing Routines

The OpenMP run-time library includes two routines supporting a portable wall-clock
timer. The routines are as follows:

e The OMP_GET_WTIMHRInction, described in Section 3.3.1, page 52.
e The OMP_GET_WTICKunction, described in Section 3.3.2, page 53.

3.3.1 OMP_GET_WTIMEunction

52

The OMP_GET_WTIMEinction returns a double precision value equal to the elapsed
wallclock time in seconds since some "time in the past". The actual "time in the past”
is arbitrary, but it is guaranteed not to change during the execution of the application
program.

The format of this function is as follows:

DOUBLE PRECISION FUNCTION OMP_GET_WTIME

It is anticipated that the function will be used to measure elapsed times as shown in
the following example:

double precision start, end
start = OMP_GET_WTIME
. work to be timed
end = OMP_GET_WTIME
print *'Stuff took ’, end-start, seconds’

Version2.0 Draft 9

1652
1653

1654

1655
1656

1657

1658

OpenMP Fortran Application Program Interface

Run-time Library Routines [3]

The times returned are "per-thread times" by which is meant they are not required to

be globally consistent across all the threads participating in an application.

3.3.2 OMP_GET_WTICkunction

The OMP_GET_WTICHKunction returns a double precision value equal to the number

of seconds between successive clock ticks.

The format of this function is as follows:

DOUBLE PRECISION FUNCTION OMP_GET_WTICK

Version2.0 Draft 9

53

1659

1660
1661
1662
1663

1664

1665
1666
1667
1668

1669
1670
1671
1672
1673
1674
1675
1676
1677

1678

1679
1680

1681

1682
1683
1684
1685

1686
1687
1688

Environment Variables [4]

This chapter describes the OpenMP Fortran APl environment variables (or
equivalent platform-specific mechanisms) that control the execution of parallel code.
The names of environment variables must be uppercase. The values assigned to them
are case insensitive.

4.1 OMP_SCHEDULEnvironment Variable

The OMP_SCHEDUL&nvironment variable applies only to DOand PARALLEL DO
directives that have the schedule type RUNTIME For more information on the DO
directive, see Section 2.3.1, page 13. For more information on the PARALLEL DO
directive, see Section 2.4.1, page 19.

The schedule type and chunk size for all such loops can be set at run time by setting
this environment variable to any of the recognized schedule types and to an optional
chunk size. If a chunk size is specified, it must be a positive scalar integer. For DO
and PARALLEL Dddirectives that have a schedule type other than RUNTIME this
environment variable is ignored. The default value for this environment variable is
implementation dependent. If the optional chunk size is not set, a chunk size of 1 is
assumed, except in the case of a STATIC schedule. For a STATIC schedule, the
default chunk size is set to the loop iteration count divided by the number of threads
applied to the loop.

Examples:

setenv OMP_SCHEDULE "GUIDED,4"
setenv OMP_SCHEDULE "dynamic"

4.2 OMP_NUM_THREAEvironment Variable

The OMP_NUM_THREARSvironment variable sets the number of threads to use
during execution, unless that number is explicitly changed by calling the
OMP_SET_NUM_THREABGbroutine. For more information on the
OMP_SET_NUM_THREABGbroutine, see Section 3.1.1, page 44.

When dynamic adjustment of the number of threads is enabled, the value of this
environment variable is the maximum number of threads to use. The value specified
must be a positive scalar integer. The default value is implementation dependent.

Version2.0 Draft 9 55

Environment Variables [4] OpenMP Fortran Application Program Interface

1649 The behavior of the program is implementation dependent if the requested value of
1640 OMP_NUM_THREADSmMore than the number of threads an implementation can
1641 support.

1692 Example:

1693 setenv. OMP_NUM_THREADS 16

1694 4.3 OMP_DYNAMIEnvironment Variable

1695 The OMP_DYNAMI@nvironment variable enables or disables dynamic adjustment of
1696 the number of threads available for execution of parallel regions. For more

1697 information on parallel regions, see Section 2.2, page 9.

1698 If set to TRUE the number of threads that are used for executing parallel regions can
1699 be adjusted by the run-time environment to best utilize system resources.

1700 If set to FALSE, dynamic adjustment is disabled. The default condition is

1701 implementation dependent. For more information, see the OMP_SET_DYNAMIC

1702 subroutine described in Section 3.1.7, page 46.

1703 Example:

1704 setenv OMP_DYNAMIC TRUE

1705 4.4 OMP_NESTEEnvironment Variable

1706 The OMP_NESTEBNnvironment variable enables or disables nested parallelism. If set
1707 to TRUE nested parallelism is enabled; if it is set to FALSE, it is disabled. The default
1708 value is FALSE See also Section 3.1.9, page 47.

1709 Example:

1710 setenv OMP_NESTED TRUE

56 Version2.0 Draft 9

1711 Examples [A]

1712 The following are examples of the constructs defined in this document.

1713 A.1 Executing a Simple Loop in Parallel

1714 The following example shows how to parallelize a simple loop using the PARALELL DO
1715 directive (specified in Section 2.4.1, page 19). The loop iteration variable is private by
1716 default, so it is not necessary to declare it explicitly.

1717 ISOMP PARALLEL DO !l is private by default

1718 DO I=2,N

1719 B() = (A(l) + A(I-1)) / 2.0

1720 ENDDO

1721 ISOMP END PARALLEL DO

1722 The END PARALLEL Ddirective is optional.

1723 A.2 Specifying Conditional Compilation

1724 The following example illustrates the use of the conditional compilation sentinel

1725 (specified in Section 2.1.3, page 8). Assuming Fortran fixed source form, the following
1726 statement is illegal when using OpenMP constructs:

1727 C234567890

1728 I$ X() = X(I) + XLOCAL

1729 With OpenMP compilation, the conditional compilation sentinel !$ is treated as two
1730 spaces. As a result, the statement infringes on the statement label field. To be legal,
1731 the statement should begin after column 6, like any other fixed source form statement:
1732 C234567890

1733 I$ X(I) = X(I) + XLOCAL

1734 In other words, conditionally compiled statements need to meet all applicable

1735 language rules when the sentinel is replaced with two spaces.

Version2.0 Draft 9 57

Examples [A] OpenMP Fortran Application Program Interface

1736 A.3 Using Parallel Regions

1737
1738
1739

1740
1741
1742
1743
1744
1745

1746

1747
1748
1749

1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761

1762

1763
1764
1765
1766

The PARALLELdirective (specified in Section 2.2, page 9) can be used in coarse-grain
parallel programs. In the following example, each thread in the parallel region
decides what part of the global array X to work on based on the thread number:

ISOMP PARALLEL DEFAULT(PRIVATE) SHARED(X,NPOINTS)
IAM = OMP_GET_THREAD_NUM)()
NP = OMP_GET_NUM_THREADS()
IPOINTS = NPOINTS/NP
CALL SUBDOMAIN(X,IAM,IPOINTS)
ISOMP END PARALLEL

A.4 Using the NOWAITClause

If there are multiple independent loops within a parallel region, you can use the
NOWAITclause (specified in Section 2.3.1, page 13) to avoid the implied BARRIERat
the end of the DOdirective, as follows:

ISOMP PARALLEL
ISOMP DO
DO 1=2,N
B() = (A() + A(-1)) / 2.0
ENDDO
ISOMP END DO NOWAIT
ISOMP DO
DO I=1,M
Y(I) = SQRT(Z(1))
ENDDO
ISOMP END DO NOWAIT
ISOMP END PARALLEL

A.5 Using the CRITICAL Directive

58

The following example (for Section 2.5.2, page 22) includes several CRITICAL
directives. The example illustrates a queuing model in which a task is dequeued and
worked on. To guard against multiple threads dequeuing the same task, the
dequeuing operation must be in a critical section. Because there are two independent

Version2.0 Draft 9

OpenMP Fortran Application Program Interface Examples [A]

1767 gueues in this example, each queue is protected by CRITICAL directives with
1768 different names, XAXIS and YAXIS, respectively.
1769 ISOMP PARALLEL DEFAULT(PRIVATE) SHARED(X,Y)
1770 ISOMP CRITICAL(XAXIS)

1771 CALL DEQUEUE(IX_NEXT, X)

1772 ISOMP END CRITICAL(XAXIS)

1773 CALL WORK(IX_NEXT, X)

1774 ISOMP CRITICAL(YAXIS)

1775 CALL DEQUEUE(IY_NEXT,Y)

1776 ISOMP END CRITICAL(YAXIS)

1777 CALL WORK(IY_NEXT, Y)

1778 ISOMP END PARALLEL

1779 A.6 Using the LASTPRIVATE Clause

1780 Correct execution sometimes depends on the value that the last iteration of a loop
1781 assigns to a variable. Such programs must list all such variables as arguments to a
1782 LASTPRIVATE clause (specified in Section 2.6.2.5, page 33) so that the values of the
1783 variables are the same as when the loop is executed sequentially.

1784 ISOMP PARALLEL

1785 ISOMP DO LASTPRIVATE(I)

1786 DO I=1,N

1787 A(l) = B(l) + C(l)

1788 ENDDO

1789 ISOMP END PARALLEL

1790 CALL REVERSE(l)

1791 In the preceding example, the value of | at the end of the parallel region will equal
1792 N+1, as in the sequential case.

1793 A.7 Using the REDUCTIONClause

1794 The following example (for Section 2.6.2.6, page 34) shows how to use the REDUCTION
1795 clause:

1796 ISOMP PARALLEL DO DEFAULT(PRIVATE) REDUCTION(+: A,B)

1797 DO I=1,N

Version2.0 Draft 9 59

Examples [A] OpenMP Fortran Application Program Interface

1798
1799
1800
1801
1802

60

CALL WORK(ALOCAL,BLOCAL)
A = A + ALOCAL
B = B + BLOCAL
ENDDO
ISOMP END PARALLEL DO

The following program is not valid because the reduction is on the
intrinsic_procedure_name MAXbut that name has been redefined to be the variable
named MAX

MAX = HUGE(0)
M =0
ISOMP PARALLEL DO REDUCTION(MAX: M) ! MAX is no longer the

I intrinsic so this
I is invalid

DO | = 1, 100

CALL SUB(M,I)
END DO
END

SUBROUTINE SUB(M,I)
M = MAX(M,I)
END SUBROUTINE SUB

The following valid program performs the reduction using the
intrinsic_procedure_name MAXeven though the intrinsic MAXhas been renamed to
REN

MODULE M
INTRINSIC MAX
END MODULE M
PROGRAM P
USE M, REN => MAX
M =0
ISOMP PARALLEL DO REDUCTION(REN: M) ! still does MAX
DO | = 1, 100
M = MAX(M,I)
END DO
END PROGRAM P

The following valid program performs the reduction using intrinsic_procedure_name
MAXeven though the intrinsic MAXhas been renamed to MIN.

Version2.0 Draft 9

OpenMP Fortran Application Program Interface Examples [A]

1834 MODULE MOD

1835 INTRINSIC MAX, MIN

1836 END MODULE MOD

1837 PROGRAM P

1838 USE MOD, MIN=>MAX, MAX=>MIN
1839 REAL :: R

1840 R = -HUGE(0.0)

1841 ISOMP PARALLEL DO REDUCTION(MIN: R) ! still does MAX
1842 DO | = 1, 1000

1843 R = MIN(R, SIN(REAL(l)))

1844 END DO

1845 PRINT * R

1846 END PROGRAM P

1847 A.8 Specifying Parallel Sections

1848 In the following example (for Section 2.3.2, page 15), subroutines XAXIS, YAXIS, and
1849 ZAXIS can be executed concurrently. The first SECTIONdirective is optional. Note
1850 that all SECTIONdirectives need to appear in the lexical extent of the

1851 PARALLEL SECTION&END PARALLEL SECTIONSonstruct.

1852 ISOMP PARALLEL SECTIONS

1853 ISOMP SECTION

1854 CALL XAXIS()

1855 ISOMP SECTION

1856 CALL YAXIS()

1857 ISOMP SECTION

1858 CALL ZAXIS()

1859 ISOMP END PARALLEL SECTIONS

1860 A.9 Using SINGLE Directives

1861 The first thread that encounters the SINGLE directive (specified in Section 2.3.3, page
1862 17) executes subroutines OUTPUTand INPUT. The user must not make any

1863 assumptions as to which thread will execute the SINGLE section. All other threads
1864 will skip the SINGLE section and stop at the barrier at the END SINGLEconstruct. If
1865 other threads can proceed without waiting for the thread executing the SINGLE

1866 section, a NOWAITclause can be specified on the END SINGLEdirective.

Version2.0 Draft 9 61

1867
1868
1869
1870
1871
1872
1873
1874
1875

1876

1877
1878
1879

1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

1890

1891
1892
1893
1894
1895

1896
1897
1898
1899

Examples [A] OpenMP Fortran Application Program Interface

ISOMP PARALLEL DEFAULT(SHARED)
CALL WORK(X)
ISOMP BARRIER
ISOMP SINGLE
CALL OUTPUT(X)
CALL INPUT(Y)
ISOMP END SINGLE
CALL WORK(Y)
ISOMP END PARALLEL

A.10 Specifying Sequential Ordering

ORDEREIDBections (specified in Section 2.5.6, page 26) are useful for sequentially
ordering the output from work that is done in parallel. Assuming that a reentrant 1/0
library exists, the following program prints out the indexes in sequential order:

ISOMP DO ORDERED SCHEDULE(DYNAMIC)
DO I=LB,UB,ST
CALL WORK(l)
END DO

SUBROUTINE WORK(K)
ISOMP ORDERED

WRITE(**) K
ISOMP END ORDERED

END

A.11 Specifying a Fixed Number of Threads

62

Some programs rely on a fixed, prespecified number of threads to execute correctly.
Because the default setting for the dynamic adjustment of the number of threads is
implementation dependent, such programs can choose to turn off the dynamic threads
capability and set the number of threads explicitly to ensure portability. The
following example (for Section 3.1.1, page 44) shows how to do this:

CALL OMP_SET_DYNAMIC(.FALSE.)
CALL OMP_SET_NUM_THREADS(16)

ISOMP PARALLEL DEFAULT(PRIVATE)SHARED(X,NPOINTS)
IAM = OMP_GET_THREAD_NUM)()

Version2.0 Draft 9

OpenMP Fortran Application Program Interface Examples [A]

1900 IPOINTS = NPOINTS/16

1901 CALL DO_BY_16(X,IAM,IPOINTS)

1902 ISOMP END PARALLEL

1903 In this example, the program executes correctly only if it is executed by 16 threads. If
1904 the implementation is not capable of supporting 16 threads, the behavior of this

1905 example is implementation dependent. Note that the number of threads executing a
1906 parallel region remains constant during a parallel region, regardless of the dynamic
1907 threads setting. The dynamic threads mechanism determines the number of threads
1908 to use at the start of the parallel region and keeps it constant for the duration of the
1909 region.

1910 A.12 Using the ATOMICDirective

1911 The following example (for Section 2.5.4, page 23) avoids race conditions by protecting
1912 all simultaneous updates of the location, by multiple threads, with the ATOMIC
1913 directive:

1914 ISOMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X,Y,INDEX,N)

1915 DO I=1,N

1916 CALL WORK(XLOCAL, YLOCAL)

1917 ISOMP ATOMIC

1918 X(INDEX(I)) = X(INDEX(l)) + XLOCAL

1919 Y(I) = Y() + YLOCAL

1920 ENDDO

1921 Note that the ATOMICdirective applies only to the Fortran statement immediately
1922 following it. As a result, Y is not updated atomically in this example.

1923 A.13 Using the FLUSHDirective

1924 The following example (for Section 2.5.5, page 25) uses the FLUSHdirective for
1925 point-to-point synchronization between pairs of threads:

1926 ISOMP PARALLEL DEFAULT(PRIVATE) SHARED(ISYNC)

1927 IAM = OMP_GET_THREAD_NUM()

1928 ISYNC(IAM) = 0

1929 NEIGH = GET_NEIGHBOR (IAM)

1930 ISOMP BARRIER

1931 CALL WORK()

Version2.0 Draft 9 63

1932
1933
1934
1935
1936
1937
1938
1939

1940

1941

1942
1943
1944
1945
1946
1947

1948
1949
1950
1951

1952
1953

1954
1955
1956
1957

1958

1959
1960

Examples [A] OpenMP Fortran Application Program Interface

C | AM DONE WITH MY WORK, SYNCHRONIZE WITH MY NEIGHBOR
ISYNC(IAM) = 1

ISOMP FLUSH(ISYNC)

C WAIT TILL NEIGHBOR IS DONE
DO WHILE (ISYNC(NEIGH) .EQ. 0)

ISOMP FLUSH(ISYNC)
END DO

ISOMP END PARALLEL

A.14 Determining the Number of Threads Used

Consider the following incorrect example:

NP = OMP_GET_NUM_THREADS()
ISOMP PARALLEL DO SCHEDULE(STATIC)
DO | = 0, NP-1
CALL WORK(l)
ENDDO
ISOMP END PARALLEL DO

The OMP_GET_NUM_THREAE&SI (specified in Section 3.1.2, page 44) returns 1 in the
serial section of the code, so NP will always be equal to 1 in the preceding example. To
determine the number of threads that will be deployed for the parallel region, the call
should be inside the parallel region.

The following example shows how to rewrite this program without including a query
for the number of threads:

ISOMP PARALLEL PRIVATE(l)
| = OMP_GET_THREAD_NUM()
CALL WORK(l)

ISOMP END PARALLEL

A.15 Using Locks

This in an example of the use of the simple lock routines (specified in Section 3.2,
page 48).

64 Version2.0 Draft 9

1961
1962

1963
1964
1965

1966

1967
1968
1969
1970
1971
1972

1973
1974
1975
1976

1977
1978
1979
1980

1981

1982

1983

1984
1985

1986
1987

1988
1989
1990
1991

OpenMP Fortran Application Program Interface Examples [A]

In the following program, note that the argument to the lock routines should be of
type INTEGERand of a KIND large enough to hold an address:

PROGRAM LOCK_USAGE
EXTERNAL OMP_TEST_LOCK
LOGICAL OMP_TEST_LOCK

INTEGER LCK I THIS VARIABLE SHOULD BE POINTER SIZED

CALL OMP_INIT_LOCK(LCK)

ISOMP PARALLEL SHARED(LCK) PRIVATE(ID)
ID = OMP_GET_THREAD_NUM()
CALL OMP_SET_LOCK(LCK)
PRINT * 'MY THREAD ID IS °, ID
CALL OMP_UNSET_LOCK(LCK)

DO WHILE (.NOT. OMP_TEST_LOCK(LCK))
CALL SKIP(ID) | WE DO NOT YET HAVE THE LOCK
| SO WE MUST DO SOMETHING ELSE
END DO

CALL WORK(ID) I WE NOW HAVE THE LOCK
I AND CAN DO THE WORK
CALL OMP_UNSET_LOCK(LCK)
ISOMP END PARALLEL

CALL OMP_DESTROY_LOCK(LCK)

END

A.16 Using Nestable Locks

The following example shows how a nestable lock (specified in Section 3.2, page 48)
can be used to synchronize updates both to a structure and to one of its components.

MODULE DATA
USE OMP_LIB, ONLY OMP_NEXT_LOCK_KIND

TYPE LOCKED_PAIR
INTEGER A
INTEGER B
INTEGER (OMP_NEST_LOCK_KIND) LCK

Version2.0 Draft 9 65

Examples [A] OpenMP Fortran Application Program Interface

END TYPE
END MODULE DATA

SUBROUTINE INCR_A(P, A)
I called only from INCR_PAIR, no need to lock
USE DATA
TYPE(LOCKED_PAIR) :: P
INTEGER A

P%A = P%A + A
END SUBROUTINE INCR_A

SUBROUTINE INCR_B(P, B)
I called from both INCR_PAIR and elsewhere,
I so we need a nestable lock
USE OMP_LIB
USE DATA
TYPE(LOCKED_PAIR) :: P
INTEGER B

CALL OMP_SET_NEST_LOCK(P%LCK)

P%B = P%B + B

CALL OMP_UNSET_NEST_LOCK(P%LCK)
END SUBROUTINE INCR_B

SUBROUTINE INCR_PAIR(P, A, B)
USE OMP_LIB
USE DATA
TYPE(LOCKED_PAIR) :: P
INTEGER A
INTEGER B

CALL OMP_SET_NEST_LOCK(P%LCK)

CALL INCR_A(P, A)

CALL INCR_B(P, B)

CALL OMP_UNSET_NEST_LOCK(P%LCK)
END SUBROUTINE INCR_PAIR

SUBROUTINE F(P)
USE OMP_LIB
USE DATA
TYPE(LOCKED_PAIR) :: P
INTEGER WORK1, WORK2, WORK3
EXTERNAL WORK1, WORK2, WORK3

66 Version2.0 Draft 9

OpenMP Fortran Application Program Interface Examples [A]

2029 ISOMP PARALLEL SECTIONS

2030 I$OMP SECTION

2031 CALL INCR_PAIR(P, WORK1, WORK2)
2032 I$OMP SECTION

2033 CALL INCR_B(P, WORK3)

2034 ISOMP END PARALLEL SECTIONS

2035 END SUBROUTINE F

2036 A.17 Nested DODirectives

2037 The following example of directive nesting (specified in Section 2.8, page 41) is legal
2038 because the inner and outer DOdirectives bind to different PARALLEL regions:
2039 ISOMP PARALLEL DEFAULT(SHARED)

2040 I$SOMP DO

2041 DO I =1, N

2042 ISOMP PARALLEL SHARED(I,N)

2043 I$SOMP DO

2044 DO J =1, N

2045 CALL WORK(I,J)

2046 END DO

2047 ISOMP END PARALLEL

2048 END DO

2049 ISOMP END PARALLEL

2050 The following variation of the preceding example is also legal:
2051 ISOMP PARALLEL DEFAULT(SHARED)

2052 I$SOMP DO

2053 DO I =1, N

2054 CALL SOME_WORK(I,N)

2055 END DO

2056 ISOMP END PARALLEL

2057 SUBROUTINE SOME_WORK(I,N)

2058 ISOMP PARALLEL DEFAULT(SHARED)

2059 I$OMP DO

2060 DO J =1, N

2061 CALL WORK(I,J)

2062 END DO

2063 ISOMP END PARALLEL

2064 RETURN

2065 END

Version2.0 Draft 9 67

Examples [A] OpenMP Fortran Application Program Interface

2066 A.18 Examples Showing Incorrect Nesting of Work-sharing Directives

2067
2068

2099
2090
2071

2072
2073
2074
2075
2076
2077
2078
2079
2080
2081

2092
2043
2084

2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098

2099
2190
2101

2102
2103

68

The examples in this section illustrate the directive nesting rules (specified in Section
2.8, page 41).

The following example is non-compliant because the inner and outer DOdirectives are
nested and bind to the same PARALLELdirective:

Example 1: Invalid Example

ISOMP PARALLEL DEFAULT(SHARED)
ISOMP DO
DO | =1, N
ISOMP DO
DO J =1, N
CALL WORK(I,J)
END DO
END DO
ISOMP END PARALLEL
END

The following dynamically nested version of the preceding example is also
non-compliant:

Example 2: Invalid Example

ISOMP PARALLEL DEFAULT(SHARED)

ISOMP DO
DO | = 1, N
CALL SOME_WORK(I,N)
END DO
ISOMP END PARALLEL
END
SUBROUTINE SOME_WORK(I,N)
ISOMP DO
DO J =1, N
CALL WORK(I,J)
END DO
RETURN
END

The following example is non-compliant because the DOand SINGLE directives are
nested, and they bind to the same PARALLEL region:

Example 3: Invalid Example

ISOMP PARALLEL DEFAULT(SHARED)
I$SOMP DO

Version2.0 Draft 9

OpenMP Fortran Application Program Interface Examples [A]

2104 DO I =1, N

2105 ISOMP SINGLE

2106 CALL WORK(I)

2107 ISOMP END SINGLE

2108 END DO

2109 ISOMP END PARALLEL

2110 END

2111 The following example is non-compliant because a BARRIERdirective inside a SINGLE
2112 or a DOcan result in deadlock: I
2113 Example 4: Invalid Example

2114 ISOMP PARALLEL DEFAULT(SHARED)

2115 I$OMP DO

2116 DO I =1, N

2117 CALL WORK(I)

2118 ISOMP BARRIER

2119 CALL MORE_WORK(I)

2120 END DO

2121 ISOMP END PARALLEL

2122 END

2123 The following example is non-compliant because the BARRIERresults in deadlock due
2124 to the fact that only one thread at a time can enter the critical section: I
2125 Example 5: Invalid Example

2126 ISOMP PARALLEL DEFAULT(SHARED)

2127 ISOMP CRITICAL

2128 CALL WORK(N,1)

2129 I$SOMP BARRIER

2130 CALL MORE_WORK(N,2)

2131 ISOMP END CRITICAL

2132 ISOMP END PARALLEL

2133 END

2134 The following example is non-compliant because the BARRIERresults in deadlock due
2135 to the fact that only one thread executes the SINGLE section: I
2136 Example 6: Invalid Example

2137 ISOMP PARALLEL DEFAULT(SHARED)

2138 CALL SETUP(N)

2139 ISOMP SINGLE

2140 CALL WORK(N,1)

2141 ISOMP BARRIER

Version2.0 Draft 9 69

2142
2143
2144
2145
2146

2147

2148
2149

2130
213
21392
2133

2154
2155
2156
2157

2158
2159
2160
2161
2162
2163
2164
2165

2166
2167
2168
2169
2170

2171
2172
2173
2174
2175

Examples [A]

OpenMP Fortran Application Program Interface

A.19 Binding of BARRIERDirectives

70

ISOMP

ISOMP

CALL MORE_WORK(N,2)
END SINGLE

CALL FINISH(N)

END PARALLEL

END

The directive binding rules call for a BARRIERdirective to bind to the closest
enclosing PARALLELdirective. (For more information, see Section 2.7, page 40.)

In the following example, the call from MAIN to SUB2is OpenMP compliant because
the BARRIER (in SUBJ3 binds to the PARALLELregion in SUB2 The call from MAIN to
SUB1is OpenMP compliant because the BARRIERbinds to the PARALLEL region in
subroutine SUB2

ISOMP
ISOMP

ISOMP

ISOMP

ISOMP

ISOMP

PROGRAM MAIN
CALL SUB1(2)
CALL SUB2(2)
END

SUBROUTINE SUB1(N)

PARALLEL PRIVATE(l) SHARED(N)

DO
DO | =1, N
CALL SUB2(l)
END DO

END PARALLEL
END

SUBROUTINE SUB2(K)
PARALLEL SHARED(K)
CALL SUB3(K)

END PARALLEL

END

SUBROUTINE SUB3(N)
CALL WORK(N)
BARRIER

CALL WORK(N)

END

Version2.0 Draft 9

OpenMP Fortran Application Program Interface Examples [A]

2176 A.20 Scoping Variables with the PRIVATE Clause

2177 The values of | and J in the following example are undefined on exit from the
2178 parallel region:

2179 INTEGER 1I,J

2180 =1

2181 J=2

2182 ISOMP PARALLEL PRIVATE(l) FIRSTPRIVATE(J)

2183 | =3

2184 J=J+ 2

2185 ISOMP END PARALLEL

2186 PRINT * I, J

2187 (For more information, see Section 2.6.2.1, page 31.)

2188 A.21 Examples of Invalid Storage Association

2189 The following examples illustrate the implications of the PRIVATE clause rules (see
2190 Section 2.6.2.1, page 31, rule 4) with regard to storage association:
2191 Example 1: Invalid Example

2192 COMMON /BLOCK/ X

2193 X =10

2194 ISOMP PARALLEL PRIVATE (X)

2195 X =20

2196 CALL SUB()

2197 .

2198 ISOMP END PARALLEL

2199 .

2200 SUBROUTINE SUB()

2201 COMMON /BLOCK/ X

2202 .

2203 PRINT *X ! X is undefined. The result of the
2204 I print is undefined.

2205 .

2206 END SUBROUTINE SUB

2207 END PROGRAM

Version2.0 Draft 9 71

2208

2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225

2226

2227
2228
2229
2230
2231
2232
2233
2234

2235

2236
2237

2238
2239
2240
2241
2242

2243
2244

Examples [A] OpenMP Fortran Application Program Interface

Example 2: Invalid Example

COMMON /BLOCK/ X
X = 1.0
ISOMP PARALLEL PRIVATE (X)
X = 2.0
CALL SUB()

ISOMP END PARALLEL
CONTAINS
SUBROUTINE SUB()
COMMON /BLOCK/ Y

PRINT * X I X is undefined.
PRINT *Y 'Y is undefined.

END SUBROUTINE SUB
END PROGRAM

Example 3: Invalid Example
EQUIVALENCE (X.,Y)
X =10

ISOMP PARALLEL PRIVATE(X)

PRINT *Y 'Y is undefined.

Y = 10
PRINT * X I X is undefined.

I$SOMP END PARALLEL

Example 4: Invalid Example

INTEGER A(100), B(100)
EQUIVALENCE (A(51), B(1))

ISOMP PARALLEL DO DEFAULT(PRIVATE) PRIVATE(l,J) LASTPRIVATE(A)
DO 1=1,100
DO J=1,100
BU) =J -1
ENDDO

DO J=1,100
AQ) = J ! B becomes undefined at this point

72 Version2.0 Draft 9

2245
2246
2247
2248
2249
2250
2251
2252

2253
2254
2255

2256

2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274

2275
2276
2277
2278
2279
2280
2281
2282
2283
2284

OpenMP Fortran Application Program Interface

Examples [A]

ISOMP

ENDDO
DO J=1,50
BJ) = B(J) + 1 ! Reference to B is not defined. A
I becomes undefined at this point.

ENDDO
ENDDO
END PARALLEL DO I The LASTPRIVATE write for A has
I undefined results.
PRINT * B I B is undefined since the LASTPRIVATE

I write of A was not defined.
END

Example 5: Invalid Example

ISOMP

ISOMP

ISOMP
ISOMP

Version2.0 Draft 9

COMMON /FOO/ A

DIMENSION B(10)

EQUIVALENCE (A,B(1))

I the common block has to be at least 10 words
A=0

PARALLEL PRIVATE(/FOO/)

I
I Without the private clause,

I we would be passing a member of a sequence

I that is at least ten elements long. With the private
I clause, A may no longer be sequence-associated.

I

CALL BAR(A)
MASTER
PRINT * A
END MASTER
END PARALLEL
END

SUBROUTINE BAR(X)
DIMENSION X(10)

|
I This use of X does not conform to the specification.
I It would be legal Fortran 90, but the OpenMP private
I directive allows the compiler to break the sequence

I association that A had with the rest of the common block.
|

FORALL (I = 1:10) X() = |
END

73

2285 A.22 Examples of Syntax of Parallel

2286
2287
2288
2289
2290

2291

2292

2293
2294
2295
2296
2297

2298

2299
2300
2301
2302
2303

2304

2305
2306
2307
2308
2309
2310

2311

2312
2313
2314
2315
2316
2317

Examples [A]

OpenMP Fortran Application Program Interface

74

DOLoops

Both block-do and non-block-do are permitted with PARALLEL DQand work-sharing
DOdirectives. However, if a user specifies an ENDDQlirective for a non-block-do
construct with shared termination, then the matching DOdirective must precede the
outermost DQ (For more information, see Section 2.3.1, page 13 and Section 2.4.1,

page 19.)

The following are some examples:

Example 1:

DO 100 I = 1,10
ISOMP DO
DO 100 J = 1,10

100 CONTINUE
Example 2:

I$OMP DO
DO 100 J = 1,10

100 Al) =1+1
ISOMP ENDDO

Example 3:

I$OMP DO
DO 100 |

= 1,10
DO 100 J =

1,10

100 CONTINUE
I$SOMP ENDDO

Example 4: Invalid Example

DO 100 I = 1,10
ISOMP DO
DO 100 J = 1,10

100 CONTINUE
I$SOMP ENDDO

Version2.0 Draft 9

2318

2319
2320
2321
2322

2323

2324

2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335

2336

2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347

2348
2349
2350
2351
2352
2353
2354

OpenMP Fortran Application Program Interface Examples [A]

A.23 Examples of the ATOMICDirective

All atomic references to the storage location of a variable that appears on the
left-hand side of an ATOMICassignment statement throughout the program are
required to have the same type and type parameters. (For more information, see
Section 2.5.4, page 23.)

The following are some examples:
Example 1: Invalid Example

INTEGER:: |

REAL:: R

EQUIVALENCE(I,R)
ISOMP PARALLEL

ISOMP ATOMIC
lI=1+1

ISOMP ATOMIC
R =R+ 1.0
I$SOMP END PARALLEL

Example 2: Invalid Example

SUBROUTINE FRED()
COMMON /BLK/ 1
INTEGER |

I$SOMP PARALLEL

ISOMP ATOMIC
lI=1+1

CALL SUB()
ISOMP END PARALLEL
END

SUBROUTINE SUB()
COMMON /BLK/ R
REAL R

ISOMP ATOMIC

R=R +1
END

Version2.0 Draft 9 75

Examples [A] OpenMP Fortran Application Program Interface

2355 Example 3: Invalid Example

2356 Although the following example might work on some implementation, this is
2357 considered a non-compliant example.
2358 INTEGER:: |

2359 REAL:: R

2360 EQUIVALENCE(I,R)

2361 IOMP PARALLEL

2362

2363 IOMP ATOMIC

2364 l=1+1

2365 IOMP END PARALLEL

2366

2367 IOMP PARALLEL

2368

2369 IOMP ATOMIC

2370 R=R+ 1.0

2371 IOMP END PARALLEL

2372 A.24 Examples of the ORDEREMDirective

2373 It is possible to have multiple ORDEREBections within a DOspecified with the
2374 ORDEREDIause. However, the following example is invalid, because the API states
2375 the following:

2376 An iteration of a loop with a DOdirective must not execute the same

2377 ORDEREMirective more than once, and it must not execute more than one
2378 ORDEREMirective.

2379 For more information, see Section 2.5.6, page 26.

76 Version2.0 Draft 9

2380

2381

2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393

2394

2395

2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412

2413

2414
2415
2416

OpenMP Fortran Application Program Interface Examples [A]

Example 1: Invalid Example
In this example, all iterations execute 2 ORDERERections:

I$OMP DO
DO 1 =1, N

ISOMP BRDERED
ISOMP END ORDERED
ISOMP BRDERED
ISOMP END ORDERED

éﬁﬂ) DO
Example 2:
This is a valid example of a DOwith more than one ORDEREBRection:
ISOMP DO ORDERED
DO I = 1,N
iE(|<: 10) THEN

ISOMP ORDERED
WRITE(4,*) |
ISOMP END ORDERED
ENDIF

IF (I > 10) THEN

ISOMP ORDERED
WRITE(3,*) |
ISOMP END ORDERED
ENDIF
ENDDO

A.25 Examples of THREADPRIVATHata

The following examples show two invalid uses and two correct uses of the
THREADPRIVATHlirective. For more information, see Section 2.6.1, page 27, item 9 of
Section 2.6.3, page 38, and Section 2.6.2.7, page 36.

Version2.0 Draft 9 77

Examples [A] OpenMP Fortran Application Program Interface

2417 Example 1: Invalid Example
2418 MODULE FOO

2419 COMMON /T/ A

2420 END MODULE FOO
2421 SUBROUTINE BAR()
2422 USE FOO

2423 ISOMP THREADPRIVATE(/T/)
2424 ISOMP PARALLEL

2425 .

2426 ISOMP END PARALLEL

2427 END SUBROUTINE BAR
2428 Example 2: Invalid Example
2429 COMMON /T/ A

2430 ISOMP THREADPRIVATE(/T/)
2431 .

2432 CONTAINS

2433 SUBROUTINE BAR()
2434 ISOMP PARALLEL COPYIN(/T/)
2435 .

2436 ISOMP END PARALLEL

2437 END SUBROUTINE BAR
2438 END PROGRAM

2439 Example 3: Correct Rewrite of the Previous Example
2440 COMMON /T/ A

2441 ISOMP THREADPRIVATE(/T/)
2442 .

2443 CONTAINS

2444 SUBROUTINE BAR()
2445 COMMON /T/ A

2446 ISOMP THREADPRIVATE(/T/)
2447 ISOMP PARALLEL COPYIN(/T/)
2448 .

2449 ISOMP END PARALLEL

2450 END SUBROUTINE BAR
2451 END PROGRAM

78 Version2.0 Draft 9

2452

2453
2454
2455
2456
2457
2458
2459

2460
2461
2462
2463

2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482

OpenMP Fortran Application Program Interface

Examples [A]

Example 4: An example of THREADPRIVATHor local variables

PROGRAM P

INTEGER, ALLOCATABLE, SAVE :
INTEGER, POINTER, SAVE : PTR
INTEGER, SAVE :
INTEGER, TARGET ::

LOGICAL :: FIRSTIN

ISOMP THREADPRIVATE(A, B, |, PTR)

ALLOCATE (A(3))

A

= (/1,2,3/)

PTR => TARG

=5

TARG
= .TRUE.

ISOMP PARALLEL COPYIN(l, PTR)

ISOMP

ISOMP
ISOMP

Version2.0 Draft 9

CRITICAL

IF (FIRSTIN) THEN

TARG = 4
I =1+ 10

I Update target of ptr

A()

IF (ALLOCATED(A)) A = A + 10
FIRSTIN = .FALSE.

END IF

IF (ALLOCATED(A)) THEN
PRINT * 'a =, A

ELSE

PRINT *, 'A is not allocated’

END IF

PRINT *, ’ptr =

PRINT * i =7,

PRINT *

END CRITICAL
END PARALLEL
END PROGRAM P

PTR

79

2443

24
24
24

o Ol

24
24
24

© 0

2490

24
24
24

W N P

24
24
24

[©2%]]

2497

2498
2499
2500
2501
2502

2503

2504
2505
2506
2507
2508
2509
2510
2511

Examples [A] OpenMP Fortran Application Program Interface

This program, if executed by two threads, will print the following.

a =11 12 13
ptr = 4
i = 15

A is not allocated
ptr = 4
i =5

or

A is not allocated
ptr = 4
i = 15

a=123
ptr = 4
i =5

A.26 Examples of the Data Attribute Clauses: SHAREDand PRIVATE

80

When a named common block is specified in a PRIVATE, FIRSTPRIVATE or
LASTPRIVATE clause of a directive, none of its constituent elements may be declared
in another scope attribute clause in that directive. The following examples, both valid
and invalid, illustrate this point. (For more information, see item 8 of Section 2.6.3,
page 38.)

Example 1:

COMMON /C/ X,Y
ISOMP PARALLEL PRIVATE (/C/)

I$SOMP END PARALLEL
ISOMP PARALLEL SHARED (X,Y)

I$SOMP END PARALLEL

Version2.0 Draft 9

2512

2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524

2525

2526
2527
2528
2529

2530

2531
2532
2533
2534
2535
2536
2537
2538

2539

2540
2541
2542
2543

2544

2545
2546
2547
2548
2549

OpenMP Fortran Application Program Interface

Examples [A]

Example 2:

COMMON /C/ X,Y
I$SOMP PARALLEL

ISOMP DO PRIVATE(/C/)

I$OMP END DO
I

ISOMP DO PRIVATE(X)
I$OMP END DO

ISOMP END PARALLEL
Example 3: Invalid Example

COMMON /C/ X,Y
ISOMP PARALLEL PRIVATE(/C/), SHARED(X)

ISOMP END PARALLEL
Example 4:

COMMON /C/ X,Y
ISOMP PARALLEL PRIVATE (/C/)

I$SOMP END PARALLEL
I$SOMP PARALLEL SHARED (/C/)

ISOMP END PARALLEL
Example 5: Invalid Example

COMMON /C/ X,Y
ISOMP PARALLEL PRIVATE(/C/), SHARED(/C/)

I$SOMP END PARALLEL

Example 6:

MODULE M
REAL A
CONTAINS
SUBROUTINE SUB
ISOMP PARALLEL PRIVATE(A)

Version2.0 Draft 9

81

Examples [A] OpenMP Fortran Application Program Interface

CALL SUB1()
ISOMP END PARALLEL
END SUBROUTINE SUB
SUBROUTINE SUBL()
A=05 I This is A in module M, not the PRIVATE
I A in SUB
END SUBROUTINE SUB1
END MODULE M

A.27 Examples of the Data Attribute Clause: = COPYPRIVATE

Example 1. The COPYPRIVATEclause (specified in Section 2.6.2.8, page 37) can be
used to broadcast the value resulting from a read statement directly to all instances
of a private variable.

SUBROUTINE INIT(A,B)
COMMON /XY/ X,Y

ISOMP THREADPRIVATE (/XY/)

ISOMP SINGLE
READ (11) A,BX,Y

ISOMP END SINGLE COPYPRIVATE (A,B,/XY/)
END

If subroutine init is called from a serial region, its behavior is not affected by the
presence of the directives. If it is called from a parallel region, then the actual
arguments with which a and b are associated must be private. After the read
statement has been executed by one thread, no thread leaves the construct until the
private objects designated by a, b, x, and y in all threads have become defined with
the values read.

Example 2. In contrast to the previous example, suppose the read must be performed
by a particular thread, say the master thread. In this case, the COPYPRIVATElause
cannot be used to do the broadcast directly, but it can be used to provide access to a
temporary shared object.

REAL FUNCTION READ_NEXT()
REAL, POINTER :: TMP

ISOMP SINGLE
ALLOCATE (TMP)

82 Version2.0 Draft 9

2583

2584
2585
2586

2587
2588
2589

2590
2591
2592
2593

2594
2595
2596

2597
2598
2599
2600
2601
2602
2603

2604
2605

2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619

OpenMP Fortran Application Program Interface

Examples [A]

ISOMP

ISOMP

ISOMP

ISOMP

ISOMP

ISOMP

ISOMP

END SINGLE COPYPRIVATE (TMP)

MASTER
READ (11) TMP
END MASTER

BARRIER
READ_NEXT = TMP
BARRIER

SINGLE

DEALLOCATE (TMP)

END SINGLE NOWAIT

END FUNCTION READ_NEXT

Example 3. Suppose that the number of lock objects required within a parallel region
cannot easily be determined prior to entering it. The copyprivate clause can be used
to provide access to shared lock objects that are allocated within that parallel region.

FUNCTION NEW_LOCK()
INTEGER(OMP_LOCK_KIND), POINTER :: NEW_LOCK
ISOMP SINGLE

ALLOCATE(NEW_LOCK)
CALL OMP_INIT_LOCK(NEW_LOCK)

ISOMP END SINGLE COPYPRIVATE(NEW_LOCK)
END FUNCTION NEW_LOCK

Example 4. Note that the effect of the copyprivate clause on a variable with the
allocatable attribute is different than on a variable with the pointer attribute.

ISOMP

ISOMP

ISOMP
ISOMP

Version2.0 Draft 9

SUBROUTINE S(N)

REAL, DIMENSION(:), ALLOCATABLE :: A
REAL, DIMENSION(:), POINTER :: B
ALLOCATE (A(N))

SINGLE

ALLOCATE (B(N))

READ (11) AB

END SINGLE COPYPRIVATE(A,B)

I Variable A designates a private object

! which has the same values in each thread.
I Variable B designates a shared object.

BARRIER
SINGLE

83

Examples [A] OpenMP Fortran Application Program Interface

26fo DEALLOCATE (B)
261 ISOMP END SINGLE NOWAIT
26 END SUBROUTINE S

2623 A.28 Examples of WORKSHAREirective

In the following examples, assume that all 2 letter variable names (e.g., AA BB) are
conformable arrays and single letter names (e.g., | , X) are scalars; implicit typing
rules hold. Each of the examples is enclosed in a parallel region. All of the examples
are fixed source form so the directives start in column 1.

Example 1. WORKSHAR$preads work across some number of threads and there is a
barrier after the last statement. Implementations must enforce Fortran execution
rules inside of the WORKSHARock.

I$SOMP WORKSHARE

AA = BB
CC = DD
EE = FF

ISOMP END WORKSHARE

Example 2. The final barrier can be eliminated with NOWAIT

I$SOMP WORKSHARE
AA = BB
CC = DD
ISOMP END WORKSHARE NOWAIT

ISOMP WORKSHARE
EE = FF
ISOMP END WORKSHARE

Threads doing CC = DDimmediately begin work on EE = FFwhen they are done
with CC = DD

Example 3. ATOMICcan be used with WORKSHARE

I$SOMP WORKSHARE

AA = BB
ISOMP ATOMIC
| = | + SUM(AA)
CC = DD

84 Version2.0 Draft 9

2652

2653

2654
2655

2656
2657

2658
2659

2660
2661
2662
2663
2664
2665

2666

2667
2668
2669
2670
2671

2672
2673
2674

2675
2676
2677
2678
2679

2680
2681
2682

2683
2684
2685
2686
2687

OpenMP Fortran Application Program Interface Examples [A]

ISOMP END WORKSHARE
The computation of SUM(AA) is workshared, but the update to | is ATOMIC

Example 4. Fortran WHERENd FORALLstatements are compound statements of the
form:

WHERE (EE .ne. 0) FF = 1 / EE
FORALL (I=L1:N, XX(I) .ne. 0) YY() = 1 / XX(I)

They are made up of a control part and a statement part. When WORKSHARIE applied
to one of these, both the control and the statement parts are workshared.

I$SOMP WORKSHARE

AA = BB
cC = DD
WHERE (EE .ne. 0) FF = 1 / EE
GG = HH

ISOMP END WORKSHARE
Each task gets worked on in order by the threads:

AA = BB then
CC = DD then
EE .ne. O then
FF = 1 / EE then
GG = HH

Example 5. An assignment to a shared scalar variable is performed by one thread in
a WORKSHARKhile all other threads in the team wait. SHRis a shared scalar
variable in this example.

I$SOMP WORKSHARE

AA = BB
SHR =1
CC = DD

ISOMP END WORKSHARE

Invalid Example 6. An assignment to a private scalar variable is performed by one
thread while all other threads wait. The private scalar variable is undefined after the
assignment statement. PRI is a private scalar variable in this example.

I$SOMP WORKSHARE

AA = BB
PRI = 1
CC = DD

ISOMP END WORKSHARE

Version2.0 Draft 9 85

2688

2689
2690
2691
2692
2693
2694

2695
2696
2697
2698
2699
2700
2701
2702
2703
2704

2705
2706
2707
2708

2709
2710
2711
2712

2713
2714
2715
2716

2717
2718
2719
2720

2721
2722
2723
2724

Stubs for Run-time Library Routines [B]

This section provides stubs for the runtime library routines defined in the OpenMP
Fortran API. The stubs are provided to enable portability to platforms that do not
support the OpenMP Fortran API. On such platforms, OpenMP programs must be
linked with a library containing these stub routines. The stub routines assume that
the directives in the OpenMP program are ignored. As such, they emulate serial
semantics.

Note: The lock variable that appears in the lock routines must be accessed
exclusively through these routines. It should not be initialized or otherwise
modified in the user program. It is declared as a POINTERto guarantee that it is
capable of holding an address. Alternatively, for Fortran 90 implementations, it
could be declared as an INTEGER(OMP_LOCK_KIND)or
INTEGER(OMP_NEST_LOCK_KIND)as appropriate. In an actual implementation
the lock variable might be used to hold the address of an allocated object, but
here it is used to hold an integer value. Users should not make assumptions
about mechanisms used by OpenMP Fortran implementations to implement
locks based on the scheme used by the stub routines.

Version2.0 Draft 9

SUBROUTINE OMP_SET_NUM_THREADS(NP)
INTEGER NP

RETURN

END

INTEGER FUNCTION OMP_GET_NUM_THREADS()
OMP_GET_NUM_THREADS = 1

RETURN

END

INTEGER FUNCTION OMP_GET_MAX_THREADS()
OMP_GET_MAX_THREADS = 1

RETURN

END

INTEGER FUNCTION OMP_GET_THREAD_NUM()
OMP_GET_THREAD_NUM = 0

RETURN

END

INTEGER FUNCTION OMP_GET_NUM_PROCS()
OMP_GET_NUM_PROCS = 1

RETURN

END

87

2725
2726
2727
2728

2729
2730
2731
2732

2733
2734
2735
2736

2737
2738
2739
2740

2741
2742
2743
2744

2745
2746
2747
2748
2749
2750
2751
2752
2753

27
27
27
27
27
27
27
27
27
27

W NP OO0 N O O

Stubs for Run-time Library Routines [B]

OpenMP Fortran Application Program Interface

88

LOGICAL FUNCTION OMP_IN_PARALLEL()
OMP_IN_PARALLEL = .FALSE.

RETURN

END

SUBROUTINE OMP_SET_DYNAMIC(FLAG)
LOGICAL FLAG

RETURN

END

LOGICAL FUNCTION OMP_GET_DYNAMIC()
OMP_GET_DYNAMIC = .FALSE.

RETURN

END

SUBROUTINE OMP_SET_NESTED(FLAG)
LOGICAL FLAG

RETURN

END

LOGICAL FUNCTION OMP_GET_NESTED()
OMP_GET_NESTED = .FALSE.

RETURN

END

SUBROUTINE OMP_INIT_LOCK(LOCK)

I LOCK is O if the simple lock is not initialized

! -1 if the simple lock is initialized but not set
! 1 if the simple lock is set

POINTER (LOCK,IL)

INTEGER IL

LOCK = -1

RETURN

END

SUBROUTINE OMP_INIT_NEST_LOCK(NLOCK)

I NLOCK is 0 if the nestable lock is not initialized

! -1 if the nestable lock is initialized but not set
! 1 if the nestable lock is set

I no use count is maintained

POINTER (NLOCK,NIL)

INTEGER NIL
NLOCK = -1
RETURN
END

Version2.0 Draft 9

2764
2765
2766
2767
2768
2769

2770
2771
2772
2773
2774
2775

2776
2777
2778

2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789

2790
2791
2792

2793
2794
2795
2796
2797
2798
2799
2800

OpenMP Fortran Application Program Interface

Stubs for Run-time Library Routines [B]

Version2.0 Draft 9

SUBROUTINE OMP_DESTROY_LOCK(LOCK)
POINTER (LOCK,IL)

INTEGER IL

LOCK =0

RETURN

END

SUBROUTINE OMP_DESTROY_NEST_LOCK(NLOCK)
POINTER (NLOCK,NIL)

INTEGER NIL

NLOCK = 0

RETURN

END

SUBROUTINE OMP_SET_LOCK(LOCK)
POINTER (LOCK,IL)
INTEGER IL

IF (LOCK .EQ. 0) THEN
PRINT *, 'ERROR: LOCK NOT INITIALIZED’
STOP

ELSEIF (LOCK .EQ. 1) THEN
PRINT *, '"ERROR: DEADLOCK IN USING LOCK VARIABLFE’
STOP

ELSE
LOCK =1

ENDIF

RETURN

END

SUBROUTINE OMP_SET_NEST_LOCK(NLOCK)
POINTER (NLOCK,NIL)
INTEGER NIL

IF (NLOCK .EQ. 0) THEN
PRINT * 'ERROR: NESTED LOCK NOT INITIALIZED’
STOP
ELSEIF (NLOCK .EQ. 1) THEN
PRINT * 'ERROR: DEADLOCK USING NESTED LOCK VARIABLE’
STOP
ELSE
NLOCK = 1

89

Stubs for Run-time Library Routines [B] OpenMP Fortran Application Program Interface

2841 ENDIF

28@2 RETURN

28@3 END

2804 SUBROUTINE OMP_UNSET_LOCK(LOCK)
2805 POINTER (LOCK,IL)

2806 INTEGER IL

2807 IF (LOCK .EQ. 0) THEN

2808 PRINT *, ’ERROR: LOCK NOT INITIALIZED’
2809 STOP

2810 ELSEIF (LOCK .EQ. 1) THEN

2811 LOCK = -1

2812 ELSE

2813 PRINT *, 'ERROR: LOCK NOT SET’
2814 STOP

2815 ENDIF

2816 RETURN

2817 END

SUBROUTINE OMP_UNSET_NEST_LOCK(NLOCK)
POINTER (NLOCK,NIL)
INTEGER NIL

IF (NLOCK .EQ. 0) THEN
PRINT * 'ERROR: NESTED LOCK NOT INITIALIZED’

STOP
ELSEIF (NLOCK .EQ. 1) THEN
NLOCK = -1
ELSE
PRINT * 'ERROR: NESTED LOCK NOT SET'
STOP
ENDIF
RETURN
END
2832 LOGICAL FUNCTION OMP_TEST_LOCK(LOCK)
2833 POINTER (LOCK,IL)
2834 INTEGER IL
2835 IF (LOCK .EQ. -1) THEN
2836 LOCK = 1
2837 OMP_TEST_LOCK = .TRUE.

90 Version2.0 Draft 9

OpenMP Fortran Application Program Interface Stubs for Run-time Library Routines [B]

2838 ELSEIF (LOCK .EQ. 1) THEN

2839 OMP_TEST_LOCK = .FALSE.

2840 ELSE

2841 PRINT * 'ERROR: LOCK NOT INITIALIZED’
2842 STOP

2843 ENDIF

2844 RETURN

2845 END

2846 INTEGER FUNCTION OMP_TEST_NEST_LOCK(NLOCK)
2847 POINTER (NLOCK,NIL)

2848 INTEGER NIL

2849 IF (NLOCK .EQ. -1) THEN

2850 NLOCK = 1

2851 OMP_TEST_NEST LOCK = 1

2852 ELSEIF (NLOCK .EQ. 1) THEN

2853 OMP_TEST_NEST_LOCK = 0

2854 ELSE

2855 PRINT * 'ERROR: NESTED LOCK NOT INITIALIZED’
2856 STOP

2857 ENDIF

2858 RETURN

2859 END

2860 DOUBLE PRECISION OMP_WTIME()

2861 OMP_WTIME = 0

2862 RETURN

2863 END

2864 DOUBLE PRECISION OMP_WTICK()

2865 OMP_WTICK = 1.0

2866 RETURN

2867 END

Version2.0 Draft 9 91

2868

2869
2870
2871
2872
2873

2874
2875
2876
2877
2878
2879
2880
2881
2882

2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893

2894
2895
2896
2897
2898
2899
2900

2901
2902
2903

2904
2905
2906

Using the SCHEDULE lause [C]

A parallel region has at least one barrier, at its end, and may have additional barriers
within it. At each barrier, the other members of the team must wait for the last
thread to arrive. To minimize this wait time, shared work should be distributed so
that all threads arrive at the barrier at about the same time. If some of that shared
work is contained in DOconstructs, the SCHEDULElause can be used for this purpose.

When there are repeated references to the same objects, the choice of schedule for a
DOconstruct may be determined primarily by characteristics of the memory system,
such as the presence and size of caches and whether memory access times are
uniform or nonuniform. Such considerations may make it preferable to have each
thread consistently refer to the same set of elements of an array in a series of loops,
even if some threads are assigned relatively less work in some of the loops. This can
be done by using the STATIC schedule with the same bounds for all the loops. In the
following example, note that 1 is used as the lower bound in the second loop, even
though K would be more natural if the schedule were not important.

ISOMP PARALLEL
ISOMP DO SCHEDULE(STATIC)
DO I=1,N
A(l) = WORKL()
ENDDO
ISOMP DO SCHEDULE(STATIC)
DO I=1,N
IF(.GE. K) A(l) = A(l) + WORK2(l)
ENDDO
ISOMP END PARALLEL
ENDDO

In the remaining examples, it is assumed that memory access is not the dominant
consideration, and, unless otherwise stated, that all threads receive comparable
computational resources. In these cases, the choice of schedule for a DOconstruct
depends on all the shared work that is to be performed between the nearest preceding
barrier and either the implied closing barrier or the nearest subsequent barrier, if
there is a NOWAITclause. For each kind of schedule, a short example shows how that
schedule kind is likely to be the best choice. A brief discussion follows each example.

The STATIC schedule is also appropriate for the simplest case, a parallel region
containing a single DOconstruct, with each iteration requiring the same amount of
work.

ISOMP PARALLEL DO SCHEDULE(STATIC)
DO I=1,N
CALL INVARIANT_AMOUNT_OF_WORK(l)

Version2.0 Draft 9 93

2907

2908
2909
2910
2011
2912

2913
2914
2915
2916
2917
29018

2919
2920

2921
2922
2923
2924

2925
2926
2927
2928
2929
2930
2931
2932

2933
2934
2935
2936
2937

2938
2939
2940
2941

2942
2943
2944
2945

Using the SCHEDULEClause [C] OpenMP Fortran Application Program Interface

94

ENDDO

The STATIC schedule is characterized by the properties that each thread gets
approximately the same number of iterations as any other thread, and each thread
can independently determine the iterations assigned to it. Thus no synchronization is
required to distribute the work, and, under the assumption that each iteration
requires the same amount of work, all threads should finish at about the same time.

For a team of P threads, let CEILING(N/P) be the integer Q which satisfies N = P*Q
- R with 0 <= R < P. One implementation of the STATIC schedule for this example
would assign Q iterations to the first P-1 threads, and Q-R iterations to the last
thread. Another acceptable implementation would assign Q iterations to the first P-R
threads, and Q1 iterations to the remaining R threads. This illustrates why a
program should not rely on the details of a particular implementation.

The DYNAMICschedule is appropriate for the case of a DOconstruct with the
iterations requiring varying, or even unpredictable, amounts of work.

ISOMP PARALLEL DO SCHEDULE(DYNAMIC)
DO I=1,N
CALL UNPREDICTABLE_AMOUNT_OF_WORK(I)
ENDDO

The DYNAMICschedule is characterized by the property that no thread waits at the
barrier for longer than it takes another thread to execute its final iteration. This
requires that iterations be assigned one at a time to threads as they become
available, with synchronization for each assignment. The synchronization overhead
can be reduced by specifying a minimum chunk size K greater than 1, so that each
thread is assigned K iterations at a time until fewer than K iterations remain. This
guarantees that no thread waits at the barrier longer than it takes another thread to
execute its final chunk of (at most) K iterations.

The DYNAMICschedule can be useful if the threads receive varying computational
resources, which has much the same effect as varying amounts of work for each
iteration. Similarly, the DYNAMICschedule can also be useful if the threads arrive at
the DOconstruct at varying times, though in some of these cases the GUIDEDschedule
may be preferable.

The GUIDEDschedule is appropriate for the case in which the threads may arrive at
varying times at a DOconstruct with each iteration requiring about the same amount
of work. This can happen if, for example, the DOconstruct is preceded by one or more
SECTIONSor DOconstructs with NOWAITclauses.

I$SOMP PARALLEL
I$SOMP SECTIONS

ISOMP END SECTIONS NOWAIT

Version2.0 Draft 9

OpenMP Fortran Application Program Interface Using the SCHEDULEClause [C]

2946 ISOMP DO SCHEDULE(GUIDED)

2947 DO I=1,N

2948 CALL INVARIANT_AMOUNT_OF_ WORK(I)

2949 ENDDO

2950 Like DYNAMIC the GUIDEDschedule guarantees that no thread waits at the barrier
2951 longer than it takes another thread to execute its final iteration, or final K iterations
2952 if a chunk size of K is specified. Among such schedules, the GUIDEDschedule is

2953 characterized by the property that it requires the fewest synchronizations. For chunk
2954 size K, a typical implementation will assign Q = CEILING(N/P) iterations to the first
2955 available thread, set N to the larger of N-Q and P*K, and repeat until all iterations
2956 are assigned.

2957 When the choice of the optimum schedule is not as clear as it is for these examples,
2958 the RUNTIMEschedule is convenient for experimenting with different schedules and
2959 chunk sizes without having to modify and recompile the program. It can also be

2960 useful when the optimum schedule depends (in some predictable way) on the input
2961 data to which the program is applied.

2962 To see an example of the trade-offs between different schedules, consider sharing
2963 1000 iterations among 8 threads. Suppose there is an invariant amount of work in
2964 each iteration, and use that as the unit of time.

2965 If all threads start at the same time, the STATIC schedule will cause the construct to
2966 execute in 125 units, with no synchronization. But suppose that one thread is 100
2967 units late in arriving. Then the remaining seven threads wait for 100 units at the
2968 barrier, and the execution time for the whole construct increases to 225.

2969 Because both the DYNAMICand GUIDEDschedules ensure that no thread waits for
2970 more than one unit at the barrier, the delayed thread causes their execution times for
2971 the construct to increase only to 138 units, possibly increased by delays from

2972 synchronization. If such delays are not negligible, it becomes important that the

2973 number of synchronizations is 1000 for DYNAMICbut only 41 for GUIDED assuming
2974 the default chunk size of one. With a chunk size of 25, DYNAMICand GUIDEDboth
2975 finish in 150 units, plus any delays from the required synchronizations, which now
2976 number only 40 and 20, respectively.

Version2.0 Draft 9 95

2977

2978
2979

2980

2981
2982

2983
2984

2985
2986

2987

2988
2989
2990

2991
2992

2993
2994
2995
2996
2997
2998
2999

3000
3001

3002
3003

3004

Interface Declaration Module [D]

This appendix gives examples of the Fortran INCLUDE file and Fortran 90 module
that shall be provided by implementations as specified in Chapter 3, page 43.

It has three sections:

= Section D.1, page 97, contains an example of a FORTRAN 77 interface declaration

INCLUDE file

= Section D.2, page 99, contains an example of a Fortran 90 interface declaration

MODULE

= Section D.3, page 103, contains an example of a Fortran 90 generic interface for a

library routine

D.1 Example of an Interface Declaration

INCLUDE File

default integer type assumed below
default logical type assumed below

C the "C" of this comment starts in column 1
integer omp_lock_kind
parameter (omp_lock_kind = 8)
integer omp_nest_lock_kind
parameter (omp_nest lock_kind = 8)
C
C
C

OpenMP Fortran APl v1.1
integer openmp_version
parameter (openmp_version = 199910)
external omp_destroy_lock

external omp_destroy_nest_lock

external omp_get_dynamic
logical omp_get_dynamic

external omp_get_max_threads
integer omp_get_max_threads

external omp_get_nested

Version2.0 Draft 9

97

Interface Declaration Module [D] OpenMP Fortran Application Program Interface

logical omp_get_nested

external omp_get_num_procs
integer omp_get_num_procs

external omp_get_num_threads
integer omp_get_num_threads

external omp_get_thread_num
integer omp_get_thread_num

external omp_get_wtick
double precision omp_get wtick

external omp_get_wtime
double precision omp_get wtime

external omp_init_lock
external omp_init_nest_lock

external omp_in_parallel
logical omp_in_parallel

external omp_set_dynamic
external omp_set_lock
external omp_set_nest_lock
external omp_set_nested
external omp_set_num_threads

external omp_test_lock
logical omp_test lock

external omp_test_nest_lock
integer omp_test nest lock

external omp_unset_lock

external omp_unset_nest_lock

98 Version2.0 Draft 9

3031

3032

3033

3034
3035
3036
3037

3038

3039

3040

3041
3042

3043
3044
3045
3046
3047
3048

3049
3050
3051
3052
3053
3054

3055
3056
3057
3058
3059
3060

3061
3062
3063

OpenMP Fortran Application Program Interface

Interface Declaration Module [D]

D.2 Example of a Fortran 90 Interface Declaration = MODULE

! the "!I" of this comment starts in column 1

module omp_lib_kinds

integer, parameter :: omp_integer_kind =4
integer, parameter :: omp_logical_kind =4
integer, parameter :: omp_lock_kind =8
integer, parameter :: omp_nest_lock_kind =8

end module omp_lib_kinds
module omp_lib
use omp_lib_kinds

! OpenMP Fortran API v1.1
integer, parameter :: openmp_version = 199910

interface
subroutine omp_destroy_lock (var)
use omp_lib_kinds
integer (kind=omp_lock_kind), intent(inout) :: var
end subroutine omp_destroy_lock
end interface

interface
subroutine omp_destroy_nest_lock (var)
use omp_lib_kinds
integer (kind=omp_nest_lock_kind), intent(inout) :: var
end subroutine omp_destroy nest_lock
end interface

interface
function omp_get_dynamic ()
use omp_lib_kinds
logical (kind=omp_logical_kind) :: omp_get _dynamic
end function omp_get_dynamic
end interface

interface

function omp_get_max_threads ()
use omp_lib_kinds

Version2.0 Draft 9

99

Interface Declaration Module [D] OpenMP Fortran Application Program Interface

integer (kind=omp_integer_kind) :: omp_get max_threads
end function omp_get max_threads
end interface

interface
function omp_get nested ()
use omp_lib_kinds
logical (kind=omp_logical_kind) :: omp_get_nested
end function omp_get nested
end interface

interface
function omp_get_num_procs ()
use omp_lib_kinds
integer (kind=omp_integer_kind) :: omp_get_num_procs
end function omp_get_num_procs
end interface

interface
function omp_get_num_threads ()
use omp_lib_kinds
integer (kind=omp_integer_kind) :: omp_get _num_threads
end function omp_get num_threads
end interface

interface
function omp_get thread_num ()
use omp_lib_kinds
integer (kind=omp_integer_kind) :: omp_get_thread_num
end function omp_get thread_num
end interface

interface
function omp_get_wtick ()
double precision :: omp_get_ wtick
end function omp_get_wtick

end interface

interface
function omp_get_wtime ()
double precision :: omp_get_wtime
end function omp_get_wtime

end interface

interface

100 Version2.0 Draft 9

OpenMP Fortran Application Program Interface Interface Declaration Module [D]

3102 subroutine omp_init_lock (var)

3103 use omp_lib_kinds

3104 integer (kind=omp_lock_kind), intent(out) :: var
3105 end subroutine omp_init_lock

3106 end interface

3107 interface

3108 subroutine omp_init_nest_lock (var)

3109 use omp_lib_kinds

3110 integer (kind=omp_nest_lock_kind), intent(out) :: var
3111 end subroutine omp_init_nest_lock

3112 end interface

3113 interface

3114 function omp_in_parallel ()

3115 use omp_lib_kinds

3116 logical (kind=omp_logical_kind) :: omp_in_parallel
3117 end function omp_in_parallel

3118 end interface

3119 interface

3120 subroutine omp_set_dynamic (enable_expr)

3121 use omp_lib_kinds

3122 logical (kind=omp_logical_kind), intent(in) :: enable_expr
3123 end subroutine omp_set_dynamic

3124 end interface

3125 interface

3126 subroutine omp_set_lock (var)

3127 use omp_lib_kinds

3128 integer (kind=omp_lock_kind), intent(inout) :: var
3129 end subroutine omp_set_lock

3130 end interface

3131 interface

3132 subroutine omp_set_nest_lock (var)

3133 use omp_lib_kinds

3134 integer (kind=omp_nest_lock_kind), intent(inout) :: var
3135 end subroutine omp_set _nest_lock

3136 end interface

3137 interface

3138 subroutine omp_set_nested (enable_expr)

3139 use omp_lib_kinds

3140 logical (kind=omp_logical_kind), intent(in) :: &

Version2.0 Draft 9 101

Interface Declaration Module [D] OpenMP Fortran Application Program Interface

& enable_expr
end subroutine omp_set_nested
end interface

interface
subroutine omp_set_num_threads (number_of_threads_expr)
use omp_lib_kinds
integer (kind=omp_integer_kind), intent(in) :: &
& number_of threads_expr
end subroutine omp_set_num_threads
end interface

interface
function omp_test_lock (var)
use omp_lib_kinds
logical (kind=omp_logical_kind) :: omp_test_lock
integer (kind=omp_lock_kind), intent(inout) :: var
end function omp_test lock

end interface

interface
function omp_test_nest_lock (var)
use omp_lib_kinds
integer (kind=omp_integer_kind) :: omp_test_nest_lock
integer (kind=omp_nest_lock_kind), intent(inout) :: var
end function omp_test nest_lock

end interface

interface
subroutine omp_unset_lock (var)
use omp_lib_kinds
integer (kind=omp_lock_kind), intent(inout) :: var
end subroutine omp_unset_lock
end interface

interface
subroutine omp_unset_nest_lock (var)
use omp_lib_kinds
integer (kind=omp_nest_lock_kind), intent(inout) :: var
end subroutine omp_unset_nest_lock
end interface
end module omp_lib

102 Version2.0 Draft 9

OpenMP Fortran Application Program Interface Interface Declaration Module [D]

3178 D.3 Example of a Generic Interface for a Library Routine

3179 Any of the OMP runtime library routines that take an argument may be implemented
3180 with a generic interface so arguments of different KIND type can be accomodated.
3181 Assume an implementation supports both default INTEGERas KIND =

3182 OMP_INTEGER_KINEand another INTEGER KIND KIND = SHORT_INT. Then

3183 OMP_SET_NUM_THREAD&.Id be specified in the omp_lib module as the following:
3184 ! the "I" of this comment starts in column 1

3185 interface omp_set_num_threads

3186 subroutine omp_set_num_threads_1 (number_of threads_expr)

3187 use omp_lib_kinds

3188 integer (kind=omp_integer_kind), intent(in) :: &

3189 & number_of threads_expr

3190 end subroutine omp_set_num_threads_1

3191 subroutine omp_set_num_threads_2 (number_of threads_expr)

3192 use omp_lib_kinds

3193 integer (kind=short_int), intent(in) :: &

3194 & number_of threads_expr

3195 end subroutine omp_set_num_threads_2

3196 end interface omp_set_num_threads

Version2.0 Draft 9 103

3197

3198

3199
3200
3201
3202

3203
3204
3205

3206
3207
3208
3209
3210

3211
3212

3213
3214

3215
3216

3217
3218
3219

3220
3221

3222
3223

3224
3225

3226
3227

3228
3229
3230

Implementation Dependent Behaviors in
OpenMP Fortran [E]

This appendix sumarizes the behaviors that are described as “implementation
dependent” in this API. Each behavior is cross-referenced back to its description in
the main specification. An implementation is required to define and document its
behavior in these cases.

SCHEDULE(GUIDEDghunk) : chunk specifies the size of the smallest piece, except
possibly the last. The size of the initial piece is implementation dependent (Table
1, page 14).

When SCHEDULE(RUNTIME)is specified, the decision regarding scheduling is
deferred until run time. The schedule type and chunk size can be chosen at run
time by setting the OMP_SCHEDULé&nvironment variable. If this environment
variable is not set, the resulting schedule is implementation-dependent (Table 1,
page 14).

In the absence of the SCHEDULEIlause, the default schedule is implementation
dependent.

OMP_GET_NUM_THREADOSthe number of threads has not been explicitly set by
the user, the default is implementation dependent (Section 3.1.2, page 44).

OMP_SET_DYNAMLICThe default for dynamic thread adjustment is implementation
dependent (Section 3.1.7, page 46).

OMP_SET_NESTEDWhen nested parallelism is enabled, the number of threads
used to execute nested parallel regions is implementation dependent (Section
3.1.9, page 47).

OMP_SCHEDULé&nvironment variable: The default value for this environment
variable is implementation dependent (Section 4.1, page 55).

OMP_NUM_THREARSvironment variable: The default value is implementation
dependent (Section 4.2, page 55).

OMP_DYNAMI@nvironment variable: The default condition is implementation
dependent (Section 4.3, page 56).

An implementation can replace all ATOMICdirectives by enclosing the statement
in a critical section (Section 2.5.4, page 23).

If the dynamic threads mechanism is enabled on entering a parallel region, the
allocation status of an allocatable array that is not affected by a COPYINclause
that appears on the region is implementation dependent.

Version2.0 Draft 9 105

32
32
32
32
32
32
32
32
32

W NP

© 00 N O O

Implementation Dependent Behaviors in OpenMP
Fortran [E]

OpenMP Fortran Application Program Interface

106

Due to resource constraints, it is not possible for an implementation to document
the maximum number of threads that can be created successfully during a
program’s execution. This number is dependent upon the load on the system, the
amount of memory allocated by the program, and the amount of implementation
dependent stack space allocated to each thread. If the dynamic threads
mechanism is disabled, the behavior of the program is implementation dependent
when more threads are requested than can be successfully created. If the dynamic
threads mechanism is enabled, requests for more threads than an implementation
can support are satisfied by a smaller number of threads.

Version2.0 Draft 9

3240

3241

3242
3243
3244

3245
3246
3247

3248
3249

3250
3251

3252
3253
3254

3255
3256

3257

3258
3259

3260
3261
3262

3263

3264
3265

3266
3267

3268

3269

3270

3271

New Features in OpenMP Fortran version

2.0 [F]

This appendix summarizes the new features in the OpenMP Fortran API version 2.0.
Each feature is cross referenced back to the section in the specification where it is
described.

The FORTRAN 77 standard does not require that initialized data have the SAVE
attribute but Fortran 95 does require this. OpenMP Fortran version 2.0 requires
this. See Section 1.3, page 2.

An OpenMP compliant implementation must document its implementation-defined
behaviors. See Appendix E, page 105.

Directives may contain end-of-line comments starting with an exclamation point.
See Section 2.1.2, page 8.

The _OPENMPreprocessor macro is defined to be an integer of the form YYYYMM
where YYYYand MMare the year and month of the version of the OpenMP Fortran
spec supported by the implementation. See Section 2.1.3, page 8.

Under the right circumstances, subsequent parallel regions use the same threads
with the same thread numbers as previous regions. See Section 2.2, page 9.

COPYPRIVATHES a new modifier on END SINGLE See Section 2.6.2.8, page 37.

THREADPRIVATENay now be applied to variables as well as COMMONDBIocks. See
Section 2.6.1, page 27.

It is implementation-defined whether global variable references in statement
functions refer to SHAREDor PRIVATE copies of those variables. See Section 2.6.2,
page 30

REDUCTIONs now allowed on an array name. See Section 2.6.2.6, page 34.

REDUCTIONvariables should only be used in reduction computations. See Section
2.6.2.6, page 34

COPYINnow works on variables as well as COMMONMBIocks. See Section 2.6.2.7,
page 36.

Reprivatization of variables is now allowed. See Section 2.6.3, page 38.
Exceptional values in REDUCTION may affect the computation.
Section 3.2, page 48, now defines nested lock routines.

Section 3.3, page 52, now defines some timing routines.

Version2.0 Draft 9 107

32

32
32

32
32

32
32
32

o Ol

© 0 N

New Features in OpenMP Fortran version 2.0 [F]

OpenMP Fortran Application Program Interface

108

Appendix A, page 57, contains more examples.

Appendix D, page 97, contains example INTERFACEdefinitions for all of the OMP
run-time routines.

The NUM_THREADG8ause on parallel regions defines the number of threads to be
used to execute that region. See Section 2.2, page 9.

New WORKSHARBLOCK WORKSHARId NOWORKSHARIEectives allow
parallelization of array expressions in Fortran statements. See Section 2.3.4, page
17, to .

Version2.0 Draft 9

3280

3281
3282
3283

3284
3285
3286
3287
3288

3289
3290
32901
3292
3293
3294

3295
3296
3297
3298
3299

3300
3301
3302
3303
3304

Glossary [G]

defined - For the contents of a data object, the property of having or being given a
valid value. For the allocation status or association status of a data object, the
property of having or being given a valid status.

implementation dependent - A behavior or value that is implementation dependent is
permitted to vary among different OpenMP compliant implementations (possibly in
response to limitations of hardware or operating system). Implementation dependent
items are listed in Appendix E, page 105, and OpenMP compliant implementations
are required to document how these items are handled.

non-compliant - Code structures or arrangements described as non-compliant are not
required to be supported by OpenMP compliant implementations. Upon encountering
such structures, an OpenMP compliant implementation may produce a compiler
errorl. Even if an implementation produces an executable for a program containing
such structures, its execution may terminate prematurely or have unpredictable
behavior.

undefined - For the contents of a data object, the property of not having a determinate
value. The result of a reference to a data object with undefined contents is
unspecified. For the allocation status or association status of a data object, the
property of not having a valid status. The behavior of an operation which relies upon
an undefined allocation status or association status is unspecified.

unspecified - A behavior or result that is unspecified is not constrained by
requirements in the OpenMP Fortran API. Possibly resulting from the misuse of a
language construct or other error, such a behavior or result may not be knowable
prior to the execution of a program, and may lead to premature termination of the
program.

Version2.0 Draft 9 109

