
Tools.h++
User's Guide

Version 7

Rogue Wave Software

Corvallis, Oregon USA

Tools.h++ User's Guide
Based on the Rogue Wave Tools.h++ Version 6 Introduction and Reference Manual

Authors: Tools.h++ Team

Tools.h++ Team:
Tools.h++ Version 7 Development: Anna Dahan, Frank Griswold, Kevin Johnsrude,
 Tom Pearson, and Jim Shur
Engineering Services: Wade Brittain, Bruce Kyle, Randall Robinson,
 Howard Sanders, and Tibbi Scott
Manuals: Elaine Cull, Wendi Minne, and Julie Prince
Marketing: Anita Covelli and Michael Nelson
Support: North Krimsly
With invaluable help from: James Fowler, John Vriezen,
 and the entire Rogue Wave Crew
Tools.h++ Version 6 Documentation: Thomas Keffer, with Sheldon Dealy,
 Frank Griswold, Nathan Myers, Randall Robinson,
 and Jim Shur

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.

Rogue Wave and .h++ are registered trademarks, and Tools.h++ is a
trademark of Rogue Wave Software, Inc. All other mentioned names are
trademarks of their respective companies.

Printed in the United States of America.
Part # RW30-01-2-032596a

Users Guide Printing History:
March 1996 First Printing

Rogue Wave Software, Inc., 850 SW 35th St., Corvallis, Oregon, 97333 USA

Product Information: (541) 754-5010
 1-800-487-3217

Technical support: (541) 754-2311
 e-mail: support@roguewave.com

FAX: (541) 757-6650

BBS: (541) 754-5011

World Wide Web: http://www.roguewave.com

Please have your product serial number available when calling for technical support.

Table of Contents

1. About Tools.h++...1
1.1 Overview and Features of Tools.h++.. 2
1.2 Tools.h++ and the C++ Philosophy... 4
1.3 Tools.h++ and the Standardization of C++.. 4

1.3.1 Harnessing the Standard ... 5
1.3.2 What We Didn't Do .. 7

1.4 Reading This Manual .. 8
1.4.1 Special Conventions ... 8

1.5 Rogue Wave Professional Training... 8
1.6 On-line Documentation .. 9
1.7 Technical Support .. 9
1.8 How to Contact Technical Support ... 10

2. Class Overview ...11
2.1 Concrete Classes .. 12

2.1.1 Simple Classes ... 13
2.1.2 Template-based Collection Classes .. 13
2.1.3 Generic Collection Classes... 13

2.2 Abstract Base Classes .. 13
2.3 Smalltalk-like Collection Classes... 14
2.4 Common Member Functions ... 14

2.4.1 Persistence.. 14
2.4.2 Store Size .. 15
2.4.3 Stream I/O... 15
2.4.4 Comparisons.. 16

2.5 Memory Allocation and Deallocation... 16
2.6 Information Flow ... 17
2.7 Multithread Safe .. 17
2.8 Eight-bit Clean.. 18
2.9 Embedded Nulls .. 18
2.10 Indexing .. 18

iv

2.11 Version .. 18

3. Using the String Classes..23
3.1 An Introductory Example... 24
3.2 Lexicographic Comparisons... 25
3.3 Substrings ... 26
3.4 Pattern Matching.. 27

3.4.1 Simple Regular Expressions .. 27
3.4.2 Extended Regular Expressions ... 28

3.5 String I/O.. 28
3.5.1 iostreams .. 29
3.5.2 Virtual Streams.. 30

3.6 Tokenizer .. 30
3.7 Multibyte Strings ... 31
3.8 Wide Character Strings ... 32

4. Using Class RWDate ..35
4.1 Example... 36
4.2 Constructors ... 37

5. Using Class RWTime ..39
5.1 Setting the Time Zone ... 40
5.2 Constructors ... 41
5.3 Member Functions ... 41

6. Using Virtual Streams ..43
6.1 Specializing Virtual Streams .. 45
6.2 Simple Example ... 46
6.3 Windows Clipboard and DDE Streambufs.. 47
6.4 DDE Example ... 48
6.5 RWAuditStreamBuffer.. 50
6.6 Recap ... 50

7. Using Class RWFile...51
7.1 Example... 52

8. Using Class RWFileManager...53
8.1 Construction ... 54
8.2 Member Functions ... 54

9. Using Class RWBTreeOnDisk...59
9.1 Construction ... 60

v

9.2 Example... 61

10. Collection Classes ..65
10.1 Storage Methods of Collection Classes ... 66

10.1.1 A Note on Memory Management... 67
10.2 Copying Collection Classes .. 67

10.2.1 Copying Reference-based Collection Classes 67
10.2.2 Copying Value-based Collection Classes .. 69

10.3 Retrieving Objects in Collections... 69
10.3.1 Retrieval Methods... 70

10.4 Iterators in Collection Classes .. 71
10.4.1 Traditional Tools.h++ Iterators ... 72

11. Collection Class Templates ..75
11.1 Introduction.. 76
11.2 Template Overview ... 76

11.2.1 Template Naming Convention ... 77
11.2.2 Value vs. Reference Semantics in Templates 78
11.2.3 Intrusive Lists in Templates .. 79

11.3 Tools.h++ Templates and the Standard C++ Library 79
11.3.1 Standard C++ Library Not Required ... 80
11.3.2 The Standard C++ Library Containers .. 80
11.3.3 Commonality of Interface .. 81

11.4 Parameter Requirements .. 82
11.5 Comparators ... 83

11.5.1 More on Total Ordering... 83
11.6 Hash Functors and Equalitors.. 85
11.7 Iterators ... 86

11.7.1 Standard C++ Library Iterators .. 86
11.7.2 Map-Based Iteration and Pairs.. 88
11.7.3 Iterators as Generalized Pointers.. 88

11.8 Iterators and the std() Gateway ... 89
11.9 The Best of Both Worlds ... 89
11.10 Using Templates Without the Standard Library 91

11.10.1 Keeping the Standard C++ Library in Mind for Portability 91
11.10.2 An Example ... 92
11.10.3 Another Example .. 93

11.11 Migration Guide: For Users of Previous Versions of Tools.h++....... 95

12. Generic Collection Classes ...99
12.1 Example... 100
12.2 Declaring Generic Collection Classes ... 101
12.3 User-Defined Functions .. 102

12.3.1 Tester Functions .. 102
12.3.2 Apply Functions.. 104

vi

13. Smalltalk-Like Collection Classes107
13.1 Tables of the Smalltalk-like Classes .. 108
13.2 Example... 110
13.3 Choosing a Smalltalk-like Collection Class.. 112

13.3.1 Bags Versus Sets Versus Hash Tables.. 112
13.3.2 Sequenceable Classes ... 113
13.3.3 Dictionaries.. 113

13.4 Virtual Functions Inherited From RWCollection 113
13.4.1 insert()... 114
13.4.2 find() and Friends... 114
13.4.3 remove() Functions... 116
13.4.4 apply() Functions.. 117
13.4.5 Functions clear() and clearAndDestroy() 118

13.5 Other Functions Shared by All RWCollections 118
13.5.1 Class Conversions... 118
13.5.2 Inserting and Removing Other Collections................................... 118
13.5.3 Selection ... 118

13.6 Virtual Functions Inherited from RWSequenceable 119
13.7 A Note on How Objects are Found ... 120

13.7.1 Hashing .. 120

14. Persistence ..123
14.1 Levels of Persistence.. 124

14.1.1 A Note About Terminology .. 124
14.1.2 About the Examples in this Section.. 125

14.2 No Persistence .. 125
14.3 Simple Persistence ... 125

14.3.1 Two Examples of Simple Persistence... 125
14.4 Isomorphic Persistence ... 128

14.4.1 Isomorphic versus Simple Persistence... 129
14.4.2 Isomorphic Persistence of a Tools.h++ Class 132
14.4.3 Designing Your Class to Use Isomorphic Persistence 133
14.4.4 Writing rwSaveGuts and rwRestoreGuts Functions 140
14.4.5 Isomorphic Persistence of a User-designed Class 142

14.5 Polymorphic Persistence... 147
14.5.1 Operators ... 148
14.5.2 Designing your Class to Use Polymorphic Persistence............... 149
14.5.3 Polymorphic Persistence Example ... 149

14.6 A Few Friendly Warnings .. 154
14.6.1 Always Save an Object by Value before Saving the Identical
Object by Pointer.. 155
14.6.2 Don't Save Distinct Objects with the Same Address.................... 158
14.6.3 Don't Use Sorted RWCollections to Store Heterogeneous
RWCollectables .. 159
14.6.4 Define All RWCollectables That Will Be Restored....................... 159

vii

15. Designing an RWCollectable Class.............................161
15.1 Why Design an RWCollectable Class?.. 162

15.1.1 An Example of RWCollectable Classes.. 163
15.2 How to Create an RWCollectable Object.. 164

15.2.1 Define a Default Constructor .. 164
15.2.2 Add RWDECLARE_COLLECTABLE() to your Class Declaration165
15.2.3 Provide a Class Identifier for Your Class 165
15.2.4 Add Definitions for Virtual Functions... 167
15.2.5 Object Destruction .. 170
15.2.6 How to Add Polymorphic Persistence... 171
15.2.7 A Note on the RWFactory.. 176

15.3 Summary... 176

16. Internationalization ...183
16.1 Localizing Alphabets with RWCString and RWWString................... 184
16.2 Localizing Messages.. 185
16.3 Challenges of Localizing Currencies, Numbers, Dates, and Times.. 186
16.4 RWLocale and RWZone.. 186

16.4.1 Dates ... 187
16.4.2 Time .. 188
16.4.3 Numbers... 191
16.4.4 Currency... 192
16.4.5 A Note on Setting Environment Variables.................................... 193

17. Error Handling..195
17.1 The Tools.h++ Error Model .. 196
17.2 Internal Errors .. 197

17.2.1 Non-recoverable Internal Errors... 197
17.2.2 Recoverable Internal Errors... 198

17.3 External Errors ... 199
17.4 Exception Architecture.. 200

17.4.1 Error Handlers .. 200
17.5 The Debug Version of Tools.h++... 201

18. Advanced Topics..203
18.1 Dynamic Link Library... 204

18.1.1 The DLL Example ... 204
18.2 Copy on Write .. 213

18.2.1 A More Comprehensive Example .. 214
18.3 RWStringID .. 215

18.3.1 Duration of Identifiers.. 215
18.3.2 Programming with RWStringIDs ... 216
18.3.3 Implementation Details of RWStringID .. 217

18.4 More on Storing and Retrieving RWCollectables 219
18.5 Multiple Inheritance .. 222

8

19. Common Mistakes..225
19.1 Redefinition of Virtual Functions .. 226
19.2 Iterators ... 226
19.3 Return Type of operator>>() .. 227
19.4 Avoid Persisting Value Collections of Pointers................................... 227
19.5 Include Path.. 227
19.6 Match Memory Models and Other Qualifiers 228
19.7 Keep Related Methods Consistent .. 228
19.8 DLL .. 228
19.9 Use the Capabilities of the Library!... 229

A. Choosing A Collection..231
20.1 Selecting a Tools.h++ Collection Class ... 231

20.1.1 How to Use the Decision Tree... 231
20.1.2 Additional Selection Criteria... 233

20.2 Time and Space Considerations... 236
20.2.1 RWGVector, RWGBitVec, RWTBitVec<size>, RWTPtrVector, and
RWTValVector ... 237
20.2.2 Singly Linked Lists ... 237
20.2.3 Doubly Linked Lists ... 238
20.2.4 Ordered Vectors .. 238
20.2.5 Sorted Vectors ... 239
20.2.6 Stacks and Queues.. 239
20.2.7 Deques.. 240
20.2.8 Binary Tree... 240
20.2.9 (multi)map and (multi)set family... 241
20.2.10 RWBTree, RWBTreeDictionary... 242
20.2.11 Hash-based Collections.. 243

 B. Typedefs and Macros..245

 C. Messages...249

D. Bibliography..253

Index ...257

S e c t i o n 1.
About Tools.h++

1.1
Overview and Features of Tools.h++

1.2
Tools.h++ and the C++ Philosophy

1.3
 Tools.h++ and the Standardization of C++

1.4
 Reading This Manual

1.5
 Rogue Wave Professional Training

1.6
 On-line Documentation

1.7
 Technical Support

1.8
 How to Contact Technical Support

About Tools.h++ 2

1.1 Overview and Features of Tools.h++
Tools.h++ is a rich, robust, and versatile C++ foundation class library: a set
of software parts you can use to build virtually any application.

Tools.h++ is an industry standard. It is shipped by a wide variety of
compiler vendors with every copy of their compilers. Preferred by
thousands of users world wide, it is ported to numerous compilers and
operating systems. Tools.h++ is available on almost any development
platform you choose.

This new version of Tools.h++ is built on the Standard C++ Library. To aid
your transition into this technology, Tools.h++ provides a familiar object-
oriented interface, and a reliable upward migration path. You can count on
Tools.h++ to track and incorporate revisions of the Standard C++ Library as
they are approved.

Your new Tools.h++ package includes:

• Powerful single, multibyte, and wide character support
 You can manipulate single and multibyte strings with class
RWCString ’s full suite of operators and functions, or choose class
RWWString for wide character strings. Both classes make it easy to do
concatenation, comparison, indexing (with optional bounds checking),
I/O, case changes, stripping, and many other functions. In addition,
classes RWCSubString and RWWSubString allow extraction and
assignment to substrings; classes RWCRegexp and RWCRExpr support
regular expression pattern searches; and classes RWCTokenizer and
RWWTokenizer break single and wide character strings, respectively,
into separate tokens.

⇒ ⇒ Extended regular expressions
 Here’s a richer set of pattern matching tools you can use to search for
information in strings. The new Tools.h++ extended regular expression
features are a subset of those found in the ANSI/ISO standard POSIX.2
(Portable Operating System Interface), and require the presence of the
Standard C++ Library.

• Time and date handling classes
 You can calculate the number of days between two dates, or the day of
the week a date represents. Read and write days or times in arbitrary
formats, or whatever you need to do. Tools.h++ helps you master time.

• Internationalization support
 You can internationalize your software with the convenient and easy-to-
use framework of class RWLocale, and use class RWTimeZone to
manipulate time zones and daylight-saving time. The entire library is
eight-bit clean, so you can use it with any eight-bit character set.
Embedded nulls are fully supported.

About Tools.h++ 3

⇒ Endian streams
 You can transfer information between operating systems with the
efficiency of a binary stream. The endian streams mechanism, which
keeps a record of the operating environment where information
originates, allows the stream to be read on any system regardless of its
native size or byte order.

• Multithread safe
 You can count on multithread safety. When compiled with a
multithread option, the library uses multithread safe system facilities,
with enough internal locking to maintain its internal integrity. See the
release notes for your compiler.

⇒ Persistent store
 This new version of Tools.h++ enhances an already powerful and
sophisticated store facility. Isomorphic persistence, which maintains an
object’s pointer relationships, is now supported for most Tools.h++
collections, including the template-based collections. You can also
implement isomorphic persistence on your own classes. Objects that
inherit from RWCollectable have polymorphic persistence, which not
only maintains pointer-relationships, but also allows processes to restore
objects without knowing their types.

⇒ Template based classes
 Twenty-eight new or re-engineered class templates based on the
Standard C++ Library container classes. You can use the full interface to
these classes if your development environment supports the Standard
C++ Library. If you don’t have the Standard C++ Library, Tools.h++
supplies template-based classes with a subset of the same interfaces.

• Generic collection classes
 If your compiler does not yet support templates, Tools.h++ includes a set
of template-like classes that use the C++ preprocessor and <generic.h> ,
a header file included with most compilers. The interface to these
generic classes is similar to the template-based classes, so you can make
an easy transition.

• Smalltalk-like collection classes
 You get a complete library of collection classes, modeled after the
Smalltalk-80 programming environment, including Set, Bag, Queue,
Stack, OrderedCollection, SortedCollection, Dictionary, and more.

• Many other features: RWFile Class encapsulates standard file
operations. B-tree disk retrieval uses B-trees for efficient keyed access to
disk records. File Space Manager allocates, deallocates and coalesces
free space within a file. A complete error handling facility, which takes
advantage of C++ exceptions if they are available. Still more classes,
including: bit vectors, virtual I/O streams, cache managers, and virtual
arrays.

About Tools.h++ 4

1.2 Tools.h++ and the C++ Philosophy
If you’re familiar with C++, you’ll feel comfortable with Tools.h++. As a
C++ class library, Tools.h++ shares many design goals with the C++
language itself. These mutual goals include:

• Efficiency. In general, you will find no feature in Tools.h++ that impairs
non-users of the feature. As many decisions as possible are made at
compile time, consistent with the C++ philosophy of static type
checking. In most cases, Tools.h++ offers you a choice between classes
with extreme simplicity, but little generality, and complex classes with
more generality.

• Simplicity. To maintain simplicity, Tools.h++ uses few subclasses.
Although the overall architecture is sophisticated and integrated, each
class usually plays just one well-defined role. Many functions are also
simple, consisting of a few lines of code. New features are added
sparingly: in general, if there is already a way to do it, we leave it out!

• Compactness. Like C++, Tools.h++ aims to make programs compile
small. Always a desirable design goal, it also facilitates using programs
in embedded systems. Templates have a mixed effect in this regard:
encouraging compact source code, but in many cases compromising
compactness when compiling.

• Predictability. All of the familiar operators work just as you might
expectthere are no surprises, no esoteric overloaded operators. And
Tools.h++ offers you great symmetry, making it possible to do things
like change the implementation of a dictionary from a hash table to a B-
tree with impunity.

1.3 Tools.h++ and the Standardization of C++
Almost everybody sees the benefits of standardizing the C++ language and
the Standard C++ Library. The trick is to keep working during the process.
We call this a period of transition, and the C++ community is engaged in it
now.

Here is what the transition looks like: a standard nearing completion, but
not yet fully stable. Although the standard itself is unlikely to be
substantially revised, the fine tuning and ratification will continue into 1997.

And here is what the transition looks like: compilers evolving toward the
standard at various rates. For a time, you will find new language
featuressuch as namespaces, default template arguments, member
function templates, nested class templatessupported on some compilers
and not others. Some compilers may not even include a version of the
Standard C++ Library; many will offer versions which conform to the
standard only so far as they support the necessary language features. It will

About Tools.h++ 5

be some time before commercial compilers actually implement the exact C++
language, or include the Standard C++ Library as described in the standard.

Finally, here is what the transition looks like: you, the developer, and what
you’re going through now. You are the one evolving designs and
implementations toward the emerging standard. Change will come at rates
determined by your development environment, application domain, and
corporate culture.

Our goal for Tools.h++ is to help you to maintain consistency in your
development while moving, at your own pace, along the path of the latest
C++ technology.

1.3.1 Harnessing the Standard

The primary challenge of this new version of Tools.h++ was to establish our
relationship with the ANSI/ISO Standard C++ Library. Rogue Wave is
committed not only to bringing our products into compliance with the
standard, but to harnessing its full power. The object is to provide you with
even more useful and efficient class libraries. The process of integrating our
libraries with the C++ standard begins here with Tools.h++ Version 7.

For this version of Tools.h++, we have concentrated our integration efforts
on the Standard C++ Library containers, often referred to as the STL or
Standard Template Library. Each of the standard containers has been
wrapped with a new or re-engineered Tools.h++ collection class template.
You’ll find a full explanation of templates in Section 11. Following are the
major design goals for our integration of Tools.h++ and the Standard C++
Library, along with examples of how they are reflected in this version:

• Design Goal: Leverage
 To offer greater value by taking advantage of the Standard C++ Library to build
upon a higher foundation than the base C++ language.

 For example, Tools.h++ offers collections that use Standard C++ Library
containers for their implementations. Building Tools.h++ upon the
standard enables these collections to easily supply standard iterators,
which in turn allows them to be used with the rich set of Standard C++
Library algorithms. At the same time, you retain the safe, easy-to-use,
object-oriented interface that Tools.h++ collections have always
provided.

• Design Goals: Interoperability
 To support one of the primary benefits of the C++ standard, which is to allow
libraries, modules, classes, and algorithms from diverse providers to easily work
together at a high level.

 For example, we made sure you can safely and efficiently pass a
Tools.h++ doubly-linked list where a Standard C++ Library list is
expected.

About Tools.h++ 6

• Design Goal: Freedom
 To maintain access to the Standard C++ Library.

 For example, when using a Tools.h++ collection implemented with a
Standard C++ Library container, you are always free to drop down to
the level of the implementation that takes advantage of the non-object-
oriented features of the Standard C++ Library.

• Design Goal: Object-orientation
 To enhance the Standard C++ Library with efficient, object-oriented interfaces.

 All our new and re-engineered collection class templates exemplify this
goal. In each case, we have put an efficient wrapper around a
corresponding Standard C++ Library container to provide a familiar,
though expanded, Tools.h++ collection interface.

• Design Goals: Simplicity and Safety
 To enhance the Standard C++ Library with a simpler interface, which reduces
risk and makes client code easily maintainable.

 The object-oriented interface helps achieve this goal. Unlike the
Standard C++ Library, the Tools.h++ container methods know what
data they control, freeing the user from the need to specify iterators and
algorithms.

• Design Goal: Compatibility
 To protect our customers' investment in code written with previous versions of
Tools.h++.

 For example, we have re-engineered the Tools.h++ Version 6.1
collection class templates to base them on Standard C++ Library
containers. In almost all cases, your existing source code that used
classes in the previous version of the library will compile with the new
library without modification.

• Design Goal: Smooth Transition
 To provide the means for developers to begin moving along the path toward
standard C++ at their own pace and with minimal hassle.

 For example, you can use Tools.h++ with or without the Standard C++
Library. If your development environment supports a version of the
Standard C++ Library certified for use with Tools.h++, we offer 28 new
or re-engineered class templates implemented using the Standard C++
Library container classes. If you don’t have the Standard C++ Library,
we offer you a subset interface to many of the same class templates,
implemented using the technology of previous versions of Tools.h++.
The appropriate implementation is selected automatically and
transparently at compile time. By coding to the more restricted
interface, you will be able to take full advantage of the Standard C++
Library as soon as it becomes available to you.

About Tools.h++ 7

1.3.2 What We Didn't Do

Future versions of Tools.h++ will make full use of the Standard C++ Library
and other newly added features of the C++ language. This version includes
several areas where we have elected to wait before incorporating the latest
available technology. In some cases, we’re waiting until the standard library
or language feature is more widely available. In other cases, frankly, we’re
waiting until we gain more experience with the new features to see how we
can best mold them into a unified and effective whole. We want to be
careful not to commit ourselves and our customers to less than optimal
patterns of usage. In the meantime, we’d like to draw your attention to the
following areas:

• RWCString and RWWString
 Tools.h++ continues to use classes RWCString and RWWString. These
classes, along with their substring classes and collaborating regular
expression and tokenizer classes, have long been considered among the
most useful and powerful classes in the library. This suite of
functionality is not offered by the Standard C++ Library. You may use
the C++ standard string and wstring in your applications, but you may
occasionally incur the overhead of copying if you must convert between
Tools.h++ and standard strings.

• RWLocale
 Tools.h++ continues to use class RWLocale. At the time of this release,
the C++ standard locale class specification is still undergoing review by
the ANSI/ISO standards committees.

• Exception Hierarchy

 Tools.h++ continues to use its own exception hierarchy, which is similar
to the exception hierarchy in the draft C++ Standard. We don't expect to
change over until the standard exception hierarchy is more widely
available. You are free to use standard exceptions in your application,
but you must be prepared also to catch Tools.h++ exceptions when
making calls into the Tools.h++ library from within your try blocks.

• Namespaces

 Tools.h++ is not yet using or attempting to use namespaces specified by
the current draft. For now, we continue to use the RW prefix to
distinguish our classes within the global namespace. Of course, this
does not preclude you from using namespaces in your own application,
if your compiler allows it.

About Tools.h++ 8

1.4 Reading This Manual
This manual is an introduction to using Tools.h++, Rogue Wave’s
foundation class library. It assumes that you are familiar with C++. If you
are not, you will find several books of interest in the Bibliography.

If you’re an advanced C++ user, you may want to accompany this manual
with Stroustrup [1991], Lippman [1991], or Ellis and Stroustrup [1990]. The
latter is sometimes referred to as “The ARM,” the Annotated Reference
Manual. The terse but precise style of these works makes them excellent
references to the language.

1.4.1 Special Conventions

When reading this manual, you’ll notice the following special conventions:

• courier font —Used for disk directories, file names, examples,
operating system commands, function names, code and code fragments
(for example, RWTPtrHashSet<int RWDefHArgs(int)> hset; , deque<T> ,
isEqual). Most function names start with a lower case letter, but
subsequent words are capitalized (for example, compareTo()).

• Bold Sans Serif Italic−Used for classes (for example, RWCollectable or
RWCString). Most Rogue Wave classes include a prefix RW which is
de-emphasized. The class name conveys what the class does, and
distinguishes a Rogue Wave class from the generically named class of
another vendor (for example, RWIterator, not just Iterator.) Class
names begin with capital letters.

• Sans Serif ItalicUsed for Rogue Wave product names (for example,
Tools.h++).

• Italic or bold only—Conventional uses, such as emphasis or special
terminology.

• Vertical ellipses—In code examples, they indicate that some part of the
code is missing:

 main()
 {
 .
 . //Something happens
 .
 }

1.5 Rogue Wave Professional Training
To help you get a head start on your project, Rogue Wave Professional
Services provides training that can put the power of Tools.h++, or any other
robust Rogue Wave library, into your hands in less than a week.

About Tools.h++ 9

Rogue Wave training and mentoring is available for all levels of project
development, from analysis and design to implementation. We also offer
world-class courses in C++ and object-oriented programming.

For information on Rogue Wave's products and professional services, call us
by phone, contact us by e-mail, or review the information on our World
Wide Web site:

Telephone: (541) 754-5010
(800) 487-3217

e-mail: training@roguewave.com

WWW: http://www.roguewave.com

1.6 On-line Documentation
Rogue Wave provides on-line documentation that supplements this manual.
On-line documentation is in the rogue\docs directory. The docs directory
contains important information regarding specific compilers and operating
systems, how to use shared libraries and DLLs, and information that became
available after the manual was published. We urge you to read all the files
of the docs directory, but especially toolread.doc , the Tools.h++ readme
file.

The Frequently Asked Questions (FAQ) document is a new feature of the
Rogue Wave home page (http://www.roguewave.com). The home page also
contains late-breaking information about Rogue Wave products.

1.7 Technical Support
Rogue Wave is proud of its reputation for superior technical support. Our
support policies are described in the technical support brochure that
accompanies this product. Extended technical support contracts can be
purchased from Rogue Wave or authorized partners.

Your first line of technical support is the documentation provided with this
product, both on-line and in the manual. Many times, you can find what
you need there, and save us both a call.

If you do need to call technical support, the first thing we ask is your name,
your company, and the serial number of your product. Look for this
number on your disk, or contact your system administrator.

It would also save both your time and ours if you do the following before
you call:

• Review your information. Read relevant portions of the manual, the
rogue\docs files, especially toolread.doc , and the FAQ (Frequently
Asked Questions) file in the directory or at our web site.

About Tools.h++ 10

• Collect your numbers. In addition to your product serial number, we
need to know what version of Tools.h++ you’re using. You’ll find this
number at the top of toolread.doc . We’ll also ask for your compiler
and operating system, and their respective version numbers.

• Isolate your problem to a small test case, if applicable. Short code is
easier to understand, transmit, and verify on our systems..

1.8 How to Contact Technical Support
You can contact technical support via any of the following paths:

FAX: (541) 758-4761

Telephone: (541) 754-2311

BBS: (541) 754-5011

Mail: 850 SW 35th Street
 Corvallis, OR 97333
 USA

e-mail: support@roguewave.com

World Wide Web: http://www.roguewave.com

S e c t i o n 2.
Class Overview

2.1
Concrete Classes

2.2
Abstract Base Classes

2.3
 Smalltalk-like Collection Classes

2.4
 Common Member Functions

2.5
 Memory Allocation and Deallocation

2.6
 Information Flow

2.7
 Multithread Safe

2.8
 Eight-bit Clean

2.9
 Embedded Nulls

2.10
 Indexing

2.11
 Version

Class Overview 12

This section gives an overview of Tools.h++, and highlights some common
points among the classes.

Tools.h++ provides implementation, not policy. Hence, it consists mostly of a
large and rich set of concrete classes that are usable in isolation and
independent of other classes for their implementation or semantics. They
can be pulled out and used just one or two at a time. Concrete classes are
the heart of Tools.h++.

Tools.h++ also includes a rich set of abstract base classes, which define an
interface for persistence, internationalization, and other issues, and a
number of implementation classes that implement these interfaces. Although
public, the implementation classes act like private classes. They are not
designed to be used, and are therefore not documented.

Some Tools.h++ classes are further categorized as collection classes, or
collections. A central feature of Tools.h++, the collection classes fall into
three groups:

• Template-based collection classes, called collection class templates, or
just templates, for short;

• Generic collection classes;

• Smalltalk-like collection classes.

Regardless of their implementation, collection classes generally follow the
Smalltalk naming conventions and semantical model: SortedCollection,
Dictionaries, Bags, Sets, and so on. They use similar interfaces, allowing
them to be interchanged easily. The template-based and generic collections
will hold any kind of object; the Smalltalk-like collections require that all
collected items inherit from RWCollectable.

Choosing which collection classes to use in your programs is not a trivial
task. We have added an appendix called Choosing a Collection to help you
decide which class is the best for your purposes.

Table 2 at the end of this chapter gives the class hierarchy of all the public
Tools.h++ classes. In addition to these public classes, Tools.h++ contains
other classes for its own internal use.

2.1 Concrete Classes
The concrete classes consist of:

• The simple classes representing dates, times, strings, and so on, discussed
in Sections 3 through 5;

• The template-based collection classes, discussed in Section 11;

• The generic collection classes using the preprocessor <generic.h> facilities,
discussed in Section 12.

Class Overview 13

2.1.1 Simple Classes

Tools.h++ provides a rich set of lightweight simple classes. By lightweight,
we mean classes with low-cost initializers and copy constructors. These
classes include: RWDate (for dates); RWTime (for times, with support for
various time zones and locales); RWCString (for single and multibyte
strings); RWWString (for wide character strings); and RWCRegexp or
RWCRexpr (for regular expressions). Most of these classes can be held in
four bytes or less, and have very simple copy constructors (usually just a bit
copy) and no virtual functions. See the Class Reference.

2.1.2 Template-based Collection Classes

Template-based collection classes, or templates for short, give you the
advantages of speed and type-safe usage. When templates are used
sparingly, their code size can be quite small. When templates are used with
many different types, however, their code size can become large because
each type effectively generates a whole new class. If your compiler is
capable of using the Standard C++ Library, you can use the Tools.h++
template-based collections that are based on the Standard C++ Library. If
your compiler does not have access to the Standard C++ Library, you can
still use a subset of the templates, as described in Section 11.3.1 and 11.10.

2.1.3 Generic Collection Classes

Generic collection classes are those which use the <generic.h> preprocessor
macros supplied with your C++ compiler. They can approximate templates,
in the sense that they are typesafe, for compilers that do not support
templates, and so are highly portable. However, because they depend
heavily on the preprocessor, it can be difficult to use a debugger on code that
contains them. See Section 12 for more information.

2.2 Abstract Base Classes
Tools.h++ includes a set of abstract base classes and corresponding
specializing classes that provides a framework for many issues. The list
below identifies some of these issues and associates them with their
respective abstract base classes. The description of each class in the Class
Reference indicates if it is an abstract base class.

Table 1. Abstract Base Classes and Issues

Issue Class Section Where
Discussed

Locale RWLocale Section 16.4

Class Overview 14

Time zones RWZone Section 16.4

Virtual streams RWvistream
RWvostream

Section 6

Polymorphic
persistence

RWCollectable Section 14

Virtual page heaps RWVirtualPageHeap Class Reference

Model-View-Controller
abstraction

RWModel
RWModelClient

Class Reference

2.3 Smalltalk-like Collection Classes
The Smalltalk-like collection classes of Tools.h++ give you much of the
functionality of such Smalltalk namesakes as Bag and SortedCollection,
along with some of the strengths and weaknesses of C++. The greatest
advantages of the Smalltalk-like collections are their simple programming
interface, powerful I/O abilities, and high code reuse. Their biggest
disadvantages are their relative lack of type-safety, and their relatively large
object code size. Large code is typical even when these classes are used in
only small doses because of their initially high overhead in code machinery.
All objects to be used by the Smalltalk-like collection classes must inherit
from the abstract base class RWCollectable.

2.4 Common Member Functions
Whatever their category, all classes have similar programming interfaces.
This section highlights their common functionality.

2.4.1 Persistence

Tools.h++ uses the following member functions to store an object of type
ClassName to and from an RWFile, and to and from the Rogue Wave virtual
streams facility, and to restore it later:

RWFile& operator<<(RWFile& file, const ClassName &);
RWFile& operator>>(RWFile& file, ClassName &);
Rwvostream& operator<<(RWvostream& vstream,const ClassName &);
Rwvistream& operator>>(RWvistream& vstream, ClassName &);

Class RWFile, which encapsulates ANSI-C file I/O, saves objects in binary
format. The result is efficient storage and retrieval to files. For more
information on RWFile, see Section 7 and the Class Reference.

Classes RWvistream and RWvostream are abstract base classes used by the
Rogue Wave virtual streams facility. The final output format is determined
by the specializing class. For example, RWpistream and RWpostream are

Class Overview 15

two classes that derive from RWvistream and RWvostream, respectively.
They store and retrieve objects using a portable ASCII format. The results
can be transferred between different operating systems. These classes are
discussed in more detail in Section 6 and the Class Reference.

It’s up to you to decide whether to store to RWFiles , or to Rogue Wave
streams. Storing to RWFiles gives you speed, but limits portability of results
to the host machine and operating system. Storing to Rogue Wave streams
is not as fast, but you get several specializing classes that provide other
useful features, including highly portable format between different
machines, and XDR stream encapsulation for distributed computations.

2.4.2 Store Size

The following common member functions return the number of bytes of
secondary storage necessary to store an object of type ClassName to an
RWFile :

Rwspace ClassName ::binaryStoreSize() const;
Rwspace ClassName ::recursiveStoreSize() const;

The member functions use the function:

RWFile& operator<<(RWFile& file, const ClassName &);

The above member functions are good for storing objects using classes
RWFileManager and RWBTreeOnDisk. For objects that inherit from
RWCollectable, the second variant recursiveStoreSize() can calculate the
number of bytes used in a recursive store. The variant uses the function:

RWFile& operator<<(RWFile& file, const RWCollectable&)

You can use class RWAuditStreamBuffer in conjuction with any stream to
count the number of bytes that pass through the buffer. Therefore, this class
gives you functionality for streams as the above member functions give you
functionality for files. For more information on class RWAuditStreamBuffer,
see the Class Reference.

2.4.3 Stream I/O

The overloaded left-shift operator <<, taking an ostream object as its first
argument, will print the contents of an object in human-readable form.
Conversely, the overloaded right-shift operator >>, taking an istream object
as its first argument, will read and parse an object from the stream in a
human-understandable format.

ostream& operator<<(ostream& ostr, const ClassName& x);
istream& operator>>(istream& istr, const ClassName& x);

The overloaded left-shift and right-shift operators contrast with the
persistence operators:

Class Overview 16

Rwvostream& operator<<(RWvostream& vstream, const ClassName &);
Rwvistream& operator>>(RWvistream& vstream, ClassName &);

Although the persistence shift operators may store and restore to and from a
stream, they will not necessarily do so in a form that could be called
“human-readable.”

2.4.4 Comparisons

Finally, most classes have comparison and equality member functions:

int compareTo(ClassName *) const;
RWBoolean equalTo(ClassName*) const;

and their logical operator counterparts:

RWBoolean operator==(const ClassName&) const;
RWBoolean operator!=(const ClassName&) const;
RWBoolean operator<=(const ClassName&) const;
RWBoolean operator>=(const ClassName&) const;
RWBoolean operator<(const ClassName&) const;
RWBoolean operator>(const ClassName&) const;

2.5 Memory Allocation and Deallocation
When an object is allocated off the heap, who is responsible for deleting it?
With some libraries, ownership can be a problem.

Most of the Rogue Wave classes take a very simple approach: if you allocate
something off the heap, then you are responsible for deallocating it. If the
Rogue Wave library allocates something off the heap, then it is responsible
for deallocating it.

There are two exceptions for creation of objects. The first exception involves
the operators:

RWFile& operator>>(RWFile& file, RWCollectable*&);
Rwvistream& operator>>(RWvistream& vstream, RWCollectable*&);

These operators restore an object inheriting from RWCollectable from an
RWFile or RWvistream, respectively. They return a pointer to an object
allocated off the heap: you are responsible for deleting it.

The second exception is member function:

RWCollection* RWCollection::select(RWtestCollectable, void*)const;

This function returns a pointer to a collection, allocated off the heap, with
members satisfying some selection criterion. Again, you are responsible for
deleting this collection when you are done with it.

There is also an exception for object deletion: As a service, many of the
collection classes provide a method, clearAndDestroy() , which will remove
all pointers from the collection and delete each. Even with

Class Overview 17

clearAndDestroy(), however, it is still your responsibility to know that it is
safe to delete all the pointers in that collection.

These methods are documented in detail in the Class Reference.

2.6 Information Flow
With the Rogue Wave libraries, information generally flows into a function
via its arguments and out through a return value. Most functions do not
modify their arguments. Indeed, if an argument is passed by value or as a
const reference:

void foo(const RWCString& a)

you can be confident that the argument will not be modified. However, if an
argument is passed as a non-const reference, you may find that the function
will modify it.

If an argument is passed in as a pointer, there is the strong possibility that
the function will retain a copy of the pointer. This is typical of the collection
classes:

RWOrdered::insert(RWCollectable*);

The function retains a copy of the pointer to remind you that the collection
will be retaining a pointer to the object after the function returns1.

2.7 Multithread Safe
When compiled with the appropriate option according to the release notes
for your compiler, Tools.h++ is multithread safe. In other words, all
Tools.h++ functions behave the same in a multithreaded environment as in a
single-threaded environment. Of course, this assumes the application
program takes care either to avoid sharing individual objects between
threads, or to perform locking around operations on objects shared across
threads. Tools.h++ does enough internal locking to maintain its own
internal integrity, and uses appropriate multithread-safe systems calls.

1 An alternative design strategy would be to pass objects
that are to be inserted into a collection by reference, as in
The NIH Classes. We rejected this approach for two
reasons: it looks so similar to pass-by-value that the
programmer could forget about the retained reference;
also, it becomes too easy to store a reference to a stack-
based variable.

Class Overview 18

2.8 Eight-bit Clean
All classes in Tools.h++ are eight-bit clean. This means they can be used
with eight-bit code sets such as ISO Latin-1.

2.9 Embedded Nulls
All classes in Tools.h++, including RWCString and RWWString, support
character sets with embedded nulls. This allows them to be used with
multibyte character sets.

2.10 Indexing
Indexes have type size_t , an unsigned integral type defined by your
compiler, usually in <stddef.h> . Because size_t is unsigned, it allows
indexes up to 64k minus one under 16-bit DOS.

Invalid indexes are signified by the special value RW_NPOS, defined in
<rw/defs.h> .

2.11 Version
When programming, you may need to know the specific version number of
Tools.h++ to perform certain operations. This number is given by the macro
RWTOOLS, expressed as a hexadecimal number. For example, version 1.2.3
would be 0x123. This can be used for conditional compilations.

If the version is needed at run time, you can find it via the function
rwToolsVersion() , declared in header file <rw/tooldefs.h> .

Class Overview 19

Table 2. The public class hierarchy of the Tools.h++ classes.

Note that this is the public class hierarchythe class implementations may use
private inheritance. Classes that have multiple inheritance are shown in both places
in the hierarchy; their other base is shown in italics to the right.

RWBench
RWBitVec
RWBTreeOnDisk
RWCacheManager
RWCollectable
 RWCollection
 RWBag
 RWBinaryTree
 RWBTree
 RWBTreeDictionary
 RWHashTable
 RWSet
 RWFactory
 RWHashDictionary
 RWIdentityDictionary
 RWIdentitySet
 RWSequenceable
 RWDlistCollectables
 RWOrdered
 RWSortedVector
 RWSlistCollectables
 RWSlistCollectablesQueue
 RWSlistCollectablesStack
 RWCollectableDate (&RWDate)
 RWCollectableInt (&RWInteger)
 RWCollectableString (&RWCString)
 RWCollectableTime (&RWTime)
 RWModelClient
RWCRegexp
RWCRExp
RWCString
 RWCollectableString (&RWCollectable)
RWCSubString
RWCTokenizer
RWDate
 RWCollectableDate (&RWCollectable)
RWErrObject

Class Overview 20

RWFile
 RWFileManager
RWGBitVec(size)
RWGDlist(type)
RWGDlistIterator(type)
RWGOrderedVector(val)
RWGQueue(type)
RWGSlist(type)
RWGSlistIterator(type)
RWGStack(type)
RWGVector(val)
 RWGSortedVector(val)
RWInteger
 RWCollectableInt (&RWCollectable)
RWIterator
 RWBagIterator
 RWBinaryTreeIterator
 RWDlistCollectablesIterator
 RWHashDictionaryIterator
 RWHashTableIterator
 RWSetIterator
 RWOrderedIterator
 RWSlistCollectablesIterator
RWLocale
 RWLocaleSnapshot
RWMessage
RWModel
RWTime
 RWCollectableTime (&RWCollectable)
RWTimer
RWTBitVec<size>
RWTIsvDlist<T>
RWTIsvDlistIterator<TL>
RWTIsvSlist<T>
RWTIsvSlistIterator<TL>
RWTPtrDeque<T>
RWTPtrDlist<T>
RWTPtrDlistIterator<T>
RWTPtrHashMap<Key,Type,Hash,EQ>
RWTPtrHashMapIterator<Key,Type,Hash,EQ>
RWTPtrHashMultiMap<Key,Type,Hash,EQ>
RWTPtrHashMultiMapIterator<Key,Type,Hash,EQ>
RWTPtrHashMultiSet<T,Hash,EQ>
RWTPtrHashMultiSetIterator<T,Hash,EQ>
RWTPtrHashSet<T,Hash,EQ>

Class Overview 21

RWTPtrHashSetIterator<T,Hash,EQ>
RWTPtrMap<Key,Type,Compare>
RWTPtrMapIterator<Key,Type,Compare>
RWTPtrMultiMap<Key,Type,Compare>
RWTPtrMultiMapIterator<Key,Type,Compare>
RWTPtrMultiSet<T,Compare>
RWTPtrMultiSetIterator<T,Compare>
RWTPtrOrderedVector<T>
RWTPtrSet<T,Compare>
RWTPtrSetIterator<T,Compare>
RWTPtrSlist<T>
RWTPtrSlistIterator<T>
RWTPtrSlistDictionary<KeyP,ValP>
RWTPtrSlistDictionaryIterator<KeyP,ValP>
RWTPtrSortedDlist<T,Compare>
RWTPtrSortedDlistIterator<T,Compare>
RWTPtrSortedVector<T,Compare>
RWTPtrVector<T>
RWTQueue<T,Container>
RWTRegularExpression<charT>
RWTStack<T,Container>
RWTValDeque<T>
RWTValDlist<T>
RWTValDlistIterator<T>
RWTValHashMap<Key,Type,Hash,EQ>
RWTValHashMapIterator<Key,Type,Hash,EQ>
RWTValHashMultiMap<Key,Type,Hash,EQ>
RWTValHashMultiMapIterator<Key,Type,Hash,EQ>
RWTValHashMultiSet<T,Hash,EQ>
RWTValHashMultiSetIterator<T,Hash,EQ>
RWTValHashSet<T,Hash,EQ>
RWTValHashSetIterator<T,Hash,EQ>
RWTValMap<Key,Type,Compare>
RWTValMapIterator<Key,Type,Compare>
RWTValMultiMap<Key,Type,Compare>
RWTValMultiMapIterator<Key,Type,Compare>
RWTValMultiSet<T,Compare>
RWTValMultiSetIterator<T,Compare>
RWTValOrderedVector<T>
RWTValSet<T,C>
RWTValSetIterator<T,C>
RWTValSlist<T>
RWTValSlistIterator<T>
RWTValSlistDictionary<Key,V>
RWTValSlistDictionaryIterator<Key,V>

Class Overview 22

RWTValSortedDlist<T,Compare>
RWTValSortedDlistIterator<T,Compare>
RWTValSortedVector<T>
RWTValVector<T>
RWTValVirtualArray<T>
RWvios
 RWios (virtual)
 RWvistream
 RWbistream (&ios: virtual)
 RWeistream
 RWpistream
 RWXDRistream (&RWios)
 RWvostream
 RWbostream (&ios: virtual)
 RWeostream
 RWpostream
 RWXDRostream (&RWios)
RWVirtualPageHeap
 RWBufferedPageHeap
 RWDiskPageHeap
RWWString
RWWSubString
RWWTokenizer
RWZone
 RWZoneSimple
streambuf
 RWAuditStreamBuffer
 RWCLIPstreambuf
 RWDDEstreambuf
xmsg
 RWxmsg
 RWExternalErr
 RWFileErr
 RWStreamErr
 RWInternalErr
 RWBoundsErr
 RWxalloc

S e c t i o n 3.
Using the String Classes

3.1
An Introductory Example

3.2
Lexicographic Comparisons

3.3
Substrings

3.4
Pattern Matching

3.5
String I/O

3.6
Tokenizer

3.7
 Multibyte Strings

3.8
 Wide Character Strings

Using the String Classes 24

Manipulating strings is probably one of your most common tasks. Many
developers say it is also the most error-prone. The Tools.h++ classes
RWCString and RWWString give you the constructors, operators, and
member functions you need to create, manipulate, and delete strings easily.

The member functions of class RWCString read, compare, store, restore,
concatenate, prepend, and append RWCString objects and char* s. Its
operators allow access to individual characters, with or without bounds
checking. And the class automatically takes care of memory management:
you never need to create or delete storage for the string's characters.

Class RWWString is similar to RWCString, except that RWWString works
with wide characters. Since the interfaces of the two classes are similar, they
can be easily interchanged. Details of these classes are described in the Class
Reference. This section gives you some general examples of how RWCString
works, followed by discussions of selected features of the string classes.

3.1 An Introductory Example
The following example calls on several essential features of the string
classes. Basically, it shows the steps RWCString would take to substitute a
new version number for the old ones in a piece of documentation.

#include <rw/cstring.h>
#include <rw/regexp.h>
#include <rw/rstream.h>

main(){
 RWCString a; //1 create string object a

 RWCRegexp re("V[0-9]\\.[0-9]+"); //2 define regular expression
 while(a.readLine(cin)){ //3 read standard input into a
 a(re) = "V4.0"; //4 replace matched expression
 cout << a << endl;
 }
 return 0;
}

Program Input:

This text describes V1.2. For more
information see the file install.doc.
The current version V1.2 implements...

Program Output:

This text describes V4.0. For more
information see the file install.doc.
The current version V4.0 implements...

The code here describes the activity of the class. RWCString creates a string
object a, reads lines from standard input into a, and searches a for a pattern
matching the defined regular expression "V[0-9]\\.[0-9]+" . A match

Using the String Classes 25

would be a version number between V0 and V9; for example, V1.2 and V1.22 ,
but not V12.3 . When a match is found, it is replaced with the string "V4.0 "

The power of this operation lies in the expression:

a(re) = "V4.0";

where() is an example of an overloaded operator. As you know, an
overloaded operator is one which can perform more than one function,
depending on context or argument.

In the example, the function call operator RWCString::operator() is
overloaded to take an argument of type RWCRegexp, the regular
expression. The operator returns either a substring that delimits the regular
expression, or a null substring if a matching expression cannot be found.
The program then calls the substring assignment operator, which replaces
the delimited string with the contents of the right hand side, or does nothing
if this is the null substring. Because Tools.h++ provides the overloaded
operator, you can do a search and replace on the defined regular expression
all in a single line.

You will notice that you need two backlashes in "V[0-9]\\.[0-9]+ " to
indicate that the special character ". " is to be read literally as a decimal
point. That’s because the compiler removes one backslash when it evaluates
a literal string. The remaining backslash alerts the regular expression
evaluator to read whatever character follows literally.

In the next example, RWCString uses another overloaded operator, + , to
concatenate the strings s1 and s2 . The toUpper member function converts
the strings from lower to upper case, and the results are sent to cout :

RWCString s1, s2;
cin >> s1 >> s2;
cout << toUpper(s1+s2);

See the Class Reference for details on the string classes.

3.2 Lexicographic Comparisons
If you’re putting together a dictionary, you’ll find the lexicographics
comparison operators of RWCString particularly useful. They are:

RWBoolean operator==(const RWCString&, const RWCString&);
RWBoolean operator!=(const RWCString&, const RWCString&);
RWBoolean operator< (const RWCString&, const RWCString&);
RWBoolean operator<=(const RWCString&, const RWCString&);
RWBoolean operator> (const RWCString&, const RWCString&);
RWBoolean operator>=(const RWCString&, const RWCString&);

These operators are case sensitive. If you wish to make case insensitive
comparisons, you can use the member function:

int RWCString::compareTo(const RWCString& str,
 caseCompare = RWCString::exact) const;

Using the String Classes 26

Here the function returns an integer less than zero, equal to zero, or greater
than zero, depending on whether str is lexicographically less than, equal to,
or greater than self. The type caseCompare is an enum with values:

 exact Case sensitive

 ignoreCase Case insensitive

Its default setting is exact, which gives the same result as the logical
operators ==, != , etc.

For locale-specific string collations, you would use the member function:

int RWCString::collate(const RWCString& str) const;

which is an encapsulation of the Standard C library function strcoll() .
This function returns results computed according to the locale-specific
collating conventions set by category LC_COLLATE of the Standard C library
function setlocale() . Because this is a relatively expensive calculation, you
may want to pretransform one or more strings using the global function:

RWCString strXForm(const RWCString&);

then use compareTo() or one of the logical operators, ==, != , etc., on the
results. See the Class Reference entry for RWCString : the function strxForm

appears under related global functions.

3.3 Substrings
A separate RWCSubString class supports substring extraction and
modification. There are no public constructors; RWCSubStrings are
constructed indirectly by various member functions of RWCString, and
destroyed at the first opportunity.

You can use substrings in a variety of situations. For example, you can
create a substring with RWCString::operator() , then use it to initialize an
RWCString :

RWCString s("this is a string");
// Construct an RWCString from a substring:
RWCString s2 = s(0, 4); // "this"

The result is a string s2 that contains a copy of the first four characters of s.

You can also use RWSubStrings as lvalues in an assignment to a character
string, or to an RWCString or RWCSubString :

// Construct an RWCString:
RWCString article("the");
RWCString s("this is a string");
s(0, 4) = "that"; // "that is a string"
s(8, 1) = article; // "that is the string"

Using the String Classes 27

Note that assignment to a substring is not a conformal operation: the two
sides of the assignment operator need not have the same number of
characters.

3.4 Pattern Matching
Class RWCString supports a convenient interface for string searches. In the
example below, the code fragment:

RWCString s("curiouser and curiouser.");
size_t i = s.index("curious");

will find the start of the first occurrence of curious in s. The comparison
will be case sensitive, and the result will be that i is set to 0. To find the
index of the next occurrence, you would use:

i = s.index("curious", ++i);

which will result in i set to 14. You can make a case-insensitive comparison
with:

RWCString s("Curiouser and curiouser.");
size_t i = s.index("curious", 0, RWCString::ignoreCase);

which will also result in i set to 0.

If the pattern does not occur in the string, the index() will return the special
value RW_NPOS.

3.4.1 Simple Regular Expressions

As part of its pattern matching capability, the Tools.h++ Class Library
supports regular expression searches. See the Class Reference, under
RWCRegexp, for details of the regular expression syntax. You can use a
regular expression to return a substring; for example, here’s how you might
match all Windows messages (prefix WM_):

#include <rw/cstring.h>
#include <rw/regexp.h>
#include <rw/rstream.h>

main(){
 RWCString a("A message named WM_CREATE");

 // Construct a Regular Expression to match Windows messages:
 RWCRegexp re("WM_[A-Z]*");
 cout << a(re) << endl;

 return 0;
}

Program Output:

WM_CREATE

Using the String Classes 28

The function call operator for RWCString has been overloaded to take an
argument of type RWCRegexp. It returns an RWCSubString matching the
expression, or the null substring if there is no such expression.

3.4.2 Extended Regular Expressions

This version of the Tools.h++ class library supports extended regular
expression searches based on the POSIX.2 standard. (See the Bibliography.)
Extended regular expressions are the regular expressions used in the UNIX
utilities lex and awk. You will find details of the regular expression syntax
in the Class Reference under RWCRExpr.

Note: RWCRExpr is available only if your compiler supports exception
handling and the C++ Standard Library.

Extended regular expressions can be any length, although limited by
available memory. You can use parentheses to group subexpressions, and
the symbol  to create either/or regular expressions for pattern matching.

The following example shows some of the capabilities of extended regular
expressions:

#include "rw/rstream.h"
#include "rw/re.h"

main (){
 RWCRExpr re("Lisa|Betty|Eliza");
 RWCString s("Betty II is the Queen of England.");

 s.replace(re, "Elizabeth");
 cout << s << endl;

 s = "Leg Leg Hurrah!";
 re = "Leg";
 s.replace(re, "Hip", RWCString::all);
 cout << s << endl;
}

Program Output:

Elizabeth II is the Queen of England.
Hip Hip Hurrah!

Note that the function call operator for RWCString has been overloaded to
take an argument of type RWCRExpr. It returns an RWCSubString matching
the expression, or the null substring if there is no such expression.

3.5 String I/O
Class RWCString offers a rich I/O facility to and from both iostreams and
Rogue Wave virtual streams.

Using the String Classes 29

3.5.1 iostreams

The standard left-shift and right-shift operators have been overloaded to
work with iostreams and RWCStrings :

ostream&operator<<(ostream& stream, const RWCString& cstr);
istream&operator>>(istream& stream, RWCString& cstr);

The semantics parallel the operators:

ostream&operator<<(ostream& stream, const char*);
istream&operator>>(istream& stream, char* p);

which are defined by the Standard C++ Library that comes with your
compiler. In other words, the left-shift operator << writes a null-terminated
string to the given output stream. The right-shift operator >> reads a single
token, delimited by white space, from the input stream into the RWCString,
replacing the previous contents.

Other functions allow finer tuning of RWCString input2. For instance,
function readline() reads strings separated by newlines. It has an optional
parameter controlling whether white space is skipped before storing
characters. You can see the difference skipping white space makes in the
following example:

#include <rw/cstring.h>
#include <iostream.h>
#include <fstream.h>

main(){
 RWCString line;

 { int count = 0;
 ifstream istr("testfile.dat");

 while (line.readLine(istr)) // Use default value:
 // skip whitespace
 count++;
 cout << count << " lines, skipping whitespace.\n";
 }

 { int count = 0;
 ifstream istr("testfile.dat");
 while (line.readLine(istr, FALSE)) // NB: Do not skip
 // whitespace
 count++;
 cout << count << " lines, not skipping whitespace.\n";
 }

 return 0;
}

2 Details about methods readFile() ; readLine() ;
readString(istream&) ; readToDelim() ; and
readToken() may be found in the RWCString section of
the Class Reference.

Using the String Classes 30

Program Input:

line 1

line 5

Program Output:

2 lines, skipping whitespace.
5 lines, not skipping whitespace.

3.5.2 Virtual Streams

String operators to and from Rogue Wave virtual streams are also
supported:

Rwvistream& operator>>(RWvistream& vstream, RWCString& cstr);
Rwvostream& operator<<(RWvostream& vstream,
 const RWCString& cstr);

By using these operators, you can save and restore a string without knowing
its formatting. See Section 6 for details on virtual streams.

3.6 Tokenizer
You can use the class RWCTokenizer to break up a string into tokens
separated by arbitrary white spaces. Here’s an example:

#include <rw/ctoken.h>
#include <rw/cstring.h>
#include <rw/rstream.h>

main(){
 RWCString a("a string with five tokens");

 RWCTokenizer next(a);

 int i = 0;

 // Advance until the null string is returned:
 while(!next().isNull()) i++;

 cout << i << endl;
 return 0;
}

Program Output:

5

This program counts the number of tokens in the string. The function call
operator for class RWCTokenizer has been overloaded to mean “advance to
the next token and return it as an RWCSubString,” much like other
Tools.h++ iterators. When there are no more tokens, it returns the null

Using the String Classes 31

substring. Class RWCSubString has a member function isNull() which
returns TRUE if the substring is the null substring. Hence, the loop is broken.
See the Class Reference under RWCTokenizer for details.

3.7 Multibyte Strings
Class RWCString provides limited support for multibyte strings, sometimes
used in representing various alphabets (see Section 16.1). Because a
multibyte character can consist of two or more bytes, the length of a string in
bytes may be greater than or equal to the number of actual characters in the
string.

If the RWCString contains multibyte characters, you should use member
function mbLength() to return the number of characters. On the other hand,
if you know that the RWCString does not contain any multibyte characters,
then the results of length() and mbLength() will be the same, and you may
want to use length() because it is much faster. Here's an example using a
multibyte string in Sun:

RWCString Sun("\306\374\315\313\306\374");
cout << Sun.length(); // Prints "6"
cout << Sun.mbLength(); // Prints "3"

The string in Sun is the name of the day Sunday in Kanji, using the EUC
(Extended UNIX Code) multibyte code set. With the EUC, a single character
may be 1 to 4 bytes long. In this example, the string Sun consists of 6 bytes,
but only 3 characters.

In general, the second or later byte of a multibyte character may be null.
This means the length in bytes of a character string may or may not match
the length given by strlen() . Internally, RWCString makes no
assumptions3 about embedded nulls, and hence can be used safely with
character sets that use null bytes. You should also keep in mind that while
RWCString::data() always returns a null-terminated string, there may be
earlier nulls in the string. All of these effects are summarized in the
following program:

#include <rw/cstring.h>
#include <rw/rstream.h>
#include <string.h>
main() {
RWCString a("abc"); // 1
RWCString b("abc\0def"); // 2
RWCString c("abc\0def", 7); // 3

cout << a.length(); // Prints "3"

3 However, system functions to transfer multibyte strings
may make such assumptions. RWCString simply calls
such functions to provide such transformations.

Using the String Classes 32

cout << strlen(a.data()); // Prints "3"

cout << b.length(); // Prints "3"
cout << strlen(b.data()); // Prints "3"

cout << c.length(); // Prints "7"
cout << strlen(c.data()); // Prints "3"
return 0; }

You will notice that two different constructors are used above. The
constructor in lines 1 and 2 takes a single argument of const char* , a null-
terminated string. Because it takes a single argument, it may be used in type
conversion (ARM 12.3.1). The length of the results is determined the usual
way, by the number of bytes before the null. The constructor in line 3 takes
a const char* and a run length. The constructor will copy this many bytes,
including any embedded nulls.

The length of an RWCString in bytes is always given by
RWCString::length() . Because the string may include embedded nulls, this
length may not match the results given by strlen() .

Remember that indexing and other operatorsbasically, all functions using
an argument of type size_t work in bytes. Hence, these operators will not
work for RWCStrings containing multibyte strings.

3.8 Wide Character Strings
Class RWWString , also used in representing various alphabets, is similar
to RWCString except it works with wide characters. These are much easier
to manipulate than multibyte characters because they are all the same size:
the size of a wchar_t .

Tools.h++ makes it easy to convert back and forth between multibyte and
wide character strings. Here’s an example of how to do it, built on the Sun

example in the previous section:

#include <rw/cstring.h>
#include <rw/wstring.h>
#include <assert.h>
main() {
RWCString Sun("\306\374\315\313\306\374");
RWWString wSun(Sun, RWWString::multiByte); // MBCS to wide string

RWCString check = wSun.toMultiByte();
assert(Sun==check); // OK
return 0; }

Basically, you convert from a multibyte string to a wide string by using the
special RWWString constructor:

RWWString(const char*, multiByte_);

Using the String Classes 33

The parameter multiByte_ is an enum with a single possible value,
multiByte, as shown in the example. The multiByte argument ensures that
this relatively expensive conversion is not done inadvertently. The
conversion from a wide character string back to a multibyte string, using the
function toMultiByte() , is similarly expensive.

If you know that your RWCString consists entirely of ASCII characters, you
can greatly reduce the cost of the conversion in both directions. This is
because the conversion involves a simple manipulation of high-order bits:

#include <rw/cstring.h>
#include <rw/wstring.h>
#include <assert.h>
main() {
RWCString EnglishSun("Sunday"); // ASCII string
assert(EnglishSun.isAscii()); // OK

// Now convert from Ascii to wide characters:
RWWString wEnglishSun(EnglishSun, RWWString::ascii);

assert(wEnglishSun.isAscii()); // OK
RWCString check = wEnglishSun.toAscii();
assert(check==EnglishSun); // OK
return 0; }

Note how the member functions RWCString::isAscii() and
RWWString::isAscii() are used to ensure that the strings consist entirely of
ASCII characters. The RWWString constructor:

RWWString(const char*, ascii_);

is used to convert from ASCII to wide characters. The parameter ascii_ is
an enum with a single possible value, ascii .

The member function RWWString::toAscii() is used to convert back.

S e c t i o n 4.
Using Class RWDate

4.1
 Example

4.2
 Constructors

Using Class RWDate 36

Class RWDate represents a date, stored as a Julian day number. Commonly
used in software, this compact representation allows rapid calendar
calculations, shields you from details such as leap years, and performs easy
conversions to and from conventional calendar formats.

You don’t need to know Julian day numbers to benefit from their use in
Tools.h++. If you are interested, the algorithm Tools.h++ uses to convert
common calendar dates to Julian day numbers is given in “Algorithm 199”
from Communications of the ACM, Volume 6, No. 8, Aug. 1963, p. 444.

The Gregorian calendar now used nearly world-wide was introduced by
Pope Gregory XIII in 1582, and adopted in various places at various times. It
was adopted by England on September 14, 1752, and thus came to the
United States. We mention this because an RWDate for a day prior to the
adoption of the Gregorian calendar is only valid in the sense that it is an
extrapolation back from the Gregorian system. Printing such an RWDate ,
or using its methods to deal with specific day or month names, may have
unexpected results.

4.1 Example
The point is that RWDate allows you to quickly and easily manipulate the
calendar dates you’re most likely to use. Here is an example that
demonstrates the virtuosity of the class.

Let’s print out the date when ENIAC first started, 14 February 1945, then
calculate and print the date of the previous Sunday, using the global locale:

#include <rw/rwdate.h>
#include <rw/rstream.h>

int main(){
 // ENIAC start date
 RWDate d(14, "February", 1945);

 // Today
 RWDate today;

 cout << d.asString("%A, %B %d 19%y")
 << " was the day the ENIAC computer was" << endl
 << "first turned on. "
 << today - d << " days have gone by since then. " << endl;

 return 0;
}

Program Output:

Wednesday February 14, 1945 was the day the ENIAC computer was
first turned on. 18636 days have gone by since then.

In this calculation, notice that the number of days that have passed depends
on when you run the program.

Using Class RWDate 37

4.2 Constructors
You can construct an RWDate in several ways. For example:

1. Construct an RWDate with the current date4:
 RWDate d;

2. Construct an RWDate for a given day of the year (1–365) and a given
year, e.g., 1989 or 89. Although the class supports 2-digit year specifiers,
we urge you to use the 4-digit variety if possible to avoid difficulties at
the turn of the century.
 RWDate d1(24, 2001); // 1/24/2001
 RWDate d2(24, 01); // 1/24/1901 (oops)

3. Construct an RWDate for a given day of the month (1–31), month
number (1–12), and year:

 RWDate d(10, 3, 2015); // 3/10/2015

4. Construct an RWDate from an RWTime :
 RWTime t; // Current time.
 RWDate d(t);

In addition, you can construct a date using locale-specific strings. If you do
nothing, a default locale using United States conventions and names is
applied:

RWDate d1(10, "June", 2001); // 6/10/2001
RWDate d2(10, "JUN", 2001); // 6/10/2001

But suppose you need to use French month names. Assuming your system
supports a French locale, here’s how you might do it:

dateloc.cpp
#include <rw/rwdate.h>
#include <rw/rstream.h>
#include <rw/locale.h>
#include <rw/cstring.h>

main()
{
 RWLocaleSnapshot us("C");
 RWLocaleSnapshot french("fr"); // or vendor specific // 1

 RWCString americanDate("10 June 2025");
 RWCString frenchDate("10 Juin 2025");

 RWDate d(frenchDate, french); // OK // 2

 cout << frenchDate << ((d.isValid()) ? " IS " : " IS NOT ")
 << "a valid date (french locale)." << endl << endl;

4 Because the default constructor for RWDate fills in
today's date, constructing a large array of RWDate may
be slow. If this is an issue, declare your arrays with a class
derived from RWDate that provides a faster constructor,
or use RWTValOrderedVector<RWDate>.

Using Class RWDate 38

 RWDate bad = RWDate(frenchDate); // 3
 cout << frenchDate;
 cout << ((bad.isValid() && bad == d) ? " IS " : " IS NOT ")
 << "a valid date (default locale)." << endl << endl;

 bad = RWDate(americanDate, french); // 4
 cout << americanDate;
 cout << ((bad.isValid() && bad == d) ? " IS " : " IS NOT ")
 << "a valid date (french locale)." << endl << endl;

 cout << d << endl; // 5
 cout << d.asString() << endl; // 6
 cout << d.asString('x', french) << endl; // 7

 return 0;
}

Here’s a line-by-line description of the previous code:

1. A snapshot is taken of locale fr . This assumes your system supports the
locale. Another common name for this locale is fr_FR .

2. A date is constructed using the constructor:
 RWDate(unsigned day,const char* month,unsigned year,
 const RWLocale& locale = RWLocale::global());

 Note that the second argument month is meaningful only within the
context of a locale. In this case, we are using the locale constructed at
line 1. The result is the date known in English as June 10, 2002.

3. Here we attempt to construct the same date using the default locale.
This locale recognizes C formatting conventions only. Hence, the date
10 Juin 2002 should be meaningless. Just in case, though, compare with
a known valid date.

4. For the same reason, constructing a date using United States names with
a French locale should fail. Just in case, though, compare with a known
valid date.

5. The date constructed at line 2 is printed using the default locale, i.e.,
United States formatting conventions. The results are:

 06/10/25

6. The date is converted to a string, then printed. Again, the default locale
is used. The results are the same:

 06/10/25

7. The date is converted to a string, this time using the locale constructed at
line 1. The results are now5:

 10.06.25

5 Your system's locale files determine the format used.

S e c t i o n 5.
Using Class RWTime

5.1
 Setting the Time Zone

5.2
 Constructors

5.3
 Member Functions

Using Class RWTime 40

Class RWTime represents time, stored as the number of seconds since 1
January 1901 UTC. UTC is sometimes called GMT, for Greenwich Meridian
Time. The number of seconds that can be stored is limited by the size of a
long on your system. The last date and time that can be represented with a
four-byte (32-bit) long is 22:28:15 February 5, 2037 UTC.

Class RWTime uses UTC because it is a widely accepted standard, useful in
calculations, but it is not the usual time reference people use in their daily
lives. We tell time with a local time which may or may not observe daylight-
saving time (DST) conventions; in fact, DST may or may not be in effect.

When we create an RWTime object to represent the current time, the library
obtains the current UTC time directly from the operating system. However,
when we create an RWTime object for some specific time, we are unlikely to
do so with UTC. More likely, the time we give it will be with respect to
some other time zone, and we must specify which time zone for RWTime to
do its job, or even print out the time. So by default, RWTime uses a global
local time, set by RWZone::local() .

5.1 Setting the Time Zone
The question naturally arises, how does the library determine this local
time?

The UNIX operating system provides for setting the local time zone and for
establishing whether DST is locally observed. Class RWTime uses various
system calls to determine these values and sets itself accordingly. Class
RWTime should function properly in North America or places where DST is
not observed. In places not governed by United States DST rules, you may
need to re-initialize the local time zonesee RWZone in the Class Reference.

Users of the various Windows operating systems may have to set the time
switches manually. How you do this depends on your compiler. If you do
nothing, the class will function properly for local time, but may not give the
proper GMT because the computer has no way of knowing the offset from
local time to GMT.

If you use Borland, MetaWare, Microsoft, Symantec, or Watcom, you must
set your environment variable TZ to the appropriate time zone. For example:

set TZ=PST8PDT

For further information, see the documentation for function tzset() or
_tzset() in your compiler’s run-time library reference.

Finally, it is essential that your computer’s system clock be set and
functioning correctly. If you are using a PC, be sure the batteries that power
the system clock are charged.

Using Class RWTime 41

5.2 Constructors
An RWTime may be constructed in several ways:

1. Construct an RWTime with the current time:

 RWTime t;

2. Construct an RWTime with today’s date, at the specified local hour (0-
23), minute (0-59), and second (0-59):

 RWTime t(16, 45, 0); // today, 16:45:00

3. Construct an RWTime for a given date and local time:

 RWDate d(2, "June", 1952);
 RWTime t(d, 16, 45, 0); // 6/2/52 16:45:003

4. Construct an RWTime for a given date and time zone:

 RWDate d(2, "June", 1952);
 RWTime t(d, 16, 45, 0, RWZone::utc()); // 6/2/52 16:45:00

5.3 Member Functions
Class RWTime has member functions to compare, store, restore, add, and
subtract RWTimes. An RWTime may return hours, minutes or seconds, or
fill a struct tm for any time zone. A complete list of member functions is
included in the Class Reference.

For example, here is a code fragment that outputs the hour in local and UTC
zones, and then the complete local time and date:

RWTime t;
cout << t.hour() << endl; // Local hour
cout << t.hour(RWZone::utc()) << endl; // UTC hour
cout << t.asString('c') << endl; // Local time and date

See the definition for c and other format characters for time under the entry
for RWLocale in the Class Reference. The next example shows how you find
out when daylight-saving time starts for the current year and local time
zone:

RWDate today; // Current date
RWTime dstStart = RWTime::beginDST(today.year(), RWZone::local());

In order to ensure that this will give the right results for time zones outside
of North America, you should reset RWZone::local() with an
RWZoneSimple equipped with an appropriate daylight-saving time rule.
For more information see RWZoneSimple in the Class Reference. See the
entry for c and other format characters for time in RWLocale in the Class
Reference.

S e c t i o n 6.
Using Virtual Streams

6.1
 Specializing Virtual Streams

6.2
 Simple Example

6.3
 Windows Clipboard and DDE Streambufs

6.4
 DDE Example

6.5
 RWAuditStreamBuffer

6.6
 Recap

Using Virtual Streams 44

The iostream facility that comes with every C++ compiler is a resource that
should be familiar to you as a C++ developer. Among its advantages are
type-safe insertion and extraction into and out of streams, extensibility to
new types, and transparency to the user of the source and sink of the stream
bytes, which are set by the class streambuf.

But the iostream facility suffers from a number of limitations. Formatting
abilities are particularly weak; for example, if you insert a double into an
ostream, there is no type-safe way to insert it as binary. Furthermore, not
all byte sources and sinks fit into the streambuf model. For many
protocols, such as XDR, the format is intrinsically wedded to the byte stream
and cannot be separated.

The Rogue Wave virtual streams facility overcomes these limitations by
offering an idealized model of a stream. No assumptions are made about
formatting, or stream models. At the root of the virtual streams class
hierarchy is class RWvios. This is an abstract base class with an interface
similar to the standard library class ios :

class RWvios{
public:
 virtual int eof() = 0;
 virtual int fail() = 0;
 virtual int bad() = 0;
 virtual int good() = 0;
 virtual int rdstate() = 0;
 virtual int clear(int v = 0) = 0;
};

Classes derived from RWvios will define these functions.

Inheriting from RWvios are the abstract base classes RWvistream and
RWvostream. These classes declare a suite of pure virtual functions such as
operator<<() , put() , get() , and the like, for all the basic built-in types and
arrays of built-in types:

class RWvistream : public RWvios {
public:
 virtual Rwvistream& operator>>(char&) = 0;
 virtual Rwvistream& operator>>(double&) = 0;
 virtual int get() = 0;
 virtual Rwvistream& get(char&) = 0;
 virtual Rwvistream& get(double&) = 0;
 virtual Rwvistream& get(char*, size_t N) = 0;
 virtual Rwvistream& get(double*, size_t N) = 0;
 .
 .
 .
};

class RWvostream : public RWvios {
public:
 virtual Rwvostream& operator<<(char) = 0;
 virtual Rwvostream& operator<<(double) = 0;
 virtual Rwvostream& put(char) = 0;
 virtual Rwvostream& put(double) = 0;
 virtual Rwvostream& put(const char*, size_t N) = 0;

Using Virtual Streams 45

 virtual Rwvostream& put(const double*, size_t N) = 0;
 .
 .
 .
};

Streams that inherit from RWvistream and RWvostream are intended to
store built-ins to specialized streams in a format that is transparent to the
user of the classes.

The basic abstraction of the virtual streams facility is that built-ins are
inserted into a virtual output stream, and extracted from a virtual input
stream, without any regard for formatting. In other words, there is no need to
pad output with whitespace, commas, or any other kind of formatting. You
are effectively telling RWvostream , “Here is a double. Please store it for me
in whatever format is convenient, and give it back to me in good shape when
I ask for it.”

The results are extremely powerful. You can write and use streaming
operators without knowing anything about the final output medium or
formatting to be used. For example, the output medium could be a disk,
memory allocation, or even a network. The formatting could be in binary,
ASCII, or network packet. In all of these cases, you use the same streaming
operators.

6.1 Specializing Virtual Streams
The Rogue Wave classes include four types of classes that specialize
RWvistream and RWvostream. The first uses a portable ASCII formatting,
the second and third a binary formatting, and the fourth an XDR formatting
(eXternal Data Representation, a Sun Microsytems standard):

Input class Output class

Abstract base class RWvistream RWvostream

Portable ASCII RWpistream RWpostream

Binary RWbistream RWbostream

Endian RWeistream RWeostream

XDR RWXDRistream RWXDRostream

The portable ASCII versions store their inserted items in an ASCII format
that escapes special characters (such as tabs, newlines, etc.) in such a manner
that they will be restored properly, even under a different operating system.
The binary versions do not reformat inserted items, but store them instead in
their native format. The endian versions allow for the space and time
efficiency of binary format, but can store or retrieve the information in big

Using Virtual Streams 46

endian, little endian, or native format. XDR versions send their items to an
XDR stream, to be transmitted remotely over a network.

None of these versions retain any state: they can be freely interchanged with
regular streams, including XDR. Using them does not lock you into doing
all your file I/O with them. For more information, see the respective entries
in the Class Reference.

6.2 Simple Example
Here’s a simple example that exercises RWbostream and RWbistream
through their respective abstract base classes, RWvostream and
RWvistream :

#include <rw/bstream.h>
#include <rw/cstring.h>
#include <fstream.h>

#ifdef __BORLANDC__
define MODE ios::binary // 1
#else
define MODE 0
#endif

void save(const RWCString& a, RWvostream& v){
 v << a; // Save to the virtual output stream
}

RWCString recover(RWvistream& v) {
 RWCString dupe;
 v >> dupe; // Restore from the virtual input stream
 return dupe;
}

main(){
 RWCString a("A string with\ttabs and a\nnewline.");

 {
 ofstream f("junk.dat", ios::out|MODE); // 2
 RWbostream bostr(f); // 3
 save(a, bostr);
 } // 4

 ifstream f("junk.dat", ios::in|MODE); // 5
 RWbistream bistr(f); // 6
 RWCString b = recover(bistr); // 7

 cout << a << endl; // Compare the two strings // 8
 cout << b << endl;
 return 0;
}

Program Output:

A string with tabs and a
newline.
A string with tabs and a
newline.

Using Virtual Streams 47

The job of function save(const RWCString& a, RWvostream& v) is to save
the string a to the virtual output stream v. Function recover(RWvistream&)

restores the results. These functions do not know the ultimate format with
which the string will be stored. Here are some additional comments on
particular lines:

//1, //2
 On these lines, a file output stream f is created for the file junk.dat .
The default file open mode for many PC compilers is text , requiring
that the explicit flag ios::binary be used to avoid automatic DOS new
line conversion6.

//3 On this line, an RWbostream is created from f .

//4 Because this clause is enclosed in braces { ... } , the destructor for f
will be called here. This will cause the file to be closed.

//5 The file is reopened, this time for input.

//6 Now an RWbistream is created from it.

//7 The string is recovered from the file.

//8 Finally, both the original and recovered strings are printed for
comparison.

You could simplify this program by using class fstream, which multiply
inherits ofstream and ifstream, for both output and input. A seek to
beginning-of-file would occur before reading the results back in. Since some
early implementations of seekg() have not proven reliable, the simpler
approach was not chosen for this example.

6.3 Windows Clipboard and DDE Streambufs
In the previous section, you saw how the virtual streams facility abstracts
the formatting of items inserted into the stream. The disposition of the items
inserted into the streams has also been made abstract: it is set by the type of
streambuf used.

Class streambuf is the underlying sequencing layer of the iostreams facility.
It is responsible for producing and consuming sequences of characters. Your
compiler comes with several versions. For example, class filebuf ultimately
gets and puts its characters to a file. Class strstreambuf gets and puts to
memory-based character streams; you can think of it as the iostream

6 With many PC compilers, even ostream::write() and
istream::read() perform a text conversion unless the
file is opened with the ios::binary flag.

Using Virtual Streams 48

equivalent to ANSI-C’s sprintf() function. Now Tools.h++ adds two
Windows-based extensions:

• Class RWCLIPstreambuf for getting and putting to the Windows
Clipboard;

• Class RWDDEstreambuf for getting and putting through the Windows
Dynamic Data Exchange (DDE) facility.

These classes take care of the details of allocating and reallocating memory
from Windows as buffers overflow and underflow. In the case of class
RWDDEstreambuf, the associated DDEDATA header is also filled in for you.
Any class that inherits from class ios can be used with these streambufs ,
including the familiar istream and ostream, as well as the Rogue Wave
virtual stream classes.

The result is that the same code that is used to store a complex structure to a
conventional disk-based file, for example, can also be used to transfer that
structure through the DDE facility to another application!

6.4 DDE Example
Let’s look at a more complicated example of how you might use class
RWDDEstreambuf to exchange an RWBinaryTree through the Windows
DDE facility. You would use a similar technique for the Windows
Clipboard.

#include <rw/bintree.h>
#include <rw/collstr.h>
#include <rw/bstream.h>
#include <rw/winstrea.h>
#include <windows.h>
#include <dde.h>

BOOL
PostCollection(HWND hwndServer, WORD cFormat){
 RWBinaryTree sc; // 1
 sc.insert(new RWCollectableString("Mary"));
 sc.insert(new RWCollectableString("Bill"));
 sc.insert(new RWCollectableString("Pierre"));

 // Allocate an RWDDEstreambuf and use it to initialize
 // an RWbostream:
 RWDDEstreambuf* sbuf = new RWDDEstreambuf(cFormat, // 2
 FALSE, // 3
 TRUE, // 4
 TRUE); // 5
 RWbostream bostr(sbuf); // 6

 // Store the collection to the RWbostream:
 bostr << sc; // 7

 // Lock the output stream, and get its handle:
 HANDLE hDDEData = sbuf->str(); // 8

Using Virtual Streams 49

 // Get an atom to identify the DDE Message:
 ATOM atom = GlobalAddAtom("SortedNames"); // 9

 // Post the DDE response:
 return PostMessage(0xFFFF, WM_DDE_DATA, hwndServer, //10
 MAKELONG(hDDEData, atom));
}

In the code above, the large memory model has been assumed. Here’s the
line-by-line description:

//1 An RWBinaryTree is built and some items inserted into it.

//2-//5

 An RWDDEstreambuf is allocated. The constructor takes several
arguments. The first argument is the Windows Clipboard format. In
this example, the format type has been passed in as an argument, but in
general, you will probably want to register a format with Windows
(using RegisterClipboardFormat()) and use that.

 The other arguments have to do with the intricacies of DDE data
exchange acknowledgments and memory management. See the Class
Reference for the list of arguments; for their meanings, see Petzold
(1990), Chapter 17, or the Microsoft Windows Guide to Programming.

//6 An RWbostream is constructed from the supplied RWDDEstreambuf.
We could have used an RWpostream here, but DDE exchanges are
done within the same machine architecture so, presumably, it is not
worth the extra overhead of using the portable ASCII formats.
Nevertheless, note how the disposition of the bytes, which is set by the
type of streambuf, is cleanly separated from their formatting, which is
set by the type of RWvostream.

//7 The collection is saved to the RWbostream. Because the streambuf
associated with RWbostream is actually an RWDDEstreambuf, the
collection is actually being saved to a Windows global memory
allocation with characteristic GMEM_DDESHARE. This allocation is resized
automatically if it overflows. Like any other strstreambuf, you can
change the size of the allocation chunks using member function
setbuf() .

//8 The RWDDEstreambuf is locked. Once locked using str() , this
streambuf, like any other strstreambuf, cannot be used again. Note,
however, that RWDDEstreambuf::str() returns a handle, rather than a
char* . The handle is unlocked before returning it.

//9 An atom is constructed to identify this DDE data.

//10 The handle returned by RWDDEstreambuf::str() , along with its
identifying atom, is posted.

A similar and actually simpler technique can be used for Clipboard
exchanges.

Using Virtual Streams 50

Note that there is nothing that constrains you to use the specialized
streambufs RWCLIPstreambuf and RWDDEstreambuf with only the Rogue
Wave virtual streams facility. You could quite easily use them with regular
istreams and ostreams ; you just wouldn’t be able to set the formatting at
run time.

6.5 RWAuditStreamBuffer
Classes RWDDEstreambuf and RWCLIPstreambuf specialize streambuf to hand
off the characters according to the Windows API. But there are other useful
specializations of a streambuf . Class RWAuditStreamBuffer allows you to
count the bytes of any stream, while optionally calling a function of your
choice for each character. See the code example in the Class Reference.

6.6 Recap
In this section, you have seen how an object can be stored to and recovered
from a stream without regard for the final destination of the bytes of that
stream, whether memory or disk. You have also seen that you need not be
concerned with the final formatting of the stream, whether ASCII or binary.

You can also write your own specializing virtual stream class, much like
RWpostream and RWpistream. The great advantage of the virtual streams
facility is that, if you do write your own specialized virtual stream, you
don’t have to modify any of the code of the client classesyou just use your
stream class as an argument to:

RWvostream& operator<<(RWvostream&, const ClassName &);
RWvistream& operator>>(RWvistream&, ClassName &);

In addition to storing and retrieving an object to and from virtual streams,
all of the classes can store and retrieve themselves in binary to and from an
RWFile. This file encapsulates ANSI-C style file I/O. Although more
limited in its abilities than stream I/O, this form of storage and retrieval is
slightly faster to and from disk because the virtual dispatching machinery is
not needed.

S e c t i o n 7.
Using Class RWFile

7.1
Example

Using Class RWFile 52

Class RWFile encapsulates the standard C file operations for binary read and
write, using the ANSI-C functions fopen() , fwrite() , fread() , etc. This
class is patterned on class PFile of the Interviews Class Library (Stanford
University, 1987), but has been modernized by Rogue Wave to use const

modifiers, and to port to various operating systems. The member function
names begin with upper case letters in order to maintain compatibility with
class PFile.

The constructor for class RWFile has the prototype:
RWFile(const char* filename, const char* mode = 0);

This constructor will open or create a binary file called filename with mode
set to mode (for example, r+), as defined by the Standard C function fopen() .
If mode is zero, which is the default, an existing file will be opened for update
(mode r+ for UNIX, rb+ for Windows environments). If filename does not
exist, it will be created (mode w+ for UNIX, wb+ for Windows environments).
The destructor for this class closes the file.

After constructing an RWFile, you should use member function isValid() to
check whether opening the file was successful.

There are member functions to flush the file, and to test whether the file has
had an error, or is empty or at the end-of-file.

7.1 Example
Class RWFile also has member functions to determine the status of a file, and
to read and write a wide variety of built-in types, either one at a time, or as
arrays. The file pointer may be repositioned with functions SeekTo() ,
SeekToBegin() , and SeekToEnd() . The details of the RWFile class capabilities
are summarized in the Class Reference.

The following example creates an RWFile with filename test.dat . The code
reads an int (if the file is not empty), increments it, and writes it back to the
file:

#include <rw/rwfile.h>

main(){
 RWFile file("test.dat"); // Construct the RWFile.

 // Check that the file exists, and that it has
 // read/write permission:
 if (file.Exists())
{
 int i = 0;
 // Read the int if the file is not empty:
 if (!file.IsEmpty()) file.Read(i);
 i++;
 file.SeekToBegin();
 file.Write(i); // Rewrite the int.
 }
 return 0;
}

S e c t i o n 8.
Using Class RWFileManager

8.1
Construction

8.2
Member Functions

Using Class RWFileManager 54

Class RWFileManager allocates, deallocates, and coalesces free space in a
disk file. This is done internally by maintaining on disk a linked-list of free
space blocks.

Two typedefs are used:

typedef long RWoffset;
typedef unsigned long RWspace;

The type RWoffset is used for the offset within the file to the start of a
storage space; RWspace is the amount of storage space required. The actual
typedef may vary depending on the system you are using.

Class RWFile is a public base class of class RWFileManager ; therefore, the
public member functions of class RWFile are available to class
RWFileManager.

8.1 Construction
The RWFileManager constructor has the prototype:

RWFileManager(const char* filename);

The argument is the name of the file that the RWFileManager is to manage.
If it exists, it must contain a valid RWFileManager ; otherwise, one will be
created.

8.2 Member Functions
The class RWFileManager adds four additional member functions to those
of class RWFile. They are:

1. RWoffset allocate(RWspace s);
Allocate s bytes of storage in the file, returning the offset to the start of
the allocation.

2. void deallocate(RWoffset t);
Deallocate (free) the storage space starting at offset t . This space must
have been previously allocated by the function allocate() :

3. RWOffset endData();
Return the offset to the last data in the file.

4. RWoffset start();
Return the offset from the start of the file to the first space ever allocated
by RWFileManager, or return RWNIL7 if no space has been allocated,
which implies that this is a new file.

7 RWNIL is a macro whose actual value is system dependent.
Typically, it is -1L .

Using Class RWFileManager 55

The statement:

RWoffset a = F.allocate(sizeof(double));

uses F of RWFileManager to allocate the space required to store an object
with the size of a double, and returns the offset to that space. To write the
object to the disk file, you should seek to the allocated location and use
Write() . It is an error to read or write to an unallocated location in the file.

It is your responsibility to maintain a record of the offsets necessary to read
the stored object. To help you do this, the first allocation ever made by an
RWFileManager is considered special and can be returned by member
function start() at any time. The RWFileManager will not allow you to
deallocate it. This first block will typically hold information necessary to
read the remaining data, perhaps the offset of a root node, or the head of a
linked-list.

The following example shows the use of class RWFileManager to
construct a linked-list of int s on disk. The source code is included in the
toolexam subdirectory as fmgrsave.cpp and fmgrrtrv.cpp .

When using this example, you must type a carriage return after the last item
you want to insert in order to guarantee that it will be added to the list. This
is because different compilers handle the occurrence of an EOF on the cin

stream differently.

#include <rw/filemgr.h> // 1
#include <rw/rstream.h>

struct DiskNode { // 2
 int data; // 3
 Rwoffset nextNode; // 4
};

main(){
 RWFileManager fm("linklist.dat"); // 5

 // Allocate space for offset to start of the linked list:
 fm.allocate(sizeof(RWoffset)); // 6
 // Allocate space for the first link:
 RWoffset thisNode = fm.allocate(sizeof(DiskNode)); // 7

 fm.SeekTo(fm.start()); // 8
 fm.Write(thisNode); // 9

 DiskNode n;
 int temp;
 RWoffset lastNode;
 cout << "Input a series of integers, ";
 cout << "then EOF to end:\n";

 while (cin >> temp) { // 10
 n.data = temp;
 n.nextNode = fm.allocate(sizeof(DiskNode)); // 11
 fm.SeekTo(thisNode); // 12
 fm.Write(n.data); // 13
 fm.Write(n.nextNode);
 lastNode = thisNode; // 14
 thisNode = n.nextNode;
 }

Using Class RWFileManager 56

 fm.deallocate(n.nextNode); // 15
 n.nextNode = RWNIL; // 16
 fm.SeekTo(lastNode);
 fm.Write(n.data);
 fm.Write(n.nextNode);
 return 0;
} // 17

Here’s a line-by-line description of the program:

//1 Include the declarations for the class RWFileManager.

//2 Struct DiskNode is a link in the linked-list. It contains:

//3 the data (an int), and:

//4 the offset to the next link. RWoffset is typically typedef ’d to a long int .

//5 This is the constructor for an RWFileManager. It will create a new file,
called linklist.dat .

//6 Allocate space on the file to store the offset to the first link. This first
allocation is considered special and will be saved by the
RWFileManager. It can be retrieved at any time by using the member
function start() .

//7 Allocate space to store the first link. The member function allocate()

returns the offset to this space. Since each DiskNode needs the offset
to the next DiskNode, space for the next link must be allocated before
the current link is written.

//8 Seek to the position to write the offset to the first link. Note that the
offset to this position is returned by the member function start() .
Note also that fm has access to public member functions of class
RWFile, since class RWFileManager is derived from class RWFile.

//9 Write the offset to the first link.

//10 A loop to read integers and store them in a linked-list.

//11 Allocate space for the next link, storing the offset to it in the nextNode

field of this link.

//12 Seek to the proper offset to store this link

//13 Write this link.

//14 Since we allocate the next link before we write the current link, the final
link in the list will have an offset to an allocated block that is not used.
It must be handled as a special case.

//15 First, deallocate the final unused block.

//16 Next, reassign the offset of the final link to be RWNIL. When the list is
read, this will indicate the end of the linked list. Finally, rewrite the
final link with the correct information.

Using Class RWFileManager 57

//17 The destructor for class RWFileManager, which closes the file, will be
called here.

Having created the linked-list on disk, how might you read it? Here is a
program that reads the list and prints the stored integer field:

#include <rw/filemgr.h>
#include <rw/rstream.h>

struct DiskNode {
 int data;
 Rwoffset nextNode;
};

main(){
 RWFileManager fm("linklist.dat"); // 1

 fm.SeekTo(fm.start()); // 2
 RWoffset next;
 fm.Read(next); // 3

 DiskNode n;
 while (next != RWNIL) { // 4
 fm.SeekTo(next); // 5
 fm.Read(n.data); // 6
 fm.Read(n.nextNode);
 cout << n.data << "\n"; // 7
 next = n.nextNode; // 8
 }
 return 0;
} // 9

And this is a line-by-line description of the program:
//1 The RWFileManager has been constructed with an old File.

//2 The member function start() returns the offset to the first space ever
allocated in the file. In this case, that space will contain an offset to the
start of the linked-list.

//3 Read the offset to the first link.

//4 A loop to read through the linked-list and print each entry.

//5 Seek to the next link.

//6 Read the next link.

//7 Print the integer.

//8 Get the offset to the next link.

//9 The destructor for class RWFileManager, which closes the file, will be
called here.

S e c t i o n 9.
Using Class RWBTreeOnDisk

9.1
Construction

9.2
Example

Using Class RWBTreeOnDisk 60

Class RWBTreeOnDisk has been designed to manage a B-tree in a disk file.
The class represents an ordered collection of associations of keys and values,
where the ordering is determined internally by comparing keys. Given a
key, a value can be retrieved. Duplicate keys are not allowed.

Keys are arrays of char . The key length is set by the constructor. The
ordering in the B-tree is determined by comparing keys with an external
function, which you can change.

The type of the values is:

typedef long RWstoredValue;

The values typically represent an offset to a location in a file where an object
is stored. Given a key, you can find where an object is stored and retrieve it.
As far as class RWBTreeOnDisk is concerned, however, the value has no
special meaningit is up to you to interpret it.

The class RWBTreeOnDisk uses class RWFileManager to manage the
allocation and deallocation of space for the nodes of the B-tree. You can use
the same RWFileManager to manage the space for the objects themselves if
the B-tree and data are to be in the same file. Alternatively, you could use a
different RWFileManager, managing a different file, to store the B-tree and
data in separate files.

The member functions associated with class RWBTreeOnDisk are similar to
those of the in-memory class RWBTreeDictionary, except that keys are
arrays of char rather than RWCollectables . There are member functions to
add a key-value pair, remove a pair, replace a value associated with a key,
query for information associated with a key, operate on all key-value pairs
in order, return the number of entries in the tree, and determine if a key is
contained in the tree.

9.1 Construction
An RWBTreeOnDisk is always constructed from an RWFileManager. If the
RWFileManager is managing a new file, then the RWBTreeOnDisk will
initialize it with an empty root node. For example, the following code
fragment constructs an RWFileManager for a new file called filename.dat

and then constructs an RWBTreeOnDisk from it:

#include <rw/disktree.h>
#include <rw/filemgr.h>

main(){
 RWFileManager fm("filename.dat");

 // Initializes filename.dat with an empty root:
 RWBTreeOnDisk bt(fm);
}

Using Class RWBTreeOnDisk 61

9.2 Example
In this example, key-value pairs of character strings and offsets to RWDates
representing birthdays are stored. Given a name, you can retrieve a
birthdate from disk.

#include <rw/disktree.h>
#include <rw/filemgr.h>
#include <rw/cstring.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main(){
 RWCString name;
 RWDate birthday;

 RWFileManager fm("birthday.dat");
 RWBTreeOnDisk btree(fm); // 1

 while (cin >> name) // 2
 {
 cin >> birthday; // 3
 RWoffset loc = fm.allocate(birthday.binaryStoreSize());// 4
 fm.SeekTo(loc); // 5
 fm << birthday; // 6
 btree.insertKeyAndValue(name, loc); // 7
 }
 return 0;
}

Here’s the line-by-line description:

//1 Construct a B-tree. The default constructor is used, resulting in a key
length of 16 characters.

//2 Read the name from standard input. This loop will exit when EOF is
reached.

//3 Read the corresponding birthday.

//4 Allocate enough space from the RWFileManager to store the birthday.
Function binaryStoreSize() is a member function in most Rogue
Wave classes. It returns the number of bytes necessary to store an
object in an RWFile. If you are storing an entire RWCollection, or
using one of the methods recursiveSaveOn() or operator<<(RWFile&,

RWCollectable) , be sure to use recursiveStoreSize() instead.

//5 Seek to the location where the RWDate will be stored.

//6 Store the date at that location. Most Rogue Wave classes have an
overloaded version of the streaming operators << and >>.

//7 Insert the key and offset to the object in the B-tree.

Having stored the names and birthdates on a file, here’s how you might
retrieve them:

Using Class RWBTreeOnDisk 62

#include <rw/disktree.h>
#include <rw/filemgr.h>
#include <rw/cstring.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main(){
 RWCString name;
 RWDate birthday;

 RWFileManager fm("birthday.dat");
 RWBTreeOnDisk btree(fm);

 while(1)
 {
 cout << "Give name: ";
 if (!(cin >> name)) break; // 1
 RWoffset loc = btree.findValue(name); // 2
 if (loc==RWNIL) // 3
 cerr << "Not found.\n";
 else
 {
 fm.SeekTo(loc); // 4
 fm >> birthday; // 5
 cout << "Birthday is " << birthday << endl; // 6
 }
 }
 return 0;
}

Here is a description of the program:

//1 The program accepts names until encountering an EOF.

//2 The name is used as a key to RWBTreeOnDisk, which returns the
associated value, an offset, into the file.

//3 Check to see whether the name was found.

//4 If the name is valid, use the value to seek to the spot where the
associated birthdate is stored.

//5 Read the birthdate from the file.

//6 Print it out.

With a little effort, you can easily have more than one B-tree active in the
same file. This allows you to maintain indexes on more than one key.
Here’s how you would create three B-trees in the same file:

#include <rw/disktree.h>
#include <rw/filemgr.h>

main(){
 RWoffset rootArray[3];

 RWFileManager fm("index.dat");
 RWoffset rootArrayOffset = fm.allocate(sizeof(rootArray));

 for (int itree=0; itree<3; itree++)
 {

Using Class RWBTreeOnDisk 63

 RWBTreeOnDisk btree(fm, 10, RWBTreeOnDisk::create);
 rootArray[itree] = btree.baseLocation();
 }
 fm.SeekTo(fm.start());
 fm.Write(rootArray, 3);
 return 0;
}

And here is how you could open the three B-trees:

#include <rw/disktree.h>
#include <rw/filemgr.h>

main(){
 RWoffset rootArray[3]; // Location of the tree roots
 RWBTreeOnDisk* treeArray[3]; // Pointers to the RWBTreeOnDisks

 RWFileManager fm("index.dat");
 fm.SeekTo(fm.start()); // Recover locations of root nodes
 fm.Read(rootArray, 3);

 for (int itree=0; itree<3; itree++)
 {
 // Initialize the three trees:
 treeArray[itree] = new RWBTreeOnDisk(fm,
 10, // Max. nodes cached
 RWBTreeOnDisk::autoCreate, // Will read old tree
 16, // Key length
 FALSE, // Do not ignore nulls
 rootArray[itree] // Location of root
);
 }

 .
 .
 .
 for (itree=0; itree<3; itree++) // Free heap memory
 delete treeArray[itree];

 return 0;
}

S e c t i o n 10.
Collection Classes

10.1
 Storage Methods of Collection Classes

10.2
 Copying Collection Classes

10.3
 Retrieving Objects in Collections

10.4
 Iterators in Collection Classes

Collection Classes 66

The Tools.h++ class library includes three types of collection classes:

• The template-based collection classes, which we call collection class
templates, or just templates, for short;

• The generic collection classes, modeled after Stroustrup (1986), Chapter
7.3.5;

• The Smalltalk-like collection classes.

Despite their different implementations, their functionality and user
interfaces (member function names, etc.) are similar.

In the following sections, we’ll discuss each type of collection class in turn.
In this section, we’ll discuss basic concepts of collection classes, and translate
some of the jargon you may encounter here and in the literature of C++.

10.1 Storage Methods of Collection Classes
The general objective of collection classes, called collections for short, is to
store and retrieve objects. In fact, you can classify collection classes
according to how they store objects. Value-based collections store the object
itself; reference-based collections store a pointer or reference to the object. The
difference between the two will influence how you use some features of
collection classes in Tools.h++.

Value-based collection classes are simpler to understand and manipulate.
You create a linked list of integers or doubles, for example, or a hash table of
shorts. Stored types can be more complicated, like the RWCStrings , but the
important point is that they act just like values, even though they may
contain pointers to other objects. When an object is inserted into a value-
based collection class, a copy is made. The procedure is similar to C’s pass-
by-value semantics in function calls.

In a reference-based collection class, you store and retrieve pointers to other
objects. For example, you could create a linked list of pointers to integers or
doubles, or a hash table of pointers to RWCStrings .

Let’s look at two code fragments that demonstrate the difference between
the value-based and the reference-based procedures:

Value-based Example Reference-based Example

/* A vector of RWCStrings: */
RWTValOrderedVector<RWCString> v;
RWCString s("A string");
v.insert(s);

/* A vector of pointers to RWCStrings: */
RWTPtrOrderedVector<RWCString> v;
RWCString* p = new RWCString("A string");
v.insert(p);

Both code fragments insert an RWCString into vector v. In the first example,
s is an RWCString object containing “A string”. The statement v.insert(s)

copies the value of s into the vector. The object that lies within the vector is

Collection Classes 67

distinct and separate from the original object s. In the second example, p is a
pointer to the RWCString object. When the procedure v.insert(p) is
complete, the new element in v will refer to the same RWCString object as p.

10.1.1 A Note on Memory Management

A reference-based collection can be very efficient because pointers are small
and inexpensive to manipulate. However, with a reference-based collection,
you must always remember that you are responsible for memory
management: the creation, maintenance, and destruction of the actual
objects themselves. If you create two pointers to the same object and
prematurely delete the object, you’ll leave the second pointer pointing into
nonsense. By the same token, you must never insert a nil pointer into a
reference-based collection, since the collection has methods which must
dereference its contained values.

Despite the added responsibility, don’t avoid reference-based collections
when you need them. Tools.h++ classes have member functions to help you,
and in most cases, the ownership of the contained objects is obvious anyway.
You should choose a reference-based collection if you need performance and
size advantages: here the size of all pointers is the same, allowing a large
degree of code reuse. Also choose the reference-based collection if you just
want to point to an object rather than contain it (a set of selected objects in a
dialog list, for example). Finally, for certain heterogeneous collections, the
reference-based approach may be the only one viable.

10.2 Copying Collection Classes
Copying classes is a common software procedure. It happens every time a
copy constructor is applied, or whenever a process needs a copy to work on.
Copying value-based collection classes is straightforward. But special
considerations arise in copying reference-based classes, and we deal with
them here.

10.2.1 Copying Reference-based Collection Classes

What happens when you make a copy of a reference-based collection class,
or any class that references another object, for that matter? It depends which
of the two general approaches you choose: shallow copying or deep copying.

1. A shallow copy of an object is a new object whose instance variables are
identical to the old object. For example, a shallow copy of a Set has the
same members as the old Set, and shares objects with the old Set
through pointers. Shallow copies are sometimes said to use reference
semantics.

The copy constructors of all reference-based Rogue Wave collection
classes make shallow copies.

Collection Classes 68

2. A deep copy of an object is a new object with entirely new instance
variables; it does not share objects with the old. For example, a deep
copy of a Set not only makes a new Set, but also inserts items that are
copies of the old items. In a true deep copy, this copying is done
recursively. Deep copies are sometimes said to use value semantics.

Note that some reference-based collection classes have a copy() member
function that returns a new object with entirely new instance variables. This
copying is not done recursively, and the new instance variables are shallow
copies of the old instance variables.

Here’s a graphical example of the differences between shallow and deep
copies. Imagine Bag , an unordered collection class of objects with
duplicates allowed, that looks like this before a copy :

Making a shallow copy and a deep copy of Bag would produce the
following results:

You can see that the deep copy copies not only the bag itself, but recursively
all objects within it.

The copying approach you choose is important. For example, shallow
copies can be useful and fast, because less copying is done, but you must be
careful because two collections now reference the same object. If you delete

Collection Classes 69

all the items in one collection, you will leave the other collection pointing
into nonsense.

You also need to consider the approach when writing an object to disk. If an
object includes two or more pointers or references to the same object, it is
important to preserve this morphology when the object is restored. Classes
that inherit from RWCollectable inherit algorithms that guarantee to
preserve an object’s morphology. You’ll see more on this in Section 14.

10.2.2 Copying Value-based Collection Classes

Let us now contrast the results of copying the reference-based collection
with the value-based collection. Consider the class:

 RWTValOrderedVector<RWCString>

that is, an ordered vector template instantiated for RWCString. In this case,
each string is embedded within the collection. When a copy of the collection
class is made, not only the collection class itself is copied, but also the objects
in it. This results in distinct new copies of the collected objects:

10.3 Retrieving Objects in Collections
We have defined the major objective of collection classes as storing and
retrieving objects. How you retrieve or find an object depends on its
properties. Every object you create has three properties associated with it:

1. Type: for example, an RWCString or a double . In C++, the type of an
object is set at creation, and cannot change.

2. State: the value of the string. The values of all the instance variables or
attributes of an object determine its state. These can change.

3. Identity: the unique definition of the object for all time. Languages use
different methods for establishing an object’s identity. C++ always uses
the object’s address. Each object is associated with one and only one
address. Note that the reverse is not always true, because of inheritance.

Atlantic

Artic

Pacific

Indian

Atlantic

Artic

Pacific

Indian

After Copying

CopyOriginal

Atlantic

Artic

Pacific

Indian

Before Copying

Original

Collection Classes 70

Generally, an address and a type8 are both necessary to disambiguate
the object you mean within an inheritance hierarchy.

10.3.1 Retrieval Methods

Based on the properties of an object, there are two general methods for
finding or retrieving it. Some collection classes can support either, some
only one. The important thing for you to keep in mind is which one you
mean. The two methods are:

1. Find an object with a particular state. For example, test two strings for
the same value. In the literature, this is variously referred to as two
objects testing isEqual , having equality, compares equal , having the
same value, or testing true for the == operator. Here, we refer to the two
objects testing equal as isEqual . In general, we need some knowledge of
the type of each objector subtype, in the case of inheritancein order
to find the appropriate instance variables to test for equality9.

2. Find a particular object; that is, one with the same identity as the object
being compared. In the literature, this is referred to as two objects
testing isSame , having the same identity, or testing true for the ==

operator. We refer to this as two objects having the same identity. Note
that because value-based collection classes make a copy of an inserted
object, finding an object in a value-based collection class with a
particular identity is meaningless.

In C++, to test for identitythat is, to test whether two objects are the same
objectyou must see if they have the same address. Because of multiple
inheritance, the address of a base class and its associated derived class may
not be the same. Therefore, if you compare two pointers (addresses) to test
for identity, the types of the two pointers should be the same.

Smalltalk uses the operator = to test for equality, and the operator == to test
for identity. In the C++ world, however, operator = is firmly attached to
assignment, and operator == to some kind of equality of values. We have
taken the C++ approach. At Rogue Wave, the operator == generally means

8 Because of multiple inheritance, it may be necessary to
know not only an object’s type, but also its location within
an inheritance tree in order to disambiguate which object
you mean.

9 The Rogue Wave collection classes allow a generalized
test of equality; it is up to you to define what it means for
two objects to “be equal”. A bit-by-bit comparison of the
two objects is not done. You could define “equality” to
mean that a panda is the same as a deer because, in your
context, they are both mammals.

Collection Classes 71

test for equality of values (isEqual) when applied to two classes, and test for
identity when applied to two pointers.

Whether to test for equality or identity depends on the context of your
problem. Here are some examples that can clarify which to choose.

Here's an example when you should test for equality. Suppose you are
maintaining a mailing list. Given a person’s name, you want to find his or
her address. In this case, you search for a name that is equal to the name at
hand. An RWHashDictionary would be appropriate. The key to the
dictionary would be the name, the value would be the address.

In the next example, you would test for identity. Suppose you are writing a
hypertext application, and need to know in which document a particular
graphic occurs. You could keep an RWHashDictionary of graphics and their
corresponding documents. In this case, however, you need an
RWIdentityDictionary because you need to know in which document a
particular graphic occurs. The graphic acts as the key, the document as the
value.

Maintaining a disk cache? You might want to know whether a particular
object is resident in memory. In this case, an RWIdentitySet is appropriate.
Given an object, you can check to see whether it exists in memoryanother
identity test.

10.4 Iterators in Collection Classes
Many of the collection classes have an associated iterator. The advantage of
the iterator is that it maintains its own internal state, thus allowing two
important benefits:

• More than one iterator can be constructed from the same collection class;

• All of the items need not be visited in a single sweep.

Iterators are always constructed from the collection class itself, as in the
following example:

RWBinaryTree bt;
.
.
.
RWBinaryTreeIterator bti(bt);

Immediately after construction, or after reset() is called, the state of the
iterator is undefined. You must either advance it or position it before using
its current state or position.

For traditional Tools.h++ iteratorsthose declared as a distinct class related
to the collection classthe rule is “advance and then return.”10 However,

10 This is actually patterned after Stroustrup (1986, Section 7.3.2).

Collection Classes 72

iterators obtained directly from classes implemented using the Standard
C++ Library differ. In keeping with the standard for container classes, they
follow the precept: If you obtain an iterator using the begin() or end()

method, or using an algorithm which returns an iterator, you have a
“Standard Library” iterator.11 A Standard Library iterator must always be
compared against that collection’s end() iterator to discover if it references
an item in the container.

10.4.1 Traditional Tools.h++ Iterators

Traditional Tools.h++ iterators have a number of unique features.

You recall that the state of the iterator is undefined immediately following
construction or the calling of reset() . You also trigger the undefined state if
you change the collection class directly12 by adding or deleting objects while
an iterator is active. Using an iterator at that point can bring unpredictable
results. You must then use the member function reset() to restart the
iterator, as if it had just been constructed.

At any given moment, the iterator marks an object in the collection
classthink of it as the current object. There are various methods for
moving this mark. For example, most of the time you will probably be using
member function operator() . In Tools.h++, it is designed to always advance
to the next object, then return either TRUE or a pointer to the next object,
depending on whether the associated collection class is value-based or
reference-based, respectively. It always returns FALSE (i.e., zero) when the
end of the collection class is reached. Hence, a simple canonical form for
using an iterator is:

RWSlistCollectable list;
.
.
.
RWSlistCollectableIterator iterator(list);
RWCollectable* next;
while (next = iterator()) {
 .
 . // (use next)
 .
}

11 The draft ANSI standard describes container iterators in
great detail. Briefly, such iterators are valid in the range
“first-element” to “one-past-last-element”, which are
returned respectively by the methods begin() and
end() . The “end” iterator, however, does not reference
an item in the container, but acts as a sentinel.

12 It's OK to change a collection via the iterator itself.

Collection Classes 73

As an alternative, you can also use the prefix increment operator ++X. Some
iterators have other member functions for manipulating the mark, such as
findNext() or removeNext() .

Member function key() always returns either the current object or a pointer
to the current object, again depending on whether the collection class is
value-based or reference-based, respectively.

For most collection classes, using member function apply() to access every
member is much faster than using an iterator. This is particularly true for
the sorted collection classesusually a tree has to be traversed here,
requiring that the parent of a node be stored on a stack. Function apply()

uses the program’s stack, while the sorted collection class iterator must
maintain its own. The former is much faster.

S e c t i o n 11.
Collection Class Templates

11.1
 Introduction

11.2
 Template Overview

11.3
 Tools.h++ Templates and the Standard C++ Library

11.4
 Parameter Requirements

11.5
 Comparators

11.6
 Hash Functors and Equalitors

11.7
 Iterators

11.8
 Iterators and the std() Gateway

11.9
 The Best of Both Worlds

11.10
 Using Templates Without the Standard Library

11.11
 Migration Guide: For Users of Previous Versions of Tools.h++

Collection Class Templates 76

11.1 Introduction
As a developer, you no doubt periodically ask yourself, “Haven’t I coded
this before?” Clearly, one of the primary attractions of the C++ language is
the promise of reuse, the lure of avoiding rewrites of the same old code, over
and over again. The Tools.h++ collection classes take advantage of several
C++ language features that support reuse.

The Smalltalk-like collection classes, discussed later in detail, effect object-
code reuse through polymorphism and inheritance. In this chapter, we
demonstrate reuse in the Tools.h++ collection class templates, called
templates in our jargon.

A template is a class declaration parameterized on a type: a prescription for
how a particular type of collection class should behave. For example, a
Vector template would describe such things as how to index an element,
how long it is, how to resize it, and so on. The actual type of the elements is
independent of these larger, more general issues.

With templates, you achieve extreme source-code reuse by writing code for
your collections without regard to the particular type or types of elements
being collected. The template mechanism allows you to represent these
types using formal template parameters, which act as place holders. Later,
when you want to make use of your collection class template, you instantiate
the template with an actual type. At that point, the compiler goes back to
the class template and fills it in with that type, as if you had written it that
way in the first place.

Without templates, you would have to write class VectorOfInt ,
VectorOfDouble , VectorOfFoo , and so on; with templates, you simply code
one class, Vector<T> , where T can stand for any type. From there, you’re
free to create Vector<int> , Vector<double> , Vector<Foo> , or a vector of
some type never conceived of when the class template was written
originally.

11.2 Template Overview
To gain some perspective, let’s begin with a general example that shows
how templates work. We’ll explain concepts from the example throughout
the section, though you’ll probably follow this without difficulty now:

#include <iostream.h>
#include <rw/cstring.h>
#include <rw/regexp.h>
#include <rw/tvdlist.h>

int main()
{
 // Declare a linked-list of strings:

Collection Class Templates 77

 RWTValDlist<RWCString> stringList;
 RWTValDlist<RWCString>::iterator iter;
 RWCString sentence;

 // Add words to the list:
 stringList.insert("Templates");
 stringList.insert("are");
 stringList.insert("fun");

 // Now use standard iterators to build a sentence:
 iter = stringList.begin();
 while (iter != stringList.end()) {
 sentence += (*iter++ + " ");
 }
 // Replace trailing blank with some oomph!
 sentence(RWCRegexp(" $")) = "!"

 // Display the result:
 cout << sentence << endl;
 return 0;
}

Output:
 Templates are fun!

The preceding example demonstrates the basic operation of templates.
Using the collection class template RWTValDList , we instantiate the object
stringList , simply by specifying type RWCString . The template gives us
complete flexibility in specifying the type of the list; we don’t write code for
the object, and Tools.h++ doesn’t complicate its design with a separate class
RWTValDListofRWCString. Without the template, we would be limited to
types provided by the program, or forced to write the code ourselves.

11.2.1 Template Naming Convention

You’ll notice that the collection class template RWTValDlist in the example
follows a unique format. In Tools.h++, all templates have class names
starting with RWT , for Rogue Wave Template, followed by a three letter
code:

Isv Intrusive lists

Val Value-based

Ptr Pointer-based

Hence, RWTValOrderedVector<T> is a value-based template for an ordered
vector of type-name T. RWTPtrMultiMap<Key,T,C> is a pointer-based
template based on the Standard C++ Library multimap class. Special
characteristics may also modify the name, as in RWTValSortedDlist<T,C> , a
value-based doubly-linked template list that automatically maintains its
elements in sorted order.

Collection Class Templates 78

11.2.2 Value vs. Reference Semantics in Templates

Tools.h++ collection class templates can be either value-based or pointer-
based. Value-based collections use value semantics, maintaining copies of
inserted objects and returning copies of retrieved objects. In contrast,
pointer-based collections use reference semantics, dealing with pointers to
objects as opposed to the objects themselves. See Section 10.1 for other
examples of value and reference semantics.

Templates offer you a choice between value and reference semantics. In fact,
in most cases, you must choose between a value-based or a pointer-based
class; for example, either RWOrderedVectorVal, or RWOrderedVectorPtr.

Your choice depends on the requirements of your application. Pointer-based
templates are a good choice for maximizing efficiency for large objects, or if
you need to have the same group of objects referred to in several ways,
requiring that each collection class point to the target objects, rather than
wholly contain them.

11.2.2.1 An Important Distinction

There is a big difference between a value-based collection of pointers, and a
pointer-based collection class. You can save yourself difficulty by
understanding the distinction. For example, declaring:

// value-based list of RWDate pointers:
RWTValDlist<RWDate*> myBirthdayV;

gives you a value-based list, where the values are of type pointer to
RWDate. The collection class will concern itself only with the pointers,
never worrying about the actual RWDate objects they refer to. Now
consider:

RWDate* d1 = new RWDate(29,12,55); // December 29, 1955
myBirthdayV.insert(d1);
RWDate* d2 = new RWDate(29,12,55); // Different object, same date
cout << myBirthdayV.occurrencesOf(d2); // Prints 0

The above code prints 0 because the memory locations of the two date
objects are different, and the collection class is comparing only the values of
the pointers themselves (their addresses) when determining the number of
occurrences.

Contrast that with the following:

RWTPtrDlist<RWDate> myBirthdayP; // pointer-based list of RWDates
RWDate* d1 = new RWDate(29,12,55); // December 29,1955
myBirthdayP.insert(d1);
RWDate* d2 = new RWDate(29,12,55); // Different object, same date
cout << myBirthdayP.occurrencesOf(d2); // Prints 1

Here the collection class is parameterized by RWDate, not RWDate*,
showing that only RWDate objects, not pointers, are of interest to the list.
But because it is a pointer-based collection class, communicating objects of

Collection Class Templates 79

interest is done via pointers to those objects. The collection class knows it
must dereference these pointers, as well as those stored in the collection
class, before comparing for equality.

11.2.3 Intrusive Lists in Templates

For a collection class of type-name T, intrusive lists are lists where type T
inherits directly from the link type itself13. The results are optimal in space
and time, but require you to honor the inheritance hierarchy. The
disadvantage is that the inheritance hierarchy is inflexible, making it slightly
more difficult to use with an existing class. For each intrusive list class,
Tools.h++ offers templatized value lists as alternative non-intrusive linked
lists.

Note that when you insert an item into an intrusive list, the actual item , not
a copy, is inserted. Because each item carries only one link field, the same
item cannot be inserted into more than one list, nor can it be inserted into the
same list more than once.

11.3 Tools.h++ Templates and the Standard C++
Library
Most of the Tools.h++ collection class templates use the Standard C++
Library for their underlying implementation. The collection classes of the
Standard C++ Library, called containers, act as an engine under the hood of
the Tools.h++ templates.

For example, the value-based Tools.h++ double-ended queue
RWTValDeque<T> has-a member of type deque<T> from the Standard C++
Library. This member serves as the implementation of the collection. Like
an engine, it does the bulk of the work of adding and removing elements,
and so on. RWTValDeque<T> is a wrapper class, like the hood protecting the
engine. More than cosmetic, it functions as a simpler, object-oriented
interface to the deque class, making it easier and more pleasant to deal
with.

Thanks to inlining and the lack of any extra level of indirection, this
wrapping incurs few, if any, performance penalties. If you need direct
access to the implementation, the wrapper classes offer the member function
std() , which returns a reference to the implementation. In addition, because
the Rogue Wave template collections supply standard iterators, you can use

13 See Stroustrup, The C++ Programming Language, Second
Edition, Addison-Wesley, 1991, for a description of
intrusive lists.

Collection Class Templates 80

them with the Standard C++ Library algorithms as if they were Standard
C++ Library collections themselves.

11.3.1 Standard C++ Library Not Required

A unique feature of this version of Tools.h++ is that many of its template
collections do not actually require the presence of the Standard C++ Library.
Consider RWTValDlist<T>. If you are using Tools.h++ on a platform that
supports the Standard C++ Library, RWTValDlist<T> will be built around the
Standard C++ Library list container. But if your platform does not support
the Standard C++ Library, you may still use the class. Tools.h++
accomplishes this feat transparently through an alternate implementation,
not based on the Standard C++ Library. The appropriate implementation is
selected at compile time based on the settings in the configuration header
file, rw/compiler.h . In fact, the alternate implementations are exactly those
that were employed in the previous version of Tools.h++.

When using one of these template collections without the Standard C++
Library, you will be restricted to a subset of the full interface. For example,
the std() member function mentioned above is not available, nor are the
begin() and end() functions, which return Standard C++ Library iterators.
The Tools.h++ Class Reference contains entries for both the full and the subset
interfaces for all of the templates that can be used either with or without the
Standard C++ Library.

There are two reasons you may want to use the restricted subset interface for
a collection class template:

1. You may be operating in an environment that does not yet support a
version of the Standard C++ Library compatible with this version of
Tools.h++. In that case, you have no choice but to use the restricted
subset interface. The good news is that by using the interface, you will
be ready to start using the full interface as soon as the Standard C++
Library becomes available on your platform.

2. Another reason to stick to the subset interface is that you want to write
portable codea class library, perhapsthat can be deployed on
multiple platforms, some without support for the Standard C++ Library.
Clients of that code can still take full advantage of their individual
environments; you aren’t forced to inflict on them a “lowest common
denominator.” See Section 11.10 toward the end of this chapter for
more information on the restricted subset interface.

11.3.2 The Standard C++ Library Containers

There are seven Standard C++ Library containers: deque , list , vector , set ,
multiset , map, and multimap . Tools.h++ extends these with five additional
containers which are compliant with the Standard C++ Library: rw_slist,

Collection Class Templates 81

rw_hashset, rw_hashmultiset, rw_hashmap, and rw_hashmultimap. Each
of these has value-based and pointer-based Rogue Wave wrapper templates.
Tools.h++ also offers always-sorted versions, both value-based and pointer-
based, of the doubly-linked list and vector collections. The total: 28 new or
re-engineered collection class templates, all based on the Standard C++
Library!

Tools.h++ Standard Library-Based Templates

Division // Notes Value-based Pointer-based Standard
Library
Required?

Sequence-based RWTValDlist RWTPtrDlist No

RWTValDeque RWTPtrDeque Yes

RWTValOrderedVector RWTPtrOrderedVector No

//External ordering,
access by index

RWTValSlist RWTPtrSlist No

Sorted sequence-based RWTValSortedDlist RWTPtrSortedDlist Yes

//Internal ordering,
access by index

RWTValSortedVector RWTPtrSortedVector No

Associative container-based RWTValSet RWTPtrSet Yes

 (set-based) RWTValMutliSet RWTPtrMultiSet Yes

 (map-based) RWTValMap RWTPtrMap Yes

//Internal ordering,
access by key

RWTValMultiMap RWTPtrMultiMap Yes

Associative hash -based RWTValHashSet RWTPtrHashSet No

 (set-based) RWTValHashMutliSet RWTPtrHashMultiSet No

 (map-based) RWTValHashMap RWTPtrHashMap No

//No ordering,
access by key

RWTValHashMultiMap RWTPtrHashMultiMap Yes

11.3.3 Commonality of Interface

To keep things simple and allow you to program with more flexibility, we
have implemented common interfaces within the various divisions of
standard-library based collection class templates. For example, the
RWTPtrSet and RWTPtrMultiSet templates have interfaces identical to their
value-based cousins; so do the map-based collection classes. All of the
Sequence-based collections have nearly identical interfaces within the value
and pointer-based subgroups. (An exception here is the set of deque-based

Collection Class Templates 82

classes, which contain push and pop member functions designed to enhance
their abstraction of the queue data structure.)

There are pluses and minuses to this approach. The downside is that it puts
slightly more of the burden on you, the developer, to choose the appropriate
collection class. Had we chosen not to provide the
insertAt(size_type index) member function for class
RWOrderedVectorVal<Type>, we could have enforced the idea that
vector-based templates are not a good choice for inserting into the middle of
a collection class. Instead, it is up to you to be aware of your choices and use
such member functions judiciously.

On the plus side, the common interface lowers the learning curve, allows
flexibility in experimenting with different collections, and provides the
capability of dealing with the Rogue Wave templates polymorphically via
genericity.14

Real-life programming is seldom as neat as the exercises in a data structures
textbook. You may find yourself in a situation where it is difficult to balance
the trade-offs and determine just which collection class to use. With the
common interface, you can easily benchmark code that uses an
RWTValDeque and later benchmark it again, substituting an
RWTValOrderedVector or RWTValDlist. You can also write class and
function templates that are parameterized on the collection class type. For
example:

template <class RWSeqBased>
void tossHiLo(RWSeqBased& coll) {
 // throw out the high and low values:

assert(coll.entries() >= 2); // precondition
coll.sort();
coll.removeFirst();
coll.removeLast();

}

Thanks to the common interface, the above function template will work
when instantiated with any of the Rogue Wave Sequence-based templates.

11.4 Parameter Requirements
In order to use a Tools.h++ template collection class to collect objects of some
type T, that type must satisfy certain minimal requirements. Unfortunately,
some compilers may require the instantiating type or types to be more
powerful than should be necessary.

According to the draft C++ standard, a compiler should only instantiate and
compile those template functions that are actually used. Thus, if you avoid
calling any member functions, such as sort() , that require valid less-than

14 For a discussion of genericity versus inheritance, see
Meyer (1988).

Collection Class Templates 83

semantics, you should still be able to create a collection class of some type U
for which, given instances u1 and u2, the expression (u1 < u2) is ill-formed.
If your compiler does not provide this selective instantiation, you may not be
able to collect objects of type U without implementing operator<(const U&,

const U&) for that type.

11.5 Comparators
The associative container-based and the sorted sequence-based collection
classes maintain order internally. This ordering is based on a comparison
object, an instance of a comparator class you must supply when instantiating
the template. A comparator must contain a const member operator() , the
function-call operator, which takes two potential elements of the collection
class as arguments and returns a Boolean value. The returned value should
be true if the first argument must precede the second within the collection
class, and false otherwise. Often, it is easiest to use one of the function-
object classes provided by the Standard C++ Library in the header file
<functional> . In particular, use less<T> to maintain elements in increasing
order, or greater<T> to maintain them in decreasing order. For example:

#include <functional>
#include <rw/tvset.h>
#include <rw/rwdate.h>

RWTValSet<int, less<int> > mySet1;
RWTValSet<RWDate, greater<RWDate> > mySet2;

Here mySet1 is a set of integers kept in increasing order, while mySet2 is a set
of dates held in decreasing order; that is, from the most recent to the oldest.
You can use these comparators from the Standard C++ Library as long as the
expression (x < y) for the case of less<T> , or (x > y) for the case of
greater<T> , are valid expressions that induce a total ordering on objects of
type T.

11.5.1 More on Total Ordering

As noted above, the comparator must induce a total ordering on the type of
the items in the collection class. This means that the function-call operator of
the comparator must satisfy the following two conditions15, assuming that
comp is the comparison object and x, y, and z are potential elements of the
collection class, not necessarily distinct:

I. Exactly one of the following statements is true:
a) comp(x,y) is true and comp(y,x) is false
b) comp(x,y) is false and comp(y,x) is true
c) comp(x,y) is false and comp(y,x) is false
(or, in other words: not both comp(x,y) and comp(y,x)

 are true)

15 Adapted from Knuth (1973).

Collection Class Templates 84

II. If comp(x,y) and comp(y,z) are true , then so is comp(x,z)
(transitivity).

The truth of I.a implies that x must precede y within the collection class,
while I.b says that y must precede x. More interesting is I.c . If this
statement is true, we say that x and y are equivalent, and it doesn’t matter in
what order they occur within the collection class. This is the notion of
equality that prevails for the templates that take a comparator as a
parameter. For example, when the member function contains(T item) of
an associative container-based template tests to see if the collection class
contains an element equivalent to item , it is really looking for an element x
in the collection class such that comp(x,item) and comp(item,x) are both
false . It is important to realize that the == operator is not used. Don’t worry
if at first it seems counter-intuitive that so much negativity can give rise to
equivalenceyou are not alone! You’ll soon be comfortable with this
flexible way of ensuring that everything has its proper place within the
collection class.

Comparators are generally quite simple in their implementation. Take for
example:

class IncreasingLength {
public:
 bool operator()(const RWCString& x, const RWCString& y)
 { return x.length() < y.length(); }
};

RWTValSet<RWCString,IncreasingLength> mySet;

Here mySet maintains a collection of strings, ordered from shortest to longest
by the length of those strings. You can verify that an instance of the
comparator satisfies the given requirements for total ordering. In the next
example, mySet2 maintains a collection class of integers in decreasing order:

class DecreasingInt {
public:
 bool operator()(int x, int y)
 { return x > y; }
};

RWTValSet<int, DecreasingInt> mySet2;

Although the sense of the comparison may seem backwards when you first
look at it, the comparator says that x should precede y within the collection
class if x is greater than y; hence, you have a decreasing sequence. Finally,
let’s look at a bad comparator:

// DON’T DO THIS:
class BadCompare {
public:
 bool operator()(int x, int y)
 { return x <= y; } // OH-OH! Not a total ordering relation
};

RWSetVal<int, BadCompare> mySet3; // ILLEGAL COMPARATOR!

Collection Class Templates 85

To determine why it’s bad, consider an instance badcomp of BadCompare.

Note that when using the value 7 for both x and y, none of the three
statements I.a, I.b, or I.c is true , which violates the first rule of a total
ordering relation.16

11.6 Hash Functors and Equalitors
The associative hash-based templates use a hash function object to determine
how to place and locate objects within the collection class. An advantage of
using hash function objects is efficient, constant-time retrieval of objects. A
disadvantage is that objects are maintained in an order determined by
mapping the result of the hash function onto the physical layout of the
collection class itself. Rarely does this ordering have a useful meaning
beyond the internal machinations of the hash-based container.

To avoid complete chaos, associative hash-based containers make use of an
equality object. Collections which allow multiple keys that are equivalent to
one another use the equality object to ensure that equivalent objects are
grouped together when iteration through the container occurs. Hash
collections which do not allow multiple keys use the equality object to
ensure that only unique items are admitted. To effect these procedures, we
need two template arguments in addition to the type or types of the
elements being collected: a hash functor, and an equalitor.

A hash functor is a class or struct that contains a function-call operator that
takes a const reference to a potential element of the collection class, and
returns an unsigned long hash value. An equalitor is a class or struct that
contains a function-call operator that takes two potential elements of the
collection class, and returns true if the elements should be considered
equivalent for the purpose of grouping objects or ensuring uniqueness
within the collection class. For example:

#include <rw/tvhset.h> // contains RWTValHashSet
#include <rw/cstring.h> // Contains RWCString

struct StringHash {
 unsigned long operator()(const RWCString& s)
 { return s.hash(); }
};

struct StringEqual {
 unsigned long operator()(const RWCString& s, const RWCString& t)
 { return s == t; }
};

RWTValHashSet<RWCString, StringHash, StringEqual> rwhset;

16 Unfortunately, the requirement for total ordering is a
logical, not a semantic one, so the compiler cannot help by
rejecting poorly chosen comparitors. In general, such
code will compile, but probably have unexpected
behavior.

Collection Class Templates 86

Here we instantiate an RWHashValSet of RWCStrings with our own hash
functor and equalitor. The example shows the relative ease of creating these
struct s for use as template arguments.

11.7 Iterators
Tools.h++ provides several distinct methods for iterating over a collection
class. Most collections offer an apply member function, which applies your
supplied function to every element of a collection class before returning.
Another form of iteration is provided by separate collaborating iterator
classes associated with many of the collections. For example, an
RWTPtrDlistIterator<T> can be used to visit each element of an
RWTPtrDlist<T> in turn. Iterators are described in Section 10.4of Collection
Classes.

11.7.1 Standard C++ Library Iterators

All Tools.h++ standard library-based collection class templates provide
standard iterators. These iterators are fully compliant with the Standard
C++ Library requirements for iterators, making them a powerful tool for
using the classes in conjunction with the Standard C++ Libraryespecially
the algorithms. Although full treatment of iterators is beyond the scope of
this guide, your Standard C++ Library reference and tutorials will provide
ample information.

The standard library-based collection class templates provide three types of
iterators: forward, bi-directional, and random-access. Forward iterators
allow unidirectional traversal from beginning to end. As suggested by the
name, bidirectional iterators allow traversal in both directions—front to back,
and back to front. Random-access iterators are bidirectional as well, and
further distinguished by their ability to advance over an arbitrary number of
elements in constant time. All of these iterators allow access to the item at
the current position via the dereference operator * .

Given iterator iter and an integral value n, the following basic operations
are just some of those supported:

Expression Meaning Supported by:
++iter; advance to next item and

return
Forw, Bidir, Random

iter++; advance to next item, return
original value

Forw, Bidir, Random

*iter; return reference to item at
current position

Forw, Bidir, Random

Collection Class Templates 87

Expression Meaning Supported by:
--iter; retreat to previous item and

return
Bidir, Random

iter--; retreat to previous item,
return original value

Bidir, Random

iter+=n; advance n items and return Random

iter-=n; retreat n items and return Random

Again, your standard library documentation will describe all the operators
and functions available for each type of iterator.

In addition to the iterators just described, the standard library-based
collection class templates also provide two typedefs used to iterate over the
items in a collection class: iterator , and const_iterator . You can use the
iterator typedef to traverse a collection class and modify the elements
within. You can use instances of const_iterator to traverse, but not modify,
the collection class and access elements. For the associative container-based
and sorted sequence-based collections, which do not allow modification of
elements once they are in the collection class, the iterator and
const_iterator types are the same.

Finally, the templates also provide two member functions that return actual
iterators you can use for traversing their respective collection classes. These
member functions are begin() and end() . Each of these member functions
is overloaded by a const receiver so that the non-const version returns an
instance of type iterator, and the const version returns an instance of type
const_iterator .

Member function begin() always returns an iterator already positioned at
the first item in the collection class. Member function end() returns an
iterator which has a past-the-end value, the way a pointer to the NULL
character of a null-terminated character string has a value that points “past
the end.” An iterator of past-the-end value can be used to compare with
another iterator to see if you’ve finished visiting all the elements in the
collection class. It can also be used as a starting point for moving backwards
through collection classes that provide either bidirectional or random-access
iterators. The one thing you cannot do with an end() iterator is dereference
it. The one thing you cannot do with an end() iterator is deference it. Here’s
an example using iterators to move through a list and search for a match:

RWTValDlist<int> intCollection; // a list of integers

// ... < put stuff in the list >

// position iter at start:
RWTValDlist<int>::iterator iter = intCollection.begin();

// set another iterator past the end:

Collection Class Templates 88

RWTValDlist<int>::iterator theEnd = intCollection.end();

// iterate through, looking for a 7:
while (iter != theEnd) { // test for end of collection
 if (*iter == 7) // use ‘*’ to access current element
 return true; // found a 7
 ++iter; // not a 7, try next element
}
return false; // never found a 7

11.7.2 Map-Based Iteration and Pairs

In the case of a map-based collection class, like RWMapVal<K,T,Compare>,
iterators refer to instances of the Standard C++ Library structure pair<const

K, T> . As you iterate over a map-based collection, you have access to both
the key and its associated data at each step along the traversal. The pair

structure provides members first and second , which allow you to
individually access the key and its data, respectively. For example:

typedef RWTValMap<RWCString, RWDate, less<RWCString> > Datebook;

Datebook birthdays;
// ... < populate birthdays collection >

Datebook::iterator iter = birthdays.begin();

while (iter != birthdays.end()) {
 cout << (*iter).first // the key
 << " was born on "
 << (*iter).second // the data for that key
 << endl;

 ++iter;
};

Note that given a non-const reference to such a pair , you can still modify
only the second elementthe data associated with the key. This is because
the first element is declared to be of type const K . Because the placement of
objects within the collection class is maintained internally, based on the
value of the key, declaring it as const protects the integrity of the collection
class. In order to change a key within a map, you will have to remove the
key and its data entirely, and replace them with a new entry.

11.7.3 Iterators as Generalized Pointers

It may not be obvious at first, but you can think of an iterator as a
generalized pointer. Imagine a pointer to an array of int s. The array itself is
a collection class, and a pointer to an element of that array is a random-
access iterator. To advance to the next element, you simply use the unary
operator ++. To move back to a previous element, you use -- . To access the
element at the current position of the iterator, you use the unary operator * .
Finally, it is important to know when you have visited all the elements. C++

Collection Class Templates 89

guarantees that you can always point to the first address past the end of an
allocated array. For example:

int intCollection[10]; // an array of integers

// ... < put stuff in the array >

// position iter at start:
int* iter = intCollection;

// set another iterator past the end:
int* theEnd = intCollection + 10;

// iterate through, looking for a 7:
while (iter != theEnd) { // test for end of array
 if (*iter == 7) // use ‘*’ to access current element
 return true; // found a 7
 ++iter; // not a 7, try next element
}
return false; // never found a 7

If you compare this code fragment to the one using standard iterators in
Section 11.7.1, you can see the similarities. If you need a bit of help
imagining how the standard iterators work, you can always picture them as
generalized pointers.

11.8 Iterators and the std() Gateway
The Tools.h++ templates are meant to enhance the Standard C++ Library,
not to stand as a barrier to it. The iterators described in the previous section
are standard iterators, and you can use them in conjunction with any
components offering a standard iterator-based interface. In particular, you
can use all of the standard algorithms with the Rogue Wave standard
library-based collections. For example:

RWTValOrderedVector<int> vec;

// ... < put stuff in vector >

// Set the first 5 elements to 0:
fill(vec.begin(), vec.begin() + 5, 0);

In addition, you are always free to access, and in some cases to manipulate,
the underlying Standard C++ Library collection class. This is accomplished
via the std() member function, which returns a reference to the
implementation.

11.9 The Best of Both Worlds
The following example is a complete program that creates a deck of cards
and shuffles it. The purpose of the example is to show how the Tools.h++
template collections can be used in conjunction with the Standard C++
Library. See your Standard C++ Library documentation for more
information on the features used in the example.

Collection Class Templates 90

/* Note: This example requires the C++ Standard Library */

#include <iostream.h>
#include <algorithm>
#include <rw/tvordvec.h>

struct Card {
 char rank;
 char suit;

 bool operator==(const Card& c) const
 { return rank == c.rank && suit == c.suit; }

 Card() { }
 Card(char r, char s) : rank(r), suit(s) { }

 // print card: e.g. '3-C' = three of clubs, 'A-S' = ace of spades
 friend ostream& operator<<(ostream& ostr, const Card& c)
 { return (ostr << c.rank << "-" << c.suit << " "); }
};

/*
 * A generator class - return Cards in sequence
 */
class DeckGen {
 int rankIdx; // indexes into static arrays below
 int suitIdx;
 static const char Ranks[13];
 static const char Suits[4];
public:
 DeckGen() : rankIdx(-1), suitIdx(-1) { }

 // generate the next Card
 Card operator()() {
 rankIdx = (rankIdx + 1) % 13;
 if (rankIdx == 0)
 // cycled through ranks, move on to next suit:
 suitIdx = (suitIdx + 1) % 4;
 return Card(Ranks[rankIdx], Suits[suitIdx]);
 }
};

const char DeckGen::Suits[4] = {'S', 'H', 'D', 'C' };
const char DeckGen::Ranks[13] = {'A', '2', '3', '4',
 '5', '6', '7', '8',
 '9', 'T', 'J', 'Q', 'K' };

int main(){
 // Tools.h++ collection:
 RWTValOrderedVector<Card> deck;
 RWTValOrderedVector<Card>::size_type pos;

 Card aceOfSpades('A','S');
 Card firstCard;

 // Use standard library algorithm to generate deck:
 generate_n(back_inserter(deck.std()), 52, DeckGen());
 cout << endl << "The deck has been created" << endl;

 // Use Tools.h++ member function to find card:
 pos = deck.index(aceOfSpades);
 cout << "The Ace of Spades is at position " << pos+1 << endl;

Collection Class Templates 91

 // Use standard library algorithm to shuffle deck:
 random_shuffle(deck.begin(), deck.end());
 cout << endl << "The deck has been shuffled" << endl;

 // Use Tools.h++ member functions:
 pos = deck.index(aceOfSpades);
 firstCard = deck.first();

 cout << "Now the Ace of Spades is at position " << pos+1
 << endl << "and the first card is " << firstCard << endl;
}

/* Output (will vary because of the shuffle):

The deck has been created
The Ace of Spades is at position 1

The deck has been shuffled
Now the Ace of Spades is at position 37
and the first card is Q-D

*/

11.10 Using Templates Without the Standard Library
Several of the Tools.h++ templates, such as RWTValVector<T>,
RWTPtrVector<T>, RWTIsvSlist<T>, and RWTIsvDlist<T>, are not based on the
Standard C++ Library. You can use them on any of our certified platforms.
Also, as mentioned previously in the Introduction, you can use many of the
so-called standard library-based templates without the Standard C++
Library, as long as you keep to a subset of the full interface.

11.10.1 Keeping the Standard C++ Library in Mind for Portability

The restricted subset interfaces are almost fully upward compatible with
their corresponding standard library-based interfaces. The major difference
you will find is that some collections take a different number of template
parameters, depending on which underlying implementation they are using.
For example, when RWTPtrHashSet is used with the Standard C++ Library,
it takes three template arguments as described in Section 11.6 above.
However, when that same class is used without the Standard C++ Library,
the restricted interface calls for only one template parameter, namely the
type of item being contained. To help you write portable code that works
with or without the Standard C++ Library, Tools.h++ provides two macros:

1. Use the first macro, RWDefHArgs(T) , standing for Rogue Wave Default
Hash Arguments, for the hash-based template collections. For example,
by declaring:

 RWTPtrHashSet<int RWDefHArgs(int)> hset;

 you declare a hash-based set that will have the same semantics whether
or not the Standard C++ Library is present. Note that you should not

Collection Class Templates 92

use a comma between the element type and the macro. Without the
Standard C++ Library, the macro expands to nothing and it is as if you
had declared:

 RWTPtrHashSet<int> hset;

 However, as soon as the Standard C++ Library becomes available, the
macro expands as follows:

 RWTPtrHashSet<int ,RWTHasher<int>, equal_to<int> > hset;

 This declaration satisfies the full requirement of the standard library-
based interface for all three parameters, and keeps the semantics
consistent with the alternative non standard-library based
implementation.

2. The second macro, RWDefCArgs(T), is similar to the first. Standing for
Rogue Wave Default Comparison Arguments, RWDefCArgs(T) is
available for use with RWTPtrSortedVector and RWTValSortedVector.
For example:

 RWTValSortedVector<int RWDefCArgs(int)> srtvec;

 is a portable declaration that will work with or without the Standard
C++ Library. Again, do not use a comma to separate the element type
from the macro.

11.10.2 An Example

Let’s start with a simple example that uses RWTValVector<T>, one of the
classes that is not based on the Standard C++ Library.

#include <rw/tvvector.h> // 1

main() {
 RWTValVector<double> vec(20, 0.0); // 2

 int i;
 for (i=0; i<10; i++) vec[i] = 1.0; // 3
 for (i=11; i<20; i++) vec(i) = 2.0; // 4

 vec.reshape(30); // 5
 for (i=21; i<30; i++) vec[i] = 3.0; // 6
 return 0;
 }

Each program line is detailed below.

//1 This is where the template for RWTValVector<T> is defined.

//2 A vector of doubles, 20 elements long and initialized to 0.0, is declared
and defined.

//3 The first 10 elements of the vector are set to 1.0. Here,
RWValVector<double>::operator[](int) has been used. This operator
always performs a bounds check on its argument.

Collection Class Templates 93

//4 The next 10 elements of the vector are set to 2.0. In this case,
RWValVector<double>::operator()(int) has been used. This operator
generally does not perform a bounds check.

//5 Member function reshape(int) changes the length of the vector.

//6 Finally, the last 10 elements are initialized to 3.0.

11.10.3 Another Example

The second example involves a hashing dictionary. By using the macro
RWDefHArgs(T) when you declare the hashing dictionary, you insure that
your code is portable with or without access to the Standard C++ Library.

#include <rw/tvhdict.h>
#include <rw/cstring.h>
#include <rw/rstream.h>
#include <iomanip.h>

class Count { // 1
 int N;
public:
 Count() : N(0) { } // 2
 int operator++() { return ++N; } // 3
 operator int() { return N; } // 4
};

unsigned hashString (const RWCString& str) // 5
 { return str.hash(); }

main() {

 RWTValHashDictionary<RWCString,
 Count /* Note: no comma here! */
 RWDefHArgs(RWCString)> hmap(hashString); //6

 RWCString token;
 while (cin >> token) // 7
 ++hmap[token]; // 8

 RWTValHashDictionaryIterator<RWCString,Count> next(hmap); // 9

 cout.setf(ios::left, ios::adjustfield); // 10
 while (++next) // 11
 cout << setw(20) << next.key()
 << " " << setw(10) << next.value() << endl; // 12

 return 0;
}

Program Input:
How much wood could a woodchuck chuck if a woodchuck could chuck
wood ?

Program Output:
much 1
wood 2
a 2
if 1

Collection Class Templates 94

woodchuck 2
could 2
chuck 2
How 1
? 1

In the code above, the problem is to read an input file, break it up into
tokens separated by white space, count the number of occurrences of each
token, and then print the results. The general approach is to use a dictionary
to map each token to its respective count. Here’s a line-by-line description:

//1 This is a class used as the value part of the dictionary.

//2 A default constructor is supplied that zeros out the count.

//3 We supply a prefix increment operator. This will be used to increment
the count in a convenient and pleasant way.

//4 A conversion operator is supplied that allows Count to be converted to
an int . This will be used to print the results. Alternatively, we could
have supplied an overloaded operator<<() to teach a Count how to
print itself, but this is easier.

//5 This is a function that must be supplied to the dictionary constructor.
Its job is to return a hash value given an argument of the type of the
key. Note that Tools.h++ supplies static hash member functions for
classes RWCString, RWDate, RWTime, and RWWString that can be
used in place of a user-supplied function. To keep the example general,
we chose a user-defined function rather than one of the static hash

member functions defined by Tools.h++.

//6 Here the dictionary is constructed. Given a key, the dictionary can be
used to look up a value. In this case, the key will be of type
RWCString, the value of type Count . The constructor requires a single
argument: a pointer to a function that will return a hash value, given a
key. This function was defined on line 5 above. Note that we used the
RWDefHArgs(T) macro to ensure that the program will be portable
among platforms with and without the Standard C++ Library.

//7 Tokens are read from the input stream into an RWCString. This will
continue until an EOF is encountered. How does this work? The
expression cin >> token reads a single token and returns an ostream& .
Class ostream has a type conversion operator to void*, which is what
the while loop will actually be testing. Operator void* returns this if
the stream state is “good”, and zero otherwise. Because an EOF causes
the stream state to turn to “not good”, the while loop will be broken
when an EOF is encountered. See the RWCString entry in the Class
Reference, and the ios entry in the class reference guide that comes with
your compiler.

//8 Here’s where all the magic occurs. Object map is the dictionary. It has
an overloaded operator[] that takes an argument of the type of the

Collection Class Templates 95

key, and returns a reference to its associated value. Recall that the type
of the value is a Count . Hence, map[token] will be of type Count . As
we saw on line 3, Count has an overloaded prefix increment operator.
This is invoked on the Count , thereby increasing its value.

 What if the key isn’t in the dictionary? Then the overloaded
operator[] will insert it, along with a brand new value built using the
default constructor of the value’s class. This was defined on line 2 to
initialize the count to zero.

//9 Now it comes time to print the results. We start by defining an iterator
that will sweep over the dictionary, returning each key and value.

//10 The field width of the output stream is adjusted to make things pretty.

//11 The iterator is advanced until it reaches the end of the collection class.
For all template iterators, the prefix increment operator advances the
iterator, then tests whether it has gone past the end of the collection
class.

//12 The key and value at the position of the iterator are printed.

11.11 Migration Guide: For Users of Previous Versions
of Tools.h++
As we explained in the introduction to this manual, one of our primary goals
for this version of Tools.h++ is to protect your investment in existing code
based on previous versions of the library. As you can see from this chapter,
we have significantly re-engineered the collection class templates in order to
bring them up to date with the Standard C++ Library. The following classes
were re-engineered:

RWTPtrDlist RWTValDlist

RWTPtrHashDictionary RWTValHashDictionary

RWTPtrHashSet RWTValHashSet

RWTPtrHashTable RWTValHashTable

RWTPtrOrderedVector RWTValOrderedVector

RWTPtrSlist RWTValSlist

RWTPtrSortedVector RWTValSortedVector

You have seen that you can now use all of these classes either with or
without the Standard C++ Library. Used without the Standard C++ Library,
they have the same interfaces and implementations as in the previous
version of Tools.h++, updated with some bug fixes. These minor

Collection Class Templates 96

enhancements should not cause any source incompatibilities with existing
code.

You may need to make a few changes to existing source code when using the
above classes with the Standard C++ Library. The adjustments required for
specific classes are outlined below.

• • Extra template arguments are now required for:

RWTPtrHashDictionary RWTValHashDictionary

RWTPtrHashSet RWTValHashSet

RWTPtrHashTable RWTValHashTable

RWTPtrSortedVector RWTValSortedVector

Existing code using these templates will not provide the number of template
arguments expected by this version of Tools.h++ when used with the
Standard C++ Library. The solution to this problem is to use the macros
discussed in Section 11.10.1. Using the macros described there will satisfy
the compiler and preserve the semantics of your existing code.

• • The class hierarchy has changed for:

RWTPtrHashSet RWTValHashSet

RWTPtrHashTable RWTValHashTable

RWTPtrOrderedVector RWTValOrderedVector

RWTPtrSortedVector RWTValSortedVector

If you have existing code that makes use of any of the inheritance
relationships among the collection class templates, that code will not
compile with this version of Tools.h++ when used with the Standard C++
Library. There are no inheritance relationships among the standard library-
based implementations of the collection class templates. For example, in the
previous version of Tools.h++, RWTPtrHashSet inherited from
RWTPtrHashTable, RWTValOrderedVector inherited from RWTValVector,
and RWTValSortedVector inherited from RWTValOrderedVector. The
pointer-based versions of these templates followed a similar pattern. These
relationships do not hold in the new version of Tools.h++. If you have code
based on this inheritance, you will need to modify it .

The most likely place where you will find this problem in your existing code
is when building an RWTValHashTableIterator from an RWTValHashSet, or
an RWTPtrHashTableIterator from an RWTPtrHashSet. Because the
constructor for RWTValHashTableIterator is expecting a reference to an

Collection Class Templates 97

RWTValHashTable, passing in an RWTValHashSet instead depends on the
inheritance relationship.

The solution to this particular problem is found in the new class
RWTPtrHashSetIterator. Wherever you find code which constructs an
RWTValHashTableIterator from an RWTValHashSet, use an
RWTValHashSetIterator instead. Note that RWTValHashSetIterator is
provided whether or not the Standard C++ Library is available, so you can
modify your code now in anticipation of migrating your code to the
standard library-based implementations.

• • Required less-than semantics for an element type may affect :

RWTPtrDlist RWTValDlist

RWTPtrOrderedVector RWTValOrderedVector

RWTPtrSlist RWTValSlist

RWTPtrSortedVector RWTValSortedVector

As mentioned above, some compilers will require that the expression (t1 <

t2) be defined for two instances of your element type. This is due to the
inclusion of convenient member functions, such as sort() and
min_element(), combined with certain compilers that instantiate all member
functions whether used or not. You might have existing code that
instantiates one of these templates on a type T for which no operator<() is
defined. If that is the case, you will have to define one.

The best thing would be to define it in a way you can really use, if you ever
use those member functions which really do require it. The quick and dirty
approach would be to globally define a dummy operator<() whose only
purpose is to appease the compiler. Our experience is that code written "just
to appease the compiler" constitutes a maintenance nightmare. Please avoid
it if at all possible.

S e c t i o n 12.
Generic Collection Classes

12.1
 Example

12.2
 Declaring Generic Collection Classes

12.3
 User-Defined Functions

Generic Collection Classes 100

Generic collection classes are the second major category of collection classes
included in Tools.h++. We call them generic because they use the macros
defined in <generic.h> , an early approximation to parameterized types first
described in Stroustrup (1986, p. 209). Generic collection classes are less
manageable than true templates17, but they are portable to any C++
compiler. You can use them even with older compilers.

Most of the generic collection classes use reference-based semantics; that is,
they store and retrieve pointers to other objects, as described in Section 10.1.
With these classes, as with all Rogue Wave collection classes, you are
responsible for the allocation and deallocation of the objects themselves.

Three vector-based generic collections use value-based semantics:
RWGVector(val), RWGOrderedVector(val), and RWGSortedVector(val).
These classes store the type itself,which could be a pointer to an object.

The storage and retrieval methods and criteria differ from class to class.

12.1 Example
Here is an example that uses an RWGStack , a generic stack, to store a set of
pointers to ints in a last-in, first-out (LIFO) stack. We will go through it
line-by-line and explain what is happening:

#include <rw/gstack.h> //1
#include <rw/rstream.h> //2

declare(RWGStack, int) //3

main(){
 RWGStack(int) gs; //4
 gs.push(new int(1)); //5
 gs.push(new int(2)); //6
 gs.push(new int(3)); //7
 gs.push(new int(4)); //8

 cout << "Stack now has " << gs.entries()
 << " entries\n"; //9

 int* ip; //10
 while(ip = gs.pop()) //11
 {
 cout << *ip << "\n"; //12
 delete ip;
 }
 return 0;
}

17 Actually, the generic macros are easy to use, but difficult
to write. They are also difficult to debug because they are
preprocessor macros, and most debuggers cannot enter
macro code.

Generic Collection Classes 101

Program Output:

Stack now has 4 entries
4
3
2
1

Each line of the program is detailed below.

//1 This #include defines the preprocessor macro RWGStackdeclare(type) .
This macro is an elaborate and ugly-looking thing that continues for
many lines and describes how a generic stack of objects of type type

should behave. Mostly, the macro serves as a restricted interface to the
underlying implementation, which is a singly-linked list, class RWSlist.
It is restricted because it can use only those member functions of RWSlist
appropriate to stacks, and insert into the stack only items of type type .

//2 <rw/rstream.h> is a special Rogue Wave header file that includes
<iostream.h> with a suffix that depends on your compiler.

//3 This line invokes the macro declare , which is defined in the header file
<generic.h> supplied with your compiler. If called with arguments
declare(Class, type) , it calls the macro Classdeclare with argument
type . In this case, the macro RWGStackdeclare , defined in
<rw/gstack.h> , will be called with argument int .

 In other words, the result of calling the declare(RWGStack, int) macro
is to create a new class especially for your program. For all practical
purposes, its name is RWGStack(int), a stack of pointers to int s.

//4 At this line an instance gs of the new class RWGStack(int) is created.

//5 -//8
 Four int s are created off the heap and inserted into the stack. After
statement 8 executes, a pointer to the int 4 will be at the top of the
stack, and a pointer to the int 1 at the bottom.

//9 The member function entries() of class RWGStack(int) is called to
verify how many items are on the stack.

//10 A pointer to an int is declared and defined.

//11 The stack is popped until empty. The member function pop() will
return and remove a pointer to the item on the top of the stack. If there
are no more items on the stack it will return zero, causing the while

loop to terminate.

//12 Each item is dereferenced and printed.

12.2 Declaring Generic Collection Classes
All the Tools.h++ generic collection classes are declared as in the example
above, using the declare macro defined in the header file <generic.h> .

Generic Collection Classes 102

However, there is one important difference in how the Tools.h++ classes are
declared versus the pattern set by Stroustrup (1986, Section 7.3.5). The
difference is summarized below:

typedef int* intP;
declare(RWGStack, intP) //Wrong!
declare(RWGStack, int) //Correct.

In Stroustrup, the class is declared using a typedef for a pointer to the
collected item. The Rogue Wave generic classes are all declared using the
item name itself. This is true for both the reference-semantics and value-
semantics classes.

12.3 User-Defined Functions
Some of the member functions of the generic collection classes require a
pointer to a user-defined function. There are two kinds of these user-
defined functions, discussed in the following two sections.

12.3.1 Tester Functions

The first kind of user-defined function is a tester function. It has the form:

RWBoolean tester (const type * ty, const void* a)

where tester is the name of the function, type is the type of the members of
the collection class, and RWBoolean is a typedef for an int whose only
possible values are TRUE or FALSE. The job of the tester function is to signal
when a certain member of the collection has been identified. The decision of
how this is done, or what it means to have identified an object, is left to the
user. You can choose to compare addresses (test for two objects being
identical), or to look for certain values within the object (test for isEqual).
The first variable ty , which can be thought of as a candidate, will point to a
member of the collection. The second variable a, which can be thought of as
client data, can be tested against ty for a match.

In the following example, which expands on the previous one, the problem
is to test for isEqual . We push some values onto a stack to see if a certain
value exists on the stack. The member function contains() of class
RWGStack(type) has prototype:

RWBoolean contains(RWBoolean (*t)(const type*, const void*),
 const void* a) const;

The first argument is RWBoolean (*t)(const type*, const void*) . This is
a pointer to the tester function, for which we will have to provide an
appropriate definition:

#include <rw/gstack.h>
#include <rw/rstream.h>

Generic Collection Classes 103

declare(RWGStack, int)

RWBoolean myTesterFunction(const int* jp, const void* a) //1
{ return *jp == *(const int*)a; //2
}

main(){
 RWGStack(int) gs; //3
 gs.push(new int(1)); //4
 gs.push(new int(2)); //5
 gs.push(new int(3)); //6
 gs.push(new int(4)); //7

 int aValue = 2; //8

 if (gs.contains(myTesterFunction, &aValue)) //9
 cout << "Yup.\n";
 else
 cout << "Nope.\n";

while(!gs.isEmpty())
 delete gs.pop();

return 0;
}

Program Output:

Yup.

A description of each program line follows.

//1 This is the tester function. Note that the first argument is a pointer to
the type of objects in the collection, int s in this case. The second
argument points to an object that can be of any typealso an int in
this example. Note that both arguments are declared const pointers; in
general, the tester function should not change the value of the objects
being pointed to.

//2 The second argument is converted from a const void* to a const int* ,
then dereferenced. The result is a const int . This const int is
compared to the dereferenced first argument, which is also a const

int . The net result is that this tester function considers a match to
occur when the two ints have the same values (i.e., they are equal).
Note that we could also choose to identify a particular int (i.e., test for
identity).

//3 -//7
 These lines are the same as in the example in Section 12.1. A generic
stack of (pointers to) int s is declared and defined, then 4 values are
pushed onto it.

//8 This is the value (i.e., 2) that we will look for in the stack.

//9 Here the member function contains() is called, using the tester
function. The second argument of contains() , a pointer to the variable
aValue , will appear as the second argument of the tester function. The

Generic Collection Classes 104

function contains() traverses the entire stack, calling the tester
function for each item in turn, and waiting for the tester function to
signal a match. If it does, contains() returns TRUE; otherwise, FALSE.

Note that the second argument of the tester function does not necessarily
have to be of the same type as the members of the collection, although it is in
the example above. In the following example, the argument and members of
the collection are of different types:

#include <rw/gstack.h>
#include <rw/rstream.h>

class Foo {
public:
 int data;
 Foo(int i) {data = i;}
};

declare(RWGStack, Foo) // A stack of pointers to Foos

RWBoolean anotherTesterFunction(const Foo* fp, const void* a)
{ return fp->data == *(const int*)a;
}

main(){
 RWGStack(Foo) gs;
 gs.push(new Foo(1));
 gs.push(new Foo(2));
 gs.push(new Foo(3));
 gs.push(new Foo(4));

 int aValue = 2;

 if (gs.contains(anotherTesterFunction, &aValue))
 cout << "Yup.\n";
 else
 cout << "Nope.\n";

 while(!gs.isEmpty())
 delete gs.pop();

 return 0;
}

In this example, a stack of (pointers to) Foos is declared and used, while the
variable being passed as the second argument to the tester function is still a
const int* . The tester function must take the different types into account.

12.3.2 Apply Functions

The second kind of user-defined function is an apply function. Its general
form is:

void yourApplyFunction (type * ty, void* a)

where yourApplyFunction is the name of the function, and type is the type
of the members of the collection. Apply functions give you the opportunity
to perform some operation on each member of a collection, perhaps print it
out or draw it on a screen. The second argument is designed to hold client
data to be used by the function, perhaps the handle of a window on which
the object is to be drawn.

Generic Collection Classes 105

In the following example, the apply function printAFoo is used to print out
the value of each member in RWGDlist(type), a generic doubly-linked list:

#include <rw/gdlist.h>
#include <rw/rstream.h>

class Foo {
public:
 int val;
 Foo(int i) {val = i;}
};

declare(RWGDlist, Foo)

void printAFoo(Foo* ty, void* sp){
 ostream* s = (ostream*)sp;
 (*s) << ty->val << "\n";
}

main(){
 RWGDlist(Foo) gd;
 gd.append(new Foo(1));
 gd.append(new Foo(2));
 gd.append(new Foo(3));
 gd.append(new Foo(4));

 gd.apply(printAFoo, &cout);

 while(!gd.isEmpty())
 delete gd.get();

 return 0;
}

Program Output:

1
2
3
4

The items are appended at the tail of the list. For each item, the apply()

function calls the user-defined function printAFoo() with the address of the
item as the first argument, and the address of an ostream (an output stream)
as the second argument. The job of printAFoo() is to print out the value of
member data val . Because apply() scans the list from beginning to end, the
items will come out in the same order in which they were inserted. See the
Class Reference for RWGDlist(type).

With some care, you can use apply functions to change the objects in a
collection. For example, you could change the value of member data val in
the example above, or delete all member objects. In the latter case, however,
you must be careful not to use the collection again.

S e c t i o n 13.
Smalltalk-Like Collection Classes

13.1
Tables of the Smalltalk-like Classes

13.2
Example

13.3
 Choosing a Smalltalk-like Collection Class

13.4
 Virtual Functions Inherited From RWCollection

13.5
 Other Functions Shared by All RWCollections

13.6
 Virtual Functions Inherited from RWSequenceable

13.7
 A Note on How Objects are Found

Smalltalk-Like Collection Classes 108

The Smalltalk-like collection classes are the third general type of collection
class provided by Tools.h++. Based on the language Smalltalk-80, these
collections require that their collected objects singly or multiply inherit from
the abstract base class RWCollectable.

These collection classes have a few disadvantages: they are slightly slower
and not completely typesafe, and their objects are slightly larger. These
disadvantages are easily outweighed by the power of these classes, and their
clean programming interface. Most importantly, the Smalltalk-like
collection classes are well-suited for heterogeneous collections and
polymorphic persistence.

Many of the Tools.h++ Smalltalk-like classes have a typedef to either the
corresponding Smalltalk names, or to a generic name. This typedef is
activated by defining the preprocessor macro RW_STD_TYPEDEFS. Although
you are free to use typedefs, we do encourage you to use the actual class
names to make your code more maintainable.

13.1 Tables of the Smalltalk-like Classes
The following two tables summarize the Tools.h++ Smalltalk-like classes.
Table 3 lists all 17 classes, along with their typedefs, iterators, and
implementations. Table 4 illustrates the class hierachy.

Smalltalk-Like Collection Classes 109

Table 3. Smalltalk-like collection classes, their iterators, typedefs, and
implementations.

Class Iterator Smalltalk typedef
(deprecated)

Implemented as

RWBag RWBagIterator Bag Dictionary of
occurrences

RWBinaryTree RWBinaryTreeIterator SortedCollection Binary tree

RWBTree B-tree in
memory

RWBTreeDictionary B-tree of
associations

RWCollection RWIterator Collection Abstract base
class

RWDlistCollectables RWDlistCollectablesIterator Doubly-linked
list

RWHashTable RWHashTableIterator Hash table

RWHashDictionary RWHashDictionaryIterator Dictionary Hash table of
associations

RWIdentityDictionary RWHashDictionaryIterator IdentityDictionary Hash table of
associations

RWIdentitySet RWSetIterator IdentitySet Hash table

RWOrdered RWOrderedIterator OrderedCollection Vector of
pointers

RWSequenceable RWIterator Sequenceable Abstract base
class

RWSet RWSetIterator Set Hash table

RWSlistCollectables RWSlistCollectablesIterator LinkedList Singly-linked list

RWSlistCollectables-
Queue

(n/a) Queue Singly-linked list

RWSlistCollectables-
Stack

(n/a) Stack Singly-linked list

RWSortedVector RWSortedVectorIterator Vector of
pointers, using
insertion sort

Smalltalk-Like Collection Classes 110

Table 4. The class hierarchy of the Smalltalk-like collection classes.

 Note that some of these classes use multiple-inheritance: this hierarchy is shown
relative to the RWCollectable base class.

RWCollectable

 RWCollection (abstract base class)

 RWBinaryTree

 RWBTree

 RWBTreeDictionary

 RWBag

 RWSequenceable (abstract base class)

 RWDlistCollectables (Doubly-linked lists)

 RWOrdered

 RWSortedVector

 RWSlistCollectables (Singly-linked lists)

 RWSlistCollectablesQueue

 RWSlistCollectablesStack

 RWHashTable

 RWSet

 RWIdentitySet

 RWHashDictionary

 RWIdentityDictionary

13.2 Example
To orient ourselves, we always like to start with an example. The following
example uses a SortedCollection to store and order a set of
RWCollectableStrings . SortedCollection is actually a typedef for the
Smalltalk-like collection class RWBinaryTree. Objects inserted into it are
stored in order according to their relative values as returned by the virtual
function compareTo() . (See Section 15.2.4). Here is the code:

#define RW_STD_TYPEDEFS 1 //1
#include <rw/bintree.h>
#include <rw/collstr.h> //2
#include <rw/rstream.h>

main(){
// Construct an empty SortedCollection
SortedCollection sc; //3

// Insert some RWCollectableStrings:
sc.insert(new RWCollectableString("George")); // 4
sc.insert(new RWCollectableString("Mary")); // 5

Smalltalk-Like Collection Classes 111

sc.insert(new RWCollectableString("Bill")); // 6
sc.insert(new RWCollectableString("Throkmorton")); // 7

// Now iterate through the collection printing all members:
RWCollectableString* str; // 8
SortedCollectionIterator sci(sc); // 9
 while(str = (RWCollectableString*)sci()) // 10
 cout << *str << endl; // 11

sc.clearAndDestroy();
return 0;
}

Program Output:

Bill
George
Mary
Throkmorton

Let’s go through the code line-by-line and explain what is happening:

//1 By defining the preprocessor macro RW_STD_TYPEDEFS, we enable the set
of Smalltalk-like typedefs. We can then use the typedef
SortedCollection instead of RWBinaryTree, its true identity.

//2 The second #include declares class RWCollectableString, a derived
class that multiply inherits from its base classes RWCString and
RWCollectable. RWCollectableString inherits functionality from
RWCString, and “ability to be collected” from class RWCollectable.

//3 An empty SortedCollection was created at this line.

//4 -//7

 Four RWCollectableStrings were created off the heap and inserted
into the collection, in no particular order. See the Class Reference for
details on constructors for RWCollectableStrings . The objects
allocated here normally should be deleted before the end of the
program, but we omitted this step to make the example more concise.

//8 A pointer to an RWCollectableString was declared and defined here.

//9 An iterator was constructed from the SortedCollection sc .

//10 The iterator is then used to step through the entire collection, retrieving
each value in order. The function call operator operator() has been
overloaded so that the iterator means “step to the next item and return
a pointer to it.” All Tools.h++ iterators work this way. See Stroustrup
(1986, Section 7.3.2) for an example and discussion of iterators, as well
as Section 10.4 of this manual. The typecast:

 str = (RWCollectableString*)sci()

Smalltalk-Like Collection Classes 112

 is necessary because the iterator returns an RWCollectable* ; that is, a
pointer to an RWCollectable which must then be cast into its actual
identity.

//11 Finally, the pointer str is dereferenced and printed. The ability of an
RWCollectableString to be printed is inherited from its base class
RWCString.

When run, the program prints out the four collected strings in order; for
class RWCollectableString, this means lexicographical order.

13.3 Choosing a Smalltalk-like Collection Class
Now that you have reviewed the list of Smalltalk-like collection classes, their
class hierarchy, and an example of how they work, you may be wondering
how you can use them. This section gives an overview of the various
Smalltalk-like collection classes to help you choose an appropriate one for
your problem. You can also see Appendix A, on choosing.

13.3.1 Bags Versus Sets Versus Hash Tables

Class RWHashTable is the easiest Smalltalk-like collection class to
understand. It uses a simple hashed lookup to find the bucket where a
particular object occurs, then does a linear search of the bucket to find the
object. A key concept is that multiple objects that test isEqual to each other
can be inserted into a hash table.

Class RWBag is similar to RWHashTable , except that it counts occurrences
of multiple objects with the same value; that is, it retains only the first
occurrence and merely increments an occurrence count for subsequent ones.
RWBag is implemented as a dictionary, where the key is the inserted object
and the value is the occurrence count. This is the same way the Smalltalk
Bag object is implemented. Note that this implementation differs
significantly from many other C++ Bag classes which are closer to the
RWHashTable class and not true Bags .

Class RWSet is similar to its base class RWHashTable, except that it doesn’t
allow duplicates. If you try to insert an object that isEqual to an object
already in RWSet , the object will be rejected.

Class RWIdentitySet, which inherits from RWSet, retrieves objects on the
basis of identity instead of value. Because RWIdentitySet is a Set, it can take
only one instance of a given object.

Note that the ordering of objects in any of these classes based on hash tables
is not meaningful. If ordering is important, you should choose a
sequenceable class.

Smalltalk-Like Collection Classes 113

13.3.2 Sequenceable Classes

Classes inheriting from RWSequenceable have an innate ordering. You
can speak meaningfully of their first or last object, or of their 6th or i th
object.

These classes are implemented generally as either a vector, or a singly-linked
or doubly-linked list. Vector-based classes make good stacks and queues,
but poor insertions in the middle. If you exceed the capacity of a vector-
based collection class, it will automatically resize, but it may exact a
significant performance penalty to do so.

Note that the binary and B-tree classes can be considered sequenceable in the
sense that they are sorted, and therefore have an innate ordering. However,
their ordering is determined internally by the relative value of the collected
objects, rather than by an insertion order. In other words, you cannot
arbitrarily insert an object into a sorted collection in any position you want
because it might not remain sorted. Hence, these classes are subclassed
separately.

13.3.3 Dictionaries

Sometimes referred to as maps, dictionaries use an external key to find a
value. The key and value may be of different types, and in fact usually are.
You can think of dictionaries as associating a given key with a given value.
For example, if you were building a symbol table in a compiler, you might
use the symbol name as the key, and its relocation address as the value. This
approach would contrast with your approach for a Set, where the name and
address would have to be encapsulated into one object.

Tools.h++ provides two dictionary classes: RWHashDictionary,
implemented as a hash table, and RWBTreeDictionary, implemented as a B-
tree. For these classes, both keys and values must inherit from the abstract
base class RWCollectable.

13.4 Virtual Functions Inherited From RWCollection
The Smalltalk-like collection classes inherit from the abstract base class
RWCollection, which in turn inherits from the abstract base class
RWCollectable, described in Section 13.1 and 15. (Thus do we produce
collections of collections, but that is another story.)

An abstract base class is a class intended to be inherited by some other class,
not used as itself per se. If you think of it as a kind of virtual class, you can
easily project the meaning of virtual functions. These virtual functions
provide a blueprint of functionality for the derived class. As an abstract
base class, RWCollection provides a blueprint for collection classes by

Smalltalk-Like Collection Classes 114

declaring various virtual functions, such as insert() , remove() , entries() ,
and so on.

This section describes the virtual functions inherited by the Smalltalk-like
collections. Any of these collections can be expected to understand them.

13.4.1 insert()

You can put a pointer to an object into a collection by using the virtual
function insert() :

virtual RWCollectable* insert(RWCollectable*);

This function inserts in the way most natural for the collection. Faced with a
stack, it pushes an item onto the stack. Faced with a queue, it appends the
item to the queue. In a sorted collection, it inserts the new item so that items
before it compare less than itself, items after it compare greater than itself,
and items equal compare equal, if duplicates are allowed. See the example
in Section 13.2 for an example using insert() .

You must always insert pointers to real objects. Since all RWCollection
classes need to dereference their contents for some methods such as find() ,
inserting a zero will cause such methods to crash. If you must store an
empty object, we suggest you create and insert a default constructed object
of the appropriate type, such as RWCollectable*. If you know you won’t be
deleting every object in the RWCollection, you could also choose the global
RWnilCollectable, which is a pointer to a cached RWCollectable object.
But beware! Since there is only one RWnilCollectable, if you delete it, any
other reference to it will be referencing invalid memory.

13.4.2 find() and Friends

You can use the following virtual functions to test how many objects a
collection contains, and whether it contains a particular object:

virtual RWBoolean contains(const RWCollectable*) const;
virtual unsigned entries() const;
virtual RWCollectable* find(const RWCollectable*) const;
virtual RWBoolean isEmpty() const;
virtual unsigned occurrencesOf(const RWCollectable*) const;

The function isEmpty() returns TRUE if the collection contains no objects.
The function entries() returns the total number of objects that the collection
contains.

The function contains() returns TRUE if the argument is equal to an item
within the collection. The meaning of is equal to depends on the collection
and the type of object being tested. Hashing collections use the virtual
function isEqual() to test for equality, after first hashing the argument to
reduce the number of possible candidates to those in one hash bucket. (Here
it is important that all items which are isEqual with each other hash to the

Smalltalk-Like Collection Classes 115

same value!). Sorted collections search for an item that compares equal to the
argument; in other words, an item for which compareTo() returns zero.

The virtual function occurrencesOf() is similar to contains() , but returns
the number of items that are equal to the argument.

The virtual function find() returns a pointer to an item that is equal to its
argument.

The following example, which builds on the example in Section 13.2, uses
find() to find occurrences of Mary in the collection, and occurrencesOf to
find the number of times Mary occurs:

#define RW_STD_TYPEDEFS 1
#include <rw/bintree.h> //1
#include <rw/collstr.h> //2
#include <rw/rstream.h>

main(){
// Construct an empty SortedCollection
SortedCollection sc; //3

// Insert some RWCollectableStrings:
sc.insert(new RWCollectableString("George")); //4
sc.insert(new RWCollectableString("Mary")); //5
sc.insert(new RWCollectableString("Bill")); //6
sc.insert(new RWCollectableString("Throkmorton")); //7
sc.insert(new RWCollectableString("Mary")); //8

cout << sc.entries() << "\n"; //9

RWCollectableString dummy("Mary"); //10
RWCollectable* t = sc.find(&dummy); //11

if(t){ //12
 if(t->isA() == dummy.isA()) //13
 cout << *(RWCollectableString*)t << "\n"; //14
 }
else
 cout << "Object not found.\n"; //15

cout << sc.occurrencesOf(&dummy) << "\n"; //16

sc.clearAndDestroy();
return 0;
}

Program Output:

5
Mary
2

Here’s the line-by-line description:

//1 -//7
 These lines are from Section 13.2.

//8 Insert another instance with the value Mary .

Smalltalk-Like Collection Classes 116

//9 This statement prints out 5, the total number of entries in the sorted
collection.

//10 A throwaway variable dummy is constructed, to be used to test for the
occurrences of strings containing Mary .

//11 The collection is asked to return a pointer to the first object encountered
that compares equal to the argument. A nil pointer (zero) is returned if
there is no such object.

//12 The pointer is tested to make sure it is not nil.

//13 Paranoid check. In this example, it is obvious that the items in the
collection must be of type RWCollectableString. In general, it may not
be obvious.

//14 Because of the results of step 13, the cast to an RWCollectableString
pointer is safe. The pointer is then dereferenced and printed.

//15 If the pointer t was nil, then an error message would have been printed
here.

//16 The call to occurrencesOf() returns the number of items that compare
equal to its argument. In this case, two items are found, the two
occurrences of Mary .

13.4.3 remove() Functions

To search for and remove particular items, you can use the functions
remove() and removeAndDestroy() :

virtual RWCollectable* remove(const RWCollectable*);
virtual void removeAndDestroy(const RWCollectable*);

The function remove() looks for an item that is equal to its argument and
removes it from the collection, returning a pointer to it. It returns nil if no
item is found.

The function removeAndDestroy() is similar except it deletes the item instead
of returning it, using the virtual destructor inherited by all RWCollectable
items. You must be careful when using this function that the item was
actually allocated off the heap, not the stack, and that it is not shared with
another collection. Also note that RWnilCollectable references a cached
default RWCollectablebe careful not to destroy it!

The following example, which expands on the previous one, demonstrates
the use of the virtual function removeAndDestroy() :

RWCollectable* oust = sc.remove(&dummy); //17
delete oust; //18

sc.removeAndDestroy(&dummy); //19

Smalltalk-Like Collection Classes 117

//17 Removes the first occurrence of the string containing Mary and returns a
pointer to it. This pointer will be nil if there is no such item.

//18 Deletes the item, which was originally allocated off the heap. There is
no need to check the pointer against nil because the language
guarantees that it is always OK to delete a nil pointer.

//19 In this statement, the remaining occurrence of Mary is both removed
and deleted.

13.4.4 apply() Functions

To efficiently examine the members of a Smalltalk-like collection, use the
member function apply() :

virtual void apply(RWapplyCollectable ap, void* x);

The first argument, RWapplyCollectable , is a typedef:

typedef void (*RWapplyCollectable)(RWCollectable*, void*);

In other words, RWapplyCollectable is a pointer to a function with
prototype:

void yourApplyFunction (RWCollectable* item, void* x)

where yourApplyFunction is the name of the function. You must supply this
function. It will be called for each item in the collection, in whatever order is
appropriate for the collection, and passed as a pointer to the item as its first
argument. The second argument x is passed through from the call to
apply() , and is available for your use. For example, you could use it to hold
a handle to a window on which the object is to be drawn.

Note that the apply() functions of the Smalltalk-like collections and the
generic collections are similar. (Compare Section 12.3.2.) The difference is in
the type of the first argument of the user-supplied function: the Smalltalk-
like collections use RWCollectable* , while the generic collections use type* .
With both sets of collections, you must be careful that you cast the pointer
item to the proper derived class.

The apply functions generally employ the most efficient method for
examining all members of the collection. This is their great advantage.
Their disadvantage is that they are slightly clumsy to use, requiring you to
supply a separate function18.

18 The functional equivalent to apply() in the Smalltalk
world is do. It takes just one argument: a piece of code to
be evaluated for each item in the collection. This keeps
the method and the block to be evaluated together in one
place, resulting in cleaner code. As usual, the C++
approach is messier.

Smalltalk-Like Collection Classes 118

13.4.5 Functions clear() and clearAndDestroy()

To remove all items from the collection, you can use the functions clear()

and clearAndDestroy() :

virtual voidclear();
virtual voidclearAndDestroy();

The function clearAndDestroy() not only removes the items, but also calls
the virtual destructor for each item. You must use this function with care.
The function does check to see if the same item occurs more than once in a
collection (by building an RWIdentitySet internally), and thereby deletes
each item only once. However, it cannot check whether an item is shared
between two different collections. In particular, you should never call
clearAndDestroy() on a collection which holds an instance of
RWnilCollectable , which will almost be shared. You must also be certain
that every member of the collection was allocated off the heap.

13.5 Other Functions Shared by All RWCollections
There are several other functions that are shared by all classes that inherit
from RWCollection. Note that these are not virtual functions.

13.5.1 Class Conversions

The following functions allow any collection class to be converted into an
RWBag, RWSet, RWOrdered, or a SortedCollection (that is, an
RWBinaryTree):

RWBag asBag() const;
RWSet asSet() const;
RWOrdered asOrderedCollection() const;
RWBinaryTree asSortedCollection() const

Note that since these functions mimic similar Smalltalk methods, they return
a copy of the new collection by value. For large collections, this can be very
expensive. Consider using operator+=() instead.

13.5.2 Inserting and Removing Other Collections

You can use these functions to respectively insert or remove the contents of
their argument.

void operator+=(const RWCollection&);
void operator-=(const RWCollection&);

13.5.3 Selection

The function select() :

typedef RWBoolean (*RWtestCollectable)(const RWCollectable*,
 const void*);
RWCollection* select(RWtestCollectable tst, void*);

Smalltalk-Like Collection Classes 119

evaluates the function pointed to by tst for each item in the collection. It
inserts those items for which the function returns TRUE into a new collection
of the same type as self and returns a pointer to it. This new collection is
allocated off the heap, so you are responsible for deleting it when done.

13.6 Virtual Functions Inherited from
RWSequenceable
Collections that inherit from the abstract base class RWSequenceable,
which inherits from RWCollectable, have an innate, meaningful ordering.
This section describes the virtual functions inherited from
RWSequenceable which make use of that ordering. For example, the
following virtual functions allow access to the i th item in the collection:

virtual RWCollectable*& at(size_t i);
virtual const RWCollectable* at(size_t i) const;

Remember that the first item in any collection is at position i=0 . The
compiler chooses which function to use on the basis of whether or not your
collection has been declared const : the second variant of the function is for
const collections, the first for all others. The first variant can also be used as
an lvalue, as in the following example:

RWOrdered od;
od.insert(new RWCollectableInt(0)); // 0
od.insert(new RWCollectableInt(1)); // 0 1
od.insert(new RWCollectableInt(2)); // 0 1 2

delete od(1); // Use variant available for RWOrdered
od.at(1) = new RWCollectableInt(3); // 0 3 2

As you might expect, the operations above are efficient for the class
RWOrdered , which is implemented as a vector, but relatively inefficient for
a class implemented as a linked-list, because the entire list must be traversed
to find a particular index.

The following virtual functions return the first or last item in the collection,
respectively, or nil if the collection is empty:

virtual RWCollectable* first() const;
virtual RWCollectable* last() const;

The next virtual function returns the index of the first object that is equal to
the argument, or the special value RW_NPOS if there is no such object:

virtual size_t index(const RWCollectable*) const;

Here’s an example of the index function in use. The output shows that the
index of the variable we were searching for was found at position 1.

RWOrdered od;
od.insert(new RWCollectableInt(6)); // 6
od.insert(new RWCollectableInt(2)); // 6 2
od.insert(new RWCollectableInt(4)); // 6 2 4

Smalltalk-Like Collection Classes 120

RWCollectableInt dummy(2);
size_t inx = od.index(&dummy);
if (inx == RW_NPOS)
 cout << "Not found.\n";
else
 cout << "Found at index " << inx << endl;

Program Output:

Found at index 1

Finally, you can use the following function to insert an item at a particular
index:

virtual RWCollectable* insertAt(size_t i, RWCollectable* c);

In the example below, the code uses the function insertAt to insert 4 at
position 1.

RWOrdered od;
od.insert(new RWCollectableInt(6)); // 6
od.insert(new RWCollectableInt(2)); // 6 2
od.insertAt(1, new RWCollectableInt(4)); // 6 4 2

13.7 A Note on How Objects are Found
You may save yourself some difficulty by remembering the following point:
the virtual functions of the object within the collection, not those of the
target, are called when comparing or testing a target for equality.

The following code fragment illustrates the point:

SortedCollection sc;
RWCollectableString member;

sc.insert(&member);

RWCollectableString target;
RWCollectableString* p = (RWCollectableString*)sc.find(&target);

In this example, the virtual functions of member within the collection
RWCollectableString are called, not the virtual functions of target . In
other words:

member.compareTo(&target); //This will get called.
target.compareTo(&member); //Not this.

13.7.1 Hashing

Hashing is an efficient method for finding an object within a collection. All
the collection classes that use hashing follow the same general strategy.
First, member function hash() of the target is called to find the proper
bucket within the hash table. A buckets is implemented as a singly-linked
list. Because all the members of a bucket have the same hash value, the
bucket is linearly searched to find the exact match. This is done by calling
member function isEqual() of the candidate (see above) with each member of

Smalltalk-Like Collection Classes 121

the bucket as the argument. The first argument that returns TRUE is the
chosen object. Be careful not to design your class so that two objects that test
true for isEqual() can have different hash values, since this algorithm will
fail for such objects.

In general, because of this combination of hashing and linear searching, as
well as the complexity of most hashing algorithms, the ordering of the
objects within a hash collection will not make a lot of sense. Hence, when
the apply() function or an iterator scans through the hashing table, the
objects will be visited in what appears to be random order.

S e c t i o n 14.
Persistence

14.1
Levels of Persistence

14.2
No Persistence

14.3
Simple Persistence

14.4
Isomorphic Persistence

14.5
Polymorphic Persistence

14.6
A Few Friendly Warnings

Persistence 124

Persistence is the ability to save an object to a file or a stream and then restore
that object from the file or stream. Persistence is a very important feature of
objects because it facilitates the exchange of objects between processes.
Using persistence and working through streams, you can send objects from
one program to another, or from one user to another. You can also save a
persistent object to a file on a disk, and restore it from disk at another time,
or in another place.

14.1 Levels of Persistence
An object has one of four levels of persistence:

• No persistence. There is no mechanism for storage and retrieval of the
object.

• Simple persistence. A level of persistence that provides storage and
retrieval of individual objects to and from a stream or file. Simple
persistence does not preserve pointer relationships among the persisted
objects.

• Isomorphic persistence. A level of persistence that preserves the
pointer relationships among the persisted objects.

• Polymorphic persistence. The highest level of persistence.
Polymorphic persistence preserves pointer relationships among the
persisted objects and allows the restoring process to restore an object
without prior knowledge of that object's type.

The Class Reference indicates the level of persistence for each class. This
section provides information about each level of persistence through
descriptions, examples, and procedures for designing your own persistent
classes.

14.1.1 A Note About Terminology

Tools.h++ provides input and output classes that let you save and restore
objects. These classes are:

• RWFileRWFile lets you save and restore objects to a file;

• RWvostreamClasses derived from RWvostream, such as
RWpostream, RWbostream, and RWeostream, are used to save
objects;

• RWvistreamClasses derived from RWvistream, such as
RWpostream, RWbistream, and RWeistream, are used to restore
objects.

To keep our explanations simple, we'll refer to all of these input and output
classes as streams. For a discussion of the trade-offs in using RWvostream
and RWvistream versus RWFile, see Sections 6 and Section 7.

Persistence 125

14.1.2 About the Examples in this Section

For your convenience, all examples listed in this section are provided on
disk in the directory rw/toolexam/manual. Each of the examples in this
chapter has the name persist*.cpp .

14.2 No Persistence
Some Tools.h++ classes have no persistence. The Class Reference indicates
"None" in the Persistence section for all such classes. Review the class
reference entry for a particular class if you have a question about its level of
persistence.

14.3 Simple Persistence
Simple persistence is the storage and retrieval of an object to and from a
stream. Table 5 lists the classes in Tools.h++ that use simple persistence.

Table 5. Classes with Simple Persistence

Category Description
C++ fundamental types int , char , float , …

Rogue Wave date and time classes RWDate, RWTime
Rogue Wave string classes RWCString, RWWString
Miscellaneous Rogue Wave classes RWBitVec

Because it is straightforward, simple persistence is a quick and easy way to
save and restore objects that have neither pointers to other objects nor virtual
member functions.

However, when objects that refer to each other are saved and then restored
with simple persistence, the pointer relationships, or morphology, among the
objects can change. This is because simple persistence assumes that every
pointer reference to an object in memory refers to a unique object. Thus, when an
object is saved with simple persistence, two references to the same memory
location will cause two copies of the contents of that memory location to be
saved. Not only does this use extra space in the stream, but it also causes the
restored object to point to two distinct copies of the referenced object.

14.3.1 Two Examples of Simple Persistence

Let's look at a two examples of simple persistence. The first example
illustrates successful persistence of fundamental datatypes, and
demonstrates the Tools.h++ overloaded operators operator<< and
operator>> , which save and restore persistent objects. The second example

Persistence 126

illustrates one of the problems with simple persistenceits inability to
maintain pointer relationships among objects.

14.3.1.1 Example One: Simple Persisting Objects of Fundamental
Type

This example uses simple persistence to save two integers to an output
stream po, which saves the integers to the file int.dat. Then the example
restores the two integers from the stream pi, which reads the integers from
the file int.dat .

The example uses the overloaded insertion operator operator<< to save the
objects, and the overloaded extraction operator operator>> to restore the
objects, much the same way as you use these operators to output and input
objects in C++ streams.

Note that the saving stream and the restoring stream are put into separate
blocks. This is so that opening pi will cause it to be positioned at the
beginning of the file.

Here's the code:

#include <assert.h>
#include <fstream.h>
#include <rw/pstream.h>

main (){
 int j1 = 1;
 int k1 = 2;

 // Save integers to the file "int.dat"
 {
 // Open the stream to save to:
 ofstream f("int.dat");
 RWpostream po(f);

 // Use overloaded insertion operator
 // "RWpostream::operator<<(int)" to save integers:
 po << j1;
 po << k1;
 }

 // Restore integers from the file "int.dat"
 int j2 = 0;
 int k2 = 0;
 {
 // Open a separate stream to restore from:
 ifstream f("int.dat");
 RWpistream pi(f);

 // Use overloaded extraction operator
 // "RWpistream::operator>>(int)" to restore integers:
 pi >> j2; // j1 == j2
 pi >> k2; // k1 == k2
 }

 assert(j1 == j2);
 assert(k1 == k2);
 return 0;
}

Persistence 127

The preceding example shows how easy it is to use overloaded operators to
implement this level of persistence. So, what are some of the problems with
using simple persistence? As mentioned above, one problem is that simple
persistence will not maintain the pointer relationships among objects. We'll
take a look at this problem in the next example.

14.3.1.2 Example Two: Simple Persistence and Pointers

This example shows one of the shortcomings of simple persistence: its
inability to maintain the pointer relationships among persisted objects. Let's
say that you have a class Developer that contains a pointer to other
Developer objects:

Developer {
 public:
 Developer(const char* name, const Developer* anAlias = 0L)
 : name_(name), alias_(anAlias) {}

 RWCString name_; // Name of developer.
 const Developer* alias_; // Alias points to another Developer.
};

Now let's say that you have another class, Team, that is an array of pointers
to Developer s:

class Team {
 public:
 Developer* member_[3];
};

Note that Team::member_ doesn't actually contain Developer s, but only
pointers to Developer s.

We'll assume that you've written overloaded extraction and insertion
operators that use simple persistence to save and restore Developer s and
Teams. The example code for this is omitted to keep the explanation from
getting cluttered.

When you save and restore a Team with simple persistence, what you restore
may be different from what you saved. Let's look at the following code,
which creates a team, then saves and restores it with simple persistence.

main (){
 Developer* kevin = new Developer("Kevin");
 Developer* rudi = new Developer("Rudi", kevin);
 Team team1;

 team1.member_[0] = rudi;
 team1.member_[1] = rudi;
 team1.member_[2] = kevin;

 // Save with simple persistence:
 {
 RWFile f("team.dat");
 f << team1; // Simple persistence of team1.
 }

 // Restore with simple persistence:
 Team team2;
 {

Persistence 128

 RWFile f("team.dat");
 f >> team2;
 }
 return 0;
}

Because this example uses simple persistence, which does not maintain
pointer relationships, the restored team has different pointer relationships
than the original team . Figure 1 shows what the created and restored team s
look like in memory if you run the program.

 Rudi

 Kevin

Collection to be saved (team1).

 Rudi

 Kevin

Kevin

Rudi

Kevin

Collection restored (team2).

Figure 1. Simple Persistence

As you can see in Figure 1, when objects that refer to each other are saved
and then are restored with simple persistence, the morphology among the
objects can change. This is because simple persistence assumes that every
pointer reference to an object in memory refers to a unique object. Thus,
when such objects are saved, two references to the same memory location
will cause two copies of the contents of that memory location to be saved,
and later restored.

14.4 Isomorphic Persistence
Isomorphic persistence is the storage and retrieval of objects to and from a
stream such that the pointer relationships between the objects are preserved.
If there are no pointer relationships, isomorphic persistence effectively saves
and restores objects the same way as simple persistence. When a collection
is isomorphically persisted, all objects within that collection are assumed to
have the same type. (A collection of objects of the same type is called a
homogeneous collection.)

You can use isomorphic persistence to save and restore any Tools.h++ class
listed in Table 6 above. In addition, you can add isomorphic persistence to a
class by following the technique described in Section 14.4.3.

Note that in this implementation of Tools.h++, isomorphic persistence of
types templatized on pointers is not supported. For example, saving and

Persistence 129

restoring RWTValDlist<int* > is not supported.19 In this case, we suggest
that you use RWTPtrDlist<int > instead.

Table 6. Isomorphic Persistence Classes

Category Description
Rogue Wave Standard C++
Library-based collection classes

RWTValDeque, RWTPtrMap,…

RWCollectable (Smalltalk-like)
classes

RWCollectableDate,
RWCollectableString... Note that
RWCollectable classes also
provide polymorphic persistence (see
Section 14.5)

RWCollection classes that derive
from RWCollectable

RWBinaryTree, RWBag,…

Rogue Wave Tools.h++ 6.x
templatized collections

RWTPtrDlist, RWTValDlist,
RWTPtrSlist, RWTValSlist,
RWTPtrOrderedVector,
RWTValOrderedVector,
RWTPtrSortedVector,
RWTValSortedVector,
RWTPtrVector, RWTValVector

14.4.1 Isomorphic versus Simple Persistence

Let's look at a couple of illustrations that show the difference between
isomorphic and simple persistence. In Figure 2, a collection of multiple
pointers to the same object is saved to and restored from a stream, using
simple persistence. Notice that when the collection is stored and restored in
Figure 2, each pointer points to a distinct object. Contrast this with the
isomorphic persistence of the same collection, shown in Figure 3, in which
all of the restored pointers point to the same object, just as they did in the
original collection.

19 C++ template mechanisms prevent us from being able to
do this. However, this restriction is probably a good
thingpointers saved at one location are likely to be
troublesome indeed when injected into another.

Persistence 130

Pointer 3

Pointer 2

Pointer 1

Object

Original collection

Pointer 3

Pointer 2

Pointer 1

Object

Object

Object

Collection saved and restored with
simple persistence.

Figure 2. Saving and restoring with simple persistence.

Pointer 3

Pointer 2

Pointer 1

Object

Original collection

Pointer 3

Pointer 2

Pointer 1

Object

Collection saved and restored
with isomorphic persistence

Figure 3. Saving and Restoring a Collection with Isomorphic Persistence

In Figure 4, we attempt to save and restore a circularly-linked list, using
simple persistence. As shown in the figure, any attempt to use simple
persistence to save a circularly-linked list results in an infinite loop.

The simple persistence mechanism creates a copy of each object that is
pointed to and saves that object to a stream. But the simple persistence
mechanism doesn't remember which objects it has already saved. When the
simple persistence mechanism encounters a pointer, it has no way of
knowing whether it has already saved that pointer's object. So in a
circularly-linked list, the simple persistence mechanism saves the same
objects over and over and over as the mechanism cycles through the list
forever.

On the other hand, as shown in Figure 5, isomorphic persistence allows us to
save the circularly-linked list. The isomorphic persistence mechanism uses a
table to keep track of pointers it has saved. When the isomorphic persistence
mechanism encounters a pointer to an unsaved object, it copies the object
data, saves that object datanot the pointerto the stream, then keeps track
of the pointer in the save table. If the isomorphic persistence mechanism later

Persistence 131

encounters a pointer to the same object, instead of copying and saving the
object data, the mechanism saves the save table's reference to the pointer.

When the isomorphic persistence mechanism restores pointers to objects
from the stream, the mechanism uses a restore table to reverse the process.
When the isomorphic persistence mechanism encounters a pointer to an
unrestored object, it recreates the object with data from the stream, then
changes the restored pointer to point to the recreated object. The mechanism
keeps track of the pointer in the restore table. If the isomorphic persistence
mechanism later encounters a reference to an already-restored pointer, then
the mechanism looks up the reference in the restore table, and updates the
restored pointer to point to the object referred to in the table.

D

C

B

A

Original

D

 .
 .

to infinity, and beyond!

C

C

B

B

A

A

Trying to save with
simple persistence

Figure 4. Attempt to Save and Restore a Circularly-linked List
with Simple Persistence

D

C

B

A

Original

D

C

B

A

Successfully saved and restored
with isomorphic persistence

Figure 5. Saving and Restoring a Circularly-linked List
with Isomorphic Persistence

Persistence 132

14.4.2 Isomorphic Persistence of a Tools.h++ Class

The following example shows the isomorphic persistence of a templatized
collection of RWCollectable integers, RWTPtrDlist<RWCollectableInt>.
RWTPtrDlist is a templatized, reference-based, doubly-linked list that uses
isomorphic persistence to store pointer references to values in memory.

This example uses RWCollectableInt instead of int because int s use
simple persistence. By using RWCollectableInts, we can implement
isomorphic persistence.

When RWTPtrDlist is saved and then restored, the pointer relationships of the
restored list will have the same morphology as the original list.

#include <assert.h>
#include <rw/tpdlist.h> // RWTPtrDlist
#include <rw/collint.h> // RWCollectableInt
#include <rw/rwfile.h> // RWFile

main (){
 RWTPtrDlist<RWCollectableInt> dlist1;
 RWCollectableInt *one = new RWCollectableInt(1);
 dlist1.insert(one);
 dlist1.insert(one);
 {
 RWFile f("dlist.dat");
 f << dlist1; // Isomorphic persistence of dlist1.
 }

 assert(dlist1[0] == one && dlist1[0] == dlist1[1]);
 // dlist1[0], dlist[1] and "one" all point to the
 // same place.

 RWTPtrDlist<RWCollectableInt> dlist2;
 {
 RWFile f("dlist.dat");

 f >> dlist2;
 // restore dlist2 from f
 // dlist2 now contains 2 pointers
 // to the same RWCollectableInt of value 1.
 // However, this RWCollectableInt isn't at
 // the same address as the value
 // that "one" points to.
 }

 // See Figure 6 below to see what dlist1 and dlist2
 // now look like in memory.

 assert(dlist2[0] == dlist2[1] && (*dlist2[0]) == *one);
 // dlist2[0] and dlist2[1] point to the same place
 // and that place has the same value as "one".
 delete dlist2[0];
 delete one;
 // The developer must allocate and delete objects.
 // The templatized collection member function
 // clearAndDestroy() doesn't check that a given
 // pointer is deleted only once.
 // So in this case, delete the shared
 // pointer manually.

 return 0;
}

Persistence 133

Figure 6. After Isomorphic Save and Restore of RWTPtrDlist<RWCollectableInt>

14.4.3 Designing Your Class to Use Isomorphic Persistence

Table 6 lists the Tools.h++ classes that implement isomorphic persistence.
You can also add isomorphic persistence to an existing class, even if you only
have the header files for that class. Before you can add isomorphic
persistence to a class, it must meet the following requirements:

• Class T must have appropriate default and copy constructors defined or
generated by the compiler:

 T(); // default constructor
 T(T& t); // copy constructor

• Class T must have an assignment operator defined as a member or as a
global function:

 T& operator=(const T& t); // member function
 T& operator=(T& lhs, const T& rhs); // global function

• Class T cannot have any non-type template parameters. For example, in
RWTBitVec<size>, "size" is placeholder for a value rather than a type.
No present compiler accepts function templates with non-type template
parameters, and the global functions used to implement isomorphic
persistence (rwRestoreGuts and RWSaveGuts) are function templates
when they are used to persist templatized classes.

• Class T must use the macros RW_DECLARE_PERSISTABLE and
RW_DEFINE_PERSISTABLE or their equivalents. More about this in
Sections 14.4.3.2 and 14.4.3.3.

• All the data necessary to recreate an instance of Class T must be globally
available (have accessor functions). If you can't make this data available,
you can't implement isomorphic persistence. More about this in Section
14.4.3.1.

one

 1

dlist1

 1

dlist2

Persistence 134

If your class T will be stored in a Standard C++ Library container or a
Standard C++ Library-based collection, you may need to implement
operator<(const T&, const T&) and operator==(const T&, const T&) .
See Section 11.11 for more information.

To create an isomorphically persistent class or to add isomorphic persistence
to an existing class, follow these steps:

1. Make all necessary class data available.
2. Add RWDECLARE_PERSISTABLE to your header file.
3. Add RWDEFINE_PERSISTABLE to one source file.
4. Check for possible problems.
5. Define rwSaveGuts and rwRestoreGut s.

14.4.3.1 Make All Necessary Class Data Available

All class data that will be isomorphically persisted must be accessible to the
global functions, rwSaveGuts and rwRestoreGuts, used to implement
persistence for the class.

Note that only the information necessary to recreate an object of that class
must be accessible to rwSaveGuts and rwRestoreGuts . Other data can be
kept protected or private.

There are several ways to make protected and private data members of
classes accessible.

First, your class could make friends with rwSaveGuts and rwRestoreGuts :

class Friendly {
// These global functions access private members.
 friend void rwSaveGuts(RWvostream&, const Friendly&);
 friend void rwRestoreGuts(RWFile&, Friendly&);
 friend void rwSaveGuts(RWFile&, const Friendly&);
 friend void rwRestoreGuts(RWvistream&, Friendly&);
//...
};

Or your class could have accessor functions to the restricted but necessary
members:

class Accessible {
public:
 int secret(){return secret_}
 void secret(const int s){secret_ = s}
//...
private:
 int secret_;
};

If you can’t change the source code for the class to which you want to add
isomorphic persistence, then you could consider deriving a new class that
provides access via public methods or friendship:

class Unfriendly{
protected:

Persistence 135

 int secret_;
// ...
};

class Friendlier : public Unfriendly {
public:
 int secret(){return secret_}
 void secret(const int s){secret_ = s}
//...
};

If you can't change the source code for a class, you will be unable to
isomorphically persist private members of that class. But remember: you
only need access to the data necessary to recreate the class object, not to all the
members of the class. For example, if your class has a private cache that is
created at run time, you probably don't need to save and restore the cache.
Thus, even though that cache is private, you don't need access to it in order
to persist the class object.

14.4.3.2 Add RWDECLARE_PERSISTABLE to Your Header File

Once you have determined that all necessary class data is accessible, you
must add declaration statements to your header files. These statements
declare the global functions operator<< and operator>> for your class. The
global functions permit storage to and retrieval from RWvistream,
RWvostream and RWFile.

Tools.h++ provides several macros that make adding these declarations
easy. The macro you choose depends upon whether your class is
templatized or not, and if it is templatized, how many templatized
parameters it has.

• For non-templatized classes, use RWDECLARE_PERSISTABLE.

 RWDECLARE_PERSISTABLE is a macro found in rw/edefs.h . To use it, add
the following lines to your header file (*.h):

#include <rw/edefs.h>
RWDECLARE_PERSISTABLE(YourClass)

 RWDECLARE_PERSISTABLE(YourClass) will expand to declare the
following global functions:

RWvostream& operator<<(RWvostream& strm, const YourClass& item);
RWvistream& operator>>(RWvistream& strm, YourClass& obj);
RWvistream& operator>>(RWvistream& strm, YourClass*& pObj);

RWFile& operator<<(RWFile& strm, const YourClass& item);
RWFile& operator>>(RWFile& strm, YourClass& obj);
RWFile& operator>>(RWFile& strm, YourClass*& pObj);

• For templatized classes with a single template parameter T, use the
macro RWDECLARE_PERSISTABLE_TEMPLATE.

 RWDECLARE_PERSISTABLE_TEMPLATE is also found in rw/edefs.h . To use
it, add the following lines to your header file (*.h):

Persistence 136

#include <rw/edefs.h>
RWDECLARE_PERSISTABLE_TEMPLATE(YourClass)

 RWDECLARE_PERSISTABLE_TEMPLATE(YourClass) will expand to declare
the following global functions:

template<class T>
RWvostream& operator<<
(RWvostream& strm, const YourClass<T>& item);

template<class T>
RWvistream& operator>>
(RWvistream& strm, YourClass<T>& obj);

template<class T>
RWvistream& operator>>
(RWvistream& strm, YourClass<T>*& pObj);

template<class T>
RWFile& operator<<(RWFile& strm, const YourClass<T>& item);

template<class T>
RWFile& operator>>(RWFile& strm, YourClass<T>& obj);

template<class T>
RWFile& operator>>(RWFile& strm, YourClass<T>*& pObj);

• For templatized classes with more than one and less than five
template parameters, use one of the following macros from rw/edefs.h .:

// For YourClass<T1,T2>:
RWDECLARE_PERSISTABLE_TEMPLATE_2(YourClass)

// For YourClass<T1,T2,T3>:
RWDECLARE_PERSISTABLE_TEMPLATE_3(YourClass)

// For YourClass<T1,T2,T3,T4>:
RWDECLARE_PERSISTABLE_TEMPLATE_4(YourClass)

Remember, if your templatized class has any non-type template
parameters, it cannot be isomorphically persisted.

• If you need to persist templatized classes with five or more
 template parameters, you can write additional macros for
RWDECLARE_PERSISTABLE_TEMPLATE_n. The macros are found in the
header file rw/edefs.h .

14.4.3.3 Add RWDEFINE_PERSISTABLE to One Source File

After you have declared the global storage and retrieval operators, you must
define them. Tools.h++ provides macros that add code to your source file20 to
define the global functions operator<< and operator>> for storage to and

20 You may find for template classes that with some
compilers the source file must have the same base name
as the header file where RWDECLARE_PERSISTABLE was
used.

Persistence 137

retrieval from RWvistream, RWvostream, and RWFile.
RWDEFINE_PERSISTABLE macros will automatically create global operator<<

and operator>> functions that perform isomorphic persistence duties and call
the global persistence functions rwSaveGuts and rwRestoreGuts for your class.
More about rwSaveGuts and rwRestoreGuts later.

Again, your choice of which macro to use is determined by whether your
class is templatized, and if so, how many parameters it requires.

• For non-templatized classes, use RWDEFINE_PERSISTABLE.

 RWDEFINE_PERSISTABLE is a macro found in rw/epersist.h . To use it,
add the following lines to one and only one source file (*.cpp or *.C):

#include <rw/epersist.h>
RWDEFINE_PERSISTABLE(YourClass)

 RWDEFINE_PERSISTABLE(YourClass) will expand to generate the source
code for (that is, to define) the following global functions:

RWvostream& operator<<(RWvostream& strm, const YourClass& item)
RWvistream& operator>>(RWvistream& strm, YourClass& obj)
RWvistream& operator>>(RWvistream& strm, YourClass*& pObj)

RWFile& operator<<(RWFile& strm, const YourClass& item)
RWFile& operator>>(RWFile& strm, YourClass& obj)
RWFile& operator>>(RWFile& strm, YourClass*& pObj)

• For templatized classes with a single template parameter T, use
RWDEFINE_PERSISTABLE_TEMPLATE.

 RWDEFINE_PERSISTABLE_TEMPLATE is also found in rw/epersist.h . To
use it, add the following lines to one and only one source file (*.cpp or

*.C):

#include <rw/epersist.h>
RWDEFINE_PERSISTABLE_TEMPLATE(YourClass)

 RWDEFINE_PERSISTABLE_TEMPLATE(YourClass) will expand to generate
the source code for the following global functions:

template<class T>
RWvostream& operator<<
(RWvostream& strm, const YourClass<T>& item)

template<class T>
RWvistream& operator>>
(RWvistream& strm, YourClass<T>& obj)

template<class T>
RWvistream& operator>>
(RWvistream& strm, YourClass<T>*& pObj)

template<class T>
RWFile& operator<<(RWFile& strm, const YourClass<T>& item)

template<class T>
RWFile& operator>>(RWFile& strm, YourClass<T>& obj)

template<class T>

Persistence 138

RWFile& operator>>(RWFile& strm, YourClass<T>*& pObj)

• For templatized classes with more than one and less than five
template parameters, use one of the following macros from
rw/epersist.h :

// For YourClass<T1,T2>:
RWDEFINE_PERSISTABLE_TEMPLATE_2(YourClass)

// For YourClass<T1,T2,T3>:
RWDEFINE_PERSISTABLE_TEMPLATE_3(YourClass)

// For YourClass<T1,T2,T3,T4>:
RWDEFINE_PERSISTABLE_TEMPLATE_4(YourClass)

Remember, if your templatized class has any non-type template
parameters, it cannot be isomorphically persisted.

• If you need to persist templatized classes with five or more
 template parameters, you can write additional macros for
RWDEFINE_PERSISTABLE_TEMPLATE_n. The macros are found in
 the header file rw/epersist.h .

14.4.3.4 Check for Possible Problems

You've made the necessary data accessible, and declared and defined the
global functions required for isomorphic persistence. Before you go any
further, you need to review your work for two possible problems.

1. You can't use the RWDECLARE_PERSISTABLE_TEMPLATE and
RWDEFINE_PERSISTABLE_TEMPLATE macros to persist any templatized
class that has non-type template parameters. Templates with non-type
template parameters, such as RWTBitVec<size>, cannot be
isomorphically persisted.

2. If you have defined any of the following global operators and you use
the RWDEFINE_PERSISTABLE macro, you will get compiler ambiguity
errors.

RWvostream& operator<<(RWvostream& s, const YourClass& t);
RWvistream& operator>>(RWvistream& s, YourClass& t);
RWvistream& operator>>(RWvistream& s, YourClass*& pT);

RWFile& operator<<(RWFile& s, const YourClass& t);
RWFile& operator>>(RWFile& s, YourClass& t);
RWFile& operator>>(RWFile& s, YourClass*& pT);

 The compiler errors occur because using RWDEFINE_PERSISTABLE along
with a different definition of the operators defines the operators twice.
This means that the compiler does not know which operator definition
to use. In this case, you have two choices:

Persistence 139

• Remove the operator<< and operator>> global functions that you
previously defined for YourClass and replace them with the
operators generated by the RWDEFINE_PERSISTABLE(YourClass).

• Modify your operator<< and operator>> global functions for
YourClass using the contents of the RWDEFINE_PERSISTABLE macro
in rw/epersist.h as a guide.

14.4.3.5 Define rwSaveGuts and rwRestoreGuts

Now you must add to one and only one source file the global functions
rwSaveGuts and rwRestoreGuts , which will be used to save and restore the
internal state of your class. These functions are called by the operator<<

and operator>> that were declared and defined as discussed in Sections
14.4.3.2 and 14.4.3.3 above.

Note: Section 14.4.4 provides guidelines about how to write rwSaveGuts and
rwRestoreGuts global functions.

• For non-templatized classes , define the following functions:

void rwSaveGuts(RWFile& f, const YourClass& t){/*…*/}

void rwSaveGuts(RWvostream& s, const YourClass& t) {/*…*/}

void rwRestoreGuts(RWFile& f, YourClass& t) {/*…*/}

void rwRestoreGuts(RWvistream& s, YourClass& t) {/*…*/}

• For templatized classes with a single template parameter T, define the
following functions:

template<class T> void
rwSaveGuts(RWFile& f, const YourClass<T>& t){/*…*/}

template<class T> void
rwSaveGuts(RWvostream& s, const YourClass<T>& t) {/*…*/}

template<class T> void
rwRestoreGuts(RWFile& f, YourClass<T>& t) {/*…*/}

template<class T>void
rwRestoreGuts(RWvistream& s, YourClass<T>& t) {/*…*/}

• For templatized classes with more than one template parameter, define
rwRestoreGuts and rwSaveGuts with the appropriate number of
template parameters.

Function rwSaveGuts saves the state of each class member necessary for
persistence to an RWvostream or an RWFile. If the members of your class
can be persisted (see Table 6 above), and if the necessary class members are
accessible to rwSaveGuts , you can use operator<< to save the class members.

Function rwRestoreGuts restores the state of each class member necessary
for persistence from an RWvistream or an RWFile. Provided that the
members of your class are types that can be persisted, and provided that the

Persistence 140

members of your class are accessible to rwRestoreGuts , you can use
operator>> to restore the class members.

14.4.4 Writing rwSaveGuts and rwRestoreGuts Functions

The next two sections discuss guidelines for writing rwSaveGuts and
rwRestoreGuts global functions. To illustrate these guidelines, the following
class will be used:

class Gut {
 public:
 int fundamentalType_;
 RWCString aRogueWaveObject_;
 RWTValDlist anotherRogueWaveObject_;
 RWCollectableString anRWCollectable_
 RWCollectableString* pointerToAnRWCollectable_;
 Gut* pointerToAnObject_;
};

The discussion in the next two sections describes how to write rwSaveGuts

and rwRestoreGuts functions for non-templatized classes. However, the
descriptions also apply to the templatized rwSaveGuts and rwRestoreGuts

that are written for templatized classes.

14.4.4.1 Guidelines for Writing rwSaveGuts

The global overloaded functions:

rwSaveGuts(RWFile& f, const YourClass& t)
rwSaveGuts (RWvostream& s, const YourClass& t)

are responsible for saving the internal state of a YourClass object to either a
binary file (using class RWFile) or to a virtual output stream (an
RWvostream). This allows the object to be restored at some later time.

The rwSaveGuts functions that you write must save the state of each member
in YourClass , including the members of the class that you inherited from.

How you write the functions depends upon the type of the member data:

• To save member data that are either C++ fundamental types (int , char ,
float ,…), or most Rogue Wave classes, including RWCollectable, use
the overloaded insertion operator operator<< .

• Saving members that are pointers to non-RWCollectable objects can be
a bit tricky. This is because it is possible that a pointer does not point to
any object at all. One way of dealing with the possibility of nil pointers
is to check whether a pointer points to a valid object. If the pointer is
valid, save a Boolean true, then save the dereferenced pointer. If the
pointer is invalid, save a Boolean false but don't save the pointer.

 When you restore the pointer, rwRestoreGuts first restores the Boolean.
If the Boolean is true, then rwRestoreGuts restores the valid pointer. If
the Boolean is false, then rwRestoreGuts sets the pointer to nil.

Persistence 141

• Saving pointers to objects derived from RWCollectable is easier. It is
still possible that a pointer is nil. But if you use:

 RWvostream& operator<<(RWvostream&, const RWCollectable*);

 to save the pointer, the nil pointer will be detected automatically.

Using these guidelines, you can write rwSaveGuts functions for the example
class Gut as follows:

void rwSaveGuts(RWvostream& stream, const Gut& gut) {

 // Use insertion operators to save fundamental objects,
 // Rogue Wave objects and pointers to
 // RWCollectable-derived objects.

 stream
 << gut.fundamentalType_
 << gut.aRogueWaveObject_
 << gut.anotherRogueWaveObject_
 << gut.pointerToAnRWCollectable_;

 // The tricky saving of a pointer
 // to a non-RWCollectable object.

 if (gut.pointerToAnObject_ == 0) // Is it a nil pointer?
 stream << false; // Yes, don't save.
 else {
 stream << true; // No, it's valid
 stream << *(gut.pointerToAnObject_); // so save it.
 }
}

void rwSaveGuts(RWFile& stream, const Gut& gut) {
 // The body of this function is identical to
 // rwSaveGuts(RWvostream& stream, const Gut& gut).
}

14.4.4.2 Guidelines for Writing rwRestoreGuts

The global overloaded functions:

rwRestoreGuts(RWFile& f, YourClass& t)
rwRestoreGuts(RWvostream& s, YourClass& t)

 are responsible for restoring the internal state of a YourClass object from
either a binary file (using class RWFile) or from a virtual output stream (an
RWvostream).

The rwRestoreGuts functions that you write must restore the state of each
member in YourClass , including the members of the class that you inherited
from. The functions must restore member data in the order that it was saved.

How you write the functions depends upon the type of the member data:

• To restore member data that are either C++ fundamental types (int ,
char , float ,…) or most Rogue Wave classes, including RWCollectable,
use the overloaded extraction operators (operator>>).

Persistence 142

• Restoring members that are pointers to non-RWCollectable objects can
be a bit tricky. This is because it is possible that a saved pointer did not
point to any object at all. But if rwSaveGuts saved a Boolean flag before
saving the pointer, as we described in the previous section, then it is a
relatively simple matter for the rwRestoreGuts to restore valid and nil
pointers.

 Assuming that the members were saved with a compatible rwSaveGuts ,
when you restore the pointer, rwRestoreGuts first restores the Boolean.
If the Boolean is true, then rwRestoreGuts restores the valid pointer. If
the Boolean is false, then rwRestoreGuts sets the pointer to nil.

• Restoring pointers to objects derived from RWCollectable is easier. It
is still possible that the pointer is nil. But if you use:

 RWvostream& operator>>(RWvostream&, const RWCollectable*&);

to restore the pointer, the nil pointer will be detected automatically.

Using these guidelines, you can write the rwRestoreGuts functions for the
example class Gut as follows:

void rwRestoreGuts(RWvistream& stream, const Gut& gut) {

 // Use extraction operators to restore fundamental objects,
 // Rogue Wave objects and pointers to
 // RWCollectable-derived objects.

 stream
 >> gut.fundamentalType_
 >> gut.aRogueWaveObject_
 >> gut.anotherRogueWaveObject_
 >> gut.pointerToAnRWCollectable_;

 // The tricky restoring of a pointer
 // to a non-RWCollectable object.

 bool isValid;
 stream >> isValid; // Is it a nil pointer?

 if (isValid) // No,
 stream >> gut.pointerToAnObject_; // restore the pointer.
 else // Yes,
 gut.pointerToAnObject_ = rwnil; // set pointer to nil.
}

void rwRestoreGuts(RWFile& stream, Gut& gut) {
 // The body of this function is identical to
 // rwRestoreGuts(RWvostream& stream, Gut& gut).
}

14.4.5 Isomorphic Persistence of a User-designed Class

Section 14.3.1.2 described some example code that implements simple
persistence on a collection that includes pointers. That example illustrated
how simple persistence does not maintain the original collection's
morphology.

Persistence 143

This example implements isomorphic persistence on the collection we set up
in Section 14.3.1.2: Team, which contains three Developer s. Figure 7 shows
the morphology of the original Team collection and of the Team collection
after we saved and restored it with isomorphic persistence.

 Rudi

 Kevin

Collection to be saved (team1).

 Rudi

 Kevin

Collection restored (team2).

Figure 7. Isomorphic Persistence

As you read the code, notice how the Developer::alias_ member, which
points to other Developer s, is saved and restored. You'll find that after
saving Developer::name_ , the rwSaveGuts function for Developer checks to
see if alias_ is pointing to a Developer in memory. If not, rwSaveGuts stores
a Boolean false to signify that alias_ is a nil pointer. If alias_ is pointing
to a Developer , rwSaveGuts stores a Boolean true . It is only afterwards that
rwSaveGuts finally stores the value of the Developer that alias_ is pointing
to.

This code can distinguish between new Developer s and existing
Developer s because the insertion operators generated by
RWDEFINE_PERSISTABLE(Developer) keep track of Developer s that have been
stored previously. The insertion operator, operator<< , calls the rwSaveGuts if
and only if a Developer has not yet been stored in the stream by operator<< .

When a Developer object is restored, the extraction operator, operator>> , for
Developer is called. Like the insertion operators, the extraction operators
are generated by RWDEFINE_PERSISTABLE(Developer) . If a Developer object
has already been restored, then the extraction operator will adjust the
Developer::alias_ pointer so that it points to the already existing
Developer . If the Developer has not yet been restored, then rwRestoreGuts

for Developer will be called.

After restoring Developer::name_ , rwRestoreGuts for Developer restores a
Boolean value to determine whether Developer::alias_ should point to a
Developer in memory or not. If the Boolean is true , then alias_ should
point to a Developer , so rwRestoreGuts restores the Developer object. Then
rwRestoreGuts updates alias_ to point to the restored Developer .

The isomorphic persistence storage and retrieval process described above for
Developer.alias_ can also be applied to the Developer pointers in Team.

Persistence 144

Here is the code:

#include <iostream.h> // For user output.
#include <assert.h>
#include <rw/cstring.h>
#include <rw/rwfile.h>
#include <rw/epersist.h>

//------------------ Declarations ---------------------

//------------------- Developer -----------------------

class Developer {
 public:
 Developer
 (const char* name = "", Developer* anAlias = rwnil)
 : name_(name), alias_(anAlias) {}

 RWCString name_;
 Developer* alias_;
};

#include <rw/edefs.h>
RWDECLARE_PERSISTABLE(Developer)

//--------------------- Team --------------------------

class Team {
 public:
 Developer* member_[3];
};

RWDECLARE_PERSISTABLE(Team);

//---------- rwSaveGuts and rwRestoreGuts -------------

//------------------- Developer -----------------------

RWDEFINE_PERSISTABLE(Developer)
// This macro generates the following insertion and extraction
// operators:
// RWvostream& operator<<
// (RWvostream& strm, const Developer& item)
// RWvistream& operator>>(RWvistream& strm, Developer& obj)
// RWvistream& operator>>(RWvistream& strm, Developer*& pObj)
// RWFile& operator<<(RWFile& strm, const Developer& item)
// RWFile& operator>>(RWFile& strm, Developer& obj)
// RWFile& operator>>(RWFile& strm, Developer*& pObj)

void rwSaveGuts(RWFile& file, const Developer& developer){
// Called by:
// RWFile& operator<<(RWFile& strm, const Developer& item)

 file << developer.name_; // Save name.

 // See if alias_ is pointing to a Developer in memory.
 // If not, then rwSaveGuts stores a boolean false to signify
 // that alias_ is a nil pointer.
 // If alias_ is pointing to a Developer,
 // then rwSaveGuts stores a boolean true
 // and stores the value of the Developer
 // that alias_ is pointing to.

 if (developer.alias_ == rwnil)
 file << false; // No alias.
 else {
 file << true;
 file << *(developer.alias_); // Save alias.
 }
}

Persistence 145

void rwSaveGuts(RWvostream& stream, const Developer& developer) {
// Called by:
// RWvostream& operator<<
// (RWvostream& strm, const Developer& item)

 stream << developer.name_; // Save name.

 // See if alias_ is pointing to a Developer in memory.

 if (developer.alias_ == rwnil)
 stream << false; // No alias.
 else {
 stream << true;
 stream << *(developer.alias_); // Save alias.
 }
}

void rwRestoreGuts(RWFile& file, Developer& developer) {
// Called by:
// RWFile& operator>>(RWFile& strm, Developer& obj)

 file >> developer.name_; // Restore name.

 // Should developer.alias_ point to a Developer?

 RWBoolean alias;
 file >> alias;

 // If alias_ should point to a Developer,
 // then rwRestoreGuts restores the Developer object
 // and then updates alias_ to point to the new Developer.

 if (alias) // Yes.
 file >> developer.alias_;
 // Call:
 // RWFile& operator>>(RWFile& strm, Developer*& pObj)
}

void rwRestoreGuts(RWvistream& stream, Developer& developer) {
// Called by:
// RWvistream& operator>>(RWvistream& strm, Developer& obj)

 stream >> developer.name_; // Restore name.

 // Should developer.alias_ point to a Developer?

 RWBoolean alias;
 stream >> alias;

 if (alias) // Yes.
 stream >> developer.alias_;
 // Restore alias and update pointer.
 // Calls:
 // RWvistream& operator>>
 // (RWvistream& strm, Developer*& pObj)

}

// For user output only:

ostream& operator<<(ostream& stream, const Developer& d) {
 stream << d.name_
 << " at memory address: " << (void*)&d;

 if (d.alias_)
 stream << " has an alias at memory address: "
 << (void*)d.alias_ << " ";
 else
 stream << " has no alias.";

 return stream;
}

Persistence 146

//--------------------- Team -------------------------------

RWDEFINE_PERSISTABLE(Team);
// This macro generates the following insertion and extraction
// operators:
// RWvostream& operator<<
// (RWvostream& strm, const Team& item)
// RWvistream& operator>>(RWvistream& strm, Team& obj)
// RWvistream& operator>>(RWvistream& strm, Team*& pObj)
// RWFile& operator<<(RWFile& strm, const Team& item)
// RWFile& operator>>(RWFile& strm, Team& obj)
// RWFile& operator>>(RWFile& strm, Team*& pObj)

void rwSaveGuts(RWFile& file, const Team& team){
// Called by RWFile& operator<<(RWFile& strm, const Team& item)

 for (int i = 0; i < 3; i++)
 file << *(team.member_[i]);
 // Save Developer value.
 // Call:
 // RWFile& operator<<
 // (RWFile& strm, const Developer& item)
}

void rwSaveGuts(RWvostream& stream, const Team& team) {
// Called by:
// RWvostream& operator<<(RWvostream& strm, const Team& item)

 for (int i = 0; i < 3; i++)
 stream << *(team.member_[i]);
 // Save Developer value.
 // Call:
 // RWvostream& operator<<
 // (RWvostream& strm, const Developer& item)

}

void rwRestoreGuts(RWFile& file, Team& team) {
// Called by RWFile& operator>>(RWFile& strm, Team& obj)

 for (int i = 0; i < 3; i++)
 file >> team.member_[i];
 // Restore Developer and update pointer.
 // Call:
 // RWFile& operator>>(RWFile& strm, Developer*& pObj)
}

void rwRestoreGuts(RWvistream& stream, Team& team) {
// Called by:
// RWvistream& operator>>(RWvistream& strm, Team& obj)

 for (int i = 0; i < 3; i++)
 stream >> team.member_[i];
 // Restore Developer and update pointer.
 // Call:
 // RWvistream& operator>>
 // (RWvistream& strm, Developer*& pObj)
}

// For user output only:

ostream& operator<<(ostream& stream, const Team& t) {
 for (int i = 0; i < 3; i++)
 stream << "[" << i << "]:" << *(t.member_[i]) << endl;
 return stream;
}

Persistence 147

//-------------------- main --------------------------

main (){
 Developer* kevin = new Developer("Kevin");
 Developer* rudi = new Developer("Rudi", kevin);
 Team team1;

 team1.member_[0] = rudi;
 team1.member_[1] = rudi;
 team1.member_[2] = kevin;

 cout << "team1 (before save):" << endl
 << team1 << endl << endl; // Output to user.
 {
 RWFile f("team.dat");
 f << team1; // Isomorphic persistence of team.
 }

 Team team2;
 {
 RWFile f("team.dat");
 f >> team2;
 }
 cout << "team2 (after restore):" << endl
 << team2 << endl << endl; // Output to user.

 delete kevin;
 delete rudi;
 return 0;
}

Output:

team1 (before save):
[0]:Rudi at memory address: 0x10002be0
 has an alias at memory address: 0x10002bd0
[1]:Rudi at memory address: 0x10002be0
 has an alias at memory address: 0x10002bd0
[2]:Kevin at memory address: 0x10002bd0 has no alias.

team2 (after restore):
[0]:Rudi at memory address: 0x10002c00
 has an alias at memory address: 0x10002c10
[1]:Rudi at memory address: 0x10002c00
 has an alias at memory address: 0x10002c10
[2]:Kevin at memory address: 0x10002c10 has no alias.

14.5 Polymorphic Persistence
Polymorphic persistence preserves pointer relationships (or morphology)
among persisted objects, and also allows the restoring process to restore an
object without prior knowledge of that object's type.

Tools.h++ uses classes derived from RWCollectable to do polymorphic
persistence. The objects created from those classes may be any of the
different types derived from RWCollectable. A group of such objects,
where the objects may have different types, is called a heterogeneous collection.

Table 7 lists the classes that use polymorphic persistence.

Persistence 148

Table 7. Polymorphic Persistence Classes

Category Description
RWCollectable (Smalltalk-like)
classes

RWCollectableDate,
RWCollectableString...

RWCollection classes (which
derive from RWCollectable)

RWBinaryTree, RWBag…

14.5.1 Operators

The storage and retrieval of polymorphic objects that inherit from
RWCollectable is a powerful and adaptable feature of the Tools.h++ class
library. Like other persistence mechanisms, polymorphic persistence uses
the overloaded extraction and insertion operators (operator<< and
operator>>). When these operators are used in polymorphic persistence, not
only are objects isomorphically saved and restored, but objects of unknown
type can be restored.

Polymorphic persistence uses the operators listed below.

• Operators that save references to RWCollectable objects:
Rwvostream& operator<<(RWvostream&, const RWCollectable&);
RWFile& operator<<(RWFile&, const RWCollectable&);

 Each RWCollectable-derived object is saved isomorphically with a
class ID that uniquely identifies the object's class.

• Operators that save RWCollectable pointers:
Rwvostream& operator<<(RWvostream&, const RWCollectable*);
RWFile& operator<<(RWFile&, const RWCollectable*);

 Each pointer to an object is saved isomorphically with a class ID that
uniquely identifies the object's class. Even nil pointers can be saved.

• Operators that restore already-existing RWCollectable objects:
Rwvistream& operator>>(RWvistream&, RWCollectable&);
RWFile& operator>>(RWFile&, RWCollectable&);

 Each RWCollectable-derived object is restored isomorphically. The
persistence mechanism determines the object type at run time by
examining the class ID that was stored with the object.

• Operators that restore pointers to RWCollectable objects:
Rwvistream& operator>>(RWvistream&, RWCollectable*&);
RWFile& operator>>(RWFile&, RWCollectable*&);

 Each object derived from RWCollectable is restored isomorphically and
the pointer reference is updated to point to the restored object. The
persistence mechanism determines the object type at run time by
examining the class ID that was stored with the object. Since the restored
objects are allocated from the heap, you are responsible for deleting them when
you are done with them.

Persistence 149

14.5.2 Designing your Class to Use Polymorphic Persistence

Note that the ability to restore the pointer relationships of a polymorphic
object is a property of the base class, RWCollectable. Polymorphic
persistence can be used by any object that inherits from RWCollectable
including your own classes. Section 15 describes how to implement
polymorphic persistence in the classes that you create by inheriting from
RWCollectable.

14.5.3 Polymorphic Persistence Example

This example of polymorphic persistence contains two distinct programs.
The first example polymorphically saves the contents of a collection to
standard output (stdout). The second example polymorphically restores the
contents of the saved collection from standard input (stdin). We divided
the example to demonstrate that you can use persistence to share objects
between two different processes.

If you compile and run the first example, the output is an object as it would
be stored to a file. However, you can pipe the output of the first example
into the second example:

firstExample | secondExample

14.5.3.1 Example One: Saving Polymorphically

This example constructs an empty collection, inserts objects into that
collection, then saves the collection polymorphically to standard output.

Notice that example one creates and saves a collection that includes two
copies of the same object and two other objects. The four objects have three
different types. When example one saves the collection and when example
two restores the collection, we see that:

• The morphology of the collection is maintained;

• The process that restores the collection does not know the object's type
before it restores that object.

Here’s the first example:

#include <rw/ordcltn.h>
#include <rw/collstr.h>
#include <rw/collint.h>
#include <rw/colldate.h>
#include <rw/pstream.h>

main(){
 // Construct an empty collection
 RWOrdered collection;

 // Insert objects into the collection.

 RWCollectableString* george;

Persistence 150

 george = new RWCollectableString("George");

 collection.insert(george); // Add the string once
 collection.insert(george); // Add the string twice
 collection.insert(new RWCollectableInt(100));
 collection.insert(new RWCollectableDate(3, "May", 1959));

 // "Store" to cout using portable stream:
 RWpostream ostr(cout);
 ostr << collection;
 // The above statement calls the insertion operator:
 // Rwvistream&
 // operator<<(RWvistream&, const RWCollectable&);

 // Now delete all the members in collection.
 // clearAndDestroy() has been written so that it deletes
 // each object only once, so that you do not have to
 // worry about deleting the same object too many times.

 collection.clearAndDestroy();

 return 0;
}

Note that there are three types of objects stored in collection , an
RWCollectableDate , and RWCollectableInt , and two RWCollectableString s.
The same RWCollectableString , george , is inserted into collection twice.

14.5.3.2 Example Two: Restoring Polymorphically

The second example shows how the polymorphically saved collection of the
first example can be read back in and faithfully restored using the
overloaded extraction operator:

Rwvistream& operator>>(RWvistream&, RWCollectable&);

In this example, persistence happens when the program executes the
statement:

 istr >> collection2;

This statement uses the overloaded extraction operator to isomorphically
restore the collection saved by the first example into collection2 .

How does persistence happen? For each pointer to an RWCollectable-
derived object restored into collection2 from the input stream istr , the
extraction operator operator>> calls a variety of overloaded extraction
operators and persistence functions. For each RWCollectable-derived
object pointer, collection2 's extraction operators:

• Read the stream istr to discover the type of the RWCollectable-
derived object.

• Read the stream istr to see if the RWCollectable-derived object that is
pointed to has already been restored and referenced in the restore table.

Persistence 151

• If the RWCollectable-derived object has not yet been restored, the
extraction operators create a pointer, create an object of the correct
type from the heap, and initialize the created object with data read
from the stream. Then the operators update the pointer with the
address of the new object, and finally save a reference to the object
in the restore table.

• If the RWCollectable-derived object has already been restored, the
extraction operators create a pointer and read the reference to the
object from the stream. Then the operators use the reference to get
the object's address from the restore table, and update the pointer
with this address.

• Finally, the restored pointer is inserted into the collection.

We'll look at the implementation details for the persistence mechanism again
in Section 14.5.3.3. You should note, however, that when a heterogeneous
collection (which must be based on RWCollection) is restored, the restoring
process does not know the types of objects it will be restoring. Hence, it
must always allocate the objects off the heap. This means that you are
responsible for deleting the restored contents. This happens at the end of the
example, in the expression collection2.clearAndDestroy .

Here is the listing of the example:

#define RW_STD_TYPEDEFS
#include <rw/ordcltn.h>
#include <rw/collstr.h>
#include <rw/collint.h>
#include <rw/colldate.h>
#include <rw/pstream.h>

main(){
 RWpistream istr(cin);
 RWOrdered collection2;

 // Even though this program does not need to have prior
 // knowledge of exactly what it is restoring, the linker
 // needs to know what the possibilities are so that the
 // necessary code is linked in for use by RWFactory.
 // RWFactory creates RWCollectable objects based on
 // class ID's.

 RWCollectableInt exemplarInt;
 RWCollectableDate exemplarDate;

 // Read the collection back in:
 istr >> collection2;

 // Note: The above statement is the code that restores
 // the collection. The rest of this example shows us
 // what is in the collection.

 // Create a temporary string with value "George"
 // in order to search for a string with the same value:
 RWCollectableString temp("George");

 // Find a "George":
 // collection2 is searched for an occurrence of a
 // string with value "George".

Persistence 152

 // The pointer "g" will point to such a string:
 RWCollectableString* g;
 g = (RWCollectableString*)collection2.find(&temp);

 // "g" now points to a string with the value "George"
 // How many occurrences of g are there in the collection?

 size_t georgeCount = 0;
 size_t stringCount = 0;
 size_t integerCount = 0;
 size_t dateCount = 0;
 size_t unknownCount = 0;

 // Create an iterator:
 RWOrderedIterator sci(collection2);
 RWCollectable* item;

 // Iterate through the collection, item by item,
 // returning a pointer for each item:

 while (item = sci()) {

 // Test whether this pointer equals g.
 // That is, test for identity, not just equality:
 if (item->isA() == __RWCOLLECTABLESTRING && item==g)
 georgeCount++;

 // Count the strings, dates and integers:
 switch (item->isA()) {
 case __RWCOLLECTABLESTRING: stringCount++; break;
 case __RWCOLLECTABLEINT: integerCount++; break;
 case __RWCOLLECTABLEDATE: dateCount++; break;
 default: unknownCount++; break;
 }
 }

 // Output results:
 cout << "There are:\n\t"
 << stringCount << " RWCollectableString(s)\n\t"
 << integerCount << " RWCollectableInt(s)\n\t"
 << dateCount << " RWCollectableDate(s)\n\t"
 << unknownCount << " other RWCollectable(s)\n\n"
 << "There are "
 << georgeCount
 << " pointers to the same object \"George\"" << endl;

 // Delete all objects created and return:
 collection2.clearAndDestroy();
 return 0;
}

Program Output:
There are:
 2 RWCollectableString(s)
 1 RWCollectableInt(s)
 1 RWCollectableDate(s)
 0 other RWCollectable(s)

There are 2 pointers to the same object "George"

Figure 8 illustrates the collection created in the first example and restored in
the second. Notice that both the memory map and the datatypes are
identical in the saved and restored collection.

Persistence 153

George

 100

May 3, 1959
RWCollectableDate

RWCollectableInt

RWCollectableString

RWOrdered

Collection to be saved (collection1)

George

 100

May 3, 1959
RWCollectableDate

RWCollectableInt

RWCollectableString

RWOrdered

Collection restored (collection2)

Figure 8. Polymorphic Persistence

14.5.3.3 Example Two Revisited

It is worth looking at the second example again so that you can see the
mechanisms used to implement polymorphic persistence. The expression:

istr >> collection2;

calls the overloaded extraction operator:

RWvistream& operator>>(RWvistream& str, RWCollectable& obj);

This extraction operator has been written to call the object’s restoreGuts()

virtual function. In this case the object, obj , is an ordered collection and its
version of restoreGuts() has been written to repeatedly call:

RWvistream& operator>>(RWvistream&, RWCollectable*&);

once for each member of the collection21. Notice that its second argument is
a reference to a pointer, rather than just a reference. This version of the
overloaded operator>> looks at the stream, figures out the kind of object on
the stream, allocates an object of that type off the heap, restores it from the
stream, and finally returns a pointer to it. If this operator>> encounters a
reference to a previous object, it just returns the old address. These pointers
are inserted into the collection by the ordered collection’s restoreGuts() .

These details about the polymorphic persistence mechanism are particularly
important when you design your own polymorphically persistable class, as
described in Section 15, Designing an RWCollectable Class. And when
working with such classes, note that when Smalltalk-like collection classes

21 Actually, the Smalltalk collection classes are so similar that they
all share the same version of restoreGuts() , inherited from
RWCollection.

Persistence 154

are restored, the type of the restored objects is never known. Hence, the
restoring processes must always allocate those objects off the heap. This
means that you are responsible for deleting the restored contents. An example of
this occurs at the end of both polymorphic persistence examples.

14.5.3.4 Choosing Which Persistence Operator to Use

In the second example, the persistence operator restored our collection to a
reference to an RWCollectable :

Rwvistream& operator>>(RWvistream&, RWCollectable&);

instead of to a pointer to a reference to an RWCollectable :

Rwvistream& operator>>(RWvistream&, RWCollectable*&);

The collection was allocated on the stack:

RWpistream istr(cin);
RWOrdered collection2;
istr >> collection2;
...
collection2.clearAndDestroy();

instead of having operator>>(RWvistream&,RWCollectable*&) allocate the
memory for the collection:

RWpistream istr(cin);
RWOrdered* pCollection2;
istr >> pCollection2;
...
collection->clearAndDestroy();
delete pCollection2;

Why make this choice? If you know the type of the collection you are
restoring, then you are usually better off allocating it yourself, then restoring
via:

Rwvistream& operator>>(RWvistream&, RWCollectable&);

By using the reference operator, you eliminate the time required for the
persistence machinery to figure out the type of object and have the
RWFactory allocate one (see Section 15.2.7, "A Note on the RWFactory").
Furthermore, by allocating the collection yourself, you can tailor the
allocation to suit your needs. For example, you can decide to set an initial
capacity for a collection class.

14.6 A Few Friendly Warnings
Persistence is a useful quality, but requires care in some areas. Here are a
few things to look out for when you use persistence on objects.

Persistence 155

14.6.1 Always Save an Object by Value before Saving the
Identical Object by Pointer

In the case of both isomorphic and polymorphic persistence of objects, you
should never stream out an object by pointer before streaming out the
identical object by value. Whenever you design a class that contains a value
and a pointer to that value, the saveGuts and restoreGuts member functions
for that class should always save or restore the value then the pointer.

Here is an example that creates a class that uses isomorphic persistence, then
instantiates objects of the class and attempts to persist those objects
isomorphically. This example will fail. See the explanation that follows the
code.

 class Elmer {
 public:
 /* … */
 Elroy elroy_;
 Elroy* elroyPtr_; // elroyPtr_ will point to elroy_.
 };

 RWDEFINE_PERSISTABLE(Elmer)

 void rwSaveGuts(RWFile& file, const Elmer& elmer) {

 // Create a value for elroyPtr_ and stream it:
 file << *elroyPtr_;

 // If elroyPtr_ == &elroy_, store a reference
 // to elroy_ that points to the created value for
 // elroyPtr_:
 file << elroy_;
 }

 void rwRestoreGuts(RWFile& file, Elmer& elmer){

 // Create a value for elroyPtr_ in memory
 // and change elroyPtr_ to point to that
 // value in memory:
 file >> elroyPtr_;

 // Assign reference to value.
 // If elroyPtr_ == &elroy then the value of
 // elroy_ will already be created but now
 // elroyPtr_ != &elroy so an
 // RWTOOL_REF exception will be thrown:
 file >> elroy_;
 }

 /* … */
 RWFile file("elmer.dat");
 Elmer elmer;
 Elmer elmer2;
 elmer.elroyPtr_ = &(elmer.elroy_);
 /* … */
 file << elmer; // Trouble is coming…
 /* … */
 file >> elmer2; // Trouble has arrived. RWTOOL_REF exception!
 /* … */

Persistence 156

In the above code, the following statement isomorphically saves elmer to
file :

file << elmer;

First, the statement calls the insertion operator:

operator<<(RWFile&, const Elmer&)

Since elmer hasn't been saved yet, the value of elmer will be saved to file
and that value will be added to the isomorphic save table. However, elmer

has the members elroy_ and elroyPtr _ , which must be saved as part of
saving elmer . The members of elmer are saved in rwSaveGuts(RWFile&,

const Elmer&) .

The function rwSaveGuts(RWFile&, const Elmer&) saves elroyPtr _ first,
then elroy_ . When rwSaveGuts saves the value *elroyPtr_ , it calls the
insertion operator operator<<(RWFile&, const Elroy&) .

The insertion operator operator<<(RWFile&, const Elroy&) sees that
elmer.elroyPtr_ hasn't been stored yet, so it saves the value
*(elmer.elroyPtr_) to file , and makes a note in the isomorphic save table
that this value has been stored. Then operator<<(RWFile&, const Elroy&)

returns to rwSaveGuts(RWFile&, const Elmer&) .

Back in rwSaveGuts(RWFile&, const Elmer&) , it's time for elmer.elroy_ to
be saved. In this example, elmer.elroyPtr_ has the same address as
elmer.elroy_ . Once again the insertion operator operator<<(RWFile&,

const Elroy&) is called, but this time the insertion operator notices from the
isomorphic save table that *(elmer.elroyPtr_) has already been stored, so a
reference to *(elmer.elroyPtr_) is stored to file instead of the value.

Everything seems okay, but trouble is looming. Trouble arrives with the
statement:

file >> elmer2;

This statement calls the extraction operator operator>>(RWFile&, const

Elmer&) . Since elmer2 hasn't been restored yet, the value of elmer2 will be
extracted from file and added to the isomorphic restore table. In order to
extract the value of elmer2 , the members elroy_ and elroyPtr_ must be
extracted. The members of elmer2 are extracted in rwRestoreGuts(RWFile&,

Elmer&) .

The function rwRestoreGuts(RWFile&, Elmer&) restores elroyPtr _ first,
then elroy_ . When rwRestoreGuts restores the value *elroyPtr _ , it calls
the extraction operator operator>>(RWFile&, Elroy*&) .

The extraction operator operator>>(RWFile&, Elroy*&) sees that
elmer2.elroyPtr_ hasn't yet been extracted from file . So the extraction
operator extracts the value *(elmer2.elroyPtr_) from file , allocates
memory to create this value, and updates elmer2.elroyPtr_ to point to this
value. Then the extraction operator makes a note in the isomorphic restore

Persistence 157

table that this value has been created. After making the note,
operator>>(RWFile&, Elroy&) returns to rwRestoreGuts(RWFile&,

Elmer&) .

Back in rwRestoreGuts(RWFile&, Elmer&) , it's time to restore
elmer2.elroy_ . Remember that elmer.elroyPtr_ has the same address as
elmer.elroy_ . The rwRestoreGuts function calls the extraction operator
operator>>(RWFile&, Elroy&) , which notices from the isomorphic save
table that *(elmer2.elroyPtr_) has already been extracted from file .
Because a value has already been stored in the restore table, the extraction
operator extracts a reference to *(elmer.elroyPtr_) from file instead of
extracting the value. But the extraction operator notices that the address of
the value that elmer2.elroyPtr_ put into the restore table is different from
the address of elmer2.elroy_ . So operator>>(RWFile&, Elroy&) throws an
RWTOOL_REF exception, and the restoration is aborted.

The solution to the problem in this particular case is easy: reverse the order
of saving and restoring Elmer 's members! Here is the problem:

// WRONG!

void rwSaveGuts(RWFile& file, const Elmer& elmer) {
 file << *elroyPtr_;
 file << elroy_;
}

void rwRestoreGuts(RWFile& file, Elmer& elmer){
 file >> elroyPtr_;
 file >> elroy_;
}

Instead, you should write your functions the following way:

// RIGHT!

void rwSaveGuts(RWFile& file, const Elmer& elmer) {
 file << elroy_;
 file << *elroyPtr_;
}

void rwRestoreGuts(RWFile& file, Elmer& elmer){
 file >> elroy_;
 file >> elroyPtr_;
}

If you correct rwRestoreGuts and rwSaveGuts as suggested above, then the
isomorphic save and restore tables can use the address of Elmer::elroy_ to
update Elmer::elroyPtr_ if necessary.

Summary: Because of the possibility of having both a value and a pointer
that points to that value in the same class, it's a good idea to define your
rwSaveGuts and rwRestoreGuts member functions so that they always
operate on values before pointers.

Persistence 158

14.6.2 Don't Save Distinct Objects with the Same Address

You must be careful not to isomorphically save distinct objects that may
have the same address. The internal tables that are used in isomorphic and
polymorphic persistence use the address of an object to determine whether
or not an object has already been saved.

The following example assumes that all the work has been done to make
Godzilla and Mothra isomorphically persistable:

class Mothra {/* … */};
RWDEFINE_PERSISTABLE(Mothra)

struct Godzilla {
 Mothra mothra_;
 int wins_;
};

RWDEFINE_PERSISTABLE(Godzilla)
/*… */
Godzilla godzilla;
/* … */
stream << godzilla;
/* … */
stream >> godzilla; // The restore may be garbled!

When godzilla is saved, the address of godzilla will be saved in an
isomorphic save table. The next item to be saved is godzilla.mothra_ . Its
address is saved in the same internal save table.

The problem is that on some compilers godzilla and godzilla .mothra_ have
the same address! Upon restoration of godzilla , godzilla .mothra_ is
streamed out as a value, and godzilla is streamed out as a reference to
godzilla .mothra_. If godzilla and godzilla.mothra have the same
address, the restore of godzilla fails because the extraction operator
attempts to initialize godzilla with the contents of godzilla.mothra_ .

There are two ways to overcome this difficulty. The first is to structure your
class so that simple data members, such as int , precede data members that
are isomorphically persistent. Using this method, class Godzilla looks like
this:

struct Godzilla {
 int wins_;
 Mothra mothra_; // mothra_ now has a different address.
};

If Godzilla is structured as shown here, mothra_ is displaced from the front
of godzilla and can't be confused with godzilla . The variable wins_ , of
type int , is saved with simple persistence and is not stored in the
isomorphic save table.

The second approach to solving the problem of identical addresses between
a class and its members is to insert an isomorphically persistable member as
a pointer rather than a value. For Godzilla this would look like:

Persistence 159

struct Godzilla {
 Mothra* mothraPtr_;// mothraPtr_ points to a different address.
 int wins_;
};

In this second approach, mothraPtr_ points to a different address than
godzilla, so confusion is once again avoided.

14.6.3 Don't Use Sorted RWCollections to Store Heterogeneous
RWCollectables

When you have more than one different type of RWCollectable stored in
an RWCollection, you can't use a sorted RWCollection. For example, this
means that if you plan to store RWCollectableStrings and
RWCollectableDates in the same RWCollection, you can't store them in a
sorted RWCollection such as RWBtree. The sorted RWCollections are
RWBinaryTree, RWBtree, RWBTreeDictionary, and RWSortedVector.

The reason for this restriction is that the comparison functions for sorted
RWCollections expect that the objects to be compared will have the same
type.

14.6.4 Define All RWCollectables That Will Be Restored

Make certain that your program declares variables of all possible
RWCollectable objects that you might restore. For an example of this
practice, see Section 14.5.3.2, above.

These declarations are of particular concern when you save an
RWCollectable in a collection, then attempt to take advantage of
polymorphic persistence by restoring the collection in a different program,
without using the RWCollectable that you saved. If you don't declare the
appropriate variables, during the restore attempt the RWFactory will throw
an RW_NOCREATE exception for some RWCollectable class ID that you know
exists. The RWFactory won't throw an RW_NOCREATE exception when you
declare variables of all the RWCollectables that could be polymorphically
restored.

The problem occurs because your compiler's linker only links the code that
RWFactory needs to create the missing RWCollectable when that
RWCollectable is specifically mentioned in your code. Declaring the
missing RWCollectables gives the linker the information it needs to link
the appropriate code needed by RWFactory.

S e c t i o nS e c t i o n 15.
Designing an RWCollectable Class

15.1
 Why Design an RWCollectable Class?

15.2
 How to Create an RWCollectable Object

15.3
 Summary

Designing an RWCollectable Class 162

Classes that derive from RWCollectable carry two major advantages: they
can be used by the Smalltalk-like collections, which also derive from
RWCollectable, and they are the only set of collection classes able to use the
powerful polymorphic persistence machinery. In this section, we will
provide some examples of RWCollectable classes, then describe how to
create your own RWCollectable classes.

What we don't do in this section is describe the mechanism of polymorphic
persistence itself. Polymorphic, isomorphic, and simple persistence are all
covered in detail in the previous chapter called Persistence. To summarize,
polymorphic persistence is the storage and retrieval of objects to and from a
stream or file in such a way that pointer relationships are preserved among
persisted objects, which can be restored without the restoring process
knowing the object's type.

15.1 Why Design an RWCollectable Class?
Before we get to the nuts and bolts of how to design an RWCollectable
class, let's discuss a concrete example of why you might choose to design
RWCollectable classes.

Suppose you run a bus company. To automate part of your ridership
tracking system, you want to write classes that represent a bus, its set of
customers, and its set of actual passengers. In order to be a passenger, a
person must be a customer. Hence, the set of customers is a superset of the
set of passengers. Also, a person can physically be on the bus only once, and
there is no point in putting the same person on the customer list more than
once. As the developer of this system, you must make sure there are no
duplicates on either list.

These duplicates can be a problem. Suppose that the program needs to be
able to save and restore information about the bus and its customers. When
it comes time to polymorphically save the bus, if your program naïvely
iterates over the set of customers, then over the set of passengers, saving
each one, any person who is both a customer and a passenger is saved twice.
When the program polymorphically restores the bus, the list of passengers
will not simply refer to people already on the customer list. Instead, each
passenger will have a separate instantiation on both lists.

You need some way of recognizing when a person has already been
polymorphically saved to the stream and, instead of saving him or her again,
merely saving a reference to the previous instance.

This is the job of class RWCollectable. Objects that inherit from
RWCollectable have the ability to save not only their contents, but also
their relationships with other objects that inherit from RWCollectable. We
call this feature isomorphic persistence. Class RWCollectable has isomorphic
persistence, but more than that, it can determine at run time the type of the

Designing an RWCollectable Class 163

object to be saved or restored. We call the type of persistence provided by
RWCollectable polymorphic persistence, and recognize it as a superset of
isomorphic persistence.

15.1.1 An Example of RWCollectable Classes

The code below shows how we might declare the classes described in the
previous section. Later we'll use the macro RWDECLARE_COLLECTABLE and
discuss our function choices. You'll find the complete code from which this
example is taken at the end of this chapter; it is also given as the bus
example in the toolexam directory.

class Bus : public RWCollectable {
 RWDECLARE_COLLECTABLE(Bus)

public:

 Bus();
 Bus(int busno, const RWCString& driver);
 ~Bus();

 // Inherited from class "RWCollectable":
 Rwspace binaryStoreSize() const;
 int compareTo(const RWCollectable*) const;
 RWBoolean isEqual(const RWCollectable*) const;
 unsigned hash() const;
 void restoreGuts(RWFile&);
 void restoreGuts(RWvistream&);
 void saveGuts(RWFile&) const;
 void saveGuts(RWvostream&) const;

 void addPassenger(const char* name);
 void addCustomer(const char* name);
 size_t customers() const;
 size_t passengers() const;
 RWCString driver() const {return driver_;}
 int number() const {return busNumber_;}

private:

 RWSet customers_;
 RWSet* passengers_;
 int busNumber_;
 RWCString driver_;
};

class Client : public RWCollectable {
 RWDECLARE_COLLECTABLE(Client)
 Client(const char* name) : name_(name) {}
private:
 RWCString name_;
//ignore other client information for this example
};

Note how both classes inherit from RWCollectable. We have chosen to
implement the set of customers by using class RWSet, which does not allow
duplicate entries. This will guarantee that the same person is not entered
into the customer list more than once. For the same reason, we have also

Designing an RWCollectable Class 164

chosen to implement the set of passengers using class RWSet. However, we
have chosen to have this set live on the heap. This will help illustrate some
points in the coming discussion.

15.2 How to Create an RWCollectable Object
Here's an outline of how to make your object inherit from RWCollectable.
Additional information about how to do each step appears in the indicated
section.

1. Define a default constructor. See Section 15.2.1.

2. Add the macro RWDECLARE_COLLECTABLE to your class declaration. See
Section 15.2.2.

3. Provide a class identifier for your class by adding one of two definition
macros, RWDEFINE_COLLECTABLE or RWDEFINE_NAMED_COLLECTABLE, to one
and only one source file (.cpp), to be compiled. See Section 15.2.3.

4. Add definitions for inherited virtual functions as necessary. You may be
able to use inherited definitions. Section 15.2.4 discusses the following
virtual functions:

 Int compareTo(const RWCollectable*) const;
 RWBoolean isEqual(const RWCollectable*) const;
 unsigned hash() const;

5. Consider whether you need to define a destructor. See Section 15.2.5.

6. Add persistence to the class. You may be able to use inherited
definitions, or you may have to add definitions for the following
functions. See Section 15.2.6.

 RWspace binaryStoreSize() const;
 void restoreGuts(RWFile&);
 void restoreGuts(RWvistream&);
 void saveGuts(RWFile&) const;
 void saveGuts(RWvostream&) const;

A note on RWFactory follows these steps. See Section 15.2.7.

15.2.1 Define a Default Constructor

All RWCollectable classes must have a default constructor. The default
constructor takes no arguments. The persistence mechanism uses this
constructor to create an empty object, then restore that object with
appropriate contents.

Default constructors are necessary in order to create vectors of objects in
C++, so providing a default constructor is a good habit to get into anyway.
Here’s a possible definition of a default constructor for our Bus class.

Bus::Bus() :
 busNumber_ (0),

Designing an RWCollectable Class 165

 driver_ ("Unknown"),
 passengers_ (rwnil)
{
}

15.2.2 Add RWDECLARE_COLLECTABLE() to your Class
Declaration

The example in Section 15.1.1 includes the macro invocation
RWDECLARE_COLLECTABLE(Bus) in the declaration for Bus. You must put this
macro in your class declaration, using the class name as the argument.
Using the macro guarantees that all necessary member functions are
declared correctly.

15.2.3 Provide a Class Identifier for Your Class

Polymorphic persistence lets you save a class in one executable, and restore
it in a different executable or in a different run of the original executable.
The restoring executable can use the class, without prior knowledge of its
type. In order to provide polymorphic persistence, a class must have a
unique,22 unchanging identifier. Because classes derived from
RWCollectable are polymorphically persistent, they must have such an
identifier.

Identifiers can be either numbers or strings. A numeric identifier is an
unsigned short with a typedef of RWClassID . A string identifier has a
typedef of RWStringID . If you choose to specify a numeric identifier, your
class will have an automatically generated string identifier, which will be the
same sequence of characters as the name of the class. Similarly, if you
choose to specify a string identifier, your class will have an automatically
generated numeric ID when used in an executable.

Tools.h++ includes two definition macros to provide an identifier for the
class you design. If you want to specify a numeric ID, use:

RWDEFINE_COLLECTABLE (className, numericID)

If you want to specify a string ID, use:

RWDEFINE_NAMED_COLLECTABLE (className, stringID)

Note that you do not include the definition macros in the header file for the
class. Rather, the macros are part of a .cpp file that uses the class. You must
include exactly one define macro for each RWCollectable class that you're
creating, in one and only source file (.cpp). Use the class name as the first

22 Strictly, it only needs to be different from every other
identifier in any given executable.

Designing an RWCollectable Class 166

argument, and a numeric class ID or string class ID as the second argument.
For the bus example, you can include the following definition macros:

RWDEFINE_COLLECTABLE(Bus, 200)

or:

RWDEFINE_NAMED_COLLECTABLE(Client, "a client")

The first use provides a numeric ID 200 for class Bus, and the second
provides a string ID, "a client" , for class Client.

In the remainder of this manual, we use RWDEFINITION_MACRO to
indicate that you can choose either of these macros. In example code, we
will pick one or the other macro.

Either macro will automatically supply the definitions for the virtual
functions isA() and newSpecies() .23 In Sections 15.2.3.1 through 15.2.7, we
describe these virtual functions, discuss the stringID() method which is
new in Version 7 of Tools.h++, and provide a brief introduction to the
RWFactory class, which helps implement polymorphic persistence.

15.2.3.1 Virtual Function isA()

The virtual function isA() returns a class identifier: a unique number that
identifies an object’s class. It can be used to determine the class to which an
object belongs. Here's the function declaration provided by macro
RWDECLARE_COLLECTABLE:

virtual RWClassID isA() const;

RWClassID is actually a typedef to an unsigned short . Numbers from
0x8000 (hex) and up are reserved for use by Rogue Wave. You may choose
a numeric class ID from 9x0001 to 0x7fff. There is a set of class symbols
defined in <rw/tooldefs.h> for the Tools.h++ Class Library. Generally,
these follow the pattern of a double underscore followed by the class name
with all letters in upper case. For example:

RWCollectableString yogi;
yogi.isA() == __RWCOLLECTABLESTRING; // Evaluates TRUE

The macro RWDECLARE_COLLECTABLE(className) will automatically provide a
declaration for isA() . Either RWDEFINITION_MACRO will supply the
definition.

23 The RWDEFINITION_MACROs do more than merely
implement the two mentioned methods. Before you
choose not to use one of the provided macros, review
them in detail to be sure you understand all that they do.

Designing an RWCollectable Class 167

15.2.3.2 Virtual Function newSpecies()

The job of this function is to return a pointer to a brand new object of the
same type as self. Here is the function declaration provided by macro
RWDECLARE_COLLECTABLE:

virtual RWCollectable* newSpecies() const;

The definition is automatically provided by either version of
RWDEFINITION_MACRO.

15.2.3.3 Function stringID()

The stringID() function acts like a virtual function, but it is not.24 It returns
an instance of RWStringID, a unique string that identifies an object’s class.
RWStringID is derived from class RWCString. By default, the string
identifier for a class is the same as the name of the class. RWStringID can be
used instead of, or as a suppplement to, RWClassIDs .

15.2.4 Add Definitions for Virtual Functions

Class RWCollectable declares the following virtual functions:

virtual ~RWCollectable();
virtual Rwspace binaryStoreSize() const;
virtual int compareTo(const RWCollectable*) const;
virtual unsigned hash() const;
virtual RWClassID isA() const;
virtual RWBoolean isEqual(const RWCollectable*) const;
virtual RWCollectable* newSpecies() const;
virtual void restoreGuts(RWvistream&);
virtual void restoreGuts(RWFile&);
virtual void saveGuts(RWvostream&) const;
virtual void saveGuts(RWFile&) const;

In these functions RWBoolean is a typedef for an int , RWspace is a typedef for
unsigned long , and RWClassID is a typedef for an unsigned short . Any
class that derives from class RWCollectable should be able to understand
any of these methods. Although default definitions are given for all of them
in the base class RWCollectable, it is best for you as the class designer to
provide definitions tailored to the class at hand.

We've split our discussion of these virtual functions. We discuss the
destructor in Section 15.2.5, and the binaryStoreSize() , saveGuts() , and
restoreGuts() functions in Section 15.2.6, where we describe how to add
persistence to a class. Virtual functions isA() and newSpecies() are

24 See Section 18.3.3.2 for a discussion of RWStringID and
how to mimic a virtual function. We wrote the code this
way to maintain link compatibility with object code
compiled from the previous version of Tools.h++.

Designing an RWCollectable Class 168

declared and defined by macros, so they were discussed above, in Sections
15.2.3.1 and 15.2.3.2. This section presents discussion on the remaining
functions: compareTo() , isEqual() , and hash() . A very brief example,
showing how all three functions deal with the same data, appears in Section
15.2.4.4.

15.2.4.1 Virtual Function compareTo()

The virtual function compareTo() is used to order objects relative to each
other. This function is required in collection classes that depend on such
ordering, such as RWBinaryTree or RWBTree. Here is its declaration:

virtual int compareTo(const RWCollectable*) const;

The function int compareTo(const RWCollectable*) const should return a
number greater than zero if self is greater than the argument, a number less
than zero if self is less than the argument, and zero if self is equal to the
argument.

The definition and meaning of whether one object is greater than, less than,
or equal to another object is left to the class designer. The default definition,
found in class RWCollectable, is to compare the two addresses of the
objects. This default definition should be considered a placeholder; in
practice, it is not very useful and could vary from run to run of a program.

Here is a possible definition of compareTo() :

int Bus::compareTo(const RWCollectable* c) const
{ const Bus* b = (const Bus*)c;
 if (busNumber_ == b->busNumber_) return 0;
 return busNumber_ > b->busNumber_ ? 1 : -1;
}

Here we are using the bus number as a measure of the ordering of buses. If
we need to insert a group of buses into an RWBinaryTree, they would be
sorted by their bus number. Note that there are many other possible
choiceswe could have used the driver name, in which case they would
have been sorted by the driver name. Which choice you use will depend on
your particular problem.

There is a hazard here. We have been glib in assuming that the actual type
of the RWCollectable which c points to is always a Bus. If a careless user
inserted, say, an RWCollectableString into the collection, then the results of
the cast (const Bus*)c would be invalid, and dereferencing it could bring
disaster25. The necessity for all overloaded virtual functions to share the

25 This is a glaring deficiency in C++ that the user must
constantly be aware of, especially if the user plans to have
heterogeneous collections. See the section in Persistence

Designing an RWCollectable Class 169

same signatures requires that they return the lowest common denominator,
in this case, class RWCollectable. The result is that much compile-time
type checking breaks down.

You must be careful that the members of a collection are either
homogeneous (i.e., all of the same type), or that there is some way of
telling them apart. The member functions isA() or stringID() can be
used for this.

15.2.4.2 Virtual Function isEqual()

The virtual function isEqual() plays a similar role to the tester function of
the generic collection classes described in Section 12.3.1.

RWBoolean isEqual(const RWCollectable* c) const;

The function RWBoolean isEqual(const RWCollectable*) should return
TRUE if the object and its argument are considered equal, and FALSE

otherwise. The definition of equality is left to the class designer. The default
definition, as defined in class RWCollectable, is to test the two addresses
for equality, that is, to test for identity.

Note that isEqual does not have to be defined as being identical. Rather
isEqual can mean that two objects are equivalent in some sense. In fact, the
two objects need not even be of the same type. The only requirement is that
the object passed as an argument must inherit type RWCollectable. You
are responsible for making sure that any typecasts you do are appropriate.

Also note that there is no formal requirement that two objects that compare
equal (i.e., compareTo() returns zero) must also return TRUE from isEqual() ,
although it is hard to imagine a situation where this wouldn’t be the case. It
is also possible to design a class for which the isEqual test returns true for
objects that have different hash values. This would make it impossible to
search for such objects in a hash-based collection.

For the Bus class, an appropriate definition of isEqual might be:

RWBoolean Bus::isEqual(const RWCollectable* c) const
{ const Bus* b = (const Bus*)c;
 return busNumber_ == b->busNumber_;
}

Here we are considering buses to be equal if their bus numbers are the same.
Again, other choices are possible.

called Don't Use Sorted RWCollections to Store Heterogeneous
Collections for a description of the problem.

Designing an RWCollectable Class 170

15.2.4.3 Virtual Function hash()

The function hash() should return an appropriate hashing value for the
object. Here is the function's declaration:

unsigned hash() const;

A possible definition of hash() for our class Bus might be:

unsigned Bus::hash() const{
 return (unsigned)busNumber_;
}

The example above simply returns the bus number as a hash value.
Alternatively, we could choose the driver's name as a hash value:

unsigned Bus::hash() const{
 return driver_.hash();
}

In the above example, driver_ is an RWCString that already has a hash
function defined.

Note: we expect that two objects that test TRUE for isEqual will hash to the
same value.

15.2.4.4 An Example of compareTo(), isEqual(), and hash()

We've described three inherited virtual functions: compareTo() , isEqual() ,
and hash() . Here is an example that defines a set of objects, and applies the
functions. The results of the functions appear as comments in the code.

RWCollectableString a("a");
RWCollectableString b("b");
RWCollectableString a2("a");

a.compareTo(&b); // Returns -1
a.compareTo(&a2); // Returns 0 ("compares equal")
b.compareTo(&a); // Returns 1

a.isEqual(&a2); // Returns TRUE
a.isEqual(&b); // Returns FALSE

a.hash() // Returns 96 (operating system dependent)

Note that the compareTo() function for RWCollectableStrings has been
defined to compare strings lexicographically in a case sensitive manner. See
class RWCString in the Class Reference for details.

15.2.5 Object Destruction

All objects inheriting from class RWCollectable inherit a virtual destructor.
Hence, the actual type of the object need not be known until run time in
order to delete the object. This allows all items in a collection to be deleted
without knowing their actual type.

Designing an RWCollectable Class 171

As with any C++ class, objects inheriting from RWCollectable may need a
destructor to release the resources they hold. In the case of Bus, the names
of passengers and customers are RWCollectableStrings that were allocated
off the heap. Hence, they must be reclaimed. Because these strings never
appear outside the scope of the class, we do not have to worry about the user
having access to them. Hence, we can confidentially delete them in the
destructor, knowing that no dangling pointers will be left.

Furthermore, because the set pointed to by customers_ is a superset of the
set pointed to by passengers_ , it is essential that we delete only the contents
of customers_ .

Here’s a possible definition:

Bus::~Bus()
{ customers_.clearAndDestroy();
 delete passengers_;
}

Note that the language guarantees that it is okay to call delete on the
pointer passengers_ even if it is nil.

15.2.6 How to Add Polymorphic Persistence

The saveGuts() and restoreGuts() virtual functions are responsible for
saving and restoring the internal state of RWCollectable objects. To add
persistence to your RWCollectable class, you must override the saveGuts()

and restoreGuts() virtual member functions so that they write out all of
your object’s member data. Sections 15.2.6.1 and 15.2.6.2 describe
approaches you can use to correctly define these functions. Section 15.2.6.3
describes how these functions handle multiply-referenced objects.

Polymorphically saving an object to a file may require some knowledge of
the number of bytes that need to be allocated for storage of an object. The
binaryStoreSize() function calculates this value. Section 15.2.6.4 describes
how to use binaryStoreSize() .

RWCollection has its own versions of the saveGuts() and restoreGuts()

functions that are used to polymorphically save collections that inherit from
that class. Section 15.2.6.5 briefly describes how these functions work.

15.2.6.1 Virtual Functions saveGuts(RWFile&) and
saveGuts(RWvostream&)

The saveGuts(RWFile&) and saveGuts(RWvostream&) virtual functions are
responsible for polymorphically saving the internal state of an
RWCollectable object on either a binary file, using class RWFile, or on a

Designing an RWCollectable Class 172

virtual output stream, using class RWvostream.26 This allows the object to
be restored at some later time, or in a different location. Here are some rules
for defining a saveGuts() function:

1. Save the state of your base class by calling its version of saveGuts() .

2. For each type of member data, save its state. How to do this depends
upon the type of the member data:

• Primitives. For primitives, save the data directly. When saving to
RWFiles, use RWFile::Write() ; when saving to virtual streams, use
the insertion operator RWvostream::operator<<() .

• Rogue Wave classes. Most Rogue Wave classes offer an overloaded
version of the insertion operator. For example, RWCString offers:

RWvostream& operator<<(RWvostream&, const RWCString& str);

 Hence, many Rogue Wave classes can simply be shifted onto the
stream.

• Objects inheriting from RWCollectable. For most of these objects,
use the global function:

RWvostream& operator<<(RWvostream&,
 const RWCollectable& obj);

 This function will call saveGuts() recursively for the object.

With these rules in mind, let’s look at a possible definition of the saveGuts()

functions for the Bus example:

void Bus::saveGuts(RWFile& f) const
{ RWCollectable::saveGuts(f); // Save base class
 f.Write(busNumber_); // Write primitive directly
 f << driver_ << customers_; // Use Rogue Wave
 //provided versions
 f << passengers_; // Will detect nil pointer
 // automatically
}

void Bus::saveGuts(RWvostream& strm) const
{ RWCollectable::saveGuts(strm); // Save base class
 strm << busNumber_; // Write primitives directly
 strm << driver_ << customers_; // Use Rogue Wave
 // provided versions
 strm << passengers_; // Will detect nil pointer
 // automatically
}

Member data busNumber_ is an int , a C++ primitive. It is stored directly
using either RWFile::Write(int) , or RWvostream::operator<<(int) .

26 For a description of the persistence mechanism, see the
section called Persistence.

Designing an RWCollectable Class 173

Member data driver_ is an RWCString. It does not inherit from
RWCollectable. It is stored using:

RWvostream& operator<<(RWvostream&, const RWCString&);

Member data customers_ is an RWSet. It does inherit from RWCollectable.
It is stored using:

RWvostream& operator<<(RWvostream&, const RWCollectable&);

Finally, member data passengers_ is a little tricky. This data is a pointer to
an RWSet, which inherits from RWCollectable. However, there is the
possibility that the pointer is nil. If it is nil, then passing it to:

RWvostream& operator<<(RWvostream&, const RWCollectable&);

would be disastrous, as we would have to dereference passengers_ :

strm << *passengers_;

Instead, since our class has declared passenger_ as an RWSet * , we pass it
to:

RWvostream& operator<<(RWvostream&, const RWCollectable*);

which automatically detects the nil pointer and stores a record of it.

15.2.6.2 Virtual Functions restoreGuts(RWFile&) and
restoreGuts(RWvistream&)

In a manner similar to saveGuts() , these virtual functions are used to restore
the internal state of an RWCollectable from a file or stream. Here is a
definition of these functions for the Bus class:

void Bus::restoreGuts(RWFile& f)
{ RWCollectable::restoreGuts(f); // Restore base class
 f.Read(busNumber_); // Restore primitive
 f >> driver_ >> customers_; // Uses Rogue Wave provided
 // versions

 delete passengers_; // Delete old RWSet
 f >> passengers_; // Replace with a new one
}

void Bus::restoreGuts(RWvistream& strm)
{ RWCollectable::restoreGuts(strm); // Restore base class
 strm >> busNumber_ >> driver_ >> customers_;

 delete passengers_; // Delete old RWSet
 strm >> passengers_; // Replace with a new one
}

Note that the pointer passengers_ is restored using:

RWvistream& operator>>(RWvistream&, RWCollectable*&);

Designing an RWCollectable Class 174

If the original passengers_ is non-nil, then this function restores a new
RWSet off the heap and returns a pointer to it. Otherwise, it returns a nil
pointer. Either way, the old contents of passengers_ are replaced. Hence,
we must call delete passengers_ first.

15.2.6.3 Multiply-referenced Objects

A passenger name can exist in the set pointed to by customers_ and in the set
pointed to by passengers_ ; that is, both collections contain the same string.
When the Bus is restored, we want to make sure that the pointer relationship
is maintained, and that our restoration does not create another copy of the
string.

Fortunately, we don’t have to do anything special to insure that the pointer
relationship stays as it should be. Consider the call:

Bus aBus;
RWFile aFile("busdata.dat");

aBus.addPassenger("John");
aFile << aBus;

Because passenger_ is a subset of customer_ , the function addPassenger puts
the name on both the customer list and the passenger list. When we save
aBus to aFile , both lists are saved in a single call: first the customer list, then
the passenger list. The polymorphic persistence machinery saves the first
reference to John, but for the second reference it merely stores a reference to
the first copy. During the restore, both references will resolve to the same
object, replicating the original morphology of the collection.

15.2.6.4 Virtual Function binaryStoreSize()

The binaryStoreSize() virtual function calculates the number of bytes
necessary to store an object using RWFile. The function is:

virtual Rwspace binaryStoreSize() const;

This function is useful for classes RWFileManager and RWBTreeOnDisk,
which require allocation of space for an object before it can be stored. The
non-virtual function recursiveStoreSize() returns the number of bytes that
is actually stored. Recursive store size uses binaryStoreSize() to do its
work.

Writing a version of binaryStoreSize() is usually straightforward. You just
follow the pattern set by saveGuts(RWFile&) , except that instead of saving
member data, you add up their sizes. The only real difference is a syntactic
one: instead of insertion operators, you use sizeof() and the member
functions indicated below:

• For primitives, use sizeof() ;

Designing an RWCollectable Class 175

• For objects that inherit from RWCollectable, if the pointer is non-nil,
use member function:

 RWspace RWCollectable::recursiveStoreSize();

• For objects that inherit from RWCollectable, if the pointer is nil, use the
static member function:

 RWspace RWCollectable::nilStoreSize();

• For other objects, use member function binaryStoreSize() .

Here’s a sample definition of a binaryStoreSize() function for class Bus :

RWspace Bus::binaryStoreSize() const{
 RWspace count = RWCollectable::binaryStoreSize() +
 customers_.recursiveStoreSize() +
 sizeof(busNumber_) +
 driver_.binaryStoreSize();

 if (passengers_)
 count += passengers_->recursiveStoreSize();
 else
 count += RWCollectable::nilStoreSize();

 return count;
}

15.2.6.5 Polymorphically Persisting Custom Collections

The versions of saveGuts() and restoreGuts() that Tools.h++ built into
class RWCollection are sufficient for most collection classes. The function
RWCollection::saveGuts() works by repeatedly calling:

RWvostream& operator<<(RWvostream&, const RWCollectable&);

for each item in the collection. Similarly, RWCollection::restoreGuts()

works by repeatedly calling:

RWvistream& operator>>(RWvistream&, RWCollectable*&);

This operator allocates a new object of the proper type off the heap, then
calls insert() . Because all of the Rogue Wave Smalltalk-like collection
classes inherit from RWCollection, they all use this mechanism.

If you decide to write your own collection classes that inherit from class
RWCollection, you will rarely have to define your own saveGuts() or
restoreGuts() .

There are exceptions. For example, class RWBinaryTree has its own version
of saveGuts() . This is necessary because the default version of saveGuts()

stores items in order. For a binary tree, this would result in a severely
unbalanced tree when the tree was read back inessentially, the degenerate
case of a linked list. Hence, RWBinaryTree ’s version of saveGuts() stores
the tree level-by-level.

Designing an RWCollectable Class 176

When you design your class, you must determine whether it has similar
special requirements which may need a custom version of saveGuts() and
restoreGuts() .

15.2.7 A Note on the RWFactory

Let's review what the RWDEFINITION_MACROs look like:

RWDEFINE_COLLECTABLE(className, numericID)

or, using a string ID:

RWDEFINE_NAMED_COLLECTABLE(className, stringID)

In the .cpp file for the bus example, the macros appear like this:

RWDEFINE_COLLECTABLE(Bus, 200)

and:

RWDEFINE_NAMED_COLLECTABLE(Client, "a client")

Because you use these macros, a program can allow a new instance of your
class to be created given only its RWClassID :

Bus* newBus = (Bus*)theFactory->create(200);

or its RWStringID :

Client* aClient = (Client*)theFactory->create("a client");

The pointer theFactory is a global pointer that points to a one-of-a-kind
global instance of class RWFactory, used to hold information about all
RWCollectable classes that have instances in the executable. The create()

method of RWFactory is used internally by the polymorphic persistence
machinery to create a new instance of a persisted object whose type is not
known at run time. You will not normally use this capability in your own
source code, because the use of RWFactory is generally transparent to the
user. See the Class Reference for more details on RWFactory.

15.3 Summary
In general, you may not have to supply definitions for all of these virtual
functions when designing your own class. For example, if you know that
your class will never be used in sorted collections, then you do not need a
definition for compareTo() . Nevertheless, it is a good idea to supply
definitions for all virtual functions anyway: that’s the best way to encourage
code reuse!

Here then, is the complete listing for our class Bus :

Designing an RWCollectable Class 177

BUS.H:

#ifndef __BUS_H__
#define __BUS_H__

#include <rw/rwset.h>
#include <rw/collstr.h>

class Bus : public RWCollectable {
 RWDECLARE_COLLECTABLE(Bus)

public:

 Bus();
 Bus(int busno, const RWCString& driver);
 ~Bus();

 // Inherited from class "RWCollectable":
 Rwspace binaryStoreSize() const;
 int compareTo(const RWCollectable*) const;
 RWBoolean isEqual(const RWCollectable*) const;
 unsigned hash() const;
 void restoreGuts(RWFile&);
 void restoreGuts(RWvistream&);
 void saveGuts(RWFile&) const;
 void saveGuts(RWvostream&) const;

 void addPassenger(const char* name);
 void addCustomer(const char* name);
 size_t customers() const;
 size_t passengers() const;
 RWCString driver() const {return driver_;}
 int number() const {return busNumber_;}

private:

 RWSet customers_;
 RWSet* passengers_;
 int busNumber_;
 RWCString driver_;
};

class Client : public RWCollectable {
 RWDECLARE_COLLECTABLE(Client)
 Client();
 Client(const char* name);
 Rwspace binaryStoreSize() const;
 int compareTo(const RWCollectable*) const;
 RWBoolean isEqual(const RWCollectable*) const;
 unsigned hash() const;
 void restoreGuts(RWFile&);
 void restoreGuts(RWvistream&);
 void saveGuts(RWFile&) const;
 void saveGuts(RWvostream&) const;
private:
 RWCString name_;
//ignore other client information for this example
};
#endif

Designing an RWCollectable Class 178

BUS.CPP:

#include "bus.h"
#include <rw/pstream.h>
#include <rw/rwfile.h>
#ifdef __GLOCK__
include <fstream.hxx>
#else
include <fstream.h>
#endif

RWDEFINE_COLLECTABLE(Bus, 200)

Bus::Bus() :
 busNumber_ (0),
 driver_ ("Unknown"),
 passengers_ (rwnil)
{}

Bus::Bus(int busno, const RWCString& driver) :
 busNumber_ (busno),
 driver_ (driver),
 passengers_ (rwnil)
{}

Bus::~Bus() {
 customers_.clearAndDestroy();
 delete passengers_;
}

RWspace
Bus::binaryStoreSize() const {
 RWspace count = RWCollectable::binaryStoreSize() +
 customers_.recursiveStoreSize() +
 sizeof(busNumber_) +
 driver_.binaryStoreSize();

 if (passengers_)
 count += passengers_->recursiveStoreSize();

 return count;
}

int
Bus::compareTo(const RWCollectable* c) const {
 const Bus* b = (const Bus*)c;
 if (busNumber_ == b->busNumber_) return 0;
 return busNumber_ > b->busNumber_ ? 1 : -1;
}

RWBoolean
Bus::isEqual(const RWCollectable* c) const {
 const Bus* b = (const Bus*)c;
 return busNumber_ == b->busNumber_;
}

unsigned
Bus::hash() const {
 return (unsigned)busNumber_;
}

size_t
Bus::customers() const {
 return customers_.entries();
}

Designing an RWCollectable Class 179

size_t
Bus::passengers() const return passengers_ ? passengers_-
>entries() : 0;
}

void
Bus::saveGuts(RWFile& f) const {
 RWCollectable::saveGuts(f); // Save base class
 f.Write(busNumber_); // Write primitive directly
 f << driver_ << customers_; // Use Rogue Wave provided
versions
 f << passengers_; // Will detect nil pointer
automatically
}

void
Bus::saveGuts(RWvostream& strm) const {
 RWCollectable::saveGuts(strm); // Save base class
 strm << busNumber_; // Write primitives directly
 strm << driver_ << customers_; // Use Rogue Wave
 // provided versions
 strm << passengers_; // Will detect nil pointer
automatically
}

void Bus::restoreGuts(RWFile& f) {
 RWCollectable::restoreGuts(f); // Restore base class
 f.Read(busNumber_); // Restore primitive
 f >> driver_ >> customers_; // Uses Rogue Wave
 // provided versions

 delete passengers_; // Delete old RWSet
 f >> passengers_; // Replace with a new one
}

void Bus::restoreGuts(RWvistream& strm) {
 RWCollectable::restoreGuts(strm); // Restore base class
 strm >> busNumber_ >> driver_ >> customers_;

 delete passengers_; // Delete old RWSet
 strm >> passengers_; // Replace with a new one
}

void
Bus::addPassenger(const char* name) {
 Client* s = new Client(name);
 customers_.insert(s);

 if (!passengers_)
 passengers_ = new RWSet;

 passengers_->insert(s);
}

void
Bus::addCustomer(const char* name) {
 customers_.insert(new Client(name));
}

/////////////// Here are Client methods //////////////
RWDEFINE_NAMED_COLLECTABLE(Client,"client")

Client::Client() {} // Uses RWCString default constructor

Designing an RWCollectable Class 180

Client::Client(const char* name) : name_(name) {}

RWspace
Client::binaryStoreSize() const {
 return name_->binaryStoreSize();
}

int
Client::compareTo(const RWCollectable* c) const {
 return name_.compareTo(((Client*)c)->name_);
}

RWBoolean
Client::isEqual(const RWCollectable* c) const {
 return name_ == *(Client*)c;
}

unsigned
Client::hash() const {
 return name_.hash();
}

void
Client::restoreGuts(RWFile& f) {
 f >> name_;
}

void
Client::restoreGuts(RWvistream& vis) {
 vis >> name_;
}

void
Client::saveGuts(RWFile& f) const {
 f << name_;
}

void
Client::saveGuts(RWvostream& vos) const {
 vos << name_;
}

main() {
 Bus theBus(1, "Kesey");
 theBus.addPassenger("Frank");
 theBus.addPassenger("Paula");
 theBus.addCustomer("Dan");
 theBus.addCustomer("Chris");

 { // block controls lifetime of stream
 ofstream f("bus.str");
 RWpostream stream(f);
 stream << theBus; // Persist theBus to an ASCII stream
 }

 {
 ifstream f("bus.str");
 RWpistream stream(f);
 Bus* newBus;
 stream >> newBus; // Restore it from an ASCII stream

 cout << "Bus number " << newBus->number()

Designing an RWCollectable Class 181

 << " has been restored; its driver is "
 << newBus->driver() << ".\n";
 cout << "It has " << newBus->customers()
 << " customers and "
 << newBus->passengers() << " passengers.\n\n";

 delete newBus;
 }

 return 0;
}

Program Output:

Bus number 1 has been restored; its driver is Kesey.
It has 4 customers and 2 passengers.

S e c t i o n 16.
Internationalization

16.1
 Localizing Alphabets with RWCString and RWWString

16.2
 Localizing Messages

16.3
 The Challenges of Localizing Currencies, Numbers, Dates, and

Times

16.4
 RWLocale and RWZone

Internationalization 184

As a developer, you belong to an international community. Whatever your
nation, you share with other developers the problems of adapting software
and applications for your own culture and others. Accommodating the
needs of users in different cultures is called localization; making software
easily localized is called internationalization.

Tools.h++ is made in the United States. It is internationalized in the sense that
it provides the framework you need to localize fundamental aspects of
different cultures, such as alphabets, languages, currencies, numbers, and
date- and time-keeping notations. With Tools.h++, you write a single
application you can ship to any country. When your application is executed,
it will be able to process times, dates, strings, and currency in the native
format.

While some aspects of internationalization are limited, a useful feature of
Tools.h++ is that it imposes no policy. Tools.h++ gives you the freedom and
flexibility to design your application to meet the needs of your clients’
cultures and your own.

16.1 Localizing Alphabets with RWCString and
RWWString
Localizing alphabets begins with allowing them to be represented. As
mentioned in Section 2.8, Tools.h++ code is “8-bit clean” to accommodate the
extended character set. All of the English alphabet is described in 7 bits,
leaving the eighth free for umlauts, cedillas, and other diacritical marks and
special characters. And because even 8 bits often isn’t enough to represent
all the character glyphs of various languages, Tools.h++ also allows two
kinds of extensions: multibyte and wide-character encodings.

Multibyte encodings use a sequence of one or more bytes to represent a
single character. (Typically the ASCII characters are still one byte long.)
These encodings are compact, but may be inconvenient for indexing and
substring operations. Wide character encodings, in contrast, place each
character in a 16- or 32-bit integral type called a wchar_t , and represent a
string as an array of wchar_t . Usually it is possible to translate a string
encoded in one form into the other.

Tools.h++ two efficient string types, RWCString and RWWString, were
discussed in Sections 3. RWCString represents strings of 8-bit chars, with
some support for multibyte strings. RWWString represents strings of
wchar_t . Both provide access to Standard C Library support for local
collation conventions with the member function collate() and the global
function strXForm() . In addition, the library provides conversions between
wide and multibyte representations. The wide- and multibyte-character
encodings used are those of the host system.

Internationalization 185

But representation of alphabets can be even more complex. For example, is a
character upper case, lower case, or neither? In a sorted list, where do you
put the names that begin with accented letters? What about Cyrillic names?
How are wide-character strings represented on byte streams? Standards
bodies and corporate labs are addressing these issues, but the results are not
yet portable. For the time being, Tools.h++ strives to make best use of what
they provide.

16.2 Localizing Messages
To accommodate a user’s language, a program must display titles, menu
choices, and status messages in that language. Usually such text is stored in
a message catalog or resource file, separate from program code, so it may be
easily edited or replaced. Tools.h++ does not display titles or menus
directly, but does return status messages when errors occur. By default,
Tools.h++ makes no attempt to localize these messages. Instead, it provides
an optional facility that allows error messages to be retrieved from your own
catalog.

The facility can be used in one of four modes:

Mode Define

No messaging RW_NOMSG

Use catgets() RW_CATGETS

Use gettext() RW_GETTEXT

Use dgettext() RW_DGETTEXT

These localization techniques and their documentation are specific to your
platform. Once you discover what your system provides, you specify that
mode for Tools.h++ by setting the appropriate switch in <rw/compiler.h>

before compiling the library. If you have object code, this choice has already
been made for you.

Function catgets() uses both a message set number and a message number
within that set to look up a localized version of a message. The number for
the message set to use is defined in the macro RW_MESSAGE_SET_NUMBER found
in <rw/compiler.h> . Function gettext() uses the message itself. The
messages and their respective message numbers are given in Appendix C.

You will find information on using catgets() , gettext() , and dgettext() in
the documentation that comes with your compiler.

Internationalization 186

16.3 Challenges of Localizing Currencies, Numbers,
Dates, and Times
If you write applications for cultures other than your own, you will soon
confront the challenges of representing currencies, numbers, dates, and
times. Currencies vary in both unit value and notation. Numbers are
written differently; for example, Europe and the United States use periods
and commas in opposite ways. Often a program must display values in
notations customary to both vendor and customer.

Scheduling, a common software function, involves time and calendar
calculations. Local versions of the Gregorian calendar use different names
for days of the week and months, and different ordering for the components
of a date. Time may be represented according to a 12- or 24-hour clock, and
further complicated by time zone conventions, like daylight-saving time
(DST), that vary from place to place, or even year to year.

The Standard C Library provides <locale.h> to accommodate some of these
different formats, but it is incomplete. It offers no help for conversion from
strings to these types, and almost no help for conversions involving two or
more locales. Common time zone facilities, such as those defined in POSIX.1
(see the Appendix), are similarly limited, usually offering no way to compute
wall clock time for other locations, or even for the following year in the same
location.

16.4 RWLocale and RWZone
Tools.h++ addresses these problems with the abstract classes RWLocale
and RWZone. If you have used RWDate, you have already used
RWLocale, perhaps unknowingly. Every time you convert a date or time to
or from a string, a default argument carries along an RWLocale reference.
Unless you change it, this is a reference to a global instance of a class derived
from RWLocale at program startup to provide the effect of a C locale. To
use RWLocale explicitly, you can construct your own instance and pass it
in place of the default. Similarly, when you manipulate times, you can
substitute your own instance for the default RWZone reference.

You can also install your own instance of RWLocale or RWZone as the
global default. Many streams even allow you to install your RWLocale
instance in the stream so that dates and times transferred on and off that
stream are formatted or parsed accordingly, without any special arguments.
This is called imbuing the stream, a process described in more detail in the
next section.

In the following sections, let us look at some examples of how to localize
various data using RWLocale and RWZone. Let us begin by constructing a
date, today’s date:

Internationalization 187

RWDate today = RWDate::now();

We can display it the usual way using ordinary C-locale conventions:

cout << today << endl;

But what if you’re outside your home locale? Or perhaps you have set your
environment variable LANG to fr 27, because you want French formatting. To
display the date in your preferred format, you construct an RWLocale
object:

RWLocale& here = *new RWLocaleSnapshot("");

Class RWLocaleSnapshot is the main implementation of the interface
defined by RWLocale. It extracts the information it needs from the global
environment during construction with the help of such Standard C Library
functions as strftime() and localeconv() . The most straightforward way to
use RWLocaleSnapshot is to pass it directly to the RWDate member
function asString() 28:

cout << today.asString('x', here) << endl;

There is, however, a more convenient way. You can install here as the
global default locale so the insertion operator will use it:

RWLocale::global(&here);
cout << today << endl;

16.4.1 Dates

Now suppose you are American and want to format a date in German, but
don’t want German to be the default. Construct a German locale:

RWLocale& german = *new RWLocaleSnapshot("de"); //See footnote 1

You can format the same date for both local and German readers as follows:

cout << today << endl
 << today.asString('x', german) << endl;

See the definition of x in the entry for RWLocale in the Class Reference.

Would you like to read in a German date string? Again, the straightforward
way is to call everything explicitly:

27 Despite the existing standard for locale names, many
vendors provide variant naming schemes. Check your
vendor’s documentation for details.

28 The first argument of the function asString() is a
character, which may be any of the format options
supported by the Standard C Library function
strftime() .

Internationalization 188

RWCString str;
cout << "enter a date in German: " << flush;
str.readLine(cin);
today = RWDate(str, german);
if (today.isValid())
 cout << today << endl;

Sometimes, however, you would prefer to use the extraction operator >>.
Since the operator must expect a German-formatted date, and know how to
parse it, you pass this information along by imbuing a stream with the
German locale.

The following code snippet imbues the stream cin with the German locale,
reads in and converts a date string from German, and displays it in the local
format:

german.imbue(cin);
cout << "enter a date in German: " << flush;
cin >> today; // read a German date!
if (today.isValid())
 cout << today << endl;

Imbuing is useful when many values must be inserted or extracted
according to a particular locale, or when there is no way to pass a locale
argument to the point where it will be needed. By using the static member
function RWLocale::of(ios&) , your code can discover the locale imbued in a
stream. If the stream has not yet been imbued, of() returns the current
global locale.29

The interface defined by RWLocale handles more than dates. It can also
convert times, numbers, and monetary values to and from strings. Each has
its complications. Time conversions are complicated by the need to identify
the time zone of the person who entered the time string, or the person who
will read it. The mishmash of daylight-saving time jurisdictions can
magnify the difficulty. Numbers are somewhat messy to format because
their insertion and extraction operators (<< and >>) are already defined by
<iostream.h> . For money, the main problem is that there is no standard
internal representation for monetary values. Fortunately, none of these
problems is overwhelming with Tools.h++.

16.4.2 Time

Let us first consider the time zone problem. We can easily see that there is
no simple relationship between time zones and locales. All of Switzerland
shares a single time zone, including daylight-saving time (DST) rules, but
has four official languages: French, German, Italian, and Romansch. On the

29 You can restore a stream to its unimbued condition with
the static member function RWLocale::unimbue(ios&) ;
note that this is not the same as imbuing it with the
current global locale.

Internationalization 189

other hand, Hawaii and New York share a common language, but occupy
time zones five hours apartsometimes six hours apart, because Hawaii
does not observe DST. Furthermore, time zone formulas have little to do
with cultural formatting preferences. For these reasons, Tools.h++ uses a
separate time zone object, rather than letting RWLocale subsume time zone
responsibilities.

In Tools.h++, the class RWZone encapsulates knowledge about time zones.
It is an abstract class, with an interface implemented in the class
RWZoneSimple. Three instances of RWZoneSimple are constructed at
startup to represent local wall clock time, local Standard time, and Universal
time (GMT). Local wall clock time includes any DST in use. Whenever you
convert an absolute time to or from a string, as in the class RWTime, an
instance of RWZone is involved. By default, the local time is assumed, but
you can pass a reference to any RWZone instance.

It’s time for some examples! Imagine you had scheduled a trip from New
York to Paris. You were to leave New York on December 20, 1993, at 11:00
p.m., and return on March 30, 1994, leaving Paris at 5:00 a.m., Paris time.
What will the clocks show at your destination when you arrive?

First, let’s construct the time zones and the departure times:

RWZoneSimple newYorkZone(RWZone::USEastern, RWZone::NoAm);
RWZoneSimple parisZone (RWZone::Europe, RWZone::WeEu);
RWTime leaveNewYork(RWDate(20, 12, 1993), 23,00,00, newYorkZone);
RWTime leaveParis (RWDate(30, 3, 1994), 05,00,00, parisZone);

The flight is about seven hours long each way, so:

RWTime arriveParis (leaveNewYork + long(7 * 3600));
RWTime arriveNewYork(leaveParis + long(7 * 3600));

Now let’s display the arrival times and dates according to their respective
local conventions, French in Paris and American English in New York:

RWLocaleSnapshot french("fr"); // or vendor specific
cout << "Arrive' au Paris a ̀"
 << arriveParis.asString('c', parisZone, french)
 << ", heure local." << endl;
cout << "Arrive in New York at "
 << arriveNewYork.asString('c', newYorkZone)
 << ", local time." << endl;

The code works even though your flight crosses several time zones and
arrives on a different day than it departed; even though, on the day of the
return trip in the following year, France has already begun observing DST,
but the U.S. has not. None of these details is visible in the example code
abovethey are handled silently and invisibly by RWTime and RWZone.

All this is easy for places that follow Tools.h++ built-in DST rules for North
America, Western Europe, and “no DST”. But what about places that follow
other rules, such as Argentina, where spring begins in September and
summer ends in March? RWZoneSimple is table-driven; if the rule is

Internationalization 190

simple enough, you can construct your own table of type RWDaylightRule,
and specify it as you construct an RWZoneSimple. For example, imagine
that DST begins at 2 a.m. on the last Sunday in September, and ends the first
Sunday in March. Simply create a static instance of RWDaylightRule :

static RWDaylightRule sudAmerica =
 { 0, 0, TRUE, {8, 4, 0, 120}, {2, 0, 0, 120}};

(See the documentation for RWZoneSimple for details on what the numbers
mean.) Then construct an RWZone object:

RWZoneSimple ciudadSud(RWZone::Atlantic, &sudAmerica);

Now you can use ciudadSud just like you used paris or newYork above.

But what about places where the DST rules are too complicated to describe
with a simple table, such as Great Britain? There, DST begins on the
morning after the third Saturday in April, unless that is Easter, in which case
it begins the week prior! For such jurisdictions, you might best use standard
time, properly labeled. If that just won’t do, you can derive from RWZone
and implement its interface for Britain alone. This strategy is much easier
than trying to generalize a case to handle all possibilities including Britain,
and it’s smaller and faster besides.

The last time problem we will discuss here is that there is no standard way
to discover what DST rules are in force for any particular place. In this the
Standard C Library is no help; you must get the information you need from
the local environment your application is running on, perhaps by asking the
user.

One example of this problem is that the local wall clock time RWZone
instance is constructed to use North American DST rules, if DST is observed
at all. If the user is not in North America, the default local time zone
probably performs DST conversions wrong, and you must replace it. If you
are a user in Paris, for example, you could solve this problem as follows:

RWZone::local(new RWZoneSimple(RWZone::Europe, RWZone::WeEu));

If you look closely into <rw/locale.h> , you will find that RWDate and
RWTime are never mentioned. Instead, RWLocale uses the Standard C
Library type struct tm . RWDate and RWTime both provide conversions
to this type, and you may prefer using it directly rather than using
RWTime::asString() . For example, suppose you must write out a time
string containing only hours and minutes; e.g.,12:33 . The standard formats
defined for strftime() and implemented by RWLocale don’t include that
option, but you can fake it. Here’s one way:

RWTime now = RWTime::now();
cout << now.hour() << ":" << now.minute() << endl;

Without using various manipulators, this code might produce a string like
9:5 . Here’s another option:

Internationalization 191

RWTime now = RWTime::now();
cout << now.asString('H') << ":" << now.asString('M') << endl;

This produces 09:05 .

In each of the previous examples, now is disassembled into component parts
twice, once to extract the hour and once to extract the minute. This is an
expensive operation. If you expect to work often with the components of a
time or date, you may be better off disassembling the time only once:

RWTime now = RWTime::now();
struct tm tmbuf;
now.extract(&tmbuf);
const RWLocale& here = RWLocale::global(); // the default
 // global locale
cout << here.asString(&tmbuf, 'H') << ":"
 << here.asString(&tmbuf, 'M'); << endl;

Please note that if you work with years before 1901 or after 2037, you can’t
use RWTime because it does not have the required range.30 You can use
RWLocale to perform conversions for any time or date because struct tm

operations are not so restricted.

16.4.3 Numbers

RWLocale also provides you with an interface for conversions between
strings and numbers, both integers and floating point values.
RWLocaleSnapshot implements this interface, providing the full range of
capabilities defined by the Standard C Library type struct lconv . The
capabilities include using appropriate digit group separators, decimal
“point”, and currency notation. When converting from strings,
RWLocaleSnapshot allows and checks the same digit group separators.

Unfortunately, stream operations of this class are clumsier than we might
like, since the standard iostream library provides definitions for number
insertion and extraction operators which cannot be overridden. Instead, we
can use RWCString functions directly:

RWLocaleSnapshot french("fr");
double f = 1234567.89;
long i = 987654;
RWCString fs = french.asString(f, 2);
RWCString is = french.asString(i);
if (french.stringToNum(fs, &f) &&
 french.stringToNum(is, &i)) // verify conversion
 cout << "C:\t" << f << "\t" << i << endl
 << "French:\t" << fs << "\t" << is << endl;

30 Of course, if you are working on a 64-bit system, there is
no practical upper limit to the dates you can use.

Internationalization 192

Since the French use periods for digit group separators, and commas to
separate the integer from the fraction part of a number, this code might
display as:

C: 1.234567e+07 987654
French: 1.234.567,89 987.654

You will notice that numbers with digit group separators are easier to read.

16.4.4 Currency

Currency conversions are trickier than number conversions, mainly because
there is no standard way to represent monetary values in a computer. We
have adopted the convention that such values represent an integral number
of the smallest unit of currency in use. For example, to represent a balance
of $10.00 in the United States, you could say:

double sawbuck = 1000.;

This representation has the advantages of wide range, exactness, and
portability. Wide range means you can exactly represent values from $0.00
up to and beyond $10,000,000,000,000.00larger than any likely budget.
Exactness means that, representing monetary values without fractional
parts, you can perform arithmetic on them and compare the results for
equality:

double price = 999.; // $9.99
double penny = 1.; // $.01
assert(price + penny == sawbuck);

This would not be possible if the values were naively represented, as in
price = 9.99; .

Portability means simply that double is a standard type, unlike common 64-
bit integer or BCD representations. Of course, you can perform financial
calculations on such other representations, but because you can always
convert between them and double , they are all supported. In the future,
RWLocale may directly support some other common representations as
well.

Consider the following examples of currency conversions:

const RWLocale& here = RWLocale::global();
double sawbuck = 1000.;
RWCString tenNone = here.moneyAsString(sawbuck, RWLocale::NONE);
RWCString tenLocal = here.moneyAsString(sawbuck,RWLocale::LOCAL);
RWCString tenIntl = here.moneyAsString(sawbuck, RWLocale::INTL);
if (here.stringToMoney(tenNone, &sawbuck) &&
 here.stringToMoney(tenLocal, &sawbuck) &&
 here.stringToMoney(tenIntl, &sawbuck)) // verify conversion
 cout << sawbuck << " " << tenNone << " "
 << tenLocal << " " << tenIntl << " " << endl;

In a United States locale, the code would display as:

1000.00000 10.00 $10.00 USD 10.00

Internationalization 193

16.4.5 A Note on Setting Environment Variables

As mentioned in the section on class RWTime, some compilers and operating
systems, including the Windows operating systems, require you to set
certain environment variables in order for a locale feature to work. Failure
to do this can lead to great difficulties.

If you use Borland, MetaWare, Microsoft, Symantec, or Watcom, you must
set your environment variable TZ to the appropriate time zone:

set TZ=PST8PDT
Check the documentation for your compiler and operating system for
information on setting environment variables.

S e c t i o n 17.
Error Handling

17.1
 The Tools.h++ Error Model

17.2
 Internal Errors

17.3
 External Errors

17.4
 Exception Architecture

17.5
 The Debug Version of Tools.h++

Error Handling 196

Thinking about error handling is like anticipating root canal workit’s a
messy, often unpredictable, and painful topic, one we prefer to avoid. Yet
think about error handling we must, in order to write robust code.

The Rogue Wave class libraries all use the same extensive and complete
error handling facility. In this model, errors are divided into two broad
categories: internal and external. Internal errors, which are further classified
as either recoverable or non-recoverable, are due to errors in the internal
logic of the program. As you might expect, they can be difficult to recover
from and, indeed, the common default response is to abort the program.
External errors are due to events beyond the scope of the program. Any non-
trivial program should be prepared to recover from an external error.

The next section presents a table that summarizes the Rogue Wave error
model. The sections following the table discuss the types of errors in more
detail.

17.1 The Tools.h++ Error Model
The following table categorizes and describes errors in the Tools.h++ error
model. You can use the table as a quick overview, and return to it as a
reference.

Table 8. Comparison of Error Types in Tools.h++

Error Type: Internal External
Non-recoverable Recoverable

Cause: Faulty logic or
coding in the
program

Faulty logic or
coding in the
program

Events beyond the
scope of the program

Examples: Bounds error;
inserting a null
pointer into a
collection

Bounds error in a
linked list; attempt to
use an invalid date

Attempt to write a
bad date, or to invert
a singular matrix;
stream write error;
out of memory

Predictable? Yes Yes No

Cost to
detect:

High Low Low

Level of
abstraction:

Low Low High

Where
detected:

Debug version of
library

Debug and
production version
of library

Debug and
production version of
library

Response: No recovery
mechanism

Throw an exception
inheriting from
RWInternalErr

Throw an exception
inheriting from
RWExternalErr, or
provide test for object
validity

Error Handling 197

17.2 Internal Errors
Internal errors are due to faulty logic or coding in the program. Common
types of internal errors include:

• Bounds errors;

• Inserting a null pointer into a collection;

• Attempting to use a bad date.

All of these errors should be preventable. For example, you always know
the permissible range of indices for an array, so you can probably avoid a
bounds error. You would correct your program’s use of a bad date as an
obvious logic error.

Internal errors can be further classified according to the cost of error
detection, and whether or not the error will be detected at run time. The two
categories are:

• Non-recoverable internal errors;

• Recoverable internal errors.

17.2.1 Non-recoverable Internal Errors

Non-recoverable internal errors share the following distinguishing
characteristics. They are:

• Easily predicted in advance;

• Encountered at relatively low levels;

• Costly to detect;

• Detected only in the debug version of the library.

Non-recoverable internal errors by definition have no recovery mechanism.
Examples of these errors include bounds errors, and inserting a null pointer
into a collection.

Why does a library define some errors as unrecoverable? Because detecting
errors takes time. For performance reasons, a library demands some
minimal level of correctness on the part of your program, and pitches
anything that falls short. Errors are non-recoverable in the sense that the
production version of the library has no mechanism for detecting such errors
and, hence, no opportunity for recovering from them.

Bounds errors are non-recoverable because the cost of checking to make sure
an index is in range can well exceed the cost of the array access itself. If a
program does a lot of array accesses, checking every one may result in a
slow program. To avoid this, the library may require you to always use a

Error Handling 198

valid index. Because a minimum level of correctness is demanded, non-
recoverable errors are simple in concept and relatively easy to avoid.

You can best discover and eliminate non-recoverable errors by compiling
and linking your application with the debug version of the library. See
Section 17.5 for details. The debug version includes lots of extra checks
designed to uncover coding errors. Some of these checks may take extra
time, or even cause debug messages to be printed out, so you will want to
compile and link with the production version for an efficient final product.

If the debug version of the library discovers an error, it typically aborts the
program.

17.2.2 Recoverable Internal Errors

Recoverable internal errors are similar to their non-recoverable relatives in
that they are easy to predict and occur at low levels. They differ in that they
are:

• Not costly to detect;

• Detected in both the debug and the production versions of the library.

A bounds error in a linked list or an attempt to use an invalid date are both
examples of recoverable internal errors. The library’s response to these
errors is to throw an exception inheriting from RWInternalErr.

The production version of the library can check for recoverable internal
errors because the cost is relatively low. For example, to find a bounds error
in a linked list, the cost of walking the list will far exceed the cost of
detecting whether the index is in bounds. Hence, you can afford to check for
a bounds error on every access.

If an error is discovered, the library will throw an exception inheriting from
RWInternalErr, as we have mentioned. Here’s what it looks like when
Tools.h++ throws an exception:

// Find link "i"; the index must be in range:
RWIsvSlink* RWIsvSlist::at(size_t i) const
{
 if (i >= entries()){
 if(RW_NPOS == i)
 RWTHROW(RWBoundsErr(RWMessage(RWTOOL_NPOSINDEX)));
 else
 RWTHROW(RWBoundsErr(RWMessage(RWTOOL_INDEXERR,
 (unsigned)i,
 (unsigned)entries())));
 }

 register RWIsvSlink* link = head_.next_;
 while (i--) link = link->next_;
 return link;
}

Error Handling 199

In this code, note how the function always attempts to detect a bounds error.
If it finds one, it throws an instance of RWBoundsErr, a class that inherits
from RWInternalErr. This instance contains an internationalized message,
discussed in Section 16.2. The RWTHROW macro is discussed in Section 19.3.1.

Throwing an exception gives you the opportunity to catch and possibly
recover the exception. However, because the internal logic of the program
has been compromised, most likely you will want to attempt to save the
document you are working on, and abort the program.

17.3 External Errors
External errors are due to events beyond the scope of the program. As we
mentioned in the introduction, any non-trivial program should be prepared
to recover from an external error. In general, external errors are:

• Not easily predicted in advance;

• Encountered at more abstract levels;

• Not costly to detect;

• Detected in both the production and the debug versions of the library.

Examples of external errors would include: an attempt to set a bad date,
such as 31 June 1992; an attempt to invert a singular matrix; a stream write
error; being out of memory. Tools.h++ would respond to these by throwing
an exception inheriting from RWExternalErr, or providing a test for object
validity.

External errors may be run time errors. In an object-oriented environment,
run time errors frequently show up as an attempt to set an object into an
invalid state, perhaps as a result of invalid user input. The example given
above, initializing a date object with the nonexistent date 31 June 1992, is an
external run time error.

External errors often take the form of exceptions thrown by the operating
system. Tools.h++ takes responsibility for detecting these exceptions and
recovering the resources it has acquired; it will close files and restore heap
memory. As the user, however, you are responsible for all resources
acquired by code external to the Tools.h++ library during these kinds of
exceptions. Generally, Tools.h++ assumes that these exceptions will not be
thrown during memory-related C library calls such as memcpy. Tools.h++
make every effort to detect throws which occur during operations on
Tools.h++ objects or user-defined objects.

In theory, the Tools.h++ response to an external error is to throw an
exception, or to provide a test for object validity. It should never abort the
program. In practice, however, some compilers do not handle exceptions, so
Tools.h++ provides an opportunity to recover in an error handler, or to test

Error Handling 200

for a status value. Here is an example of using the isValid function to
validate user input:

RWDate date;

while (1) {
 cout << "Give a date: ";
 cin >> date;
 if (date.isValid()) break;
 cout << "You entered a bad date; try again\n";
}

17.4 Exception Architecture
When an exception is thrown a throw operand is passed. The type of the
throw operand determines which handlers can catch it. Tools.h++ uses the
following hierarchy for throw operands:

xmsg

 RWxmsg

 RWInternalErr

 RWBoundsErr

 RWExternalErr

 RWFileErr

 RWStreamErr

 xalloc

 RWxalloc

As you can see, the hierarchy parallels the error model outlined in Section
17.1. This hierarchy assumes the presence of class xmsg, nominally provided
by your compiler vendor. This is the class now being considered for
standardization by the Library Working Group of the C++ Standardization
Committee X3J16 (Document 92-0116). If your compiler does not come with
versions of xmsg and xalloc , the Rogue Wave classes RWxmsg and
RWxalloc will emulate them for you.

Class xmsg carries a string that can be printed out at the catch site to give the
user some idea of what went wrong. This string is formatted and
internationalized as described in Section 16.2.

17.4.1 Error Handlers

 Tools.h++ uses the macro RWTHROW to throw an exception. If your compiler
supports exceptions, this macro resolves by calling a function which throws
the exception. If your compiler does not support exceptions, the macro
resolves to call an error handler with prototype:

Error Handling 201

void errHandler (const RWxmsg&);

The default error handler aborts the program. You can change the default
handler with the function:

typedef void (*rwErrHandler)(const RWxmsg&);
rwErrHandler rwSetErrHandler(rwErrHandler);

The next example demonstrates how a user-defined error handler works in a
compiler that doesn't support exceptions:

#include <rw/rwerr.h>
#include <rw/coreerr.h>
#include <iostream.h>

#ifdef RW_NO_EXCEPTIONS

void myOwnErrorHandler(const RWxmsg& error){
 cout << "myOwnErrorHandler(" << error.why() << ")" << endl;
}

int main(){
 rwSetErrHandler(myOwnErrorHandler); // Comment out this line
 // to get the default error handler.
 RWTHROW(RWExternalErr(RWMessage(RWCORE_GENERIC, 12345, "Howdy!")
));
 cout << "Done." << endl;
 return 0;
}

#else //RW_NO_EXCEPTIONS

#error This example only for compilers without exception handling

#endif

17.5 The Debug Version of Tools.h++
You can build the Tools.h++ library in a debug mode, and gain a very
powerful tool for uncovering and correcting internal errors in your code.

To build a debug version of the library, you must compile the entire library
with the preprocessor flag RWDEBUG defined. You must compile the entire
library and application with a single setting of the flageither defined or
not defined. The resultant library and program will be slightly larger and
slightly slower. See the appropriate makefile for additional directions.

The flag RWDEBUG activates a set of PRECONDITION and POSTCONDITION clauses
at the beginning and end of critical functions. These pre- and postconditions
are implemented with asserts. A failure will cause the program to halt after
first printing out the offending condition, along with the file and line
number where it occurred.

Error Handling 202

17.5.1.1 RWPRECONDITION and RWPOSTCONDITION

In his landmark book Object-oriented Software Construction, Bertrand Meyer
suggests regarding functions as a contract between a caller and a callee. If
the caller agrees to abide by a set of preconditions, the callee guarantees to
return results that satisfy a set of postconditions. The following comparison
shows the usefulness of Meyer’s paradigm in Tools.h++. Let’s look first at a
bounds error in C:

char buff[20];
char j = buff[20]; // Bounds error!

Such a bounds error is extremely tough to detect in C, but easy in C++, as
shown below:

RWCString buff(20);
char j = buff[20]; // Detectable bounds error

The bounds error is easy to detect in C++ because the operator[] can be
overloaded to perform an explicit bounds check. In other words, when the
flag RWDEBUG is set, operator[] also executes the PRECONDITION clause, as
below:

char& RWCString::operator[](size_t I){
 RWPRECONDITION(i < length());
 return rep[i];
}

The case just described would trigger a failure because operator[] would
find that the PRECONDITION is not met.

Here’s a slightly more complicated example:

template <class T> void List::insert(T* obj){
 RWPRECONDITION(obj!= 0);
 head = new Link(head, obj);
 RWPOSTCONDITION(this->contains(obj));
}

In this example, the job of the function insert() is to insert the object
pointed to by the argument into a linked list of pointers to objects of type T.
The only precondition for the function to work is that the pointer obj not be
null. If this condition is satisfied, then the function guarantees to
successfully insert the object. The condition is checked by the postcondition
clause.

The macros RWPRECONDITION and RWPOSTCONDITION are defined in
<rw/defs.h> and compile out to no-ops, so long as the preprocessor macro
RWDEBUG is not defined. Here’s what appears in the makefile :

#ifdef RWDEBUG
define RWPRECONDITION(a) assert(a)
define RWPOSTCONDITION(a) assert(a)
#else
define RWPRECONDITION(a) ((void*)0)
define RWPOSTCONDITION(a) ((void*)0)
#endif

S e c t i o n 18.
Advanced Topics

18.1
 Dynamic Link Library

18.2
 Copy on Write

18.3
 RWStringID

18.4
 More on Storing and Retrieving RWCollectables

18.5
 Multiple Inheritance

Advanced Topics 204

You’ll probably come to this section on Advanced Topics after you’ve had
some experience with Tools.h++. You don’t need all the information
contained here to start using the library effectively, but you should read it to
expand your knowledge of specific topics, to see how we’ve implemented
various product features, and to check for new information.

18.1 Dynamic Link Library
The Tools.h++ Class Library can be linked as a Microsoft Windows 3.X
Dynamic Link Library (DLL). In a DLL, linking occurs at run time when the
routine is actually used. This results in much smaller executables because
routines are pulled in only as needed. Another advantage is that many
applications can share the same code, rather than duplicating it in each
application.

Because Windows and C++ technology is evolving so rapidly, be sure to
check the file TOOLDLL.DOC on your distribution disk for more updates.

18.1.1 The DLL Example

This section discusses a sample Windows application, DEMO.CPP, that uses
the Tools.h++ DLL. The code for this program can be found in the
subdirectory DLLDEMO. This program falls into the familiar category of
“Hello World” examples.

Figure 9. The demo program window.

The program is somewhat unusual, however, in that it maintains a linked
list of Drawable objects you can insert into the window at run time. You
can find the list, which is implemented using class RWSlistCollectables, in
the subdirectory DLLDEMO. The discussion in this section assumes that you
are somewhat familiar with Windows 3.X programming, but not with its
relationship to C++.

Advanced Topics 205

18.1.1.1 The DEMO.CPP Code

Here’s the main program of DEMO.CPP, the sample Windows application that
uses the Tools.h++ DLL.

/*
 * Sample Windows 3.X program, using the Tools.h++ DLL.
 */

#include "demowind.h"

int PASCAL
WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR , int nCmdShow) // 1
{ // Create an instance of the "DemoWindow" class:
 DemoWindow ww(hInstance, hPrevInstance, nCmdShow); // 2

 // Add some items to it:
 ww.insert(new RWRectangle(200, 50, 250, 100)); // 3
 ww.insert(new RWEllipse(50, 50, 100, 100));
 ww.insert(new RWText(20, 20, "Hello world, from Rogue
 Wave!"));

 ww.show(); // Show the window // 4
 ww.update(); // Update the window

 // Enter the message loop:
 MSG msg;
 while(GetMessage(&msg, NULL, 0, 0)) // 5
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 return msg.wParam; // 6
}

Here’s the line-by-line description of the program.

//1 This is the Windows program entry point that every Windows program
must have. It is equivalent to C’s main function.

//2 This creates an instance of the class DemoWindow, which we will see
later. It represents an abstract window into which objects can be
inserted.

//3 Here we insert three different objects into the DemoWindow : a
rectangle, an ellipse, and a text string.

//4 This tells the DemoWindow to show itself and to update itself.

//5 Finally, the windows main event loop is entered.

//6 The DemoWindow destructor frees all memory allocated for its
window objects.

Advanced Topics 206

18.1.1.2 DEMOWIND.H

This header file declares the class DemoWindow. A key feature is the singly
linked list called myList , which holds the list of items that have been
inserted into the window. The member function
DemoWindow::insert(RWDrawable*) allows new items to be inserted. Only
objects that inherit from class RWDrawable, to be defined in Section 18.1.1.4,
may be inserted.

The member function paint() may be called when it is time to repaint the
window. The list myList will be traversed and each item in it will be
repainted onto the screen.

Here’s a listing of the DEMOWIND.H file

#ifndef __DEMOWIND_H__
#define __DEMOWIND_H__

/*
 * A Demonstration Window class --- allows items that
 * inherit from the base class RWDrawable to be
 * "inserted" into it.
 */

#include <windows.h>
#include <rw/slistcol.h>
#include "shapes.h"

class DemoWindow {
 HWND hWnd; // My window handle
 HINSTANCE myInstance; // My instance's handle
 int nCmdShow;
 RWSlistCollectables myList; // A list of items in the window

public:

 DemoWindow(HINSTANCE mom, HINSTANCE prev, int);
 ~DemoWindow();

 void insert(RWDrawable*); // Add a new item to the window

 HWND handle() {return hWnd;}
 int registerClass(); // First time registration
 void paint(); // Called by Windows procedure
 int show() {return ShowWindow(hWnd,nCmdShow);}
 void update() {UpdateWindow(hWnd);}

 friend long FAR PASCAL _export
 DemoWindow_Callback(HWND, UINT, WPARAM, LPARAM);
};

DemoWindow* RWGetWindowPtr(HWND h);
void RWSetWindowPtr(HWND h, DemoWindow* p);

#endif

Advanced Topics 207

18.1.1.3 The DEMOWIND.CPP File

Now let’s look at the definitions of the public functions of class
DemoWindow : the DemoWindow constructor, the DemoWindow
destructor, and the member functions insert() , registerClass() , and
paint() . Detailed comments follow this listing.

#include <windows.h>
#include <rw/vstream.h>
#include "demowind.h"
#include "shapes.h"
#include <stdlib.h>
#include <string.h>

/*
 * Construct a new window.
 */
DemoWindow::DemoWindow(HINSTANCE mom, HINSTANCE prev,
 int cmdShow) //1
{
 myInstance = mom;
 nCmdShow = cmdShow;

 // Register the class if there was no previous instance:
 if(!prev) registerClass(); //2

 hWnd = CreateWindow("DemoWindow", //3
 "DemoWindow",
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, 0,
 CW_USEDEFAULT, 0,
 NULL,
 NULL,
 myInstance,
 (LPSTR)this); // Stash away 'this' //4

 if(!hWnd) exit(FALSE);
}

/*
 * Register self. Called once only.
 */
int
DemoWindow::registerClass(){ //5
 WNDCLASS wndclass;
 wndclass.style = CS_HREDRAW | CS_VREDRAW;
 wndclass.lpfnWndProc = ::DemoWindow_Callback; //6
 wndclass.cbClsExtra = 0;
 // Request extra space to store the 'this' pointer
 wndclass.cbWndExtra = sizeof(this); //7
 wndclass.hInstance = myInstance;
 wndclass.hIcon = 0;
 wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndclass.hbrBackground = GetStockObject(WHITE_BRUSH);
 wndclass.lpszMenuName = NULL;
 wndclass.lpszClassName = "DemoWindow";

 if(!RegisterClass(&wndclass)) exit(FALSE);
 return TRUE;
}

Advanced Topics 208

DemoWindow::~DemoWindow(){
 // Delete all items in my list:
 myList.clearAndDestroy(); //8
}

void
DemoWindow::insert(RWDrawable* d){
 // Add a new item to the window:
 myList.insert(d); //9
}

void
DemoWindow::paint(){ //10
 RWDrawable* shape;
 PAINTSTRUCT ps;
 BeginPaint(handle(), &ps); //11

 // Draw all items in the list. Start by making an iterator:
 RWSlistCollectablesIterator next(myList); //12

 // Now iterate through the collection, drawing each item:
 while(shape = (RWDrawable*)next()) //13
 shape->drawWith(ps.hdc); //14

 EndPaint(handle(), &ps); //15
}

/*
 * The callback routine for this window class.
 */
long FAR PASCAL _export
DemoWindow_Callback(HWND hWnd, unsigned iMessage, //16
 WPARAM wParam, LPARAM lParam)
{
 DemoWindow* pDemoWindow;

 if(iMessage==WM_CREATE){ //17
 // Get the "this" pointer out of the create structure
 // and put it in the windows instance:
 LPCREATESTRUCT lpcs = (LPCREATESTRUCT)lParam;
 pDemoWindow = (DemoWindow*) lpcs->lpCreateParams;
 RWSetWindowPtr(hWnd, pDemoWindow);
 return NULL;
 }

 // Get the appropriate "this" pointer
 pDemoWindow = RWGetWindowPtr(hWnd); //18

 switch(iMessage){
 case WM_PAINT:
 pDemoWindow->paint(); //19
 break;
 case WM_DESTROY:
 PostQuitMessage(0);
 break;
 default:
 return DefWindowProc(hWnd, iMessage, wParam, lParam);
 };
 return NULL;
}

void RWSetWindowPtr(HWND h, DemoWindow* p){ //20
 SetWindowLong(h, 0, (LONG)p);
}

Advanced Topics 209

DemoWindow* RWGetWindowPtr(HWND h){ //21
 return (DemoWindow*)GetWindowLong(h, 0);
}

//1 This is the constructor for DemoWindow. It requires the handle of the
application instance creating it, mom, the handle of any previously
existing instance, prev , and whether to show the window in iconic
form. These variables are as received from WinMain , the main windows
procedure that we have already seen.

//2 The constructor checks to see if any previous application instance has
been run and, if not, registers the class.

//3 The new window is created.

//4 A key feature is the use of the Windows extra data feature to store the
this pointer for this DemoWindow. The procedure to do this is
somewhat cumbersome, but very useful. The value placed here will
appear in the CREATESTRUCT structure, which we can retrieve when
processing the WM_CREATE message generated by the CreateWindow

function.

//5 This member function is only called for the first instance of an
application.

//6 The global function DemoWindow_Callback is registered as the callback
procedure for this window.

//7 We ask Windows to set aside space for the this pointer in this
Windows class. This will be used to associate a Windows handle with
a particular DemoWindow.

//8 The destructor calls clearAndDestroy() to delete all items that have
been inserted into myList .

//9 The member function insert(RWDrawable*) inserts a new item into the
window. Because RWDrawable inherits from RWCollectable, as we
shall see in Section 18.1.1.4, there is no need to do a cast when calling
RWSlistCollectables::insert(RWCollectable*) . By making myList

private and offering a restricted insert that takes arguments of type
RWDrawable* only, we ensure that only drawables will be inserted into
the window.

//10 Here’s the paint procedure, called when it is time to repaint the
window.

//11 We start by getting the handle for this window, then calling BeginPaint

to fill a PAINTSTRUCT with information about the painting.

//12 An iterator is constructed in preparation for traversing the list of items
to be painted.

Advanced Topics 210

//13 Get the next item to be painted. If nil is returned, then there are no
more items and the while loop will finish.

//14 For each item, call the virtual function drawWith , causing the item to
paint itself onto the given device context.

//15 The PAINTSTRUCT is returned.

//16 Here’s the callback routine to be called when it is necessary to process a
message for this window. It uses the very convenient _export keyword
of Borland C++ to indicate that this function should be exported. If you
use this procedure, you don’t have to list the function in an Exports
section of the module definition file.

//17 If the message is a WM_CREATE message, it was generated by the
CreateWindow function and this is the first time through for this
procedure. Use the rather baroque procedure to fetch the this pointer
from the CREATESTRUCT (recall it had been inserted at line 4), and put it
into the Windows extra data. The function RWSetWindowPtr will be
defined later.

//18 The function RWGetWindowPtr(HWND) is used to retrieve the pointer to
the appropriate DemoWindow, given a Windows HANDLE.

//19 If a WM_PAINT has been retrieved, then call the paint() member
function, which we have already seen.

//20 This function is used to put a this pointer into the Windows extra data.
The idea is to have a one-to-one mapping of Windows handles to
instances of DemoWindow.

//21 This function is used to fetch the this pointer back out.

18.1.1.4 An Excerpt from SHAPES.H

This section deals with the subclasses of RWDrawable. Class RWDrawable
is an abstract base class that inherits from the Tools.h++ class
RWCollectable, and adds a new member function drawWith(HDC) .
Subclasses specializing RWDrawable should implement this function to
draw itself onto the supplied device context handle.

We have reprinted only one subclass here, RWRectangle. Class
RWRectangle inherits from RWDrawable. Note that it uses the struct RECT

provided by Windows as member data to hold the corners of the rectangle.

class RWDrawable : public RWCollectable{
public:
 virtual void drawWith(HDC) const = 0;
};

class RWRectangle : public RWDrawable{
 RWDECLARE_COLLECTABLE(RWRectangle)

Advanced Topics 211

public:
 RWRectangle() { }
 RWRectangle(int, int, int, int);

 // Inherited from RWDrawable:
 virtual void drawWith(HDC) const;

 // Inherited from RWCollectable:
 virtual Rwspace binaryStoreSize() const
 {return 4*sizeof(int);}
 virtual unsigned hash() const;
 virtual RWBoolean isEqual(const RWCollectable*) const;
 virtual void restoreGuts(RWvistream& s);
 virtual void restoreGuts(RWFile&);
 virtual void saveGuts(RWvostream& s) const;
 virtual void saveGuts(RWFile&) const;

private:

 RECT bounds; // The bounds of the rectangle
};

18.1.1.5 An Excerpt from SHAPES.CPP

For the purposes of this DLL demo, it really isn’t necessary to provide
definitions for any of the member functions inherited from RWCollectable,
but let’s do it anyway, for the sake of completeness.

#include "shapes.h"
#include <rw/vstream.h>
#include <rw/rwfile.h>

RWDEFINE_COLLECTABLE(RWRectangle, 0x1000) //1

// Constructor
RWRectangle::RWRectangle(int l, int t, int r, int b) //2
{
 bounds.left = l;
 bounds.top = t;
 bounds.right = r;
 bounds.bottom = b;
}

// Inherited from Drawable:
void
RWRectangle::drawWith(HDC hdc) const //3
{
 // Make the Windows call:
 Rectangle(hdc, bounds.left, bounds.top,
 bounds.right, bounds.bottom);
}

// Inherited from RWCollectable:
unsigned
RWRectangle::hash() const //4
{
 return bounds.left ̂ bounds.top ̂ bounds.bottom ̂ bounds.right;
}

Advanced Topics 212

RWBoolean
RWRectangle::isEqual(const RWCollectable* c) const //5
{
 if(c->isA() != isA()) return FALSE;

 const RWRectangle* r = (const RWRectangle*)c;

 return bounds.left == r->bounds.left &&
 bounds.top == r->bounds.top &&
 bounds.right == r->bounds.right &&
 bounds.bottom == r->bounds.bottom;
}

// Restore the RWRectangle from a virtual stream:
void
RWRectangle::restoreGuts(RWvistream& s) //6
{
 s >> bounds.left >> bounds.top;
 s >> bounds.right >> bounds.bottom;
}

// Restore from an RWFile:
void
RWRectangle::restoreGuts(RWFile& f) //7
{
 f.Read(bounds.left);
 f.Read(bounds.top);
 f.Read(bounds.right);
 f.Read(bounds.bottom);
}

void
RWRectangle::saveGuts(RWvostream& s) const //8
{
 s << bounds.left << bounds.top;
 s << bounds.right << bounds.bottom;
}

void
RWRectangle::saveGuts(RWFile& f) const //9
{
 f.Write(bounds.left);
 f.Write(bounds.top);
 f.Write(bounds.right);
 f.Write(bounds.bottom);
}

//1 This is a macro that all subclasses of RWCollectable are required to
compile once, and only once. See Section 15.2 for more details.

//2 This is the constructor for RWRectangle that fills in the RECT structure.

//3 This is the definition of the virtual function drawWith(HDC) . It simply
makes a call to the Windows function Rectangle() with appropriate
arguments.

//4 Supplies an appropriate hashing value in case we ever want to retrieve
this RWRectangle from a hash table.

//5 Supplies an appropriate isEqual() implementation.

Advanced Topics 213

//6 This function retrieves the RWRectangle from a virtual stream.

//7 This function retrieves the RWRectangle from an RWFile.

//8 This function stores the RWRectangle on a virtual stream. Note how
there is no need to separate elements by white spacethis will be done
by the virtual stream, if necessary.

//9 This function stores the RWRectangle on an RWFile.

The other shapes, RWEllipse and RWText, are implemented in a similar
manner.

18.2 Copy on Write
Classes RWCString, RWWString, and RWTValVirtualArray<T> use a
technique called copy on write to minimize copying. This technique offers the
advantage of easy-to-understand value semantics with the speed of
reference counted pointer implementation.

Here is how the technique works. When an RWCString is initialized with
another RWCString via the copy constructor:

RWCString(const RWCString&);

the two strings share the same data until one of them tries to write to it. At
that point, a copy of the data is made and the two strings go their separate
ways. Copying only at “write” time makes copies of strings, particularly
read-only copies, very inexpensive. In the following example, you can see
how four objects share one copy of a string until one of the objects attempts
to change the string:

#include <rw/cstring.h>

RWCString g; // Global object

void setGlobal(RWCString x) { g = x; }

main(){
 RWCString a("kernel"); // 1
 RWCString b(a); // 2
 RWCString c(a); // 3

 setGlobal(a); // Still only one copy of "kernel"! // 4

 b += "s"; // Now b has its own data: "kernels" // 5
}

//1 The actual allocation and initialization of the memory to hold the string
kernel occurs at the RWCString object a.

//2 - //3
 When objects b and c are created from a, they merely increment a
reference count in the original data and return. At this point, there are
three objects looking at the same piece of data.

Advanced Topics 214

//4 The function setGlobal() sets the value of g, the global RWCString, to
the same value. Now the reference count is up to four, and there is still
only one copy of the string kernel .

//5 Finally, object b tries to change the value of the string. It looks at the
reference count and sees that it is greater than one, implying that the
string is being shared by more than one object. At this point, a clone of
the string is made and modified. The reference count of the original
string drops back down to three, while the reference count of the newly
cloned string is one.

18.2.1 A More Comprehensive Example

Because copies of RWCStrings are so inexpensive, you are encouraged to
store them by value inside your objects, rather than storing a pointer. This
will greatly simplify their management, as the following comparison
demonstrates. Suppose you have a window whose background and
foreground colors can be set. A simple-minded approach to setting the
colors would be to use pointers as follows:

class SimpleMinded {
 const RWCString* foreground;
 const RWCString* background;
public:
 setForeground(const RWCString* c) {foreground=c;}
 setBackground(const RWCString* c) {background=c;}
};

On the surface, this approach is appealing because only one copy of the
string need be made. In this sense, calling setForeground() seems efficient.
However, a closer look indicates that the resulting semantics can be
muddled: what if the string pointed to by foreground changes? Should the
foreground color change? If so, how will class Simple know of the change?
There is also a maintenance problem: before you can delete a color string,
you must know if anything is still pointing to it.

Here’s a much easier approach:

class Smart {
 RWCString foreground;
 RWCString background;
public:
 setForeground(const RWCString& c) {foreground=c;}
 setBackground(const RWCString& c) {background=c;}

Now the assignment foreground=c will use value semantics. The color that
class Smart should use is completely unambiguous. Copy on write makes
the process efficient, too, since a copy of the data will not be made unless the
string should change. The next example maintains a single copy of white

until white is changed:

Smart window;
RWCString color("white");

Advanced Topics 215

window.setForeground(color); // Two references to white

color = "Blue"; // One reference to white, one to blue

18.3 RWStringID
Many Rogue Wave clients have asked for a larger range of possible class
identifiers for RWCollectable classes than is available using RWClassID.
We did not change the meaning of RWClassID, in order to preserve
backward compatibility for existing polymorphically persisted files, but we
did add a new kind of class identifier, RWStringID.

An RWStringID is an identifier for RWCollectables in Tools.h++ Version 7
and later. It is derived from RWCString, and may be manipulated by any of
the const RWCString methods. The non-const methods have been hidden to
prevent the disaster that could occur if the RWStringID of a class changed at
run time.

You can associate an RWStringID with an RWCollectable class in one of
two ways: pick the RWStringID for the class, or allow the library to
automatically generate an RWStringID that is the same sequence of
characters as the name of the class; for example, class MyColl : public

RWCollectable would get the automatic RWStringID "MyColl" .

You specify a class with a fixed RWClassID and generated RWStringID by
using the macro RWDEFINE_COLLECTABLE as follows:

RWDEFINE_COLLECTABLE(ClassName, ClassID)
RWDEFINE_COLLECTABLE(MyCollectable1,0x1000) //for example

You specify a class with a fixed RWStringID and a generated RWClassID by
using the new macro RWDEFINE_NAMED_COLLECTABLE as follows:

RWDEFINE_NAMED_COLLECTABLE(ClassName, StringID)
RWDEFINE_NAMED_COLLECTABLE(MyCollectable2, "Second Collectable")
// for example

Using the examples above, you could write:

// First set up the experiment
MyCollectable1 one; MyCollectable2 two;
// All running RWClassIDs are guaranteed distinct
one.isA() != two.isA();
// Every RWCollectable has an RWStringID
one.stringID() == "MyCollectable1";
// There are several ways to find ids
RWCollectable::stringID(0x1000) == "MyCollectable1";
two.isA() == RWCollectable::classID("Second Collectable");

18.3.1 Duration of Identifiers

Providing polymorphic persistence between different executions of the same
or different programs requires a permanent identifier for each class being
persisted. Until now, the permanent identifier for any RWCollectable has

Advanced Topics 216

been its RWClassID. For each class that derives from RWCollectable, the
macro RWDEFINE_COLLECTABLE caused code to be generated that forever
associated the class and its RWClassID. This identification has been
retained, but in the current version of Tools.h++ you may choose the
RWDEFINE_NAMED_COLLECTABLE macro, which will permanently link the
chosen RWStringID with the class.

The addition of RWStringID identifiers will result in more identifiers, and
more self-documenting RWCollectable identifiers, than were possible
under the old restriction. To accommodate the new identifiers, a temporary
RWClassID is now generated for each RWCollectable class that has an
RWStringID specified by the developer. These RWClassIDs are built as
needed during the run of an executable, and remain constant throughout
that run. However, they may be generated in a different order on a different
executable or during a different run, so they are not suitable for permanent
storage.

18.3.2 Programming with RWStringIDs

RWCollectable now has a new regular member function, and two new
static member functions. Since one of the major goals of Version 7 of
Tools.h++ is to maintain link compatibility with objects compiled against
Version 6, none of these functions is virtual. The functions are therefore
slightly less efficient than they would be if we broke link-compatibility.

The new regular member function is:

RWStringID stringID() const;

The new static member functions are:

RWStringID stringID(RWClassID); // looks up RWStringID
RWClassID classID(RWStringID); // looks up classID

RWFactory also includes the following new functions:

void addFunction(RWuserCreator, RWClassID, RWStringID);
RWCollectable* create(RWStringID) const;
RWuserCreator getFunction(RWStringID) const;
void removeFunction(RWStringID);
RWStringID stringID(RWClassID) const;
RWClassID classID(RWStringID) const;

You can use RWCollectables that ship with Tools.h++ and
RWCollectables that have been defined with fixed RWClassIDs exactly as
in previous versions of Tools.h++. For instance, you could still use this
common programming idiom:

RWCollectable *ctp; // assign the pointer
if (ctp->isA() == SOME_CONST_CLASSID) // do a specific thing

However, when you use RWCollectables that have user-provided
RWStringIDs , which implies any non-permanent ClassIDs , you must

Advanced Topics 217

anticipate that the RWClassID may have different values during different
runs of the executable. For these classes, there are two possible idioms to
replace the one above:

RWCollectable *ctp;
// assign the pointer somehow
// use with existing RWCollectable for comparison:
// comparison will be faster than comparing RWStringIDs
if(ctp->isA() == someRWCollectablePtr->isA())
 // you may code to that class interface
// ...
// idiom to hard code the identification. Slightly
// slower because string comparisons are slower than int
// comparisons; also stringID() uses a dictionary lookup.
if (ctp->stringID() == "Some ID String") {
 // you may code to that class interface
}

18.3.3 Implementation Details of RWStringID

The next few sections cover implementation details of RWStringID. If you
are curious about how we manage to provide virtual functionality without
adding virtual methods, or if you are interested in issues of design,
efficiency, and other specifics, these sections are for you.

18.3.3.1 Automatic RWClassIDs

Automatic RWClassIDs are created in a systematic way from unused
RWClassIDs in the range 0x9200 to 0xDAFF. There are 18,687 possible such
RWClassIDs , so only extraordinary programs can possibly run out.
However, we are used to dealing with extraordinary customers, so we feel
we must warn you: you will not be able to build and use more than 18,687
different classes with automatically generated RWClassIDs in any one
program31.

Note that this implies nothing about the total number of objects of each class
that you may have. That number is limited only by the requirements of your
operating system and compiler. Of course, you also have access to the full
set of RWClassIDs below 0x8000that is, 32767 more possible
RWCollectablesbut they will not be automatically generated. You must
specify them manually.

18.3.3.2 Implementing Virtuals Via Statics

Since the virtual method isA() returns a “run-time unique" RWClassID, we
can use this one virtual method to provide an index into a lookup table

31 16-bit DLLS will also accumulate automatic RWClassIDs
while they are loaded in memory.

Advanced Topics 218

where various data or function pointers are stored. (This may remind you of
C++ built-in vtables !) Since RWCollectables already depend on the
existence of a single RWFactory, we chose to use that RWFactory instance to
hold the lookup information.

The static method:

RWStringID RWCollectable::stringID(RWClassID id);

will attempt to look up id in the RWFactory instance. If it succeeds in
finding an associated RWStringID, it will return it. Otherwise, it will return
RWStringID("NoID") .

The static method:

RWClassID RWCollectable::classID(RWStringID sid)

works in an analogous manner, looking in the RWFactory instance to see if
there is an RWClassID associated with sid . If the method finds one, it
returns it; otherwise, it returns RWClassID __RWUNKNOWN.

18.3.3.3 Polymorphic Persistence

Polymorphic persistence of RWCollectables is not affected by the addition
of the new class RWStringID. Existing files can still be read using newly
compiled and linked executables, as long as the old RWClassIDs are
unchanged. New classes that have RWStringIDs may be freely intermixed
with old classes. The storage size of collectables that do not have permanent
RWClassIDs will reflect their larger space requirements, but the store size of
other RWCollectables will be unaffected.

Note that collections containing RWCollectables with the same RWStringID
have that RWStringID stored into a stream or file only once, just as multiple
references to the same RWCollectable are only stored the first time they are
seen.

18.3.3.4 Efficiency

Since RWClassID is more efficient in both time and space than RWStringID,
you may wish to continue using it wherever possible. RWStringIDs are
useful:

• For organizations that need to generate unique identifiers for many
programming groups;

• For third party libraries that need to avoid clashes with other libraries or
users;

• Anywhere the self-documenting feature of RWStringID adds enough
value to compensate for its slight inefficiencies.

Advanced Topics 219

RWStringIDs are generated for all RWCollectable classes that are compiled
under the current version of Tools.h++. This additional code generation has
only minor impact on programs that do not use the RWStringIDs . The
RWFactory will be larger, to hold lookups from RWClassID and
RWStringID; and startup time will be very slightly longer, to accommodate
the addition of the extra data to the RWFactory.

18.3.3.5 Identification Collisions

While RWStringID can help alleviate identification collisions, the possibility
of collisions between RWStringIDs of different classes still exists. Collisions
can occur:

• When an automatically generated RWStringID conflicts with a user-
chosen one;

• When one or more classes are accidentally assigned the same
RWStringID ;

• When two classes in different namespaces have the same name and thus
the same automatically generated RWStringID. This assumes your
compiler supports namespaces.

In some cases, collisions like these will be unimportant. Automatically
generated RWClassIDs are guaranteed to be distinct from one another and
from any legal user-provided RWClassID. The virtual isA() method, the
stringID() method, and constructor lookup based on the RWClassID will
all continue to work correctly.

There will be some situations, however, where collisions will cause
difficulty. Polymorphic persistence of classes with user-chosen RWStringIDs
that collide will not work correctly. In these cases, the data will not be
recoverable, even though it is stored correctly. Similarly, user code that
depends on distinguishing between classes based only on their RWStringIDs
will fail.

As a developer, you can work to avoid such collisions. First of all, you
should use an RWStringID which is unlikely to collide with any other. For
instance, you might choose RWStringIDs that mimic the inheritance
hierarchy of your class, or that imbed your name, your company’s name, a
creation time, or a file path such as found in revision control systems. And
of course, you should always test your program to insure that the class
actually associated with your RWStringID is the one you expected.

18.4 More on Storing and Retrieving RWCollectables
In Section 14.5.1, we saw how to save and restore the morphology or pointer
relationships of a class using the following global functions:

Advanced Topics 220

Rwvostream& operator<<(RWvostream&, const RWCollectable&);
RWFile& operator<<(RWFile&, const RWCollectable&);
Rwvostream& operator<<(RWvostream&, const RWCollectable*);
RWFile& operator<<(RWFile&, const RWCollectable*);
Rwvistream& operator>>(RWvistream&, RWCollectable&);
RWFile& operator>>(RWFile&, RWCollectable&);
Rwvistream& operator>>(RWvistream&, RWCollectable*&);
RWFile& operator>>(RWFile&, RWCollectable*&);

When working with RWCollectables , it is useful to understand how these
functions work. Here is a brief description.

When you call one of the left-shift << operators for any collectable object for
the first time, an identity dictionary is created internally. The object’s
address is put into the dictionary, along with its ordinal position in the
output filefor example, first, second, sixth, etc.

Once this is done, a call is made to the object’s virtual function saveGuts() .
Because this is a virtual function, the call will go to the definition of
saveGuts() used by the derived class. As we have seen, the job of
saveGuts() is to store the internal components of the object. If the object
contains other objects inheriting from RWCollectable, the object’s
saveGuts() calls operator<<() recursively for each of these objects.

Subsequent invocations of operator<<() do not create a new identity
dictionary, but store the object’s address in the already existing dictionary.
If an address is encountered which is identical to a previously written
object’s address, then saveGuts() is not called. Instead, a reference is written
that this object is identical to some previous object.

When the entire collection is traversed and the initial call to saveGuts()

returns, the identity dictionary is deleted and the initial call to operator<<()

returns.

The function operator>>() essentially reverses this whole process by calling
restoreGuts to restore objects into memory from a stream or file. When
encountering a reference to an object that has already been created, it merely
returns the address of the old object rather than asking the RWFactory to
create a new one.

Here is a more sophisticated example of a class that uses these features:

#include <rw/collect.h>
#include <rw/rwfile.h>
#include <assert.h>

class Tangle : public RWCollectable
{

public:

 RWDECLARE_COLLECTABLE(Tangle)

 Tangle* nextTangle;
 int someData;

Advanced Topics 221

 Tangle(Tangle* t = 0, int dat = 0){nextTangle=t; someData=dat;}

 virtual void saveGuts(RWFile&) const;
 virtual void restoreGuts(RWFile&);

};

void Tangle::saveGuts(RWFile& file) const{
 RWCollectable::saveGuts(file); // Save the base class

 file.Write(someData); // Save internals

 file << nextTangle; // Save the next link
}

void Tangle::restoreGuts(RWFile& file){
 RWCollectable::restoreGuts(file); // Restore the base class

 file.Read(someData); // Restore internals

 file >> nextTangle; // Restore the next link
}

// Checks the integrity of a null terminated list with head "p":
void checkList(Tangle* p){
 int i=0;
 while (p)
 {
 assert(p->someData==i);
 p = p->nextTangle;
 i++;
 }
}

RWDEFINE_COLLECTABLE(Tangle, 100)

main(){
 Tangle *head = 0, *head2 = 0;

 for (int i=9; i >= 0; i--)
 head = new Tangle(head,i);

 checkList(head); // Check the original list

 {
 RWFile file("junk.dat");
 file << head;
 }

 RWFile file2("junk.dat");
 file2 >> head2;

 checkList(head2); // Check the restored list
 return 0;
}

In the above example, the class Tangle implements a circularly linked list.
What happens? When function operator<<() is called for the first time for
an instance of Tangle, it sets up the identity dictionary as described above,
then calls Tangle’s saveGuts() , whose definition is shown above. This

Advanced Topics 222

definition stores any member data of Tangle, then calls operator<<() for the
next link. This recursion continues on around the chain.

If the chain ends with a nil object (that is, if nextTangle is zero), then
operator<<() notes this internally and stops the recursion.

On the other hand, if the list is circular, then a call to operator<<() is
eventually made again for the first instance of Tangle, the one that started
this whole chain. When this happens, operator<<() will recognize that it
has already seen this instance before and, rather than call saveGuts() again,
will just make a reference to the previously written link. This stops the
series of recursive calls and the stack unwinds.

Restoration of the chain is done in a similar manner. A call to:

RWFile& operator>>(RWFile&, RWCollectable*&);

can create a new object off the heap and return a pointer to it, return the
address of a previously read object, or return the null pointer. In the last two
cases, the recursion stops and the stack unwinds.

18.5 Multiple Inheritance
In Section 15, we built a Bus class by inheriting from RWCollectable. If we
had an existing Bus class at hand, we might have saved ourselves some
work by using multiple inheritance to create a new class with the
functionality of both Bus and RWCollectable as follows:

class CollectableBus : public RWCollectable, public Bus {
 .
 .
 .
};

This is the approach taken by many of the Rogue Wave collectable classes;
for example, class RWCollectableString inherits from both class
RWCollectable and class RWCString. The general idea is to create your
object first, then tack on the RWCollectable class to make the whole thing
collectable. This way, you will be able to use your objects for other things or
in other situations, where you might not want to inherit from class
RWCollectable.

There is another good reason for using this approach: to avoid ambiguous
base classes. Here’s an example:

class A { };

class B : public A { };

class C : public A { };

class D : public B, public C { };

void fun(A&);

Advanced Topics 223

main () {
 D d;
 fun(d); // Which A ?
}

There are two approaches to disambiguating the call to fun() . We can either
change it to:

fun((B)d); // We mean B’s occurrence of A

or make A a virtual base class.

The first approach is error-prone because the user must know the details of
the inheritance tree in order to make the proper cast.

The second approach, making A a virtual base class, solves this problem, but
introduces another: it becomes nearly impossible to make a cast back to the
derived class! This is because there are now two or more paths back through
the inheritance hierarchy or, if you prefer a more physical reason, the
compiler implements virtual base classes as pointers to the base class and
you can’t follow a pointer backwards.

We could exhaustively search all possible paths in the object’s inheritance
hierarchy, looking for a match. (This is the approach of the NIH Classes.)
However, this search is slow, even if speeded up by “memorizing” the
resulting addresses, since it must be done for every cast. Since it is also
bulky and always complicated, we decided that it was unacceptable.

Hence, we went back to the first route. This can be made acceptable if we
keep the inheritance trees simple by not making everything derive from the
same base class. Hence, rather than using a large secular base class with lots
of functionality, we have chosen to tease out the separate bits of
functionality into separate, smaller base classes.

The idea is to first build your object, then tack on the base class that will
supply the functionality you need, such as collectability. You thus avoid
multiple base classes of the same type and the resulting ambiguous calls.

S e c t i o n 19.
Common Mistakes

19.1
 Redefinition of Virtual Functions

19.2
 Iterators

19.3
 Return Type of operator>>()

19.4
 Avoid Persisting Value Collections of Pointers

19.5
 Include Path

19.6
 Match Memory Models and Other Qualifiers

19.7
 Keep Related Methods Consistent

19.8
 DLL

19.9
 Use the Capabilities of the Library!

Common Mistakes 226

Rogue Wave libraries are built by developers like you who understand the
frustration of programming errors. We try hard to fine tune our libraries to
minimize these errors. Nevertheless, the complexity of C++ affords
countless opportunities for making some very subtle mistakes.

In writing this section, we went though our technical support documents to
uncover the most common mistakes our users were reporting. When we
found mistakes that could be prevented, we tried to rewrite the library to
make them impossible. This is always the best approach. We can’t always
follow it, however, if unacceptable performance degradations result, or the
language itself prohibits the change.

This section summarizes the most common mistakes that are left over after
we fixed the ones we could. If you’re having a problem, take a look through
this list and, of course, be sure to read the pertinent parts of the manual.

19.1 Redefinition of Virtual Functions
If you subclass off an existing class and override a virtual function, make
sure that the overriding function has exactly the same signature as the
overridden function. This includes any const modifiers!

This problem arises particularly when creating new RWCollectable classes.
For example:

class MyObject : public RWCollectable {
public:
 RWBoolean isEqual(); // No "const" !
};

The compiler will treat this definition of isEqual() as completely
independent of the isEqual() in the base class RWCollectable, because it is
missing a const modifier. Hence, if called through a pointer:

MyObject obj;
 RWCollectable* c = &obj;
 c->isEqual(); // RWCollectable::isEqual() will get called!

19.2 Iterators
Since the drafting of the ANSI/ISO Standard C++ Library, there are now
two kinds of iterators available for use in Tools.h++ : the traditional iterators
which we describe in detail throughout this manual, and the new “Standard
Library” iterators. For more information about using the iterators now
mandated by the standard, we refer you to the manual which came with
your version of the Standard C++ Library. In this Tools.h++ manual, unless
we specifically say otherwise, an iterator refers to a traditional iterator.

Immediately after construction, the position of a Tools.h++ iterator is
formally undefined. You must advance it or position it before it has a well-
defined position. The rule of thumb is “advance and then return.” If the

Common Mistakes 227

end of the collection has been reached, the return value after advancing will
be special, either FALSE or nil, depending on the type of iterator.

Hence, the proper idiom is:

RWSlistCollectables ct;
RWSlistCollectablesIterator it(ct);

.

.

.

RWCollectable* c;
while (c=it()) {
 // Use c
}

19.3 Return Type of operator>>()
An extremely common mistake is to forget that the functions:

Rwvistream& operator>>(RWvistream&, RWCollectable*&);
RWFile& operator>>(RWFile&, RWCollectable*&);

return their results off the heap. This can result in a memory leak like the
following:

main(){
 RWCollectableString* string = new RWCollectableString;
 RWFile file("mydata.dat");

 // WRONG:
 file >> string; // Memory leak!

 // RIGHT:
 delete string;
 file >> string;

}

19.4 Avoid Persisting Value Collections of Pointers
It may sometimes be reasonable to collect pointers into a value-based
collection in order to deal with identies instead of values. However, you
should never attempt to persist them, since a collection with value semantics
will simply store the values of the pointers into the stream, rather than
storing the information pointed to. If you were to pull those old pointers out
of the stream and back into memory, they would almost surely point to
invalid locations.

19.5 Include Path
When you specify an include path to the Rogue Wave header files, make
sure that it does not include a final rw :

Common Mistakes 228

Use this:
CC -I/usr/local/include -c myprog.C

not this:
CC -I/usr/local/include/rw -c myprog.C

19.6 Match Memory Models and Other Qualifiers
When it comes time to link your program to the Rogue Wave library, make
sure that all the following match: qualifiers, compilation “mode” macros
(such as RWDEBUG and RW_MULTI_THREAD), the choice to use (or not use) shared
libraries, and memory models. For example, if you compiled using the flat
memory model, make sure you are linking to a library compiled with the flat
memory model. Similarly, if you are using a debug version of the library, be
sure to compile your programs with the same debug settings (see Section
17.5).

Failure to do so will result in the linker emitting mysterious “undefined
external reference” or other errors, or even worse, you may find that
programs run, but do not execute as expected.

19.7 Keep Related Methods Consistent
When you design classes that will be used with the Tools.h++ library, you
may be tempted to take short cuts, like providing a simplistic hash method,
or operator<(), since you “know it will never be used anyhow.” Decisions
like this can have disastrous maintenance consequences later. Unless you
have a very good reason, it makes sense to ensure, for example, that
operator<() , operator==() , compareTo() , and isEqual() are based on the
same information. You must also be sure that values which are isEqual() or
== with each other have the same hash value, since otherwise they will
never be found if placed into a collection that uses hashing techniques. A
little extra effort at the beginning can pay big dividends in reduced
debugging time later on!

19.8 DLL
Because the DLL version of Tools.h++ uses the large memory model, any
data segment that uses it must be fixed. For example, if you were to create
an RWCollectable object in your data segment and insert it into a Tools.h++
collection, that collection will be holding a four byte pointer. If your data
segment were to move, the pointer would no longer be valid. Hence, be sure
that your .DEF definition file has a line similar to the following:

DATA PRELOAD FIXED

Note that with Microsoft’s decision to abandon real mode Windows,
working with fixed data and global memory is no longer the problem it used

Common Mistakes 229

to be. The extra level of indirection offered by protected mode allows data
to be moved around in physical memory without invalidating selectors. The
entries in the descriptor table are changed instead.

19.9 Use the Capabilities of the Library!
By far the most common mistake is not to use the full power of the library. If
you find yourself writing a little “helper” class, consider why you are doing
it. Or, if what you are writing is looking a little clumsy, then maybe there’s a
more elegant approach. A bit of searching through the Tools.h++ manual
may uncover just the thing you’re looking for!

Here’s a surprisingly common example:

main(int argc, char* argv[]){
 char buffer[120]; //uh oh: possible overflow
 ifstream fstr(argv[1]);
 RWCString line;

 while (fstr.readline(buf,sizeof(buf)) {
 line = buf; //hmm: extra copy
 cout << line;
 }
}

This program reads lines from a file specified on the command line and
prints them to standard output. By using the full abilities of the RWCString
class it could be greatly simplified as follows:

main(int argc, char* argv[]){
 ifstream fstr(argv[1]);
 RWCString line;

 while (line.readLine(fstr)) {
 cout << line;
 }
}

There are countless other such examples. The point is, if it’s looking
awkward to you, most likely there’s a better way!

Appendix A. Choosing A Collection 231

A p p e n d i x A.
Choosing A Collection

Tools.h++ has an abundance of collection classes--when you're faced with choosing which
one to use in your code, it may seem like an overabundance! This section provides
suggestions and information that will help you select the most appropriate collection for a
given programming task.

Choosing the most appropriate collection class to fit your needs is not a trivial task. First you
need to consider the data in your collection. Does your collection need to store the data in
order? Will there be duplicate data? And, how do you find or insert data in your collection?
The first part of this appendix, "Selecting a Tools.h++ Collection Class" includes a decision
tree diagram that lets you consider specific questions about your data and, through your
answers, quickly focus on the collections that will best fit your data requirements. A preface
to the decision tree discusses questions you'll see in the tree and includes some additional
selection criteria that address issues such as whether to choose a pointer or value-based
collections, when to use sequential collections, and what to use for disk-based access.

The second part of this appendix presents a rough comparison of how much time and
memory different collections and collection families need to perform common operations
such as insertions, finds, and removals.

20.1 Selecting a Tools.h++ Collection Class
The decision tree diagram includes questions about the data you plan to store in your
collection. By traversing the tree you can quickly see which Tools.h++ collection classes will
best suit your data and programming project.

20.1.1 How to Use the Decision Tree

The questions that appear on the decision tree are brief, so that the diagram will be easy to
read. The following questions expand upon the questions in the decision tree.

1. Is the order of data in the collection meaningful? Some collections allow you to control
the location of data within the collection. For example, arrays or vectors, and linked lists
present data in order. If you need to access data in a particular order, or based on a
numeric index, then order is meaningful.

2. Are duplicate entries allowed? Some collections, usually called sets, will not allow you
to insert an item equal to an item that is already in the collection. Other collections do
permit duplicates, and have various ways to hold multiple matching items. Tools.h++

Appendix A. Choosing A Collection 232

collections provide mechanisms for both checking for duplication and holding the
duplicates.

3. Is the order determined intrinsically or externally? If data within the collection is
controlled by the way you insert it, we say that the order is determined externally. For
example, a vector, or a linked list is externally ordered. If the data is stored at a place
determined by an algorithm used by the collection, then the ordering is intrinsic. For
example, a sorted vector, or a balanced tree has intrinsic ordering.

4. Is data accessed by an external key? If you access a value based on a key that is not the
same as the value, we say that data is accessed by an external key. For example, a
"phone list" associates data, in the form of telephone numbers, with keys, in the form of
names. Conversly, a list of committee members is simply a set of data in the form of
names. You do not need a key to get at the information.

5. Is data accessed by a numeric index? Objects stored in an array or vector are accessed
by numeric index. For example, you access an object at location 12 by using the numeric
index “12” to find it.

6. Is data accessed by "comparison with self?" Data that is stored with neither an
explicit index nor an explicit key can be found by looking for a match between what you
need to find and what is contained. The list of committee members mentioned in item 4
is and example of this type of data. Sets or bags are examples of collections that are
accessed by comparison with self.

 When data is accessed by comparison with self, it is also necessary to know what kind of
match is used: matching may be based on equality, which directly compares one object
with another, or based on identity, which compares object addresses to see if the objects
are the same.

7. Is the best method of access by following linked nodes? Collections that make use of
linked nodes are usually called lists. Lists provide quick access to data at each end of the
collection, and allow you to insert data efficiently into the middle of the collection.
However, if you need repeated access to data in the middle of the collection, lists are not
as efficient as some other collections.

8. Will most of your access to data be at the ends of a collection? There are many
occasions when you need to handle an unknown amount of data, but most of that data
handling will apply to data that was most recently or least recently put into the
collection. A collection that is particularly efficient at handling data that was most
recently added is said to have a "last in, first out" policy. A last in, first out (LIFO)
container is a stack. A collection that handles the data in a "first in first out” (FIFO)
manner is called a queue. Finally, a collection that allows efficient access to both the most
recently and least recently added data is called a deque, or double ended queue.

9. For linked lists—Do you need to access the data from only one end of the list , or from
both ends? Singly-linked lists are smaller, but they allow access only from the “front” of

Appendix A. Choosing A Collection 233

the list. Doubly-linked lists have a more flexible access policy, but at the cost of
requiring an additional pointer for every stored object.

10. For collections that are accessed by numeric index—Do you need the collection to
automatically resize? If you know the maximum number of items that will be stored in
the collection, you can make insertion and removal slightly more efficient by choosing a
collection with a fixed size. On the other hand, if you need to allow for nearly unlimited
expansion, you should choose a collection that will automatically adjust itself to the
amount of data it is currently storing.

20.1.2 Additional Selection Criteria

Which collection you choose will depend of many things (not the least of which will be your
experience and intuition). In addition to the decision tree, the following questions will also
influence your choice of container.

1. Do I need to maintain a single object in multiple collections? Use a pointer-based
collection.

2. Am I collecting objects that are very expensive to copy? Use a pointer-based collection.

3. Is there no compelling reason to use a pointer-based collection? Use a value-based
collection.

4. Do I want to control the order of the objects within the collection externally? Use a
sequential collection such as a vector or list.

5. Should the items within the collection be mutable (not fixed) after they are inserted?
Use a sequential or mapping (dictionary) collection. Maps and dictionaries have
immutable keys but mutable values.

6. Would I prefer that the collection maintain its own order based on object comparison?
Use a set, map, or sorted collection.

7. Do I wish to access objects within the collection based on a numerical index? Use a
sequential or sorted collection.

8. Do I need to find values based on non-numeric keys? Use a map or dictionary.

9. Would I prefer to access objects within the collection by supplying an object for
comparison? Use a set, map or hash-based collection.

10. Am I willing to forego meaningful ordering, and use some extra memory in return for
constant-time look-up by key? Use a hash-based collection.

11. Do I need fast lookup and insertion in a collection that grows or shrinks to meet the
current need? Use a b-tree, or an associative container based on the new Standard C++
Library.

12. Do I need access the data without bringing it all into memory? Use RWBTreeOnDisk
or RWTValVirtualArray.

Appendix A. Choosing A Collection 234

Use this chart if the order of data in the collection is meaningful.

Are duplicates allowed?

Yes
No

Is order determined
intrinsically or externally?

Intrinsically

Resize method: Use Class:
fixed size RWGVector

RWGBitVec
 Generic
RWTPtrVector
RWTValVector
 Template
RWTValVirtualArray
 Template
 Disk-based collections

automatic RWBitVec
resize RWGOrderedVecto

r
 Generic
RWOrdered
 SmallTalk-Like
RWTBitVec
RWTPtrOrderedVec
tor

Access method: Use Class:
external key RWTValMultiMap

RWTPtrMultiMap
 Template,
 Std. Lib required

numeric index RWGSortedVect
or
 Generic

RWSortedVector
 SmallTalk-Like

RWTValSortedVe
ctor
RWTPtrSortedVec
tor
 Template

Comparison
with self

RWBinaryTree
 SmallTalk-Like

Externally

Access in both directions?

Best access method?

Numeric
Index

Yes

Use Class:

RWGDlist
 Generic

RWDlistCollecta
bles
 SmallTalk-Like

RWTIsvDlist
RWTPtrDlist

Access Policy Use Class:
first in, first out RWGQueue

 Generic

(FIFO) RWSlistCollectablesQ
ueue
 SmallTalk-Like
RWTQueue
 Template

last in, first out RWGStack
 Generic

(LIFO) RWSlistCollectablesSt
ack
 SmallTalk-Like
RWTStack
 Template

Double ended
queue (deque)

RWTPtrDeque
RWTValDeque

Access
Method

Use Class:

external key RWTPtrSlistDiction
ary
RWTValSlistDictio
nary
 Template

Comparison
with self

RWGSlist
 Generic

RWSlistCollectabl
es
 SmallTalk-Like
RWTIsvSlist

No

Access
method

Class

external
key

RWBTreeDiction
ary
 SmallTalk-Like
RWTPtrMap
RWTValMap
 Template,
 Std. Lib required
RWBtreeOnDisk
 Disk-based
 collections

Comparison
with self

RWBTree
 SmallTalk-Like
RWTPtrSet
RWTValSet
 Template,

Linked
Nodes

At the Ends

Appendix A. Choosing A Collection 235

Are duplicates allowed?

Yes
No

Is data accessed by
external key or by

comparison with self?

Is data accessed by
external key or by

comparison with self?

External key

Duplicate
storage method:

Use Class:

storage of one
example plus a
count of equals

RWBag
 Smalltalk-Like

all duplicates
stored

RWHashTable
 Smalltalk-Like
RWTPtrHashTable
RWTValHashTable
 Template
RWTPtrHashMultiSet
RWTValHashMultiSet
 Template
 Std. Lib. Required

Use Class:
RWTPtrHashMultiMap
RWTValHashMultiMap
 Template
 Std. Lib. Required

Comparison
with self

Comparison
method

Class

by value
 (is-equal)

RWSet
 SmallTalk-Like
RWTPtrHashSet
RWTValHashSet
 Template

by address
(is-identical)

RWIdentitySet
 SmallTalk-Like

Comparison
method

Class

by value
 (is-equal)

RWHashDictionary
 SmallTalk-Like
RWTPtrHashDictionary
RWTValHashDictionary
 Template
RWTPtrHashMap
RWTValHashMap
 Template
 Std. Lib. Required

by address
(is-identical)

RWIdentityDictionary
 SmallTalk-Like
RWTValHashMap<K*,T>
 Template
(a value map of pointers
yields "identity")

External key Comparison
with self

Use this chart if the order of data in the collection is not meaningful.

Appendix A. Choosing A Collection 236

20.2 Time and Space Considerations
This section presents a very approximate analysis and comparison of the time and space
requirements for a variety of common operations on different specific collections and
collection families. We've presented the information as a set of tables that lists the operation,
the time cost and the space cost. Any applicable comments appear at the bottom of the table.
A key to the abbreviations used in the tables appears at the bottom of each page.

As you read these analyses, keep in mind that various processors, operating systems,
compilation optimizations, and many other factors will affect the exact values. The point of
these tables is to provide you with some idea of how the behaviors of the various collections
will compare, all other things being equal. For more details on algorithm complexity, refer to
Knuth, Sedgewick, or any number of other books.

Because many of the Tools.h++ collections have essentially similar interfaces, it is easy to
experiment and discover what effect a different choice of collection will have on your
program.

For each of the following tables:

• N is the number of items in the collection;

• M is the current size of the collection;

• t is the size of the item being stored (possibly a pointer);

• i is the size of an integer;

• p is the size of a pointer

• C is a “constant value”.

• Time costs for each pointer dereference, copy, destroy, allocate, or comparison are
considered equal.

• Container overhead is as space cost that consists of two terms. The left term is the size of
an empty container, while the right term shows the added cost for N items.

• Space cost is indicated both for insertions and deletions. Space cost that is marked
"(recovered)" indicates that the space has been handed back to the heap allocator.

Whenever an allocation is mentioned, you should be aware that memory allocation policies
differ radically among various implementations. However, it is generally true that a heap
allocation (or deallocation) that translates to a system call is more expensive than most of the
other constant costs. “Amortized” cost is averaged over the life of the collection. Any
individual action may have a higher or lower cost than the amortized value.

Appendix A. Choosing A Collection 237

20.2.1 RWGVector, RWGBitVec, RWTBitVec<size>, RWTPtrVector, and
RWTValVector

operation time cost space cost
Insert at an end C 0

Insert in middle C 0

Find (average item) N/2 0

Change/replace item C 0

Remove first C 0

Remove last C 0

Remove in middle C 0

Container overhead Mt + 0

Comments Simple wrapper around an array of T
(except bitvec: array of byte)

Resize only if told
to.

20.2.2 Singly Linked Lists

operation time cost; space cost
Insert at an end C t + p

Insert in middle C (assumes that you have an
iterator in position)

t + p

Find (average item) N/2 0

Change/replace
item

C 0

Remove first C t + p (recovered)

Remove last C t + p (recovered)

Remove in middle C (assumes that you have an
iterator in position)

t + p (recovered)

Container overhead (2p+i) + N(t+p)

Comments Allocation with each insert
Iterators go forward only

Grows or shrinks with each item.
Smaller than doubly-linked list

Key to the comparison tables

N M t i p C

count of
items

count of space for
items

sizeof
(item)

sizeof
(int)

sizeof
(void*)

a constant

Appendix A. Choosing A Collection 238

20.2.3 Doubly Linked Lists

operation time cost; space cost
Insert at an end C t + 2p

Insert in middle C (assumes that you have an
iterator in position)

t + 2p

Find (average item) n/2 0

Change/replace
item

C 0

 Remove first C t + 2p (recovered)

Remove last C t + 2p (recovered)

Remove in middle C (assumes that you have an
iterator in position)

t + 2p (recovered)

Container overhead (2p+i) + N(t+2p)

Comments Allocation with each insert
Iterate in either direction

Grows or shrinks with each item
Larger than Slist

20.2.4 Ordered Vectors

operation time cost; space cost
Insert at end C (amortized) t (amortized)

Insert in middle N/2 t (amortized)

Find (average item) N/2 0

Change/replace
item

C 0

 Remove first N 0

Remove last C 0

Remove in middle N/2 0

Container overhead (Mt+ p + 2i) + 0

Comments No iterators (use size_t index)
Allocation only when the
vector grows.

Expands as needed by adding
space for many entries at once.
Shrinks only via resize()

Key to the comparison tables

N M t i p C

count of
items

count of space for
items

sizeof
(item)

sizeof
(int)

sizeof
(void*)

a constant

Appendix A. Choosing A Collection 239

20.2.5 Sorted Vectors

operation time cost; space cost
Insert logN + N/2 (average) t (amortized)

Find (average item) logN 0

Change/replace
item

N 0

Remove first N 0

Remove last C 0

Remove in middle N/2 0

Container
overhead

(Mt + p + 2i) + 0

Comments Insertion happens based on sort
order.
No iterators (use size_t index)
replace requires remove/add

sequence to maintain sorting
Allocation only when the vector
grows.

Expands as needed by adding
space for many entries at once.
Shrinks only via resize()

20.2.6 Stacks and Queues

operation time cost; space cost
Insert at end C t + p

 Remove (pop) C t + p (recovered)

Container overhead (2p+i) + N(t+p)

Comments: Implemented as singly -linked list.
Templatized version allows choice of

container: time and space costs will
reflect that choice.

Key to the comparison tables

N M t i p C

count of
items

count of space for
items

sizeof
(item)

sizeof
(int)

sizeof
(void*)

a constant

Appendix A. Choosing A Collection 240

20.2.7 Deques

operation time cost; space cost
Insert at end C t (amortized)

Find (average item) N/2 0

Change/replace
item

C 0

 Remove first C t (amortized, recovered)

Remove last C t (amortized, recovered)

Remove in middle N/2 t (amortized, recovered)

Container overhead (Mt + p + i) + 0

Comments Implemented as circular queue
in an array.

Allocation only when collection
grows

Expands and shrinks as needed,
caching extra expansion room
with each increase in size

20.2.8 Binary Tree

operation time cost; space cost
Insert logN+C 2p+t

Find (average item) logN 0

Change/replace
item

2(logN + C) 0

 Remove first logN + C 2p+t (recovered)

Remove last logN + C 2p+t (recovered)

Remove in middle logN + C 2p+t (recovered)

Container overhead (p+i) + N(2p+t)

Comments Insertion happens based on sort
order.

Allocation with each insert
Replace requires remove/add

sequence to maintain order
Does not automatically remain

balanced. Numbers above
assume a balanced tree.

Costs same as doubly linked list
per item

Key to the comparison tables

N M t i p C

count of
items

count of space for
items

sizeof
(item)

sizeof
(int)

sizeof
(void*)

a constant

Appendix A. Choosing A Collection 241

20.2.9 (multi)map and (multi)set family

operation time cost; space cost
Insert logN+C 2p+t

Find (average item) logN 0

Change/replace item 2(logN+C) or C 0

 Remove first logN (worst case) 2p+t (recovered)

Remove last logN (worst case) 2p+t (recovered)

Remove in middle logN (worst case) 2p+t (recovered)

Container overhead re-balance may occur at each insert or
remove

(3p+i) +
N(2p+t)

Comments Insertion happens based on sort order.
Allocation with each insert
Replace for sets requires

remove/insert. For maps the value
is copied in place.

implemented as balanced (red-black)
binary tree.

Key to the comparison tables

N M t i p C

count of
items

count of space for
items

sizeof
(item)

sizeof
(int)

sizeof
(void*)

a constant

Appendix A. Choosing A Collection 242

20.2.10 RWBTree, RWBTreeDictionary32

operation time cost; space cost
Insert logN+C 2p + t + small (fully amortized)

Find (average item) logN 0

Change/replace item 2logN+2 or C 0

Remove first 2logN(log 2(ORDER))+C

(worst case)
2p+t (recovered)

Remove last 2logN(log 2(ORDER))+C

(worst case)
2p+t (recovered)

Remove in middle 2logN(log 2(ORDER))+C (worst
case)

2p+t (recovered)

Container overhead Re-balance may occur at each
insert or remove. However it
will happen less often than for a
balanced binary tree.

This depends on how fully the
nodes are packed. Each node
costs ORDER(2p+t+1)+i and
there will be no more than
2N/ORDER, and no fewer than
min(N/ORDER,1) nodes.
Inserting presorted items will
tend to maximize the size.
Sedgewick says the size is close
to 1.44 N/ORDER for random data

Comments Insertion based on sort order.
The logarithm is approximately

base ORDER which is the splay
of the b-tree. (In fact the base
is between ORDER and 2ORDER

depending on the actual
loading of the b-tree)

Replace for b-tree requires
remove then insert. For
btreedictionary the value is
copied in place

32 RWBTreeOnDisk has complexity similar to RWBTreeDictionary, but the time
overhead is much greater since “following linked nodes” becomes “disk seek;” and
the size overhead has a much greater impact on disk storage than on core memory.

Appendix A. Choosing A Collection 243

20.2.11 Hash-based Collections33

operation time cost; space cost
Insert C p+t

Find (average
item)

C 0

Change/replace
item

C or 2C 0

 Remove C p+t (recovered)

Container
overhead

((M+2)p+i) + N(p+t) (1)
(Mp+(2p+i)b_used) +

N(p+t) (2)
1: standard compliant version
2: b_used is “number of used
slots” for the “V6.1” hashed
collections

Comments Insertion happens based on the
hashing function.

Constant time costs assume
that the items are well
scattered in the hash slots.
Worst case is linear in the
number of items per slot.

Replace for dictionary or map:
The new value is copied in
place. Otherwise, requires
remove then insert.

Does not automatically resize.
We recommend that the number
of items be between one half
and double the number of slots
for most uses.

33 RWSet and RWIdentitySet as well as collections with “Hash” in their names.

Key to the comparison tables

N M t i p C

count of
items

count of space for
items

sizeof
(item)

sizeof
(int)

sizeof
(void*)

a constant

A p p e n d i x B.
Typedefs and Macros

Appendix B. Typedefs and Macros 246

Constants:

#define FALSE 0 // RWBoolean value (defs.h)
#define TRUE 1 // RWBoolean value (defs.h)
#define rwnil 0 // nil pointer (defs.h)
#define RWTOOLS 0x700 // (The actual current version

// number) (tooldefs.h)
const RWoffset RWNIL = -1L; // “no offset” in an RWFile

// (defs.h)
const size_t RW_NPOS = ~(size_t)0; // “not found” as index into

// array (defs.h)

Typedefs:

typedef unsigned short RWClassID; // (defs.h)
//

Unique for each
class

typedef int RWBoolean; // (defs.h) TRUE or FALSE
typedef unsigned char RWByte; // (defs.h) Bitflag atomic
typedef RWCollectable* RWCollectableP // (tooldefs.h)

//
Needed for
tokenizing

typedef unsigned short RWErrNo // (defs.h)
//

Used in error
handler

typedef long RWoffset; // (tooldefs.h)
//

Used for file
offsets

typedef unsigned long RWspace; // (tooldefs.h)
//

Used for file
records

typedef long RWstoredValue; // (tooldefs.h)
//

Used for file
offsets

typedef void* RWvoid; // (tooldefs.h)
//

For arrays of
void*'s

Pointers to Functions:

typedef void (*RWapplyCollectable) (RWCollectable*, void*);
typedef void (*RWapplyGeneric) (void*, void*);
typedef void (*RWapplyKeyAndValue) (RWCollectable*,

 RWCollectable*, void*);
typedef void (*RWauditFunction) (unsigned char, void*);
typedef void (*RWdiskTreeApply) (const char*,

 RWstoredValue, void*);
typedef int (*RWdiskTreeCompare) (const char*, const char*,

 size_t);
typedef RWBoolean (*RWtestGeneric) (const void*, const void*);
typedef RWBoolean (*RWtestCollectable) (const RWCollectable*,

 const void*);
typedef RWBoolean (*RWtestCollectablePair) (const RWCollectable*,

 constRWCollectable*,void*);
typedef RWCollectable* (*RWuserCreator) ();

Enumerations:

enum RWSeverity {RWWARNING, RWDEFAULT, RWFATAL}

The following modify the behavior of member functions or constructors for the classes
involved. The value in bold font is the default.

RWCString::enum stripType {leading, trailing ,both} // where to strip
// characters

RWCString::enum caseCompare { exact , ignoreCase} // ignore case during
// comparison

Appendix B. Typedefs and Macros 247

RWCString::enum scopeType { one , all} // replace how many
// substrings

RWBTreeOnDisk::enum styleMode { V6Style , V5Style} // file format
RWBTreeOnDisk::enum createMode { autoCreate , create} //(reuse,make new)

// btree in file
RWeostream::enum Endian { LittleEndian,

 BigEndian, HostEndian } // constructor
// argument

RWLocale::enum CurrSymbol { NONE, LOCAL, INTL } // used in “asString”
// methods.

RWWString::enum stripType {leading, trailing ,both} // where to strip
// characters

RWWString::enum caseCompare { exact , ignoreCase} // ignore case
// during comparison

RWWString::enum scopeType { one , all} // replace how many
// substrings

Tools.h++ Public Macros

These macros are defined to be used by programmers as part of the Tools.h++ API.

In file collect.h

// Macro bodies are removed. See RWcollectable in Class Reference
//and User's Guide.
#define RWDECLARE_ABSTRACT_COLLECTABLE(className)
#define RWDEFINE_ABSTRACT_COLLECTABLE(className)
#define RWDECLARE_COLLECTABLE(className)
#define RWDEFINE_COLLECTABLE(className,id)
#define RWDEFINE_NAMED_COLLECTABLE(className,str)

In file defs.h

// Defined as shown when RWDEBUG is defined, otherwise defined to nothing.
#define RWPOSTCONDITION(a) assert((a) != 0)
#define RWPRECONDITION2(a,b) assert((a) != 0)
#define RWPOSTCONDITION2(a,b) assert((a) != 0)
#define RWPRECONDITION2(a,b) assert((b, (a) !=0))
#define RWPOSTCONDITION2(a,b) assert((b, (a) !=0))
#define RWASSERT(a) assert((a) != 0)

In file edefs.h

// Macro bodies removed. See section on persistence.
#define RWDECLARE_PERSISTABLE_IO(CLASS,ISTR,OSTR)
#define RWDECLARE_PERSISTABLE_TEMPLATE_IO(TEMPLATE, ISTR, OSTR)
#define RWDECLARE_PERSISTABLE_TEMPLATE_IO_2(TEMPLATE, ISTR, OSTR)
#define RWDECLARE_PERSISTABLE_TEMPLATE_IO_3(TEMPLATE, ISTR, OSTR)
#define RWDECLARE_PERSISTABLE_TEMPLATE_IO_4(TEMPLATE, ISTR, OSTR)
#define RWDECLARE_PERSISTABLE(CLASS)
#define RWDECLARE_PERSISTABLE_TEMPLATE(TEMPLATE)
#define RWDECLARE_PERSISTABLE_TEMPLATE_2(TEMPLATE)
#define RWDECLARE_PERSISTABLE_TEMPLATE_3(TEMPLATE)
#define RWDECLARE_PERSISTABLE_TEMPLATE_4(TEMPLATE)

In file epersist.h

// Macro bodies removed. See section on persistence.
#define RWDEFINE_PERSISTABLE_IO(CLASS,ISTR,OSTR)
#define RWDEFINE_PERSISTABLE_TEMPLATE_IO(TEMPLATE,ISTR,OSTR)
#define RWDEFINE_PERSISTABLE_TEMPLATE_IO_2(TEMPLATE,ISTR,OSTR

Appendix B. Typedefs and Macros 248

#define RWDEFINE_PERSISTABLE_TEMPLATE_IO_3(TEMPLATE,ISTR,OSTR)
#define RWDEFINE_PERSISTABLE_TEMPLATE_IO_4(TEMPLATE,ISTR,OSTR)
#define RWDEFINE_PERSISTABLE(CLASS)
#define RWDEFINE_PERSISTABLE_TEMPLATE(TEMPLATE)
#define RWDEFINE_PERSISTABLE_TEMPLATE_2(TEMPLATE)
#define RWDEFINE_PERSISTABLE_TEMPLATE_3(TEMPLATE)
#define RWDEFINE_PERSISTABLE_TEMPLATE_4(TEMPLATE)

In file strmshft.h

// Convenience macros.
#define RW_PROVIDE_DVSTREAM_INSERTER(DerivedOstream,vstreamable)
#define RW_PROVIDE_DVSTREAM_EXTRACTOR(DerivedIstream,vstreamable)

In files tphasht.h, tvhasht.h, tphdict.h, tvhdict.h, tphmmap.h, tvhmmap.h, tphset.h,
tvhset.h

// Useful when writing code portable between “current”
// and “ANSI-compliant” compilers
// See templates.
#define RWDefHArgs(T) ,RWTHasher<T>,equal_to<T>

In files tpsrtvec.h, tvsrtvec.h

// Useful when writing code portable between “current”
// and “ANSI-compliant” compilers
// See templates.
#define RWDefCArgs(T) ,less<T>

Standard Smalltalk Interface
(activated by defining RW_STD_TYPEDEFS):

typedef RWBag Bag;
typedef RWBagIterator BagIterator;
typedef RWBinaryTree SortedCollection;
typedef RWBinaryTreeIterator SortedCollectionIterator;
typedef RWBitVec BitVec
typedef RWCollectable Object; // All-too-common type!
typedef RWCollectableDate Date;
typedef RWCollectableInt Integer;
typedef RWCollectableString String;
typedef RWCollectableTime Time;
typedef RWCollection Collection;
typedef RWHashDictionary Dictionary;
typedef RWHashDictionaryIterator DictionaryIterator;
typedef RWIdentityDictionary IdentityDictionary;
typedef RWIdentitySet IdentitySet;
typedef RWOrdered OrderedCollection;
typedef RWOrderedIterator OrderedCollectionIterator;
typedef RWSequenceable SequenceableCollection;
typedef RWSet Set;
typedef RWSetIterator SetIterator;
typedef RWSlistCollectables LinkedList;
typedef RWSlistCollectablesIterator LinkedListIterator;
typedef RWSlistCollectablesQueue Queue;
typedef RWSlistCollectablesStack Stack;

A p p e n d i x C.
Messages

Appendix C. Messages 250

Error messages are created by the macro DECLARE_MSG in files coreerr.cpp and toolerr.cpp .

Table C-1. Core messages.
These are messages used by all Rogue Wave libraries. The symbols are defined in <rw/coreerr.h>.

These messages belong to category "rwcore7.0".

Symbol Message

CORE_EOF "[EOF] EOF on input"

CORE_GENERIC "[GENERIC] Generic error number %d; %s"

CORE_INVADDR "[INVADDR] Invalid address: %lx"

CORE_LOCK "[LOCK] Unable to lock memory"

CORE_NOINIT "[NOINIT] Memory allocated without being
initialized"

CORE_NOMEM "[NOMEM] No memory"

CORE_OPERR "[OPERR] Could not open file %s"

CORE_OUTALLOC "[OUTALLOC] Memory released with allocations
still outstanding"

CORE_OVFLOW "[OVFLOW] Overflow error -> \"%.*s\" <- (%u max
characters)"

CORE_STREAM "[STREAM] Bad input stream"

CORE_SYNSTREAM "[SYNSTREAM] Syntax error in input stream:
expected %s, got %s"

Appendix C. Messages 251

Table C-2. Tools.h++ messages.
 These are messages used by the Tools.h++ library. The symbols are defined in <rw/toolerr.h>. These

messages belong to category "rwtool7.0".

Symbol Message

TOOL_ALLOCOUT "[ALLOCOUT] %s destructor called with
allocation outstanding"

TOOL_BADRE "[BADRE] Attempt to use invalid regular
expression"

TOOL_CRABS "[CRABS] RWFactory: attempting to create
abstract class with ID %hu (0x%hx)"

TOOL_FLIST "[FLIST] Free list size error: expected %ld,
got %ld"

TOOL_ID "[ID] Unexpected class ID %hu; should be %hu"

TOOL_INDEX "[INDEX] Index (%u) out of range [0->%u]"

TOOL_LOCK "[LOCK] Locked object deleted"

TOOL_LONGINDEX "[LONGINDEX] Long index (%lu) out of range [0-
>%lu]"

TOOL_MAGIC "[MAGIC] Bad magic number: %ld (should be %ld)"

TOOL_NEVECL "[NEVECL] Unequal vector lengths: %u versus %u"

TOOL_NOCREATE "[NOCREATE] RWFactory: no create function for
class with ID %hu (0x%hx)"

TOOL_NOTALLOW "[NOTALLOW] Function not allowed for derived
class"

TOOL_READERR "[READERR] Read error"

TOOL_REF "[REF] Bad persistence reference"

TOOL_SEEKERR "[SEEKERR] Seek error"

TOOL_STREAM "[STREAM] Bad input stream"

TOOL_SUBSTRING "[SUBSTRING] Illegal substring (%d, %u) from %u
element RWCString"

TOOL_UNLOCK "[UNLOCK] Improper use of locked object"

TOOL_WRITEERR "[WRITEERR] Write error"

A p p e n d i x D.
Bibliography

Appendix D. Bibliography 254

Ammeraal, L. Programs and Data Structures in C, John Wiley and Sons, 1989, ISBN 0-471-
91751-6.

Barton, John J., and Lee R. Nackman, Scientific and Engineering C++, Addison-Wesley, 1994,
ISBN 0-201-53393-6

Booch, Grady, Object-Oriented Design with Applications, Second Edition, The Benjamin
Cummings Publishing Company, Inc., 1994, ISBN 0-8053-5340-2.

Budd, Timothy, Classic Data Structures in C++, Addison-Wesley, 1993, ISBN 0-201-50889-3.

Budd, Timothy, An Introduction to Object-Oriented Programming, Addison-Wesley, 1991, ISBN
0-201-54709-0.

Carrol, Martin D. and Margaret A. Ellis, Designing and Coding Reusable C++, Addison-Wesley,
1995, ISBN 0-201-51284-X.

Coplien, James O., Advanced C++, Programming Styles and Idioms, Addison-Wesley, 1992,
ISBN 0-201-54855-0.

Eckel, Bruce, C++ Inside and Out, McGraw-Hill, Inc, 1993, ISBN 0-07-881809-5.

Eckel, Bruce, Thinking in C++, Prentice Hall, Inc, 1995, ISBN 0-13-917709-4.

Ellis, Margaret A. and Bjarne Stroustrup, The Annotated C++ Reference Manual, Addison-
Wesley, 1990, ISBN 0-201-51459-1.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns, Addison-
Wesley, 1995, ISBN 0-201-63361-2.

Goldberg, Adele and David Robson, Smalltalk-80, The Language, Addison-Wesley, 1989, ISBN
0-201-13688-0.

Gorlen, Keith, The NIH Class Library, Computer Systems Laboratory, DCRT, National
Institutes of Health, Bethesda, MD 20892.

Gorlen, Keith, Sanford M. Orlow and Perry S. Plexico, Data Abstraction and Object-Oriented
Programming in C++, John Wiley and Sons, 1990, ISBN 0-471-92346 X.

Khoshafian, Setrag and Razmik Abnous, Object orientation: Concepts, Languages, Databases,
User Interfaces, John Wiley and Sons, 1990, ISBN 0-471-51802-6.

Knuth, Donald E., The Art of Computer Programming, Volume 3, Sorting and Searching,
Addison-Wesley, 1973, ISBN 0-201-03803.

Lippman, Stanley B. C++ Primer, Second Edition, Addison-Wesley, 1991, ISBN 0-201-54848-8.

Maguire, Steve, Writing Solid Code, Microsoft Press, 1993, ISBN 1-55615-551-4.

McConnell, Steve, Code Complete, Microsoft Press, 1993, ISBN 1-55615-484-4.

Meyer, Bertrand, Object-oriented Software Construction, Prentice-Hall, 1988, ISBN 0-13-629049-
3.

Meyers, Scott, Effective C++, Addison-Wesley, 1992, ISBN 0-201-56364-9.

Murray, Robert B. C++ Strategies and Tactics, Addison-Wesley, 1993, ISBN 0-201-56382-7.

Appendix D. Bibliography 255

Petzold, Charles, Programming Windows, Microsoft Press, Third Edition, 1992, ISBN 1-55615-
395-3.

Portable Operating System Interface (POSIX), Part 1: System Application Program Interface,
International Standard ISO/IEC 9945-1: 1990, IEEE Std 1003.1-1990,

 ISBN 1-55937-061-0.

Portable Operating System Interface (POSIX), Part 2: Shell and Utilities, Vol. 1, International
Standard ISO/IEC 9945-2: 1993, ANSI/IEEE Std 1003.2-1992, ISBN 1-55937-255-9.

Pree, Wolfgang, Design Paterns for Object-Oriented Software Development, Addison-Wesley,
1994, ISBN 0-201-42294-8.

Sedgewick, Robert. Algorithms in C++, Addison-Wesley, 1990, ISBN 0-201-51059-6.

Stroustrup, Bjarne. The C++ Programming Language, Second Edition, Addison-Wesley, 1991,
ISBN 0-201-53992-6.

Stroustrup, Bjarne. The Design and Evlolution of C++, Addison-Wesley, 1994, ISBN 0-201-
54330-3.

Taligent, Inc. Taligent’s Guide to Designing Programs, Taligent Press, 1994, ISBN 0-201-40888-0.

Working Paper for Draft Proposed International Standard for Information Systems—Programming
Language C++, DOC No. X3J16/96-0018, WG21/NO836, Date: 26 January 1996,
Accredited Standards Committee X3, Information Processing Systems, operating
under the procedures of the American National Standards Institute (ANSI).

Index

 Index 258

Abstract base classes, 13

ADT. See Abstract data types

Apply functions, 104, 117

apply(), 104, 117

Bag

overview, 112

begin(), 87

Binary files

Borland C++, 47

binaryStoreSize(), 174

Borland C++

binary mode, 47

B-Tree

disk based, 60

caseCompare

enum, 26

clear(), 118

clearAndDestroy(), 118

Clipboard, 47

collection class

iterator functions, 87

Collection classes

dictionary, 113

generic

declaration, 101

user-defined functions, 102

hashing, 120

persistence, 175

retrieving objects, 69

selection, 119

virtual functions, 113

comparator

implementation, 84

total ordering, 83

comparators, 83

Compares equal, 70

compareTo(), 168

Concrete classes, 12

Constants, 246

contains(), 114

Copy constructor, 68, 213

Copy on write, 213

COW. See Copy on write

create functions, 165, 176

Currency

internationalization, 192

Dates

internationalization, 187

Daylight Savings Time, 189

DDE, 47

example, 48

Debugging, 201

Deep copy, 68

default constructor, 164

designing a class

isomorphic persistence, 133

troubleshooting, 138

destructor

RWCollectable, 170

Dictionary, 113

template

example, 93

 Index 259

DLL, 204

Dynamic Data Exchange. See DDE

Dynamic Link Library. See DLL

Eight-bit clean, 18

Embedded nulls, 31

end(), 87

entries(), 114

Enumerations, 246, 247

equalitors, 85

Errors

changing the default handler, 200

external, 199

internal, 197

non-recoverable, 197

recoverable, 198

Exceptions, 200

hierarchy, 200

Extended UNIX Code, 31

FALSE, 246

find(), 114

Gregorian calendar, 36

hash functor, 85

hash(), 120, 170

Hashing collections

overview, 112

strategy, 120

Imbuing, 186

Indexing, 18

insert(), 114

Internationalization

currency, 192

dates, 187

eight-bit clean, 18

embedded nulls, 18

localizing messages, 185

Numbers, 191

time, 188

iostream facility, 44

isA(), 166

isEmpty(), 114

isEqual, 70, 169

isomorphic persistence, 128, 129, 133

example, 132, 143

isSame, 70

iterator

typedef, 87

Iterators, 71, 86

reset(), 71

validity, 72

Kesey, 181

Localization

messages, 185

Macros. See Preprocessor macros

Memory allocation

responsibility, 16

Messages

localizing, 185

migration, 95

morphology, 125

Multibyte character sets, 184

and RWCStrings, 31

Multiple inheritance, 70, 222

Multi-thread, 17

new, 16

 Index 260

newSpecies(), 167

Null pointer

persistence, 222

Numbers

internationalization, 191

occurrencesOf(), 114

operator<<

polymorphic persistence, 148

operator>>

polymorphic persistence, 148

Persistence, 14, 124

choosing the operator, 154

isomorphic persistence, 128

multiply-referenced objects, 174

nil pointer, 222

simple persistence, 125

technical discussion, 219

to RWFiles, 50

troubleshooting, 154

polymorphic persistence, 147, 163

example, 149

how to add, 171

operator<<, 148

operator>>, 148

Postconditions, 201

Preconditions, 201

Preprocessor

macros, 246

previous version of Tools.h++, 96

recursiveStoreSize(), 174

Reference counting, 213

Reference semantics, 68, 78

Regular expressions, 27, 28

remove(), 116

removeAndDestroy(), 116

reRestoreGuts()

defining, 141

restore table, 131

restoreGuts(), 171

defining, 173

RW_NPOS, 18, 27, 246

RWapplyCollectable, 246

RWapplyGeneric, 246

RWapplyKeyAndValue, 246

RWBag, 112

RWBinaryTree, 110

RWbistream

example, 46

RWBoolean, 246

RWbostream

example, 46

RWBoundsErr, 200

RWClassID, 246

reserved numbers, 166

RWCollectable

and multiple inheritance, 222

default constructor, 164

designing, 162

destructor, 170

virtual functions, 167

RWCollectableString, 110

RWCString

caseCompare, 26

embedded nulls, 31

 Index 261

input / output, 28

multibyte strings, 31

pattern matching, 27

RWCSubString, 26

RWCTokenizer, 30

RWDDEstreambuf

example, 48

RWDEBUG, 201

RWDECLARE_PERSISTABLE, 135

RWDefCArgs(T), 92

RWDefHArgs(T), 91

RWDEFINE_COLLECTABLE, 165

RWDEFINE_COLLECTABLE(), 176

RWDEFINE_NAMED_COLLECTABLE,
165

RWDEFINE_PERSISTABLE, 136

RWDEFINITION_MACRO, 166, 176

RWdiskTreeCompare, 246

RWExternalErr, 200

RWFactory, 176

RWFile, 50

RWFileErr, 200

RWFileManager

use with RWBTreeOnDisk, 60

RWHashTable, 112

RWInternalErr, 200

RWLocale, 186

rwnil, 246

RWnilCollectable, 114

RWoffset, 246

rwRestoreGuts, 139, 141

rwSaveGuts, 139, 140

rwSaveGuts()

defining, 140

RWSequenceable, 113

virtual functions, 119

RWSet, 112

RWspace, 246

RWstoredValue, 60, 246

RWStreamErr, 200

RWtestCollectable, 246

RWtestGeneric, 246

RWTOOLS, 18

RWuserCreator, 246

RWvios, 44

RWvistream, 44

inheriting from, 45

RWvoid, 246

RWvostream, 44

inheriting from, 45

RWWString, 32

RWxalloc, 200

RWxmsg, 200

RWZone, 186

save table, 130

saveGuts(), 171

defining, 171

select(), 119

Sequenceable, 113

Set

overview, 112

Shallow copy, 68

simple persistence, 125

example, 126, 127

 Index 262

Size

binary store, 15

Smalltalk

typedefs, 248

SortedCollection, 110

Standard C++ Library, 5, 79

containers, 80

iterators, 86

Storing and retrieving. See Persistence

Stream I/O

imbuing, 186

memory based, 47

streambufs

Windows specializing, 47

String

input / output, 28

regular expressions, 27, 28

searches, 27

tokens, 30

wide character, 32

conversion, 32

strXForm(), 184

templates, 76

Tester functions, 102

theFactory

one of a kind global, 176

Time

Daylight Savings, 189

internationalization, 188

Time zone

setting, 40

Tools.h++

Philosophy, 4

Tools.h++ version 6

migration from, 95

troubleshooting

persistence, 154

TRUE, 246

Typedefs, 246

Smalltalk, 248

Value semantics, 68, 78

Version

current, 18

virtual functions, 171

saveGuts() and restoreGuts(), 171

virtual streams, 44

specializing, 45

with DOS binary, 47

Wide character, 184

Wide character string. See String, wide
character

Windows

Clipboard, 47

DDE, 47

example, 48

xalloc, 200

xmsg, 200

 Index 263

	Title
	Contents
	About Tools.h++
	Overview and Features of Tools.h++
	Tools.h++ and the C++ Philosophy
	Tools.h++ and the Standardization of C++
	Harnessing the Standard
	What We Didn't Do

	Reading This Manual
	Special Conventions

	Rogue Wave Professional Training
	On-line Documentation
	Technical Support
	How to Contact Technical Support

	Class Overview
	Concrete Classes
	Simple Classes
	Template-based Collection Classes
	Generic Collection Classes

	Abstract Base Classes
	Smalltalk-like Collection Classes
	Common Member Functions
	Persistence
	Store Size
	Stream I/O
	Comparisons

	Memory Allocation and Deallocation
	Information Flow
	Multithread Safe
	Eight-bit Clean
	Embedded Nulls
	Indexing
	Version

	Using the String Classes
	An Introductory Example
	Lexicographic Comparisons
	Substrings
	Pattern Matching
	Simple Regular Expressions
	Extended Regular Expressions

	String I/O
	iostreams
	Virtual Streams

	Tokenizer
	Multibyte Strings
	Wide Character Strings

	Using Class RWDate
	Example
	Constructors

	Using Class RWTime
	Setting the Time Zone
	Constructors
	Member Functions

	Using Virtual Streams
	Specializing Virtual Streams
	Simple Example
	Windows Clipboard and DDE Streambufs
	DDE Example
	RWAuditStreamBuffer
	Recap

	Using Class RWFile
	Example

	Using Class RWFileManager
	Construction
	Member Functions

	Using Class RWBTreeOnDisk
	Construction
	Example

	Collection Classes
	Storage Methods of Collection Classes
	A Note on Memory Management

	Copying Collection Classes
	Copying Reference-based Collection Classes
	Copying Value-based Collection Classes

	Retrieving Objects in Collections
	Retrieval Methods

	Iterators in Collection Classes
	Traditional Tools.h++ Iterators

	Collection Class Templates
	Introduction
	Template Overview
	Template Naming Convention
	Value vs. Reference Semantics in Templates
	Intrusive Lists in Templates

	Tools.h++ Templates and the Standard C++ Library
	Standard C++ Library Not Required
	The Standard C++ Library Containers
	Commonality of Interface

	Parameter Requirements
	Comparators
	More on Total Ordering

	Hash Functors and Equalitors
	Iterators
	Standard C++ Library Iterators
	Map-Based Iteration and Pairs
	Iterators as Generalized Pointers

	Iterators and the std() Gateway
	The Best of Both Worlds
	Using Templates Without the Standard Library
	Keeping the Standard C++ Library in Mind for Portability
	An Example
	Another Example

	Migration Guide: For Users of Previous Versions of Tools.h++

	Generic Collection Classes
	Example
	Declaring Generic Collection Classes
	User-Defined Functions
	Tester Functions
	Apply Functions

	Smalltalk-Like Collection Classes
	Tables of the Smalltalk-like Classes
	Example
	Choosing a Smalltalk-like Collection Class
	Bags Versus Sets Versus Hash Tables
	Sequenceable Classes
	Dictionaries

	Virtual Functions Inherited From RWCollection
	insert()
	find() and Friends
	remove() Functions
	apply() Functions
	Functions clear() and clearAndDestroy()

	Other Functions Shared by All RWCollections
	Class Conversions
	Inserting and Removing Other Collections
	Selection

	Virtual Functions Inherited from RWSequenceable
	A Note on How Objects are Found
	Hashing

	Persistence
	Levels of Persistence
	A Note About Terminology
	About the Examples in this Section

	No Persistence
	Simple Persistence
	Two Examples of Simple Persistence

	Isomorphic Persistence
	Isomorphic versus Simple Persistence
	Isomorphic Persistence of a Tools.h++ Class
	Designing Your Class to Use Isomorphic Persistence
	Writing rwSaveGuts and rwRestoreGuts Functions
	Isomorphic Persistence of a User-designed Class

	Polymorphic Persistence
	Operators
	Designing your Class to Use Polymorphic Persistence
	Polymorphic Persistence Example

	A Few Friendly Warnings
	Always Save an Object by Value before Saving the Identical Object by Pointer
	Don't Save Distinct Objects with the Same Address
	Don't Use Sorted RWCollections to Store Heterogeneous RWCollectables
	Define All RWCollectables That Will Be Restored

	Designing an RWCollectable Class
	Why Design an RWCollectable Class?
	An Example of RWCollectable Classes

	How to Create an RWCollectable Object
	Define a Default Constructor
	Add RWDECLARE_COLLECTABLE() to your Class Declaration
	Provide a Class Identifier for Your Class
	Add Definitions for Virtual Functions
	Object Destruction
	How to Add Polymorphic Persistence
	A Note on the RWFactory

	Summary

	Internationalization
	Localizing Alphabets with RWCString and RWWString
	Localizing Messages
	Challenges of Localizing Currencies, Numbers, Dates, and Times..
	RWLocale and RWZone
	Dates
	Time
	Numbers
	Currency
	A Note on Setting Environment Variables

	Error Handling
	The Tools.h++ Error Model
	Internal Errors
	Non-recoverable Internal Errors
	Recoverable Internal Errors

	External Errors
	Exception Architecture
	Error Handlers

	The Debug Version of Tools.h++

	Advanced Topics
	Dynamic Link Library
	The DLL Example

	Copy on Write
	A More Comprehensive Example

	RWStringID
	Duration of Identifiers
	Programming with RWStringIDs
	Implementation Details of RWStringID

	More on Storing and Retrieving RWCollectables
	Multiple Inheritance

	Common Mistakes
	Redefinition of Virtual Functions
	Iterators
	Return Type of operator>>()
	Avoid Persisting Value Collections of Pointers
	Include Path
	Match Memory Models and Other Qualifiers
	Keep Related Methods Consistent
	DLL
	Use the Capabilities of the Library!

	Choosing A Collection
	Selecting a Tools.h++ Collection Class
	How to Use the Decision Tree
	Additional Selection Criteria

	Time and Space Considerations
	RWGVector, RWGBitVec, RWTBitVec<size>, RWTPtrVector, and RWTValVector
	Singly Linked Lists
	Doubly Linked Lists
	Ordered Vectors
	Sorted Vectors
	Stacks and Queues
	Deques
	Binary Tree
	(multi)map and (multi)set family
	RWBTree, RWBTreeDictionary
	Hash-based Collections

	Typedefs and Macros
	Messages
	Bibliography
	Index

