
Ohio Supercomputer Center

The Ohio State University

Ohio LAM 6.1 November 11, 1996

UPERCOMPUTERS
OHIO

C E N T E R

LAM is a parallel processing environment and development system for a
network of independent computers. It features theMessage-Passing
Interface (MPI)programming standard, supported by extensive monitoring
and debugging tools.

LAM / MPI Key Features:

• full implementation of the MPI standard

• extensive monitoring and debugging tools,
runtime and post-mortem

• heterogeneous computer networks

• add and delete nodes

• node fault detection and recovery

• MPI extensions and LAM programming supplements

• direct communication between application processes

• robust MPI resource management

• MPI-2 dynamic processes

• multi-protocol communication (shared memory and network)

MPI Primer /
Developing With LAM

2

uto-
w
ram-

M
fer-
ow

 the
f
l the
ment

e,
ent.
For-

or
nd

ld

the
 to

How to Use
This

Document
This document is organized into four major chapters. It begins with a t
rial covering the simpler techniques of programming and operation. Ne
users should start with the tutorial. The second chapter is an MPI prog
ming primer emphasizing the commonly used routines. Non-standard
extensions to MPI and additional programming capabilities unique to LA
are separated into a third chapter. The last chapter is an operational re
ence. It describes how to configure and start a LAM multicomputer, and h
to monitor processes and messages.

This document is user oriented. It does not give much insight into how
system is implemented. It does not detail every option and capability o
every command and routine. An extensive set of manual pages cover al
commands and internal routines in great detail and are meant to supple
this document.

The reader will note a heavy bias towards the C programming languag
especially in the code samples. There is no Fortran version of this docum
The text attempts to be language insensitive and the appendices contain
tran code samples and routine prototypes.

We have kept the font and syntax conventions to a minimum.

code This font is used for things you type on the keyboard
see printed on the screen. We use it in code sections a
tables but not in the main text.

<symbol> This is a symbol used to abstract something you wou
type. We use this convention in commands.

Section Italics are used to cross reference another section in
document or another document. Italics are also used
distinguish LAM commands.
 MPI Primer / Developing with LAM

3

Table of
Contents
How to Use This Document 2

LAM Architecture 7

Debugging 7
MPI Implementation 8
How to Get LAM 8

LAM / MPI Tutorial Introduction

Programming Tutorial 9

The World of MPI 10
Enter and Exit MPI 10
Who Am I; Who Are They? 10
Sending Messages 11
Receiving Messages 11
Master / Slave Example 12

Operation Tutorial 15

Compilation 15
Starting LAM 15
Executing Programs 16
Monitoring 17
Terminating the Session 18

MPI Programming Primer

Basic Concepts 19

Initialization 21

Basic Parallel Information 21

 Blocking Point-to-Point 22

Send Modes 22
Standard Send 22
Receive 23
Status Object 23
Message Lengths 23
Probe 24

Nonblocking Point-to-Point 25

Request Completion 26
Probe 26
 MPI Primer / Developing with LAM

4

Message Datatypes 27

Derived Datatypes 28
Strided Vector Datatype 28
Structure Datatype 29
Packed Datatype 31

Collective Message-Passing 34

Broadcast 34
Scatter 34
Gather 35
Reduce 35

Creating Communicators 38

Inter-communicators 40
Fault Tolerance 40

Process Topologies 41

Process Creation 44

Portable Resource Specification 45

Miscellaneous MPI Features 46

Error Handling 46
Attribute Caching 47
Timing 48

LAM / MPI Extensions

Remote File Access 50

Portability and Standard I/O 51

Collective I/O 52

Cubix Example 54

Signal Handling 55

Signal Delivery 55

Debugging and Tracing 56

LAM Command Reference

Getting Started 57

Setting Up the UNIX Environment 57
 MPI Primer / Developing with LAM

5

Node Mnemonics 57
Process Identification 58
On-line Help 58

Compiling MPI Programs 60

Starting LAM 61

recon 61
lamboot 61
Fault Tolerance 61
tping 62
wipe 62

Executing MPI Programs 63

mpirun 63
Application Schema 63
Locating Executable Files 64
Direct Communication 64
Guaranteed Envelope Resources 64
Trace Collection 65
lamclean 65

Process Monitoring and Control 66

mpitask 66
GPS Identification 68
Communicator Monitoring 69
Datatype Monitoring 69
doom 70

Message Monitoring and Control 71

mpimsg 71
Message Contents 72
bfctl 72

Collecting Trace Data 73

lamtrace 73

Adding and Deleting LAM Nodes 74

lamgrow 74
lamshrink 74

File Monitoring and Control 75

fstate 75
fctl 75
 MPI Primer / Developing with LAM

6

Writing a LAM Boot Schema 76

Host File Syntax 76

Low Level LAM Start-up 77

Process Schema 77
hboot 77

Appendix A: Fortran Bindings 79

Appendix B: Fortran Example Program 85
 MPI Primer / Developing with LAM

7

c-
ernel
local

nica-
ons
etiza-
sses
rallel
tion
.

tem
ers
rnel
rent
di-
n

on

r.
s
, and
ulti-
on

LAM
Architecture

Debugging
LAM runs on each computer as a single daemon (server) uniquely stru
tured as a nano-kernel and hand-threaded virtual processes. The nano-k
component provides a simple message-passing, rendez-vous service to
processes. Some of the in-daemon processes form a network commu
tion subsystem, which transfers messages to and from other LAM daem
on other machines. The network subsystem adds features such as pack
tion and buffering to the base synchronization. Other in-daemon proce
are servers for remote capabilities, such as program execution and pa
file access. The layering is quite distinct: the nano-kernel has no connec
with the network subsystem, which has no connection with the servers
Users can configure in or out services as necessary.

The unique software engineering of LAM is transparent to users and sys
administrators, who only see a conventional daemon. System develop
can de-cluster the daemon into a daemon containing only the nano-ke
and several full client processes. This developers’ mode is still transpa
to users but exposes LAM’s highly modular components to simplified in
vidual debugging. It also reveals LAM’s evolution from Trollius, which ra
natively on scalable multicomputers and joined them to a host network
through a uniform programming interface.

The network layer in LAM is a documented, primitive and abstract layer
which to implement a more powerful communication standard like MPI
(PVM has also been implemented).

A most important feature of LAM is hands-on control of the multicompute
There is very little that cannot be seen or changed at runtime. Program
residing anywhere can be executed anywhere, stopped, resumed, killed
watched the whole time. Messages can be viewed anywhere on the m
computer and buffer constraints tuned as experience with the applicati

local msgs, client mgmt

network msgs

MPI, client / server

cmds, apps, GUIs

Figure 1: LAM’s Layered Design
 MPI Primer / Developing with LAM

8

ly dis-
other
ms

nk,
tion
n
or-

d
ent.

de is
e
n
fig-

find
ple
the

MPI
Implementation

How to Get LAM
dictates. If the synchronization of a process and a message can be easi
played, mismatches resulting in bugs can easily be found. These and
services are available both as a programming library and as utility progra
run from any shell.

MPI synchronization boils down to four variables: context, tag, source ra
and destination rank. These are mapped to LAM’s abstract synchroniza
at the network layer. MPI debugging tools interpret the LAM informatio
with the knowledge of the LAM / MPI mapping and present detailed inf
mation to MPI programmers.

A significant portion of the MPI specification can be and is implemente
within the runtime system and independent of the underlying environm

As with all MPI implementations, LAM must synchronize the launch of
MPI applications so that all processes locate each other before user co
entered. Thempirun command achieves this after finding and loading th
program(s) which constitute the application. A simple SPMD applicatio
can be specified on the mpirun command line while a more complex con
uration is described in a separate file, called an application schema.

MPI programs developed on LAM can be moved without source code
changes to any other platform that supports MPI.

LAM installs anywhere and uses the shell’s search path at all times to
LAM and application executables. A multicomputer is specified as a sim
list of machine names in a file, which LAM uses to verify access, start
environment, and remove it.

LAM is freely available under a GNU license via anonymous ftp from
ftp.osc.edu.
 MPI Primer / Developing with LAM

9

PI.

ssing
ne

he fol-
u-

Programming
Tutorial
LAM / MPI Tutorial Introduction

The example programs in this section illustrate common operations in M
You will also see how to run and debug a program with LAM.

For basic applications, MPI is as easy to use as any other message-pa
library. The first program is designed to run with exactly two processes. O
process sends a message to the other and then both terminate. Enter t
lowing code in trivial.c or obtain the source from the LAM source distrib
tion (examples/trivial/trivial.c).

/*
 * Transmit a message in a two process system.
 */
#include <mpi.h>
#define BUFSIZE 64
int buf[64];
int
main(argc, argv)
int argc;
char *argv[];
{

int size, rank;
MPI_Status status;

/*
 * Initialize MPI.
 */

MPI_Init(&argc, &argv);
/*
 * Error check the number of processes.
 * Determine my rank in the world group.
 MPI Primer / Developing with LAM

10

, vari-

num-
 in
r-
ith
es-

up

s
rank

The World of
MPI

Enter and Exit
MPI

Who Am I ; Who
Are They?
 * The sender will be rank 0 and the receiver, rank 1.
 */

MPI_Comm_size(MPI_COMM_WORLD, &size);
if (2 != size) {

MPI_Finalize();
return(1);

}
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/*
 * As rank 0, send a message to rank 1.
 */

if (0 == rank) {
MPI_Send(buf, sizeof(buf), MPI_INT, 1, 11,

MPI_COMM_WORLD);
}

/*
 * As rank 1, receive a message from rank 0.
 */

else {
MPI_Recv(buf, sizeof(buf), MPI_INT, 0, 11,

MPI_COMM_WORLD, &status);
}
MPI_Finalize();
return(0);

}

Note that the program uses standard C program structure, statements
able declarations and types, and functions.

Processes are represented by a unique “rank” (integer) and ranks are
bered 0, 1, 2, ..., N-1. MPI_COMM_WORLD means “all the processes
the MPI application.” It is called a communicator and it provides all info
mation necessary to do message-passing. Portable libraries do more w
communicators to provide synchronization protection that most other m
sage-passing systems cannot handle.

As with other systems, two routines are provided to initialize and clean
an MPI process:

MPI_Init(int *argc, char ***argv);

MPI_Finalize(void);

Typically, a process in a parallel application needs to know who it is (it
rank) and how many other processes exist. A process finds out its own
by calling MPI_Comm_rank().
 MPI Primer / Developing with LAM

11

l the
ew

spec-
ge
addi-
ran-

ess.
es-

e. If
the

 of
eived
nd

Sending
Messages

Receiving
Messages
MPI_Comm_rank(MPI_Comm comm, int *rank);

The total number of processes is returned by MPI_Comm_size().

MPI_Comm_size(MPI_Comm comm, int *size);

A message is an array of elements of a given datatype. MPI supports al
basic datatypes and allows a more elaborate application to construct n
datatypes at runtime.

A message is sent to a specific process and is marked by a tag (integer)
ified by the user. Tags are used to distinguish between different messa
types a process might send/receive. In the example program above, the
tional synchronization offered by the tag is unnecessary. Therefore, any
dom value is used that matches on both sides.

MPI_Send(void *buf, int count, MPI_Datatype
dtype, int dest, int tag, MPI_Comm comm);

A receiving process specifies the tag and the rank of the sending proc
MPI_ANY_TAG and MPI_ANY_SOURCE may be used to receive a m
sage of any tag and from any sending process.

MPI_Recv(void *buf, int count, MPI_Datatype
dtype, int source, int tag, MPI_Comm comm,
MPI_Status *status);

Information about the received message is returned in a status variabl
wildcards are used, the received message tag is status.MPI_TAG and
rank of the sending process is status.MPI_SOURCE.

Another routine, not used in the example program, returns the number
datatype elements received. It is used when the number of elements rec
might be smaller than number specified to MPI_Recv(). It is an error to se
more elements than the receiving process will accept.

MPI_Get_count(MPI_Status, &status,
MPI_Datatype dtype, int *nelements);
 MPI Primer / Developing with LAM

12

m-
ined
m
one

Master / Slave
Example
The following example program is a communication skeleton for a dyna
ically load balanced master/slave application. The source can be obta
from the LAM source distribution (examples/trivial/ezstart.c). The progra
is designed to work with a minimum of two processes: one master and
slave.

#include <mpi.h>
#define WORKTAG 1
#define DIETAG 2
#define NUM_WORK_REQS 200
static void master();
static void slave();
/*
 * main
 * This program is really MIMD, but is written SPMD for
 * simplicity in launching the application.
 */
int
main(argc, argv)
int argc;
char *argv[];
{

int myrank;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, /* group of everybody */

&myrank); /* 0 thru N-1 */
if (myrank == 0) {

master();
} else {

slave();
}
MPI_Finalize();
return(0);

}
/*
 * master
 * The master process sends work requests to the slaves
 * and collects results.
 */
static void
master()
{

int ntasks, rank, work;
double result;
MPI_Status status;
MPI_Comm_size(MPI_COMM_WORLD,

&ntasks); /* #processes in app */
 MPI Primer / Developing with LAM

13
/*
 * Seed the slaves.
 */

work = NUM_WORK_REQS; /* simulated work */
for (rank = 1; rank < ntasks; ++rank) {

MPI_Send(&work, /* message buffer */
1, /* one data item */
MPI_INT, /* of this type */
rank, /* to this rank */
WORKTAG, /* a work message */
MPI_COMM_WORLD); /* always use this */

work--;
}

/*
 * Receive a result from any slave and dispatch a new work
 * request until work requests have been exhausted.
 */

while (work > 0) {
MPI_Recv(&result, /* message buffer */

1, /* one data item */
MPI_DOUBLE, /* of this type */
MPI_ANY_SOURCE, /* from anybody */
MPI_ANY_TAG, /* any message */
MPI_COMM_WORLD, /* communicator */
&status); /* recv’d msg info */

MPI_Send(&work, 1, MPI_INT, status.MPI_SOURCE,
WORKTAG, MPI_COMM_WORLD);

work--; /* simulated work */
}

/*
 * Receive results for outstanding work requests.
 */

for (rank = 1; rank < ntasks; ++rank) {
MPI_Recv(&result, 1, MPI_DOUBLE, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);
}

/*
 * Tell all the slaves to exit.
 */

for (rank = 1; rank < ntasks; ++rank) {
MPI_Send(0, 0, MPI_INT, rank, DIETAG,

MPI_COMM_WORLD);
}

}

 MPI Primer / Developing with LAM

14

efore
/*
 * slave
 * Each slave process accepts work requests and returns
 * results until a special termination request is received.
 */
static void
slave()
{

double result;
int work;
MPI_Status status;
for (;;) {

MPI_Recv(&work, 1, MPI_INT, 0, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);

/*
 * Check the tag of the received message.
 */

if (status.MPI_TAG == DIETAG) {
return;

}
sleep(2);
result = 6.0; /* simulated result */
MPI_Send(&result, 1, MPI_DOUBLE, 0, 0,

MPI_COMM_WORLD);
}

}

The workings of ranks, tags and message lengths should be mastered b
constructing serious MPI applications.
 MPI Primer / Developing with LAM

15

nd
 to
our

w
rt-
bse-

fied
ted

(as

ll
p-

y
up
heir
iler,

ul-
line.

Operation
Tutorial

Compilation

Start ing LAM
Before running LAM you must establish certain environment variables a
search paths for your shell. Add the following commands or equivalent
your shell start-up file (.cshrc, assuming C shell). Do not add these to y
.login as they would not be effective on remote machines whenrsh is used
to start LAM.

setenv LAMHOME <LAM installation directory>

set path = ($path $LAMHOME/bin)

The local system administrator, or the person who installed LAM, will kno
the location of the LAM installation directory. After editing the shell sta
up file, invoke it to establish the new values. This is not necessary on su
quent logins to the UNIX system.

% source .cshrc

Many LAM commands require one or more nodeids. Nodeids are speci
on the command line as n<list>, where <list> is a list of comma separa
nodeids or nodeid ranges.

n1

n1,3,5-10

The mnemonic ‘h’ refers to the local node where the command is typed
in ‘here’).

Any native C compiler is used to translate LAM programs for execution. A
LAM runtime routines are found in a few libraries. LAM provides a wra
ping command calledhcc which invokes cc with the proper header and
library directories, and is used exactly like the native cc.

% hcc -o trivial trivial.c -lmpi

The major, internal LAM libraries are automatically linked. The MPI librar
is explicitly linked. Since LAM supports heterogeneous computing, it is
to the user to compile the source code for each of the various CPUs on t
respective machines. After correcting any errors reported by the comp
proceed to starting the LAM session.

Before starting LAM, the user specifies the machines that will form the m
ticomputer. Create a host file listing the machine names, one on each
An example file is given below for the machines “ohio” and “osc”. Lines
starting with the # character are treated as comment lines.
 MPI Primer / Developing with LAM

16

e
 the

ith

s as
re-

e.

he
n the
ssful
rom
hem
ion

the

n the
he
ial

Executing
Programs
a 2-node LAM
ohio
osc

The first machine in the host file will be assigned nodeid 0, the second
nodeid 1, etc. Now verify that the multicomputer is ready to run LAM. Th
recon tool checks if the user has access privileges on each machine in
multicomputer and if LAM is installed and accessible.

% recon -v <host file>

If recon does not report a problem, proceed to start the LAM session w
the lamboot tool.

% lamboot -v <host file>

The -v (verbose) option causes lamboot to report on the start-up proces
it progresses. You should return to the your own shell’s prompt. LAM p
sents no special shell or interface environment.

Even if all seems well after start-up, verify communication with each nod
tping is a simple confidence building command for this purpose.

% tping n0

Repeat this command for all nodes or ping all the nodes at once with t
broadcast mnemonic, N. tping responds by sending a message betwee
local node (where the user invoked tping) and the specified node. Succe
execution of tping proves that the target node, nodes along the route f
the local node to the target node, and the communication links between t
are working properly. If tping fails, press Control-Z, terminate the sess
with thewipetool and then restart the system. SeeTerminating the Session.

To execute a program, use thempiruncommand. The first example program
is designed to run with two processes. The -c <#> option runs copies of
given program on nodes selected in a round-robin manner.

% mpirun -v -c 2 trivial

The example invocation above assumes that the program is locatable o
machine on which it will run. mpirun can also transfer the program to t
target node before running it. Assuming your multicomputer for this tutor
is homogeneous, you can use the -s h option to run both processes.

% mpirun -v -c 2 -s h trivial
 MPI Primer / Developing with LAM

17

ces.
m.

ng
m
with
at the

()
know
rst
e
ing
e
the
gth

fer en
has

age

ro-
4 ele-

s
-

Monitor ing

%
TA YPE
0/0
1/1

%
SR
0/0
If the processes executed correctly, they will terminate and leave no tra
If you want more feedback, try using tprintf() functions within the progra

The first example program runs too quickly to be monitored. Try changi
the tag in the call to MPI_Recv() to 12 (from 11). Recompile the progra
and rerun it as before. Now the receiving process cannot synchronize
the message from the send process because the tags are unequal. Look
status of all MPI processes with thempitask command.

You will notice that the receiving process is blocked in a call to MPI_Recv
- a synchronizing message has not been received. From the code we
this is process rank 1 in the MPI application, which is confirmed in the fi
column, the MPI task identification. The first number is the rank within th
world group. The second number is the rank within the communicator be
used by MPI_Recv(), in this case (and in many applications with simpl
communication structure) also the world group. The specified source of
message is likewise identified. The synchronization tag is 12 and the len
of the receive buffer is 64 elements of type MPI_INT.

The message was transferred from the sending process to a system buf
route to process rank 1. MPI_Send() was able to return and the process
called MPI_Finalize(). System buffers, which can be thought of as mess
queues for each MPI process, can be examined with thempimsgcommand.

The message shows that it originated from process rank 0 using
MPI_COMM_WORLD and that it is waiting in the message queue of p
cess rank 1, the destination. The tag is 11 and the message contains 6
ments of type MPI_INT. This information corresponds to the argument
given to MPI_Send(). Since the application is faulty and will never com
plete, we will kill it with thelamclean command.

% lamclean -v

mpitask
SK (G/L) FUNCTION PEER|ROOT TAG COMM COUNT DATAT
 trivial Finalize
 trivial Recv 0/0 12 WORLD 64 INT

mpimsg
C (G/L) DEST (G/L) TAG COMM COUNT DATATYPE MSG

1/1 11 WORLD 64 INT n1,#0
 MPI Primer / Developing with LAM

18

You
uch
un.

Terminating the
Session
The LAM session should be in the same state as after invoking lamboot.
can also terminate the session and restart it with lamboot, but this is a m
slower operation. You can now correct the program, recompile and rer

To terminate LAM, use thewipe tool. The host file argument must be the
same as the one given to lamboot.

% wipe -v <host file>
 MPI Primer / Developing with LAM

19

llel
the

ach
um-

and
ram
y
in

pro-
Mes-
n

are

end
llo-
four
nks,

ion
ent

Basic Concepts
MPI Programming Primer

Through Message Passing Interface (MPI) an application views its para
environment as a static group of processes. An MPI process is born into
world with zero or more siblings. This initial collection of processes is
called the world group. A unique number, called a rank, is assigned to e
member process from the sequence 0 through N-1, where N is the total n
ber of processes in the world group. A member can query its own rank
the size of the world group. Processes may all be running the same prog
(SPMD) or different programs (MIMD). The world group processes ma
subdivide, creating additional subgroups with a potentially different rank
each group.

A process sends a message to a destination rank in the desired group. A
cess may or may not specify a source rank when receiving a message.
sages are further filtered by an arbitrary, user specified, synchronizatio
integer called a tag, which the receiver may also ignore.

An important feature of MPI is the ability to guarantee independent softw
developers that their choice of tag in a particular library will not conflict
with the choice of tag by some other independent developer or by the
user of the library. A further synchronization integer called a context is a
cated by MPI and is automatically attached to every message. Thus, the
main synchronization variables in MPI are the source and destination ra
the tag and the context.

A communicator is an opaque MPI data structure that contains informat
on one group and that contains one context. A communicator is an argum
 MPI Primer / Developing with LAM

20

es

:

om-
mu-

pi.h.
to all MPI communication routines. After a process is created and initializ
MPI, three predefined communicators are available.

MPI_COMM_WORLD the world group
MPI_COMM_SELF group with one member, myself
MPI_COMM_PARENT an intercommunicator between two groups

my world group and my parent group (See
Dynamic Processes.)

Many applications require no other communicators beyond the world c
municator. If new subgroups or new contexts are needed, additional com
nicators must be created.

MPI constants, templates and prototypes are in the MPI header file, m

#include <mpi.h>
 MPI Primer / Developing with LAM

21

-

em-
rt
erly-

otal
ma-

is

Initialization

Basic Parallel
Information
MPI_Init Initialize MPI state.
MPI_Finalize Clean up MPI state.
MPI_Abort Abnormally terminate.
MPI_Comm_size Get group process count.
MPI_Comm_rank Get my rank within process group.

MPI_Initialized Has MPI been initialized?

The first MPI routine called by a program must be MPI_Init(). The com
mand line arguments are passed to MPI_Init().

MPI_Init(int *argc, char **argv[]);

A process ceases MPI operations with MPI_Finalize().

MPI_Finalize(void);

In response to an error condition, a process can terminate itself and all m
bers of a communicator with MPI_Abort(). The implementation may repo
the error code argument to the user in a manner consistent with the und
ing operation system.

MPI_Abort (MPI_Comm comm, int errcode);

Two numbers that are very useful to most parallel applications are the t
number of parallel processes and self process identification. This infor
tion is learned from the MPI_COMM_WORLD communicator using the
routines MPI_Comm_size() and MPI_Comm_rank().

MPI_Comm_size (MPI_Comm comm, int *size);

MPI_Comm_rank (MPI_Comm comm, int *rank);

Of course, any communicator may be used, but the world information
usually key to decomposing data across the entire parallel application.
 MPI Primer / Developing with LAM

22

nes.
he
t by

ign-
 but
data
cted
u-
:

mes-
is

n

.
eive

mes-

 Blocking
Point-to-Point

Send Modes

Standard Send
MPI_Send Send a message in standard mode.
MPI_Recv Receive a message.
MPI_Get_count Count the elements received.
MPI_Probe Wait for message arrival.

MPI_Bsend Send a message in buffered mode.
MPI_Ssend Send a message in synchronous mode.
MPI_Rsend Send a message in ready mode.
MPI_Buffer_attach Attach a buffer for buffered sends.
MPI_Buffer_detach Detach the current buffer.
MPI_Sendrecv Send in standard mode, then receive.
MPI_Sendrecv_replace Send and receive from/to one area.
MPI_Get_elements Count the basic elements received.

This section focuses on blocking, point-to-point, message-passing routi
The term “blocking” in MPI means that the routine does not return until t
associated data buffer may be reused. A point-to-point message is sen
one process and received by one process.

The issues of flow control and buffering present different choices in des
ing message-passing primitives. MPI does not impose a single choice
instead offers four transmission modes that cover the synchronization,
transfer and performance needs of most applications. The mode is sele
by the sender through four different send routines, all with identical arg
ment lists. There is only one receive routine. The four send modes are

standard The send completes when the system can buffer the
sage (it is not obligated to do so) or when the message
received.

buffered The send completes when the message is buffered i
application supplied space, or when the message is
received.

synchronous The send completes when the message is received
ready The send must not be started unless a matching rec

has been started. The send completes immediately.

Standard mode serves the needs of most applications. A standard mode
sage is sent with MPI_Send().

MPI_Send (void *buf, int count, MPI_Datatype
dtype, int dest, int tag, MPI_Comm comm);
 MPI Primer / Developing with LAM

23

le-
truc-

()
es-

tor.

spe-
pon
ot

des-
 with
e

sta-
e
and/

he
ondi-
age
, the

Receive

Status Object

Message Lengths
An MPI message is not merely a raw byte array. It is a count of typed e
ments. The element type may be a simple raw byte or a complex data s
ture. SeeMessage Datatypes.

The four MPI synchronization variables are indicated by the MPI_Send
parameters. The source rank is the caller’s. The destination rank and m
sage tag are explicitly given. The context is a property of the communica

As a blocking routine, the buffer can be overwritten when MPI_Send()
returns. Although most systems will buffer some number of messages, e
cially short messages, without any receiver, a programmer cannot rely u
MPI_Send() to buffer even one message. Expect that the routine will n
return until there is a matching receiver.

A message in any mode is received with MPI_Recv().

MPI_Recv (void *buf, int count, MPI_Datatype
dtype, int source, int tag, MPI_Comm comm,
MPI_Status *status);

Again the four synchronization variables are indicated, with source and
tination swapping places. The source rank and the tag can be ignored
the special values MPI_ANY_SOURCE and MPI_ANY_TAG. If both thes
wildcards are used, the next message for the given communicator is
received.

An argument not present in MPI_Send() is the status object pointer. The
tus object is filled with useful information when MPI_Recv() returns. If th
source and/or tag wildcards were used, the actual received source rank
or message tag are accessible directly from the status object.

status.MPI_SOURCE the sender’s rank
status.MPI_TAG the tag given by the sender

It is erroneous for an MPI program to receive a message longer than t
specified receive buffer. The message might be truncated or an error c
tion might be raised or both. It is completely acceptable to receive a mess
shorter than the specified receive buffer. If a short message may arrive
application can query the actual length of the message with
MPI_Get_count().

MPI_Get_count (MPI_Status *status,
MPI_Datatype dtype, int *count);
 MPI Primer / Developing with LAM

24

The
. See

()
lly

ro-
yn-

e

Probe
The status object and MPI datatype are those provided to MPI_Recv().
count returned is the number of elements received of the given datatype
Message Datatypes.

Sometimes it is impractical to pre-allocate a receive buffer. MPI_Probe
synchronizes a message and returns information about it without actua
receiving it. Only synchronization variables and the status object are p
vided as arguments. MPI_Probe() does not return until a message is s
chronized.

MPI_Probe (in source, int tag, MPI_Comm comm,
MPI_Status *status);

After a suitable message buffer has been prepared, the same messag
reported by MPI_Probe() can be received with MPI_Recv().
 MPI Primer / Developing with LAM

25

ly
arily
fter

ck-
st is
has

fer at
pu-
hen
 not

.

Nonblocking
Point-to-Point
MPI_Isend Begin to send a standard message.
MPI_Irecv Begin to receive a message.
MPI_Wait Complete a pending request.
MPI_Test Check or complete a pending request.
MPI_Iprobe Check message arrival.

MPI_Ibsend Begin to send a buffered message.
MPI_Issend Begin to send a synchronous message.
MPI_Irsend Begin to send a ready message.
MPI_Request_free Free a pending request.
MPI_Waitany Complete any one request.
MPI_Testany Check or complete any one request.
MPI_Waitall Complete all requests.
MPI_Testall Check or complete all requests.
MPI_Waitsome Complete one or more requests.
MPI_Testsome Check or complete one or more requests.
MPI_Cancel Cancel a pending request.
MPI_Test_cancelled Check if a pending request was cancelled.

The term “nonblocking” in MPI means that the routine returns immediate
and may only have started the message transfer operation, not necess
completed it. The application may not safely reuse the message buffer a
a nonblocking routine returns. The four blocking send routines and one
blocking receive routine all have nonblocking counterparts. The nonblo
ing routines have an extra output argument - a request object. The reque
later passed to one of a suite of completion routines. Once an operation
completed, its message buffer can be reused.

The intent of nonblocking message-passing is to start a message trans
the earliest possible moment, continue immediately with important com
tation, and then insist upon completion at the latest possible moment. W
the earliest and latest moment are the same, nonblocking routines are
useful. Otherwise, a non-blocking operation on certain hardware could
overlap communication and computation, thus improving performance

MPI_Isend() begins a standard nonblocking message send.

MPI_Isend (void *buf, int count, MPI_Datatype
dtype, int dest, int tag, MPI_Comm comm,
MPI_Request *req);
 MPI Primer / Developing with LAM

26

ing
end
st.
er

est
 If

ct

s
r that
pres-

fast
pli-
ty to
pre-
nta-
uld
on-

Request
Completion

Probe
Likewise, MPI_Irecv() begins a nonblocking message receive.

MPI_Irecv (void *buf, int count, MPI_Datatype
dtype, int source, int tag, MPI_Comm comm,
MPI_Request *req);

Both routines accept arguments with the same meaning as their block
counterparts. When the application wishes to complete a nonblocking s
or receive, a completion routine is called with the corresponding reque
The Test() routine is nonblocking and the Wait() routine is blocking. Oth
completion routines operate on multiple requests.

MPI_Test (MPI_Request *req, int *flag,
MPI_Status *status);

MPI_Wait (MPI_Request *req, MPI_Status *status);

MPI_Test() returns a flag in an output argument that indicates if the requ
completed. If true, the status object argument is filled with information.
the request was a receive operation, the status object is filled as in
MPI_Recv(). Since MPI_Wait() blocks until completion, the status obje
argument is always filled.

MPI_Iprobe() is the nonblocking counterpart of MPI_Probe(), but it doe
not return a request object since it does not begin any message transfe
would need to complete. It sets the flag argument which indicates the
ence of a matching message (for a subsequent receive).

MPI_Iprobe (int source, int tag, MPI_Comm comm,
int *flag, MPI_Status *status);

Programmers should not consider the nonblocking routines as simply
versions of the blocking calls and therefore the preferred choice in all ap
cations. Some implementations cannot take advantage of the opportuni
optimize performance offered by the nonblocking routines. In order to
serve the semantics of the message-passing interface, some impleme
tions may even be slower with nonblocking transfers. Programmers sho
have a clear and substantial computation overlap before considering n
blocking routines.
 MPI Primer / Developing with LAM

27

ribed
ssary
e

res,

 C
ta is

om-

Message
Datatypes
MPI_Type_vector Create a strided homogeneous vector.
MPI_Type_struct Create a heterogeneous structure.
MPI_Address Get absolute address of memory location.
MPI_Type_commit Use datatype in message transfers.
MPI_Pack Pack element into contiguous buffer.
MPI_Unpack Unpack element from contiguous buffer.
MPI_Pack_size Get packing buffer size requirement.

MPI_Type_continuous Create contiguous homogeneous array.
MPI_Type_hvector Create vector with byte displacement.
MPI_Type_indexed Create a homogeneous structure.
MPI_Type_hindexed Create an index with byte displacements.
MPI_Type_extent Get range of space occupied by a datatype.
MPI_Type_size Get amount of space occupied by a datatype.
MPI_Type_lb Get displacement of datatype’s lower bound.
MPI_Type_ub Get displacement of datatype’s upper bound.
MPI_Type_free Free a datatype.

Heterogeneous computing requires that message data be typed or desc
somehow so that its machine representation can be converted as nece
between computer architectures. MPI can thoroughly describe messag
datatypes, from the simple primitive machine types to complex structu
arrays and indices.

The message-passing routines all accept a datatype argument, whose
typedef is MPI_Datatype. For example, recall MPI_Send(). Message da
specified as a number of elements of a given type.

Several MPI_Datatype values, covering the basic data units on most c
puter architectures, are predefined:

MPI_CHAR signed char
MPI_SHORT signed short
MPI_INT signed int
MPI_LONG signed long
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long
MPI_FLOAT float
 MPI Primer / Developing with LAM

28

rre-

,
eger
nica-

y

pa-
on-

in
mn.

ted

).
s-

Derived
Datatypes

Str ided Vector
Datatype
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE a raw byte

The number of bytes occupied by these basic datatypes follows the co
sponding C definition. Thus, MPI_INT could occupy four bytes on one
machine and eight bytes on another machine. A message count of one
MPI_INT specified by both sender and receiver would, in one direction
require padding and always be correct. In the reverse direction, the int
may not be representable in the lesser number of bytes and the commu
tion will fail.

Derived datatypes are built by combining basic datatypes, or previousl
built derived datatypes. A derived datatype describes a memory layout
which consists of multiple arrays of elements. A generalization of this ca
bility is that the four varieties of constructor routines offer more or less c
trol over array length, array element datatype and array displacement.

contiguous one array length, no displacement, one datatype
vector one array length, one displacement, one datatype
indexed multiple array lengths, multiple displacements, one

datatype
structure multiple everything

Consider a two dimensional matrix with R rows and C columns stored
row major order. The application wishes to communicate one entire colu
A vector derived datatype fits the requirement.

MPI_Type_Vector (int count, int blocklength,
int stride, MPI_Datatype oldtype,
MPI_Datatype *newtype);

Assuming the matrix elements are of MPI_INT, the arguments for the sta
requirement would be:

int R, C;
MPI_Datatype newtype;
MPI_Type_vector(R, 1, C, MPI_INT, &newtype);
MPI_Type_commit(&newtype);

The count of blocks (arrays) is the number of elements in a column (R
Each block contains just one element and the elements are strided (di
placed) from each other by the number of elements in a row (C).1
 MPI Primer / Developing with LAM

29

age
 to

ith

Structure
Datatype
An arbitrary record whose template is a C structure is a common mess
form. The most flexible MPI derived datatype, the structure, is required
describe the memory layout.

MPI_Type_struct (int count, int blocklengths[],
MPI_Aint displacements[], MPI_Datatype
dtypes[], MPI_Datatype *newtype);

In the following code fragment, a C struct of diverse fields is described w
MPI_Type_struct() in the safest, most portable manner.

/*
 * non-trivial structure
 */
struct cell {

double energy;
char flags;
float coord[3];

};
/*
 * We want to be able to send arrays of this datatype.
 */
struct cell cloud[2];
/*
 * new datatype for cell struct
 */
MPI_Datatype celltype;

1. Note that this datatype is not sufficient to send multiple columns
from the matrix, since it does not presume the final displacement
between the last element of the first column and the first element of
the second column. One solution is to use MPI_Type_struct() and
MPI_UB. SeeStructure Datatype.

blklen (#elements)

displacement (#elements)

Figure 2: Strided Vector Datatype
 MPI Primer / Developing with LAM

30

stor-
for

ory.

ater
ents
f the

fer
some
ore
int blocklengths[4] = {1, 1, 3, 1};
MPI_Aint base;
MPI_Aint displacements[4];
MPI_Datatype types[4] = {MPI_DOUBLE, MPI_CHAR,

MPI_FLOAT, MPI_UB};
MPI_Address(&cloud[0].energy, &displacement[0]);
MPI_Address(&cloud[0].flags, &displacement[1]);
MPI_Address(&cloud[0].coord, &displacement[2]);
MPI_Address(&cloud[1].energy, &displacement[3]);
base = displacement[0];
for (i = 0; i < 4; ++i) displacement[i] -= base;
MPI_Type_struct(4, blocklengths, displacements, types,

&celltype);
MPI_Type_commit(&celltype);

The displacements in a structure datatype are byte offsets from the first
age location of the C structure. Without guessing the compiler’s policy
packing and alignment in a C structure, the MPI_Address() routine and
some pointer arithmetic are the best way to get the precise values.
MPI_Address() simply returns the absolute address of a location in mem
The displacement of the first element within the structure is zero.

When transferring arrays of a given datatype (by specifying a count gre
than 1 in MPI_Send(), for example), MPI assumes that the array elem
are stored contiguously. If necessary, a gap can be specified at the end o
derived datatype memory layout by adding an artificial element of type
MPI_UB, to the datatype description and giving it a displacement that
extends to the first byte of the second element in an array.

MPI_Type_Commit() separates the datatypes that will be used to trans
messages from the intermediate ones that are scaffolded on the way to
very complicated datatype. A derived datatype must be committed bef
being used in communication.

blklen (#elements)

displacement (#bytes)

Figure 3: Struct Datatype
 MPI Primer / Developing with LAM

31

ny
ruc-
ny

rly
ion
as-
ecial

its

for a
pe
d.

with
e
ut”
size

Packed Datatype
 The description of a derived datatype is fixed after creation at runtime. If a
slight detail changes, such as the blocklength of a particular field in a st
ture, a new datatype is required. In addition to the tedium of creating ma
derived datatypes, a receiver may not know in advance which of a nea
identical suite of datatypes will arrive in the next message. MPI’s solut
is packing and unpacking routines that incrementally assemble and dis
semble a contiguous message buffer. The packed message has the sp
MPI datatype, MPI_PACKED, and is transferred with a count equal to
length in bytes.

MPI_Pack_size (int incount, MPI_Datatype dtype,
MPI_Comm comm, int *size);

MPI_Pack_size() returns the packed message buffer size requirement
given datatype. This may be greater than one would expect from the ty
description due to hidden, implementation dependent packing overhea

MPI_Pack (void *inbuf, int incount, MPI_Datatype
dtype, void *outbuf, int outsize,
int *position, MPI_Comm comm);

Contiguous blocks of homogeneous elements are packed one at a time
MPI_Pack(). After each call, the current location in the packed messag
buffer is updated. The “in” data are the elements to be packed and the “o
data is the packed message buffer. The outsize is always the maximum
of the packed message buffer, to guard against overflow.

Figure 4: Packed Datatype

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

outcount (#bytes)

incount (#elements)

position
 MPI Primer / Developing with LAM

32

 is

es-
byte

n a
MPI_Unpack (void *inbuf, int insize,
int *position, void *outbuf, int outcount,
MPI_Datatype datatype, MPI_Comm comm);

MPI_Unpack() is the natural reverse of MPI_Pack() where the “in” data
the packed message buffer and the “out” data are the elements to be
unpacked.

Consider a networking application that is transferring a variable length m
sage consisting of a count, several (count) Internet addresses as four
character arrays and an equal number of port numbers as shorts.

#define MAXN 100
unsigned char addrs[MAXN][4];
short ports[MAXN];

In the following code fragment, a message is packed and sent based o
given count.

unsigned int membersize, maxsize;
int position;
int nhosts;
int dest, tag;
char *buffer;
/*
 * Do this once.
 */
MPI_Pack_size(1, MPI_INT, MPI_COMM_WORLD, &membersize);
maxsize = membersize;
MPI_Pack_size(MAXN * 4, MPI_UNSIGNED_CHAR, MPI_COMM_WORLD,

&membersize);
maxsize += membersize;
MPI_Pack_size(MAXN, MPI_SHORT, MPI_COMM_WORLD, &membersize);
maxsize += membersize;
buffer = malloc(maxsize);
/*
 * Do this for every new message.
 */
nhosts = /* some number less than MAXN */ 50;
position = 0;
MPI_Pack(nhosts, 1, MPI_INT, buffer, maxsize, &position,

MPI_COMM_WORLD);
MPI_Pack(addrs, nhosts * 4, MPI_UNSIGNED_CHAR, buffer,

maxsize, &position, MPI_COMM_WORLD);
MPI_Pack(ports, nhosts, MPI_SHORT, buffer, maxsize,

&position, MPI_COMM_WORLD);
MPI_Send(buffer, position, MPI_PACKED, dest, tag,

MPI_COMM_WORLD);
 MPI Primer / Developing with LAM

33

s-
ked,
A buffer is allocated once to contain the maximum size of a packed me
sage. In the following code fragment, a message is received and unpac
based on a count packed into the beginning of the message.

int src;
int msgsize;
MPI_Status status;
MPI_Recv(buffer, maxsize, MPI_PACKED, src, tag,

MPI_COMM_WORLD, &status);
position = 0;
MPI_Get_count(&status, MPI_PACKED, &msgsize);
MPI_Unpack(buffer, msgsize, &position, &nhosts, 1, MPI_INT,

MPI_COMM_WORLD);
MPI_Unpack(buffer, msgsize, &position, addrs, nhosts * 4,

MPI_UNSIGNED_CHAR, MPI_COMM_WORLD);
MPI_Unpack(buffer, msgsize, &position, ports, nhosts,

MPI_SHORT, MPI_COMM_WORLD);
 MPI Primer / Developing with LAM

34

.
s.

ap-
rnal

ro-
er-

s,
ify
the

s
nt to

mu-
-

Collective
Message-

Passing

Broadcast

Scatter
MPI_Bcast Send one message to all group members.
MPI_Gather Receive and concatenate from all members
MPI_Scatter Separate and distribute data to all member
MPI_Reduce Combine messages from all members.

MPI_Barrier Wait until all group members reach this point.
MPI_Gatherv Vary counts and buffer displacements.
MPI_Scatterv Vary counts and buffer displacements.
MPI_Allgather Gather and then broadcast.
MPI_Allgatherv Variably gather and then broadcast.
MPI_Alltoall Gather and then scatter.
MPI_Alltoallv Variably gather and then scatter.
MPI_Op_create Create reduction operation.
MPI_Allreduce Reduce and then broadcast.
MPI_Reduce_scatter Reduce and then scatter.
MPI_Scan Perform a prefix reduction.

Collective operations consist of many point-to-point messages which h
pen more or less concurrently (depending on the operation and the inte
algorithm) and involve all processes in a given communicator. Every p
cess must call the same MPI collective routine. Most of the collective op
ations are variations and/or combinations of four primitives: broadcast,
gather, scatter and reduce.

MPI_Bcast (void *buf, int count, MPI_Datatype
dtype, int root, MPI_Comm comm);

In the broadcast operation, all processes specify the same root proces
whose buffer contents will be sent. Processes other than the root spec
receive buffers. After the operation, all buffers contain the message from
root process.

MPI_Scatter (void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf,
int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm);

MPI_Scatter() is also a one-to-many collective operation. All processe
specify the same receive count. The send arguments are only significa
the root process, whose buffer actually contains sendcount * N elements of
the given datatype, where N is the number of processes in the given com
nicator. The send buffer will be divided equally and dispersed to all pro
 MPI Primer / Developing with LAM

35

nt
first

 send-

s
pro-
cess.

Gather

Reduce
cesses (including itself). After the operation, the root has sent sendcou
elements to each process in increasing rank order. Rank 0 receives the
sendcount elements from the send buffer. Rank 1 receives the second
count elements from the send buffer, and so on.

MPI_Gather (void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf,
int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm);

MPI_Gather() is a many-to-one collective operation and is a complete
reverse of the description of MPI_Scatter().

MPI_Reduce (void *sendbuf, void *recvbuf,
int count, MPI_Datatype dtype, MPI_Op op,
int root, MPI_Comm comm);

MPI_Reduce() is also a many-to-one collective operation. All processe
specify the same count and reduction operation. After the reduction, all
cesses have sent count elements from their send buffer to the root pro

Figure 5: Primitive Collective Operations

Broadcast

Gather

Scatter

Reduce

rank 0

rank 1

rank 2

rank 3
 MPI Primer / Developing with LAM

36

ise
ffer.
and
ns
, all

re-

ns
.g.,
t

al
r the
fol-
Elements from corresponding send buffer locations are combined pair-w
to yield a single corresponding element in the root process’s receive bu
The full reduction expression over all processes is always associative
may or may not be commutative. Application specific reduction operatio
can be defined at runtime. MPI provides several pre-defined operations
of which are commutative. They can be used only with sensible MPI p
defined datatypes.

MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and
MPI_BAND bitwise and
MPI_LOR logical or
MPI_BOR bitwise or
MPI_LXOR logical exclusive or
MPI_BXOR bitwise exclusive or

The following code fragment illustrates the primitive collective operatio
together in the context of a statically partitioned regular data domain (e
1-D array). The global domain information is initially obtained by the roo
process (e.g., rank 0) and is broadcast to all other processes. The initi
dataset is also obtained by the root and is scattered to all processes. Afte
computation phase, a global maximum is returned to the root process
lowed by the new dataset itself.

/*
 * parallel programming with a single control process
 */

int root;
int rank, size;
int i;
int full_domain_length;
int sub_domain_length;
double *full_domain, *sub_domain;
double local_max, global_max;
root = 0;
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI Primer / Developing with LAM

37
/*
 * Root obtains full domain and broadcasts its length.
 */

if (rank == root) {
get_full_domain(&full_domain,

&full_domain_length);
}
MPI_Bcast(&full_domain_length, 1 MPI_INT, root,

MPI_COMM_WORLD);
/*
 * Distribute the initial dataset.
 */

sub_domain_length = full_domain_length / size;
sub_domain = (double *) malloc(sub_domain_length *

sizeof(double));
MPI_Scatter(full_domain, sub_domain_length,

MPI_DOUBLE, sub_domain, sub_domain_length,
MPI_DOUBLE, root, MPI_COMM_WORLD);

/*
 * Compute the new dataset.
 */

compute(sub_domain, sub_domain_length, &local_max);
/*
 * Reduce the local maxima to one global maximum
 * at the root.
 */

MPI_Reduce(&local_max, &global_max, 1, MPI_DOUBLE,
MPI_MAX, root, MPI_COMM_WORLD);

/*
 * Collect the new dataset.
 */

MPI_Gather(sub_domain, sub_domain_length, MPI_DOUBLE,
full_domain, sub_domain_length, MPI_DOUBLE,
root, MPI_COMM_WORLD);
 MPI Primer / Developing with LAM

38

tion
ode
ese
.
lled:

ext.
g, but
ro-
e,

pri-

Creating
Communicators
MPI_Comm_dup Duplicate communicator with new context.
MPI_Comm_split Split into categorized sub-groups.
MPI_Comm_free Release a communicator.
MPI_Comm_remote_size

Count intercomm. remote group members.
MPI_Intercomm_merge Create an intracomm. from an intercomm.

MPI_Comm_compare Compare two communicators.
MPI_Comm_create Create a communicator with a given group.
MPI_Comm_test_inter Test for intracommunicator or intercommunicator.
MPI_Intercomm_create Create an intercommunicator.

MPI_Group_size Get number of processes in group.
MPI_Group_rank Get rank of calling process.
MPI_Group_translate_ranks

Processes in group A have what ranks in B?
MPI_Group_compare Compare membership of two groups.
MPI_Comm_group Get group from communicator.
MPI_Group_union Create group with all members of 2 others.
MPI_Group_intersection Create with common members of 2 others.
MPI_Group_difference Create with the complement of intersection.
MPI_Group_incl Create with specific members of old group.
MPI_Group_excl Create with the complement of incl.
MPI_Group_range_incl Create with ranges of old group members.
MPI_Group_range_excl Create with the complement of range_incl.
MPI_Group_free Release a group object.

A communicator could be described simply as a process group. Its crea
is synchronized and its membership is static. There is no period in user c
where a communicator is created but not all its members have joined. Th
qualities make communicators a solid parallel programming foundation
Three communicators are prefabricated before the user code is first ca
MPI_COMM_WORLD, MPI_COMM_SELF and
MPI_COMM_PARENT. SeeBasic Concepts.

Communicators carry a hidden synchronization variable called the cont
If two processes agree on source rank, destination rank and message ta
use different communicators, they will not synchronize. The extra synch
nization means that the global software industry does not have to divid
allocate or reserve tag values. When writing a library or a module of an
application, it is a good idea to create new communicators, and hence a
 MPI Primer / Developing with LAM

39

 is
tic-

ta

e
pu-
d to

 or
tor

ne
me
 in
he

old
im-
vate synchronization space. The simplest MPI routine for this purpose
MPI_Comm_dup(), which duplicates everything in a communicator, par
ularly the group membership, and allocates a new context.

MPI_Comm_dup (MPI_comm comm, MPI_comm *newcomm);

Applications may wish to split into many subgroups, sometimes for da
parallel convenience (i.e. a row of a matrix), sometimes for functional
grouping (i.e. multiple distinct programs in a dataflow architecture). Th
group membership can be extracted from the communicator and mani
lated by an entire suite of MPI routines. The new group can then be use
create a new communicator. MPI also provides a powerful routine,
MPI_Comm_split(), that starts with a communicator and results in one
more new communicators. It combines group splitting with communica
creation and is sufficient for many common application requirements.

MPI_Comm_split (MPI_comm comm, int color,
int key, MPI_Comm *newcomm);

The color and key arguments guide the group splitting. There will be o
new communicator for each value of color. Processes providing the sa
value for color will be grouped in the same communicator. Their ranks
the new communicator are determined by sorting the key arguments. T
lowest value of key will become rank 0. Ties are broken by rank in the
communicator. To preserve relative order from the old communicator, s
ply use the same key everywhere.

A communicator is released by MPI_Comm_free(). Underlying system
resources may be conserved by releasing unwanted communicators.

MPI_Comm_free (MPI_Comm *comm);

Figure 6: Communicator Split
 MPI Primer / Developing with LAM

40

n-
he
ups
ee
a-
is
n

of
ank
en

 is

er
mpt

mu-
le at

-

o

ad

. See

Inter-
communicators

Fault Tolerance
An intercommunicator contains two groups: a local group in which the ow
ing process is a member and a remote group of separate processes. T
remote process group has the mirror image intercommunicator - the gro
are flipped. Spawning new processes creates an intercommunicator. S
Dynamic Processes. MPI_Intercomm_merge() creates an intracommunic
tor (the common form with a single group) from an intercommunicator. Th
is often done to permit collective operations, which can only be done o
intracommunicators.

MPI_Intercomm_merge (MPI_Comm intercomm,
int high, MPI_Comm *newintracomm);

The new intracommunicator group contains the union of the two groups
the intercommunicator. The operation is collective over both groups. R
ordering within the two founding groups is maintained. Ordering betwe
the two founding groups is controlled by the high parameter, a boolean
value. The intercommunicator group that sets this parameter true will
occupy the higher ranks in the intracommunicator.

The number of members in the remote group of an intercommunicator
obtained by MPI_Comm_remote_size().

MPI_Comm_remote_size (MPI_Comm comm, int *size);

Some MPI implementations may invalidate a communicator if a memb
process dies. The MPI library may raise an error condition on any atte
to use a dead communicator, including requests in progress whose com
nicator suddenly becomes invalid. These faults would then be detectab
the application level by setting a communicator’s error handler to
MPI_ERRORS_RETURN (SeeMiscellaneous MPI Features).

A crude but portable fault tolerant master/slave application can be con
structed by using the following strategy:

• Spawn processes in groups of one.

• Set the error handler for the parent / child intercommunicators t
MPI_ERRORS_RETURN.

• If a communication with a child returns an error, assume it is de
and free the intercommunicator.

• Spawn another process, if desired, to replace the dead process
Dynamic Processes.
 MPI Primer / Developing with LAM

41

.

der-
nce,

it is
plica-
a

or-

ion
lign

a

an
re-

ian

Process
Topologies
MPI_Cart_create Create cartesian topology communicator.
MPI_Dims_create Suggest balanced dimension ranges.
MPI_Cart_rank Get rank from cartesian coordinates.
MPI_Cart_coords Get cartesian coordinates from rank.
MPI_Cart_shift Determine ranks for cartesian shift.

MPI_Cart_sub Split into lower dimensional sub-grids.
MPI_Graph_create Create arbitrary topology communicator.
MPI_Topo_test Get type of communicator topology.
MPI_Graphdims_get Get number of edges and nodes.
MPI_Graph_get Get edges and nodes.
MPI_Cartdim_get Get number of dimensions.
MPI_Cart_get Get dimensions, periodicity and local coordinates.
MPI_Graph_neighbors_count

Get number of neighbors in a graph topology.
MPI_Graph_neighbors Get neighbor ranks in a graph topology.
MPI_Cart_map Suggest new ranks in an optimal cartesian mapping
MPI_Graph_map Suggest new ranks in an optimal graph mapping.

MPI is a process oriented programming model that is independent of un
lying nodes in a parallel computer. Nevertheless, to enhance performa
the data movement patterns in a parallel application should match, as
closely as possible, the communication topology of the hardware. Since
difficult for compilers and message-passing systems to guess at an ap
tion’s data movement, MPI allows the application to supply a topology to
communicator, in the hope that the MPI implementation will use that inf
mation to identify processes in an optimal manner.

For example, if the application is dominated by Cartesian communicat
and the parallel computer has a cartesian topology, it is preferable to a
the distribution of data with the machine, and not blindly place any dat
coordinate at any node coordinate.

MPI provides two types of topologies, the ubiquitous cartesian grid, and
arbitrary graph. Topology information is attached to a communicator by c
ating a new communicator. MPI_Cart_create() does this for the cartes
topology.

MPI_Cart_create (MPI_Comm oldcomm, int ndims,
int *dims, int *periods, int reorder,
MPI_Comm *newcomm);
 MPI Primer / Developing with LAM

42

en-
en-

that
y
 the

di-
on
and

s,
rly

re
f the

 of
oth
ge

ton
sses,
first
us
The essential information for a cartesian topology is the number of dim
sions, the length of each dimension and a periodicity flag (does the dim
sion wrap around?) for each dimension. The reorder argument is a flag
indicates if the application will allow a different ranking in the new topolog
communicator. Reordering may make coordinate calculation easier for
MPI implementation.

With a topology enhanced communicator, the application will use coor
nates to decide source and destination ranks. Since MPI communicati
routines still use ranks, the coordinates must be translated into a rank
vice versa. MPI eases this translation with MPI_Cart_rank() and
MPI_Cart_coords().

MPI_Cart_rank (MPI_comm comm, int *coords,
int *rank);

MPI_Cart_coords (MPI_Comm comm, int rank,
int maxdims, int *coords);

To further assist process identification in cartesian topology application
MPI_Cart_shift() returns the ranks corresponding to common neighbou
shift communication. The direction (dimension) and relative distance a
input arguments and two ranks are output arguments, one on each side o
calling process along the given direction. Depending on the periodicity
the cartesian topology associated with the given communicator, one or b
ranks may be returned as MPI_PROC_NULL, indicating a shift off the ed
of the grid.

MPI_Cart_shift (MPI_Comm comm, int direction,
int distance, int *rank_source,
*int rank_dest);

Consider a two dimensional cartesian dataset. The following code skele
establishes a corresponding process topology for any number of proce
and then creates a new communicator for collective operations on the
column of processes. Finally, it obtains the ranks which hold the previo
and next rows, which would lead to data exchange.

int mycoords[2];
int dims[2];
int periods[2] = {1, 0};
int rank_prev, rank_next;
int size;
MPI_Comm comm_cart;
MPI_Comm comm_col1;
 MPI Primer / Developing with LAM

43

his
ons.
/*
 * Create communicator with 2D grid topology.
 */

MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Dims_create(size, 2, dims);
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 1,

&comm_cart);
/*
 * Get local coordinates.
 */

MPI_Comm_rank(comm_cart, &rank);
MPI_Cart_coords(comm_cart, rank, 2, mycoords);

/*
 * Build new communicator on first column.
 */

if (mycoords[1] == 0) {
MPI_Comm_split(comm_cart, 0, mycoords[0],

&comm_col1);
} else {

MPI_Comm_split(comm_cart, MPI_UNDEFINED, 0,
&comm_col1);

}
/*
 * Get the ranks of the next and previous rows, same column.
 */

MPI_Cart_shift(comm_cart, 0, 1, &rank_prev,
&rank_next);

MPI_Dims_create() suggests the most balanced (“square”) dimension
ranges for a given number of nodes and dimensions.

A good reason for building a communicator over a subset of the grid, in t
case the first column in a mesh, is to enable the use of collective operati
SeeCollective Message-Passing.

Figure 7: 2D Cartesian Topology

0,10,0 0,2 0,3

1,11,0 1,2 1,3

2,12,1 2,2 2,3

3,13,0 3,2 3,3
 MPI Primer / Developing with LAM

44

e.

tion
 a

e in
d

ha-
An
d to
he
par-

p of

Process
Creation
MPI_Spawn Start copies of one program.

MPI_Spawn_multiple Start multiple programs.
MPI_Port_open Obtain a connection point for a server.
MPI_Port_close Release a connection point.
MPI_Accept Accept a connection from a client.
MPI_Connect Make a connection to a server.
MPI_Name_publish Publish a connection point under a service nam
MPI_Name_unpublish Stop publishing a connection point.
MPI_Name_get Get connection point from service name.

MPI_Info_create Create a new info object.
MPI_Info_set Store a key/value pair to an info object.
MPI_Info_get Read the value associated with a stored key.
MPI_Info_get_valuelen Get the length of a key value.
MPI_Info_get_nkeys Get number of keys stored with an info object.
MPI_Info_get_nthkey Get the key name in a sequence position.
MPI_Info_dup Duplicate an info object.
MPI_Info_free Destroy an info object.
MPI_Info_delete Remove a key/value pair from an info object.

Due to the static nature of process groups in MPI (a virtue), process crea
must be done carefully. Process creation is a collective operation over
given communicator. A group of processes are created by one call to
MPI_Spawn(). The child processes start up, initialize and communicat
the traditional MPI way. They must begin by calling MPI_Init(). The chil
group has its own MPI_COMM_WORLD which is distinct from the world
communicator of the parent group.

MPI_Spawn (char program[], char *argv[], int
maxprocs, MPI_Info info, int root, MPI_Comm,
parents, MPI_Comm *children, int errs[]);

How do the parents communicate with their children? The natural mec
nism for communication between two groups is the intercommunicator.
intercommunicator whose remote group contains the children is returne
the parents in the second communicator argument of MPI_Spawn(). T
children get the mirror communicator, whose remote group contains the
ents, as the pre-defined communicator MPI_COMM_PARENT. In the
application’s original process world that has no parent, the remote grou
MPI_COMM_PARENT is of size 0. SeeCreating Communicators.
 MPI Primer / Developing with LAM

45

that
 con-
rgv
The

cess
pro-
ror

ifica-
s to
ven-
 a
r to
er
nt.
L.

ea-

uar-

e
 of
e

e

Portable
Resource

Specification
The maxprocs parameter is the number of copies of the single program
will be created. Each process will be passed command line arguments
sisting of the program name followed by the arguments specified in the a
parameter. (The argv parameter should not contain the program name.)
program name, maxprocs and argv are only significant in the parent pro
whose rank is given by the root parameter. The result of each individual
cess spawn is returned through the errs parameter, an array of MPI er
codes.

New processes require resources, beginning with a processor. The spec
tion of resources is a natural area where the MPI abstraction succumb
the underlying operating system and all its domestic customs and con
tions. It is thus difficult if not impossible for an MPI application to make
detailed resource specification and remain portable. The info paramete
MPI_Spawn is an opportunity for the programmer to choose control ov
portability. MPI implementations are not required to interpret this argume
Thus the only portable value for the info parameter is MPI_INFO_NUL

Consult each MPI implementation’s documentation for (non-portable) f
tures within the info parameter and for the default behaviour with
MPI_INFO_NULL.

A common and fairly abstract resource requirement is simply to fill the
available processors with processes. MPI makes an attempt, with no g
antees of accuracy, to supply that information through a pre-defined
attribute called MPI_UNIVERSE_SIZE, which is cached on
MPI_COMM_WORLD. In typical usage, the application would subtract th
value associated with MPI_UNIVERSE_SIZE from the current number
processes, often the size of MPI_COMM_WORLD. The difference is th
recommended value for the maxprocs parameter of MPI_Spawn(). Se
Miscellaneous MPI Features on how to retrieve the value for
MPI_UNIVERSE_SIZE.
 MPI Primer / Developing with LAM

46

urs
uni-
en
uni-

or.

or

ple-
ism.

error

Mi scellaneous
MPI Features

Error Handling
MPI_Errhandler_create Create custom error handler.
MPI_Errhandler_set Set error handler for communicator.
MPI_Error_string Get description of error code.
MPI_Error_class Get class of error code.
MPI_Abort Abnormally terminate application.
MPI_Attr_get Get cached attribute value.
MPI_Wtime Get wall clock time.

MPI_Errhandler_get Get error handler from communicator.
MPI_Errhandler_free Release custom error handler.
MPI_Get_processor_name Get the caller’s processor name.
MPI_Wtick Get wall clock timer resolution.
MPI_Get_version Get the MPI version numbers.

MPI_Keyval_create Create a new attribute key.
MPI_Keyval_free Release an attribute key.
MPI_Attr_put Cache an attribute in a communicator.
MPI_Attr_delete Remove cached attribute.

An error handler is a software routine which is called when a error occ
during some MPI operation. One handler is associated with each comm
cator and is inherited by created communicators which derive from it. Wh
an error occurs in an MPI routine that uses a communicator, that comm
cator’s error handler is called. An application’s initial communicator,
MPI_COMM_WORLD, gets a default built-in handler,
MPI_ERRORS_ARE_FATAL, which aborts all tasks in the communicat

An application may supply an error handler by first creating an MPI err
handler object from a user routine.

MPI_Errhandler_create (void (*function)(),
MPI_Errhandler *errhandler);

Error handler routines have two pre-defined parameters followed by im
mentation dependent parameters using the ANSI C <stdargs.h> mechan
The first parameter is the handler’s communicator and the second is the
code describing the problem.

void function (MPI_Comm *comm, int *code, ...);

The error handler object is then associated with a communicator by
MPI_Errhandler_set().
 MPI Primer / Developing with LAM

47

s
rou-
turn
 an

().

f

t can
ror
dard
ne of
error

g)
r-

u-
d is
asso-
D.

Attr ibute
Caching
MPI_Errhandler_set (MPI_Comm comm,
MPI_Errhandler errhandler);

A second built-in error handler is MPI_ERRORS_RETURN, which doe
nothing and allows the error code to be returned by the offending MPI
tine where it can be tested and acted upon. In C the error code is the re
value of the MPI function. In Fortran the error code is returned through
error parameter to the MPI subroutine.

MPI_Error_string (int code, char *errstring,
int *resultlen);

Error codes are converted into descriptive strings by MPI_Error_string
The user provides space for the string that is a minimum of
MPI_MAX_ERROR_STRING characters in length. The actual length o
the returned string is returned through the resultlen argument.

MPI defines a list of standard error codes (also called error classes) tha
be examined and acted upon by portable applications. All additional er
codes, specific to the implementation, can be mapped to one of the stan
error codes. The idea is that additional error codes are variations on o
the standard codes, or members of the same error class. Two standard
codes catch any additional error code that does not fit this intent:
MPI_ERR_OTHER (doesn’t fit but convert to string and learn somethin
and MPI_ERR_UNKNOWN (no clue). Again, the goal of this design is po
table, intelligent applications.

The mapping of error code to standard error code (class) is done by
MPI_Error_class().

MPI_Error_class (int code, int class);

MPI provides a mechanism for storing arbitrary information with a comm
nicator. A registered key is associated with each piece of information an
used, like a database record, for storage and retrieval. Several keys and
ciated values are pre-defined by MPI and stored in MPI_COMM_WORL

MPI_TAG_UB maximum message tag value
MPI_HOST process rank on user’s local processor
MPI_IO process rank that can fully accomplish I/O
MPI_WTIME_IS_GLOBAL Are clocks synchronized?
MPI_UNIVERSE_SIZE #processes to fill machine
 MPI Primer / Developing with LAM

48

fy-

red

anTiming
All cached information is retrieved by calling MPI_Attr_get() and speci
ing the desired key.

MPI_Attr_get (MPI_Comm comm, int keyval,
void *attr_val, int *flag);

The flag parameter is set to true by MPI_Attr_get() if a value has been sto
the specified key, as will be the case for all the pre-defined keys.

Performance measurement is assisted by MPI_Wtime() which returns
elapsed wall clock time from some fixed point in the past.

double MPI_Wtime (void);
 MPI Primer / Developing with LAM

49

ers
n.
be
see

d

mes
d
om
LAM / MPI Extensions

LAM includes several functions beyond the MPI standard that programm
may find useful during the development phase of a software applicatio
They can be used in the final product, though portability would obviously
compromised. One of the extensions is actually an MPI portable library (
Collective I/O) which can operate with other MPI implementations. This
library is a distinct product from LAM and must be obtained and compile
separately. The other extensions are all intrinsic to LAM.

Some of the extended routines that integrate naturally with MPI have na
that begin with MPIL_. Similar functionality will, in certain cases, be foun
in later versions of the MPI standard. Other routines, which are distinct fr
MPI concepts and objects, begin with lam_.
 MPI Primer / Developing with LAM

50

a

spe-

di-
are

n
.

Remote File
Access
lam_rfopen Open a file.
lam_rfclose Close a file.
lam_rfread Read from a file.
lam_rfwrite Write to a file.
lam_rflseek Change position in a file.
lam_rfaccess Check permissions of a file.
lam_rfmkdir Create directory.
lam_rfchdir Change working directory.
lam_rffstat Get status on file descriptor.
lam_rfstat Get status on named file.
lam_rfdup Duplicate file descriptor.
lam_rfdup2 Duplicate & place file descriptor.
lam_rfsystem Issue a shell command.
lam_rfrmdir Remove a directory.
lam_rfunlink Remove a file.
lam_rfgetwd Get working directory.
lam_rfftruncate Set length of file descriptor.
lam_rftruncate Set length of named file.

A node’s file system can be accessed via remote file functions having
POSIX-like interface. LAM does not provide a file system, only remote
access to a file system from any node.

File pathnames refer to files on the origin node by default. However, a
cific nodeid can be attached to a pathname with the following syntax:

nodeid:path

Each LAM process may have a limited number of simultaneously open
LAM file descriptors. All LAM file functions involve message-passing
using the same links, buffers and other resources as an application.

LAM prohibits opening of slow devices (such as terminals) for input.

Some LAM specific features of remote file access are controlled by ad
tional flags in the flags argument of the lam_rfopen() routine. These flags
listed below.

LAM_O_LOCK Lock the file descriptor into the remote file server’s ope
descriptor cache. See the manual page lam_rfposix()
 MPI Primer / Developing with LAM

51

-
-
.

n
pro-
nd

y to
the
ad

es.

t and
tan-

al

Portabili ty and
Standard I/O
LAM_O_REUSEReuse existing open file descriptor for matching path
name and open flags - if found. This is useful for asyn
chronous access to one open file with one file pointer

LAM_O_1WAY Write to the file without waiting for completion or return
code. This greatly increases write performance but
should only be used on a debugged application.

LAM does not conflict with the native operating system’s file interface.
Thus, open() is a direct UNIX routine (LAM is uninvolved) and operates o
the file system of the node on which it is invoked. On remote nodes, a
cess’s pre-opened UNIX standard output (UNIX file handle 1 or stdout) a
UNIX standard error (UNIX file handle 2 or stderr) are redirected to LAM
as there is no remote terminal. LAM uses the remote file access facilit
move data from these two sources to the node and terminal from which
application was launched - the user’s local node. It is not possible to re
from UNIX standard input (UNIX file handle 0, or stdin) on remote nod

Processes on the local node also have access to UNIX standard outpu
error. Unlike remote processes, local processes can read from UNIX s
dard input.

The UNIX standard I/O terminations may be redirected by using the norm
shell redirections withmpirun. SeeExecuting MPI Programs.

% mpirun my_app > log
 MPI Primer / Developing with LAM

52

rch
y.

ly in

gle
SIX
ind-

on

me
i-
ro-
a

nd

nt
-
tly
t
ns-
re
of

Collective I/O
CBX_Open Open a file for MPI Cubix access.
CBX_Close Close an MPI Cubix file.
CBX_Read Read in either single or multiple mode.
CBX_Write Write in either single or multiple mode.
CBX_Lseek Seek in either single or multiple mode.
CBX_Order Change the order of multiple access.
CBX_Singl Switch file access to single mode.
CBX_Multi Switch file access to multiple mode.
CBX_Is_singl Is the file in single mode?
CBX_Is_multi Is the file in multiple mode?

MPI Cubix a loosely synchronous, collective I/O library based on a resea
development of the same name at the California Institute of Technolog
This Cubix is integrated with the concepts of MPI communicators and
datatypes. The members of a communicator group participate collective
the I/O operation. Data is transferred as a count of elements of a given
datatype, just as in MPI message-passing.

All file access routines eventually translate to POSIX operations on a sin
file. Only one process in the communicator group invokes the actual PO
operation. The POSIX file operation bindings are also reflected in the b
ings of the MPI Cubix routines, tempered with MPI objects.

There are two different MPI Cubix access methods that solve two comm
file read/write problems in data parallel programming.

single All processes execute the same file routine with the sa
amount of identical data. The data from only one (arb
trary) process is transferred. This is useful when all p
cesses want to read a global value from a file, or write
global value to a file. It is especially convenient during
output to a terminal. All nodes print an error message a
it appears once on the terminal.

multiple All processes execute the same file routine with differe
amounts of different data. All the data from all the pro
cesses is transferred, but the order of transfer is stric
controlled. By default, process rank 0 will transfer firs
and the sequence continues until the highest rank tra
fers last. This is useful in decomposing a data structu
during read so that the right nodes get the right subset
 MPI Primer / Developing with LAM

53

so

am
eed

ritten

le
n by
f

sen

and
ou-

ata
a is
d.
data and in recomposing a data structure during write
that the data structure is not jumbled.

Without Cubix file access, an application often needs a controlling progr
to manage the parallel processes and filter I/O. Cubix can eliminate the n
for a control program. Without synchronization, a message written by N
nodes appears N times on the terminal. A decomposed data structure w
to a file appears in a random order.

MPI Cubix file descriptors are distinct from LAM remote file descriptors
and the file descriptors of the native operating system. An MPI Cubix fi
descriptor is returned from CBX_Open(). The access method is chose
one of the special flags, CBX_O_SINGL or CBX_O_MULTI. The owner o
the file, the one process that will operate on it at the POSIX level, is cho
in another argument to CBX_Open().

#include <fcntl.h>
#include <cbx.h>

int CBX_Open (const char *name, int flags,
int mode, int owner, MPI_Comm comm);

int CBX_Close (int fd);

The access method being used on an open MPI Cubix file can be queried
changed at any time. The change routines are collective. The inquiry r
tines are not.

int CBX_Multi (int fd);
int CBX_Singl (int fd);
int CBX_Is_multi (int fd);
int CBX_Is_singl (int fd);

CBX_Read() and CBX_Write() transfer data from and to an open MPI
Cubix file. An MPI datatype is among the arguments. The length of the d
buffer is a count of elements of the given datatype. Only contiguous dat
transferred. If the MPI datatype contains holes, they are also transferre

int CBX_Read (int fd, void *buffer, int count,
MPI_Datatype dtype);

int CBX_Write (int fd, void *buffer, int count,
MPI_Datatype dtype);
 MPI Primer / Developing with LAM

54

sfer

tor.

Cubix Example
The CBX_Order() routine changes the default order of process data tran
in the MPI Cubix multiple method. Each process specifies a unique
sequence number from 0 to N-1, where N is the size of the communica

int CBX_Order (int fd, int newrank);

/*
 * Read and decompose a 1-D array of reals
 * across a 1-D array of processes.
 * First read array size in singl then array in multi.
 * Assume the array length decomposes evenly.
 */
static float *data;
main(argc, argv)
int argc;
char *argv[];
{

int fd;
int glob_len, local_len;
int nread;
int size;
MPI_Init(&argc, &argv);

/*
 * Open the file first with Cubix single method.
 * The file will be owned by process rank 0.
 * This is not an error handling tutorial.
 */

fd = CBX_Open(“data”, O_RDONLY | CBX_O_SINGL, 0, 0,
MPI_COMM_WORLD);

/*
 * Read the global (total) length of the array.
 */

CBX_Read(fd, &glob_len, 1, MPI_INT);
/*
 * Switch to Cubix multiple method.
 */

CBX_Multi(fd);
/*
 * Calculate the local length, allocate enough
 * space and read the local subset of the data.
 */

MPI_Comm_size(MPI_COMM_WORLD, &size);
local_len = glob_len / size;
data = (float *) malloc(local_len * sizeof(float));
CBX_Read(fd, data, local_len, MPI_FLOAT);
CBX_Close(fd);
MPI_Finalize();

}

 MPI Primer / Developing with LAM

55

d

fault
al is
n

er-

ly
able

tor
ove.

Signal
Handling

Signal Delivery
lam_ksignal Install a signal handler.
lam_ksigblock Block selected signals.
lam_ksigsetmask Set entire blocking mask.
lam_ksigretry Retry request after selected signals.
lam_ksigsetretry Set entire retry mask.
lam_ksigmask Create signal mask.

MPIL_Signal Deliver a signal to a process.

LAM provides a UNIX-like signal package. The signals are different an
their usage does not conflict with the underlying operating system.

Some signals are used internally by the system. Some have useful de
options and others are completely left to the user. The most useful sign
the one that obliges a process to terminate itself. Signals are defined i
<lam_ksignal.h>.

LAM_SIGTRACE unload trace data
LAM_SIGUDIE terminate
LAM_SIGARREST suspend execution
LAM_SIGRELEASE resume execution
LAM_SIGA user defined (default ignored)
LAM_SIGB user defined (default ignored)
LAM_SIGFUSE node about to die
LAM_SIGSHRINK another node has died

The lam_ksignal(), lam_ksigblock() and lam_ksigsetmask() functions op
ate identically to their UNIX counterparts. A LAM or MPI routine inter-
rupted by a signal before completion is automatically retried. With the
lam_ksigretry() and lam_ksigsetretry() functions, which operate similar
to lam_ksigblock() and lam_ksigsetmask() respectively, the user can dis
automatic system call retry and receive an error code instead.

MPIL_Signal() delivers a signal to a process identified by a communica
and a rank. The signal number argument is taken from the list defined ab

MPIL_Signal (MPI_Comm comm, int rank, int signo);
 MPI Primer / Developing with LAM

56

g
ref-
es

ber
It is
ica-

r

tors

can
f the

Debugging and
Tracing
MPIL_Comm_id Get communicator identifier.
MPIL_Comm_gps Get LAM coordinates for an MPI process.
MPIL_Type_id Get datatype identifier.

MPIL_Trace_on Enable trace collection.
MPIL_Trace_off Disable trace collection.

LAM places great emphasis on debugging through extensive monitorin
capabilities. Opaque objects in MPI make it difficult for the user to cross
erence the information presented by LAM debugging tools with the valu
within a running process. Ifmpitask(SeeProcess Monitoring and Control)
shows a process blocked on a communicator, it prints an identifying num
for that communicator. The number is not defined by the MPI standard.
implementation dependent information internal to the opaque commun
tor which the program cannot access using the standard API.

MPIL_Comm_id() and MPIL_Type_id() return the internal identifiers fo
communicators and datatypes, respectively.

MPIL_Comm_id (MPI_Comm comm, int *id);
MPIL_Type_id (MPI_Comm comm, int *id);

LAM / MPI extensions beginning with the lam_ prefix are LAM-centric.
They operate on LAM node and process identifiers, not MPI communica
and ranks. MPIL_Comm_gps() obtains the LAM coordinates from MPI
information.

MPIL_Comm_gps (MPI_Comm comm, int rank, int *nid,
int *pid);

Execution trace collection for performance visualization and debugging
purposes is enabled bympirun. SeeExecuting MPI Programs. To avoid
information overload and huge trace files, a trace enabled application
toggle on and off actual trace collection so that only interesting phases o
computation are monitored.

MPIL_Trace_On (void);
MPIL_Trace_Off (void);
 MPI Primer / Developing with LAM

57

nd
the
m-

ive

w
rt-
bse-

spe-

r
how

fied
ted

Getting
Started

Setting Up the
UNIX

Environment

Node Mnemonics
LAM Command Reference

Before running LAM you must establish certain environment variables a
search paths for your shell on each machine in the multicomputer. Add
following commands or equivalent to your shell start-up file (.cshrc, assu
ing C shell). Do not add these to your .login as they would not be effect
on remote machines whenrsh is used to start LAM.

setenv LAMHOME <LAM installation directory>

set path = ($path $LAMHOME/bin)

The local system administrator, or the person who installed LAM, will kno
the location of the LAM installation directory. After editing the shell sta
up file, invoke it to establish the new values. This is not necessary on su
quent logins to the UNIX system.

% source .cshrc

Each remote machine in the multicomputer must be reachable with the
UNIX rsh command. rsh does not prompt for passwords and relies on
cial files on the remote machine (/etc/hosts.equiv and ~/.rhosts) to gain
access. One of these files must be prepared to admit the selected use
account for the remote machine. See the UNIX manual page for rsh on
to prepare these files.

Many LAM commands require one or more nodeids. Nodeids are speci
on the command line as n<list>, where <list> is a list of comma separa
nodeids or nodeid ranges.
 MPI Primer / Developing with LAM

58

at

lam-
et of

the
ed
ted

list>

node
en-
osi-
hers

d,

Process
Identification

On-line Help
n1
n1,3,5-10

In addition to explicit node identification, LAM has special mnemonics th
refer to special nodes or a group of nodes.

h the local node where the command is typed (as in ‘here’)
o the origin node where LAM was started with thelambootcommand
N all nodes
C all nodes intended for application computing

Nodeids are established in the LAM multicomputer plan, called a boot
schema (seeWriting a LAM Boot Schema). LAM nodeids are always num-
bered consecutively beginning at 0 when the system is first started with
boot. Thus the number of nodes in the boot schema defines the initial s
nodeids. If nodes are added or subtracted, the contiguous property of
nodeids can end. SeeAdding and Deleting LAM Nodes.

LAM processes can be specified in two ways: by process identifier (from
underlying operating system) or by LAM process index. PIDs are specifi
on the command line as p<list>, where <list> is a list of comma separa
PIDs or PID ranges.

p5158
p5158,5160,5200-5210

Process indices are specified on the command line as i<list>, where <
is a list of comma separated indices or index ranges.

i8
i8-12,14

MPI processes are normally labelled by the LAM / MPI status reporting
commands,mpitask andmpimsg, with their global rank in the
MPI_COMM_WORLD communicator. With the possibility of multiple
concurrent applications, spawned processes, and the need to use LAM
/ process identification with LAM process control commands, a supplem
tary labelling scheme is available. It is known as the GPS, for Global P
tioning System, because it absolutely distinguishes a process from all ot
in a LAM system. The GPS contains the process index and nodeid.

To print a brief summary of the syntax and options of any LAM comman
execute the command with the -h option.
 MPI Primer / Developing with LAM

59

ns)
en-
% recon -h

Detailed information on each command (and most programming functio
is available from on-line manual pages. They are an important supplem
tary reference to this document.

% man recon
 MPI Primer / Developing with LAM

60

le,
chi-

der

d
c-

or-
ent
at

for
ed to

 on
e a
table

Compili ng
MPI Programs
hcc wrapper for local C compiler
hcp wrapper for local C++ compiler
hf77 wrapper for local Fortran compiler

Objects and binaries are built with the native compiler and linker availab
hopefully, on all of the LAM nodes, or at least on one machine of each ar
tecture and operating system type. Thehcctool is a wrapper that invokes the
native C compiler driver (e.g. cc) and provides the paths to the LAM hea
files and libraries and implicitly links all LAM libraries. The MPI library is
linked explicitly. All options presented to hcc are passed through to the
native compiler driver.

% hcc -o appl appl.c -lmpi
% hcp -o appl appl.c -lmpi

By default, hcc uses the compiler driver that was used to build LAM an
specified in the LAM configuration file. A different C compiler can be spe
ified in the LAMHCC environment variable.

In case the C and C++ compilers are different, a separatehcpwrapper is pro-
vided for C++.

Unlike the C and C++ wrappers, the Fortran wrapper,hf77, does not insert
an option to search LAM’s header file directory. This is because not all F
tran compiler drivers support that option and the Fortran include statem
may be required instead to bring in the MPI header file, mpif.h. Note th
mpif.h is a Fortran source file, but all other LAM header files intended
Fortran use contain C preprocessor code. The C preprocessor may ne
be run explicitly if the Fortran driver does not do so automatically.

Care should be taken not to confuse object files and binaries produced
heterogeneous nodes in the multicomputer. In such situations, it can b
good idea to append the machine or CPU name to the object and execu
file names in order to distinguish between them.

{sparc}% hcc -o appl.sparc appl.c

{sgi}% hcc -o appl.sgi appl.c
 MPI Primer / Developing with LAM

61

 be

ev-
are.

rsh.
uiv

M

rd

n
a file

ic

mes-
rans-
s
ad
ay

ses
ro-
read

Start ing LAM

recon

lamboot

Fault Tolerance
recon Verify multicomputer is ready to run LAM.
lamboot Start a LAM multicomputer session.
tping Check communication to given node.
wipe Terminate a LAM session.

The topology of a multicomputer running LAM is a totally connected
graph. Thus it is only necessary for the user to specify the machines to
included in the multicomputer in order to start LAM. The boot schema
(ASCII file) serves this purpose. SeeWriting a LAM Boot Schema.

Therecontool verifies that LAM can be started on each intended node. S
eral conditions must exist before a machine can remotely run the softw

• The machine address must be reachable via the network.

• The user must be able to remotely execute on the machine with
Remote host permission must be provided in either /etc/hosts.eq
or the remote user’s .rhosts file.

• The remote user’s shell must have a search path that will locate LA
executables.

• The remote shell’s start-up file must not print anything to standa
error when invoked non-interactively.

Thelamboottool starts a LAM session for the individual user. The -v optio
prints a message before each start-up step is attempted. The boot schem
is the primary argument to lamboot.

% lamboot -v <boot schema>

-x Enable fault detection and recovery. Exchange period
“heartbeat” messages between all nodes.

LAM considers a node to be dead after repeated retransmissions of a
sage packet go unacknowledged. By default, no action is taken and ret
missions continue indefinitely. With the -x option to lamboot, LAM initiate
a procedure to remove the dead node from the multicomputer. The de
nodeid becomes invalid. All other nodeids remain unchanged - holes m
develop in the nodeid list. Finally, a signal is set to all application proces
on all nodes, notifying them of the failure. The runtime system of each p
cess must, at a minimum, flush a cached table of nodeids, so that it can
updated information from the LAM daemon. Users can trap this signal
 MPI Primer / Developing with LAM

62

.

el
 to a

sion

tping

wipe
(LAM_SIGSHRINK) and take further action particular to the application
SeeSignal Handling.

Hands-on control and monitoring are a hallmark of LAM. The simplest
command,tping, is a confidence building validity check that begins to disp
the black box nature of parallel environments. tping echoes a message
destination node, or a multicast destination. It is time to restart the ses
if this command hangs.

% tping n0
% tping N

To terminate a LAM session, use thewipetool. To restart LAM after a sys-
tem failure, execute wipe followed by lamboot.

% wipe -v <boot schema>
 MPI Primer / Developing with LAM

63

.

lica-
MD
sses
pro-
nd
or.

at
are

line:

file

n.
is

des

tion
ions
 file-
gly.

e

he

Executing MPI
Programs

mpirun

Application
Schema
mpirun Run an MPI application.
lamclean Terminate and clean up all LAM processes

An MPI application is started with one invocation ofmpirun. The programs,
number of processes and computing resources are specified in an app
tion schema, a separate file whose name is given to mpirun. Simple SP
applications can be started from the mpirun command line. MPI proce
locate each other through the abstract concepts of communicator and
cess rank. It is mpirun that provides the hard information on nodeids a
process IDs to build the pre-defined MPI_COMM_WORLD communicat

% mpirun -v my_app_schema

An application schema contains one line for every different program th
constitutes the application. For each program, three important directions
given, using options that duplicate the syntax of the mpirun command

-s <nodeid> the node in whose file space the executable program
can be found - Without this option, LAM is directed to
look for programs on the same node where they will ru

<nodeids> the nodes on which the program will run - Without th
option, LAM will use all the nodes.

-c <#> the number of processes to create across the given no
- Without this option, LAM will create one process on
each of the given nodes.

These same options are used on the mpirun command line if the applica
consists of only one program. The presence of one or more of these opt
tells mpirun that the filename is an executable program. Otherwise the
name is assumed to be an application schema and is parsed accordin

#
sample application schema
#
master h
slave N -s h

The above example runs the ‘master’ on the local node (the same nod
where mpirun is invoked) and ‘slave’ on all the nodes, after taking the
‘slave’ executable file from the local node and shipping it to all nodes. T
 MPI Primer / Developing with LAM

64

ro-

y the
nt
ng

e
.

es-

e

e

ust
pro-
 of
sys-
f
n in

 the
this

ole
ge-

Locating
Executable Files

Direct
Communication

Guaranteed
Envelope

Resources
shipped program is stored in the /tmp directory and deleted when the p
cess dies.

LAM searches for executables files on the source node, as modified b
-s option, by using the list of directories defined by the PATH environme
variable. The treatment of a ‘.’ path is special. On the local node invoki
mpirun, ‘.’ is the working directory of mpirun. On remote nodes, it is the
user’s home directory.

Other mpirun options enable powerful functionality within LAM’s MPI
library.

-c2c Bypass the LAM daemon for MPI communication. Us
an optimal protocol to directly connect MPI processes

The “client to client” feature of the MPI library derives the most speed1 out
of the underlying hardware at the expense of monitoring and control. M
sages that have been delivered but not received are buffered with the
receiver. It is intended that applications would be debugged first with th
daemon and then run in production using direct communication2.

-nger Disable GER protocol that protects message envelop
queues. Do not detect and report resource overflow
errors.

The “Guaranteed Envelope Resources” protocol provides the most rob
MPI message delivery system. It protects communication between any
cess pair from interference from a third process. It prevents the posting
send operations that may not be delivered to the receiver due to lack of
tem resources (envelope resources) and thus fully respects the spirit o
MPI’s guarantee of message progress, which in turn reduces confusio
debugging ill-behaved applications.

In addition to protecting process-pair envelope queues, GER publishes
size of the queue so that programmers can know how far they can stress
resource before deadlocking or failing. GER fills a serious portability h
in MPI - knowing the resource limitations directly associated with messa
passing. The minimum GER figure for LAM is configured when LAM is

1. The speed is constrained by the quality of the c2c module within the MPI
library. Every machine can benefit from a customized solution.
2. Limits on underlying system resources (like file descriptors for a socket imple-
mentation) may constrain the scalability of applications using -c2c.
 MPI Primer / Developing with LAM

65

di-

ing
ug-

ich
-toff

alls
o

st
 to
g

n-

nds
re to

s) is
ith-

ue to
g.

Trace Collection

lamclean
installed. See the manual page on MPI as well as the paper,Robust MPI
Message Delivery Through Guaranteed Resources for a more detailed dis-
cussion.

-ton, -toff Enable trace collection. Trace collection begins imme
ately after MPI_Init() with -ton, but is deferred until
MPIL_Trace_on() with -toff.

The MPI library can generate execution traces detailing message-pass
activity. The data can be used for performance tuning or advanced deb
ging. Actual trace generation is controlled by two switches, both of wh
must be in the on position to enable trace generation. Both the -ton and
options turn the first switch on for the entire run of the application. With
-ton, the second switch begins in the on position after the application c
MPI_Init(). With -toff, the second switch begins in the off position and n
traces are generated.

The second switch is toggled with runtime functions. SeeDebugging and
Tracing. The purpose of beginning with the second switch off is to limit
tracing to interesting phases of the computation. The purpose of the fir
switch is to allow an application to be traced without recompilation and
allow an application littered with trace toggling functions to disable tracin
altogether and incur minimal overhead.

SeeCollecting Trace Data for how to assemble a single trace file after ru
ning a trace enabled application.

An application that goes awry may leave many processes running or
blocked, many messages unconsumed, and many resources allocated
throughout the multicomputer. Although there are user interface comma
to remove a user presence from every individual subsystem, taking ca
invoke them all can become tedious. Thelamclean command can be used
when no user presence (processes, message, allocations, registration
desired on the multicomputer. The user essentially wants to start over w
out the longer delay of restarting the LAM session.

% lamclean

lamclean cannot be used when some or all nodes are not reachable d
catastrophic failure or complete buffer overflow that causes link jammin
If lamclean fails to return, it is time to use thewipetool. SeeStarting LAM.
It may be reassuring to use thempitaskandmpimsgcommands to verify that
lamclean did the job.
 MPI Primer / Developing with LAM

66

lti-
ion

all
ed by

rate

Process
Monitoring

and Control

mpitask
mpitask Print status of MPI processes.
doom Send a signal to a process.

Monitoring a process’s execution state is a major aid in debugging mu
computer applications. This feature helps debug process synchronizat
and data transfer, the added dimension of parallel programming. Thempi-
taskcommand prints information on MPI processes. With no arguments,
MPI processes on all nodes are reported. The report can be constrain
specifying nodes and LAM processes.

Consider the following example code, whose only purpose is to demonst
LAM’s monitoring capabilities:

/*
 * Create an interesting report for mpitask and mpimsg.
 */
#include <mpi.h>
#define ROWS 10
#define COLS 20
struct cell {

int code;
double coords[3];

};
static struct cell mat[ROWS][COLS];
static int blocklengths[3] = {1, 3, 1};
static MPI_Datatype types[3] =

{MPI_INT, MPI_DOUBLE, MPI_UB};
main(argc, argv)
int argc;
char *argv[];
{

int rank, size;
MPI_Comm newcomm;
MPI_Datatype dt_cell, dt_mat;
MPI_Status status;
MPI_Aint base;
MPI_Aint displacements[3];
int i, j;

/*
 * Initialize the matrix.
 */

for (i = 0; i < ROWS; ++i) {
for (j = 0; j < COLS; ++j) {

mat[i][j].code = i;
mat[i][j].coords[0] = (double) i;
 MPI Primer / Developing with LAM

67

ine

g

or-

is
mat[i][j].coords[1] = (double) j;
mat[i][j].coords[2] = (double) i * j

}
}
MPI_Init(&argc, &argv);

/*
 * Create communicators for sub-groups.
 */

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_split(MPI_COMM_WORLD, rank % 3, 0, &newcomm);

/*
 * Build derived datatype for 2 columns of matrix.
 */

MPI_Address(&mat[0][0].code, &displacements[0]);
MPI_Address(mat[0][0].coords, &displacements[1]);
MPI_Address(&mat[0][1].code, &displacements[2]);
base = displacements[0];
for (i = 0; i < 3; ++i) displacements[i] -= base;
MPI_Type_struct(3, blocklengths, displacements,

types, &dt_cell);
MPI_Type_vector(ROWS, 2, COLS, dt_cell, &dt_mat);
MPI_Type_commit(&dt_mat);

/*
 * Perform a send and a receive that won’t be satisfied.
 */

MPI_Comm_size(newcomm, &size);
MPI_Comm_rank(newcomm, &rank);
MPI_Send(&mat[0][0], 1, dt_mat, (rank + 1) % size,

0, newcomm);
MPI_Recv(&mat[0][0], 1, dt_mat, (rank + 1) % size,

MPI_ANY_TAG, newcomm, &status);
MPI_Finalize();
return(0);

}

Let the program be run with a sufficient number of processes. Then exam
the state of the application processes with mpitask.

% mpirun -v -c 10 demo

In its default display mode, mpitask prints information under the followin
headings.

TASK (G/L) an identification of the process - An MPI process is n
mally identified by its rank in MPI_COMM_WORLD,
also referred to as the “global” (G) rank. If the process
blocked on a communicator, a ‘/’ followed by its rank
 MPI Primer / Developing with LAM

68

o-

e

ill
of

on-
ot
lter-

).

%
TA YPE
0/0
2/0
4/1
6/2
8/2
1/0
3/1
5/1
7/2
9/3

GPS
Identification
within that communicator is appended. This is also
referred to as the “local” (L) rank. The name of the pr
gram is also printed.

FUNCTION the MPI routine currently being executed
PEER|ROOT the source or destination process of a communication

operation, if one is specified under FUNCTION, or the
root process of certain collective operations

TAG the message tag of a point-to-point communication
COMM the communicator ID being used - SeeDebugging and

Tracingfor how to cross-reference this number with th
program’s data.

COUNT the number of elements being transferred
DATATYPE the datatype ID of each element being transferred

Depending on the MPI routine, some fields may not be applicable and w
be left blank. If a process is not currently executing an MPI routine, one
the following execution states may be reported:

<running> free to run on the underlying OS
<paused> blocked on lam_kpause()
<stopped> stopped by the LAM signal, LAM_SIGARREST
<blocked> blocked in a LAM routine - In general this should be a

transitory state.

With spawned processes and even multiple MPI applications running c
currently under the same LAM session, MPI_COMM_WORLD rank is n
always an unambiguous identification of an MPI process. LAM has an a
native to the global rank, called the GPS (for Global Positioning System

mpitask
SK (G/L) FUNCTION PEER|ROOT TAG COMM COUNT DATAT
 demo Recv 3/1 ANY <2> 1 <30>
 demo Recv 5/1 ANY <2> 1 <30>
 demo Recv 7/2 ANY <2> 1 <30>
 demo Recv 9/3 ANY <2> 1 <30>
 demo Recv 2/0 ANY <2> 1 <30>
 demo Recv 4/1 ANY <2> 1 <30>
 demo Recv 6/2 ANY <2> 1 <30>
 demo Recv 8/2 ANY <2> 1 <30>
 demo Recv 1/0 ANY <2> 1 <30>
 demo Recv 0/0 ANY <2> 1 <30>
 MPI Primer / Developing with LAM

69

lo-

and

own
an

be

-

der
om-
-
tor,

n

 the

rs.
pe

%
TA YPE
n0

Communicator
Monitoring

%
TA
IN
SI
GR

Datatype
Monitoring
-gps Identify MPI processes with the GPS instead of the g
bal rank, the rank within MPI_COMM_WORLD.

The GPS is comprised of the nodeid on which the process is running,
the LAM process index within that node.1

The MPI communicator and datatype are two opaque objects that are sh
as unfamiliar identifiers in the format, <#>. Extended library functions c
report the same values from within the running application. SeeDebugging
and Tracing. Information from within communicators and datatypes can
reported by mpitask.

-c Instead of the default report, print communicator infor
mation on all selected processes.

The communicator report contains an identification of the process, as un
the TASK heading in the default report. It also contains the size of the c
municator and the global ranks (or GPS, with the -gps option) of all pro
cesses in the communicator’s process group. If it is an inter-communica
members of both groups are reported.

-d Instead of the default report, print datatype informatio
on all selected processes.

The datatype report contains an identification of the process, as under
TASK heading in the default report. It also contains a rendering of the
datatype’s type map, which is not easy to depict with only ASCII characte
The format is hierarchical, with indentation representing a level of dataty
derivation. Basic datatypes are written as they are coded. For derived

1. Application process indices do not start at 0 or 1 because LAM system pro-
cesses occupy the first several positions.

mpitask -gps n0 i8
SK (GPS/L) FUNCTION PEER|ROOT TAG COMM COUNT DATAT
,i8/0 demo Recv n1,i9/1 ANY <2> 1 <30>

mpitask -c n0 i8
SK (G/L): 0/0 demo
TRACOMM: <2>
ZE: 4
OUP: 0 3 6 9
 MPI Primer / Developing with LAM

70

ce-
 the

 by
e.

 by
om-
ight

be
tion
oom
ig-
 are

orm:

%
TA
DA

doom
datatypes, the constructor type is shown along with information on displa
ments, blocklengths and block counts. Compare the sample code with
output of mpitask -d.

The number of MPI processes reported by mpitask can be constrained
specifying nodeids and/or process indices on the mpitask command lin
Choosing the right nodeids and process indices is obviously facilitated
the GPS reporting. Selecting a single process is particularly useful for c
municator and datatype reporting, when many or all of the processes m
have the same communicator or datatype to report.

Doom is the command level interface to signal delivery. Node(s) must
specified on the command line. If no processes are specified, all applica
processes on the selected nodes are signalled. With no other options, d
sends a LAM_SIGUDIE signal. Unfortunately, the user cannot specify s
nal mnemonics and must give the actual signal number instead. These
listed below.

-1 (LAM_SIGTRACE) unload trace data
-4 (LAM_SIGUDIE) terminate
-5 (LAM_SIGARREST) suspend execution
-6 (LAM_SIGRELEASE) resume execution
-7 (LAM_SIGA) reserved for user
-8 (LAM_SIGB) reserved for user
-9 (LAM_SIGFUSE) node about to die
-10 (LAM_SIGSHRINK) another node has died

For example, to suspend process index 8 on node 1, use the following f

% doom n1 i8 -5

Resume the execution of the same process:

% doom n1 i8 -6

mpitask -d n0 i8
SK (G/L): 0/0 demo
TATYPE: <30>

MPI_VECTOR (10 x 2, 20)
MPI_STRUCT (3)

(1, 0) MPI_INT
(3, 8) MPI_DOUBLE
(1, 32) MPI_UB
 MPI Primer / Developing with LAM

71

ly due

s are
esses.

d
 with

g

/’
k)
a

om
ce is
ss can

Message
Monitoring

and Control

mpimsg

%
SR
9/3
8/2
1/0
3/1
5/1
7/2
0/0
2/0
4/1
6/2
mpimsg Monitor message buffers.
bfctl Control message buffers.

A receiving process is usually debugged with thempitask command, but a
sending process transfers a message and returns to a ready state quick
to the presence of buffers. Thempimsg command is provided to examine
buffered messages. With no arguments, all MPI messages on all node
reported. The report can be constrained by specifying nodes and proc

SeeProcess Monitoring and Controlfor an example program that can sen
messages that will not be received. These messages can be examined
mpimsg.

In its default display mode, mpimsg prints information under the followin
headings.

SRC (G/L) an identification of the sending process followed by a ‘
and the process’s communicator rank (the “local” ran

DEST (G/L) an identification of the receiving process followed by
‘/’ and the process’s communicator rank

TAG the message tag
COMM the communicator ID
COUNT the number of elements in the message
DATATYPE the datatype ID of each element
MSG the message ID to use in a contents query

The same communicator and datatype information that is obtainable fr
processes with mpitask is also obtainable from messages. The differen
that more precision is needed to specify a message, because one proce

mpimsg
C (G/L) DEST (G/L) TAG COMM COUNT DATATYPE MSG

0/0 0 <2> 1 <30> n0,#0
2/0 0 <2> 1 <30> n0,#1
4/1 0 <2> 1 <30> n0,#2
6/2 0 <2> 1 <30> n0,#3
8/2 0 <2> 1 <30> n0,#4
1/0 0 <2> 1 <30> n1,#0
3/1 0 <2> 1 <30> n1,#1
5/1 0 <2> 1 <30> n1,#2
7/2 0 <2> 1 <30> n1,#3
9/3 0 <2> 1 <30> n1,#4
 MPI Primer / Developing with LAM

72

res a
). In
e

on

es-
ets at
age.
ew-

he
al
ck in
the

ces.
an-
ol

Message
Contents

%
ME
00
00
00
00
00
00
00
00
00
...

bfctl
generate several messages. Instead of process indices, mpimsg requi
message number as a parameter to -c (communicator) or -d (datatype
fact the information needed by mpimsg is that exactly printed under th
MSG heading in the default report: nodeid and message number.

-m <#> Display the contents of the specified message number
the specified node.

An additional capability unique to message reporting is the display of m
sage contents. The datatype’s type map is used to format the data. Offs
the beginning of each line are from the beginning of the unpacked mess
Contiguous blocks of one basic datatype are printed contiguously, with n
lines forced between blocks.

The LAM daemon does not continue to allocate buffer space up until t
operating system is out of memory. There is a limit after which no addition
messages will be accepted until some are consumed. Processes will blo
send operations if the required buffer space is not available. When using
default GER protocol (SeeExecuting MPI Programs), mpirunwill take care
of adjusting the buffer limit according to the guaranteed envelope resour
If this protocol is disabled, the user may need to tune the buffer limit m
ually. The user can control the maximum size a LAM daemon’s buffer po
with thebfctl command.

-s Adjust the upper limit on buffered messages for the
selected nodes.

% bfctl N -s 0x100000

mpimsg -gps n0 -m 4
SSAGE: n0,i12/2 #4

000000: 0
000008: 0 0 0
000020: 0
000028: 0 1 0
000280: 1
000288: 1 0 0
0002a0: 1
0002a8: 1 1 1
000500: 2
 MPI Primer / Developing with LAM

73

g
es
ne
is-

by

d

ific
m-
ed
f an
u-
cess

e sol-

com-
ess
.

m-

ppli-
the

Collecting
Trace Data

lamtrace
lamtrace Collect trace data and store in a file.

After a traced application has completed execution, trace data recordin
communication activity is stored within the LAM daemon across all nod
on which the application ran. There is a limit on how much trace data o
LAM daemon will hold. When that limit is reached, the oldest traces are d
carded in favour of the newest traces. SeeDebugging and Tracing for runt-
ime routines that can limit the volume of trace data.

Thelamtracecommand gathers trace data and stores it into a file, which
convention has the suffix .lamtr.

% lamtrace -v -mpi

-mpi Search for an MPI world trace created by the specifie
processes.

For the most part, lamtrace and the LAM daemon are ignorant of spec
trace formats. In order to extract MPI trace data for a particular world co
municator group in the presence of several such groups (due to spawn
processes or multiple applications), lamtrace understands the format o
administrative trace record produced by LAM’s MPI library. In simple sit
ations with one application and no spawned processes, no node or pro
focus is required. lamtrace searches all nodes and eventually locates th
itary MPI world trace, which is produced by process rank 0 in
MPI_COMM_WORLD. However, if trace data from multiple worlds are
present, node and possibly process specification must be given on the
mand line to get the data for the desired world. The right nodeid and proc
index can be learned frommpitaskor inferred from the application schema
For example:

% lamtrace -v -mpi n0 i8

It is entirely possible to unload trace data before the application has co
pleted, with the obvious caveat that incomplete communication at the
moment of the unload will be reflected in the trace data.

Trace data remains in the LAM daemon and awaits an unload after an a
cation terminates. If not unloaded, it should be removed before running
next application. This is one of the actions taken bylamclean.
 MPI Primer / Developing with LAM

74

AM

cur-
with
d

ith

.

he
an-

i-

e
re

 the

Adding and
Deleting LAM

Nodes

lamgrow

lamshr ink
lamgrow Add a node to the current LAM session.
lamshrink Remove a node.

LAM can be operated in an environment where resource availability is
dynamic, perhaps under the control of an external resource manager. L
is started and an initial set of nodes are established withlamboot. If in the
future a resource manager (software or human) decides to modify the
rent set of nodes belonging to a LAM session, the changes are made
two commands,lamgrowandlamshrink. Both commands must be execute
from an existing LAM node.

A new machine is labelled with a nodeid and added to the LAM session w
lamgrow. Usage is more restrictive than typical LAM commands.

• The nodeid must not duplicate an existing node.

• Only one node can be added per invocation of lamgrow.

• The machine name must be supplied. LAM will not choose one

• Only one copy of lamgrow must be running throughout the LAM
multicomputer.

% lamgrow -v n8 buckeye.osc.edu

If a nodeid is not specified, the next highest LAM nodeid is used. With t
power to specify a nodeid, lamgrow can remove the initial property guar
teed by lamboot - that nodeids are consecutive starting from zero.

-x Enable fault tolerant detection and recovery. The dec
sion to use this option generally follows the lamboot
invocation.

-c <bhost> Update a boot schema by appending the new machin
name to the host list. This is a simple convenience featu
that updates a boot schema for use bywipe.

A single node is removed per invocation of lamshrink. The nodeid and
machine name must be supplied.

% lamshrink -v n8 buckeye.osc.edu

-w <#secs> Signal all application processes on the doomed node
(LAM_SIGFUSE) and pause before continuing. See
Signal Handling.
 MPI Primer / Developing with LAM

75

d

s a
le

er

File
Monitoring

and Control

fstate

%
NO
n0
n0
n0

fctl
fstate Get remote filesystem status.
fctl Control remote filesystem.

There are commands to monitor and control remote file access (SeeRemote
File Access). fstate prints one line of status information for each open file
descriptor.

FD/COUNT global file descriptor handle (not the client handle) an
reference count

FLAGS open flags and status flags (see below)
FLOW total amount of I/O in bytes since opening
CLIENT nodeid and process ID of last client process
NAME filename

The open/status flags are single character mnemonics.

R open for read
W open for write
L locked active
A active, currently open in the underlying filesystem
I inactive, currently closed in the underlying filesystem

Thefctl command has two features. The -s option cleans up and close
specific file descriptor while the -S option does the same thing for all fi
descriptors. With no options,fctl prints the current working directory of the
remote filesystem. The working directory is changed by giving a new
pathname tofctl. In the current release, working directories are kept on a p
node basis, not a per process basis.

% fctl -s 4

fstate N
DE FD/COUNT FLAGS FLOW CLIENT NAME

 (o) 0/0 R|L 0 none /dev/null
 (o) 1/0 W|L 0 n0/p25825 /dev/ttya
 (o) 2/0 R|W|L 0 none /dev/ttya
 MPI Primer / Developing with LAM

76

oot

a is

und
n
n
x.

rent

a-
ach
ser-
from
r-
ned
e 0
ing

ly.
user-

s the
mple

Writing a
LAM Boot

Schema

Host File Syntax
bhost.my3suns example host file

The topology of a multicomputer is established in the boot schema. The b
schema specifies the identifiers and types of nodes, and the physical
machines to be used. It may also contain the user account name on a
machine in case it is different from the local username. The boot schem
used bylamboot when starting the LAM session and bywipe when termi-
nating the LAM session. SeeStarting LAM.

A variety of boot schemata describing different multicomputers may
already be available for a given installation. These files are generally fo
in the directory $LAMHOME/boot. LAM users may need to write their ow
boot schema since the network often affords many choices. This sectio
describes how to write a boot schema for LAM using the host file synta
The example multicomputer has three nodes, one of which has a diffe
user account name.

The host file syntax is an extremely simple way of representing the inform
tion required in a LAM boot schema. The machines are listed one on e
line with an optional user account name (username) following it. The u
name is required in case the account name on that machine is different
the one on the local machine where lamboot will be invoked. If the use
name is not given, the local one will be used. The nodeids are determi
by the order in which the machines appear in the file, starting with nod
and proceeding with consecutive node numbers. A line segment follow
a # character denotes a comment and is thus skipped.

In the three node example, it is assumed that the machines are named
“ohio”, “osc” and “faraway.far.edu” and numbered 0, 1, and 2 respective
It is also assumed that the user is logged on to node 0, and has the same
name on node 1, but a different one (guest) on node 2. Since node 1 ha
same username as the local node, there is no need to specify it. The exa
boot schema using the host file syntax is shown below.

a 3 node example
ohio
osc
faraway.far.edu guest
 MPI Primer / Developing with LAM

77

e-
ial

on-
lly

the

ma.
that
r

create
e
mar,

le
fiers
with

tion
n-
o”,

Low Level
LAM Start-up

Process Schema

hboot
hboot Start LAM on one node.

Thelambootcommand runs a lower level program that starts LAM on a sp
cific node. Normally, the user will only need to use lamboot. In some spec
circumstances, when variations in the normal start-up procedure not c
trollable with lamboot options are desired, the user may wish to manua
start the system. By running the low levelhboot tool, the user can select
options that tailor the start-up to his/her needs and/or bypass some of
complexities of lamboot.

The hboot tool reads a per-node configuration file called a process sche
The process schema contains a list of programs and runtime arguments
will constitute LAM on a node. The default process schema filename fo
hboot isconf.otb. Lamboot invokes hboot using theconf.lam process
schema. Just as the user can create custom boot schemata, he/she can
custom process schemata. They make it easy to reconfigure LAM at th
process level. For a complete description of the process schema gram
see theprocschemamanual page.

To manually start a LAM session, first consult the boot schema. This fi
specifies the node identifiers as well as a binding between node identi
and actual machines. The example boot schema shown below is written
the host file syntax and describes a 3 node multicomputer.

a 3 node example
ohio
osc
faraway.far.edu guest

Each node will be started using the hboot tool, giving each node informa
about the other nodes in the multicomputer in order to form the fully co
nected LAM topology. Assuming the user is logged on to machine “ohi
first start LAM locally.

{ohio}% hboot -vc conf.lam -I “-n0 -o0
 osc 1 faraway.far.edu 2”

Then login to machine “osc” and start LAM on it.

{osc}% hboot -vc conf.lam -I “-n1 -o0
 ohio 0 faraway.far.edu 2”
 MPI Primer / Developing with LAM

78

rt

re
’s

.

d
i-

tion
k

og-
er to
Then login to machine “faraway.far.edu” on the account “guest” and sta
LAM on it.

{faraway}% hboot -vc conf.lam -I “-n2 -o0
 ohio.here.edu 0 osc.here.edu 1”

Notice that in this last case the full machine names of “ohio” and “osc” a
provided since they are in a different domain than “faraway”. The -I option
parameter becomes the value of the $inet_topo variable in the process
schema. This variable is used by LAM to ascertain network information

-o the nodeid of the origin node - The origin node is
assumed to be the position from where the user woul
have invoked lamboot. Many LAM features use the or
gin node as a default nodeid.

-n the local nodeid

Other than establishing local and remote nodeids, the network informa
contains machine name / link number pairs for all other nodes. The lin
number is equivalent to the LAM nodeid.

The same procedure may be done using the rsh UNIX tool instead of l
ging in to each machine. In this case, use the -s option of hboot in ord
allow rsh to return when hboot is done.
 MPI Primer / Developing with LAM

79

edAppendix A:
Fortran

Bindings
This appendix contains Fortran bindings for the library routines describ
in this document. All bindings are subroutines unless otherwise noted.

from Initialization:

MPI_INIT (ierror)
integer ierror

MPI_FINALIZE (ierror)

MPI_ABORT (comm, errcode, ierror)
integer comm, errcode

MPI_COMM_SIZE (comm, size, ierror)
integer comm, size

MPI_COMM_RANK (comm, rank, ierror)
integer comm, rank

from Blocking Point-to-Point:

MPI_SEND (buf, count, dtype, dest, tag, comm,
ierror)

<type> buf(*)
integer count, dtype, dest, tag, comm

MPI_RECV (buf, count, dtype, source, tag, comm,
status, ierror)

<type> buf(*)
integer count, dtype, source, tag, comm
integer status(MPI_STATUS_SIZE)

MPI_GET_COUNT (status, dtype, count, ierror)
integer status(MPI_STATUS_SIZE), dtype, count

MPI_PROBE (source, tag, comm, status, ierror)
integer source, tag, comm
integer status(MPI_STATUS_SIZE)

from Nonblocking Point-to-Point:

MPI_ISEND (buf, count, dtype, dest, tag, comm,
request, ierror)

<type> buf(*)
integer count, dtype, dest, tag
integer comm, request
 MPI Primer / Developing with LAM

80
MPI_IRECV (buf, count, dtype, source, tag, comm,
request, ierror)

<type> buf(*)
integer count, dtype, source, tag
integer comm, request

MPI_TEST (request, flag, status, ierror)
logical flag
integer request, status(MPI_STATUS_SIZE)

MPI_WAIT (request, status, ierror)
integer request, status(MPI_STATUS_SIZE)

MPI_IPROBE (source, tag, comm, flag, status,
ierror)

logical flag
integer source, tag, comm
integer status(MPI_STATUS_SIZE)

from Message Datatypes:

MPI_TYPE_VECTOR (count, blocklength, stride,
oldtype, newtype, ierror)

integer count, blocklength, stride
integer oldtype, newtype

MPI_TYPE_STRUCT (count, blocklengths,
displacements, dtypes, newtype, ierror)

integer count, blocklengths(*)
integer displacements(*), dtypes(*), newtype

MPI_ADDRESS (location, address, ierror)
<type> location(*)
integer address

MPI_TYPE_COMMIT (dtype, ierror)
integer dtype

MPI_PACK_SIZE (incount, dtype, comm size, ierror)
integer incount, dtype, comm, size

MPI_PACK (inbuf, incount, dtype, outbuf, outsize,
position, comm, ierror)

<type> inbuf(*), outbuf(*)
integer incount, dtype, outsize
integer position, comm
 MPI Primer / Developing with LAM

81
MPI_UNPACK (inbuf, insize, position, outbuf,
outcount, dtype, comm, ierror)

<type> inbuf(*), outbuf(*)
integer insize, position, outcount
integer dtype, comm

from Collective Message-Passing:

MPI_BCAST (buf, count, dtype, root, comm, ierror)
<type> buf(*)
integer count, dtype, root, comm

MPI_SCATTER (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, root,
comm, ierror)

<type> sendbuf(*), recvbuf(*)
integer sendcount, sendtype, recvcount
integer recvtype, root, comm

MPI_GATHER (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, root
comm, ierror)

integer sendcount, sendtype, recvcount
integer recvtype, root, comm

MPI_REDUCE (sendbuf, recvbuf, count, dtype, op,
root, comm, ierror)

<type> sendbuf(*), recvbuf(*)
integer count, dtype, op, root, comm

from Creating Communicators:

MPI_COMM_DUP (comm, newcomm, ierror)
integer comm, newcomm

MPI_COMM_SPLIT (comm, color, key, newcomm, ierror)
integer comm, color, key, newcomm

MPI_COMM_FREE (comm, ierror)
integer comm

MPI_COMM_REMOTE_SIZE (comm, size, ierror)
integer comm, size

MPI_INTERCOMM_MERGE (intercomm, high, intracomm,
ierror)
 MPI Primer / Developing with LAM

82
integer intercomm, intracomm
logical high

from Process Topologies:

MPI_CART_CREATE (oldcomm, ndims, dims, periods,
reorder, newcomm, ierror)

integer oldcomm, ndims, dims(*), newcomm
logical periods(*), reorder

MPI_CART_RANK (comm, coords, rank, ierror)
integer comm, coords(*), rank

MPI_CART_COORDS (comm, rank, maxdims, coords,
ierror)

integer comm, rank, maxdims, coords(*)

MPI_CART_SHIFT (comm, direction, distance,
rank_source, rank_dest, ierror)

integer comm, direction, distance
integer rank_source, rank_dest

from Dynamic Processes:

MPI_SPAWN (program, argv, maxprocs, info, root,
comm, intercomm, ierrors, ierror)

character*(*) program, argv(*)
integer info, maxprocs, root, comm
integer intercomm, ierrors(*)

from Miscellaneous MPI Features:

MPI_ERRHANDLER_CREATE (errfunc, handler, ierror)
external errfunc
integer handler

MPI_ERRHANDLER_SET (comm, handler, ierror)
integer comm, handler

MPI_ERROR_STRING (code, errstring, resultlen,
ierror)

integer code, resultlen
character*(*) errstring

MPI_ERROR_CLASS (code, class, ierror)
integer code, class
 MPI Primer / Developing with LAM

83
MPI_ATTR_GET (comm, keyval, attrval, flag, ierror)
integer comm, keyval, attrval
logical flag

double precision MPI_WTIME()

from Remote File Access:

lamf_rfopen (lamfd, file, flags, modes, ierror)
integer lamfd, flags, modes
character*(*) file

lamf_rfclose (lamfd, ierror)
integer lamfd

lamf_rfread (lamfd, buf, length, nread, ierror)
integer lamfd, length, nread
<type> buf(*)

lamf_rfwrite (lamfd, buf, length, nwritten,
ierror)

integer lamfd, length, nwritten
<type> buf(*)

from Collective I/O:

CBX_OPEN (file, flags, mode, owner, comm, cbxfd,
ierror)

character*(*) file
integer flags, mode, owner, comm, cbxfd

CBX_CLOSE (cbxfd, ierror)
integer cbxfd

CBX_READ (cbxfd, buf, count, dtype, nread, ierror)
integer cbxfd, count, dtype, nread
<type> buf(*)

CBX_WRITE (cbxfd, buf, count, dtype, nwritten,
ierror)

integer cbxfd, count, dtype, nwritten
<type> buf(*)

CBX_LSEEK (cbxfd, offset, whence, ierror)
integer cbxfd, offset, whence

CBX_MULTI (cbxfd, ierror)
integer cbxfd
 MPI Primer / Developing with LAM

84
CBX_SINGL (cbxfd, ierror)
integer cbxfd

CBX_IS_MULTI (cbxfd, result, ierror)
integer cbxfd
logical result

CBX_IS_SINGL (cbxfd, result, ierror)
integer cbxfd
logical result

CBX_ORDER (cbxfd, newrank, ierror)
integer cbxfd, newrank

from Signal Handling:

MPIL_SIGNAL (comm, rank, signo, ierror)
integer comm, rank, signo

from Debugging and Tracing:

MPIL_COMM_ID (comm, id, ierror)
integer comm, id

MPIL_COMM_GPS (comm, rank, nodeid, pid, ierror)
integer comm, rank, nodeid, pid

MPIL_TYPE_ID (dtype, id, ierror)
integer dtype, id

MPIL_TRACE_ON (ierror)

MPIL_TRACE_OFF (ierror)
 MPI Primer / Developing with LAM

85

Appendix B:
Fortran

Example
Program
The trivial example program fromProgramming Tutorial is shown here in
Fortran.

c
c Transmit a message in a two process system.
c

program trivial
#include <mpif.h>

integer*4 BUFSIZE
parameter (BUFSIZE = 64)
integer*4 buffer(BUFSIZE)
integer rank, size
integer status(MPI_STATUS_SIZE)

c
c Initialize MPI.
c

call MPI_INIT(ierror)
c
c Error check the number of processes.
c Determine my rank in the world group.
c The sender will be rank 0 and the receiver, rank 1.
c

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)
if (size .ne. 2) then

call MPI_FINALIZE(ierror)
stop

endif
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)

c
c As rank 0, send a message to rank 1.
c

if (rank .eq. 0) then
call MPI_SEND(buffer(1), BUFSIZE, MPI_INTEGER,

 + 1, 11, MPI_COMM_WORLD, ierror)
c
c As rank 1, receive a message from rank 0.
c

else
call MPI_RECV(buffer(1), BUFSIZE, MPI_INTEGER,

 + 0, 11, MPI_COMM_WORLD, status,
 + ierror)

endif
call MPI_FINALIZE(ierror)
stop
end
 MPI Primer / Developing with LAM

86

 MPI Primer / Developing with LAM

MPI Primer /

http://www.osc.edu/lam.html
ftp://ftp.osc.edu/pub/lam

More
Information

Ohio Supercomputer Center
1224 Kinnear Road
Columbus, OH 43212
lam@tbag.osc.edu

Contact

This document is protected by copyright.
Authors: GDB/RBD

Copyright

Copyright 1996 The Ohio State Universityc

Developing with LAM

Acknowledgment LAM documentation is supported in part by the National Science
Foundation under grant CCR-9510016.

	How to Use This Document
	Table of Contents
	LAM / MPI Tutorial Introduction
	MPI Programming Primer
	LAM / MPI Extensions
	LAM Command Reference

	LAM Architecture
	LAM / MPI Tutorial Introduction
	Programming Tutorial
	Operation Tutorial

	MPI Programming Primer
	Basic Concepts
	MPI_Init Initialize MPI state. MPI_Finalize Clean up MPI state. MPI_Abort Abnormally terminate. M...
	MPI_Initialized Has MPI been initialized?
	Initialization

	MPI_Send Send a message in standard mode. MPI_Recv Receive a message. MPI_Get_count Count the ele...
	MPI_Bsend Send a message in buffered mode. MPI_Ssend Send a message in synchronous mode. MPI_Rsen...
	Blocking Point-to-Point

	MPI_Isend Begin to send a standard message. MPI_Irecv Begin to receive a message. MPI_Wait Comple...
	MPI_Ibsend Begin to send a buffered message. MPI_Issend Begin to send a synchronous message. MPI_...
	Nonblocking Point-to-Point

	MPI_Type_vector Create a strided homogeneous vector. MPI_Type_struct Create a heterogeneous struc...
	MPI_Type_continuous Create contiguous homogeneous array. MPI_Type_hvector Create vector with byte...
	Message Datatypes

	MPI_Bcast Send one message to all group members. MPI_Gather Receive and concatenate from all memb...
	MPI_Barrier Wait until all group members reach this point. MPI_Gatherv Vary counts and buffer dis...
	Collective Message- Passing

	MPI_Comm_dup Duplicate communicator with new context. MPI_Comm_split Split into categorized sub-g...
	MPI_Comm_compare Compare two communicators. MPI_Comm_create Create a communicator with a given gr...
	MPI_Group_size Get number of processes in group. MPI_Group_rank Get rank of calling process. MPI_...
	A communicator could be described simply as a process group. Its creation is synchronized and its...
	Creating Communicators

	Communicators carry a hidden synchronization variable called the context. If two processes agree ...
	Applications may wish to split into many subgroups, sometimes for data parallel convenience (i.e....
	The color and key arguments guide the group splitting. There will be one new communicator for eac...
	A communicator is released by MPI_Comm_free(). Underlying system resources may be conserved by re...
	An intercommunicator contains two groups: a local group in which the owning process is a member a...
	The number of members in the remote group of an intercommunicator is obtained by MPI_Comm_remote_...
	MPI_Cart_create Create cartesian topology communicator. MPI_Dims_create Suggest balanced dimensio...
	Process Topologies

	MPI_Spawn Start copies of one program.
	Process Creation

	MPI_Errhandler_create Create custom error handler. MPI_Errhandler_set Set error handler for commu...
	MPI_Errhandler_get Get error handler from communicator. MPI_Errhandler_free Release custom error ...
	Miscellaneous MPI Features

	LAM / MPI Extensions
	lam_rfopen Open a file. lam_rfclose Close a file. lam_rfread Read from a file. lam_rfwrite Write ...
	Remote File Access

	CBX_Open Open a file for MPI Cubix access. CBX_Close Close an MPI Cubix file. CBX_Read Read in ei...
	Collective I/O

	lam_ksignal Install a signal handler. lam_ksigblock Block selected signals. lam_ksigsetmask Set e...
	MPIL_Signal Deliver a signal to a process.
	Signal Handling

	MPIL_Comm_id Get communicator identifier. MPIL_Comm_gps Get LAM coordinates for an MPI process. M...
	MPIL_Trace_on Enable trace collection. MPIL_Trace_off Disable trace collection.
	Debugging and Tracing

	LAM Command Reference
	Getting Started
	hcc wrapper for local C compiler hcp wrapper for local C++ compiler hf77 wrapper for local Fortra...
	Compiling MPI Programs

	recon Verify multicomputer is ready to run LAM. lamboot Start a LAM multicomputer session. tping ...
	Starting LAM

	mpirun Run an MPI application. lamclean Terminate and clean up all LAM processes.
	Executing MPI Programs

	mpitask Print status of MPI processes. doom Send a signal to a process.
	Process Monitoring and Control

	mpimsg Monitor message buffers. bfctl Control message buffers.
	Message Monitoring and Control

	lamtrace Collect trace data and store in a file.
	Collecting Trace Data

	lamgrow Add a node to the current LAM session. lamshrink Remove a node.
	Adding and Deleting LAM Nodes

	fstate Get remote filesystem status. fctl Control remote filesystem.
	File Monitoring and Control

	bhost.my3suns example host file
	Writing a LAM Boot Schema

	hboot Start LAM on one node.
	Low Level LAM Start-up
	Appendix A: Fortran Bindings
	Appendix B: Fortran Example Program

