
U25437-J-Z145-1-7600 1

Preface
The C/C++ development system CDS++ provides you with C++ class libraries for data-
stream-oriented I/O and complex mathematics that are compatible to Cfront V3.0.3. The
Cfront C++ libraries were last released with the SNI C++ V3.1 B/C (Reliant UNIX) compiler.

The Cfront C++ classes for complex mathematics (libcomplex.a or
libcomplex.so library) and stream-oriented I/O (libC.a or libC.so library) are available if the
program is compiled and linked in the Cfront C++ mode of the CDS++ compiler (-X d
option).

The Cfront C++ classes for stream-oriented I/O also currently function as the I/O interface
in the ANSI C++ modes of the CDS++ compiler (-X w, -X e options) since the standard I/O
in conformance with ANSI/ISO C++ will not be available until a later version of the CDS ++
development system. The modules are integrated in the standard C++ libraries libCstd.a
and libCstd.so.

A thread-safe version of all libraries is also available. These can only be used in conjunction
with the thread package of the product DCE (Reliant UNIX) as of V2.0.

2 U25437-J-Z145-1-7600

Preface

Notational conventions

In this manual the following conventions are used for statement formats and user entries.

italics Commands, invariable file names and other constant terms; for
example the names of files, parameters, etc.

constant width In format specifications: sample names for files, parameters, etc.
In examples: input and output on screen

$ System prompt, ready for user entries

The syntax requires at least one blank character

[] Entries enclosed in square brackets may be omitted

Important information

 {...|...} One of the alternatives separated by the | character(s) must be
specified

i

U25437-J-Z145-1-7600 3

Complex math classes and functions

The following description applies only to the Cfront C++ language mode of the
CDS++ compiler.
Please refer to the "Standard C++ Library" manual for a description of the interfaces
available for complex mathematics (<complex>) in conformance with ANSI/ISO
C++ in the ANSI C++ modes.

cplxintro - Introduction to complex mathematics

The complex math library libcomplex.a contains classes, functions, and operators to process
data of the user-defined type complex in C++ programs.

The complex math library libcomplex.a must be specified explicitly, by means of the
-l complex option at the time of compilation or linkage. Depending on which parts of the
library are being used for complex math, it will also be necessary to link in the C math library
libm.a. This is done by entering the option -l m at the end of the call to CC:

$ CC code.C -lcomplex -l m

 Declarations for complex math functions are contained in the header file complex.h. This file
can be included in the program using the preprocessor directive #include as shown below:

#include <complex.h>
class complex;

The complex math library implements the data type for complex numbers in the class
complex. This is achieved by overloading the usual input, output, arithmetic, assignment,
and comparison operators to work with complex numbers. These operators are discussed
in the cplxops section (page 11).

Besides the above operators, standard math functions such as exponential, logarithmic,
power, and square root functions (see cplxexp), and trigonometric functions such as sine,
cosine, hyperbolic sine, and hyperbolic cosine (see cplxtrig) are also overloaded. Routines
to convert between Cartesian and Polar coordinate systems are discussed in the cplxcartpol
section. Error handling is described under cplxerr.

i

4 U25437-J-Z145-1-7600

cplxintro Complex math

RETURN VALUES
Functions in the complex math library may return the conventional value pairs (0, 0),
(0, ±HUGE), (±HUGE, 0), or (±HUGE, ±HUGE), when the function is undefined for the given
arguments or when the value is not representable. (HUGE is the largest-magnitude single-
precision floating point number and is defined in the file math.h. The header file math.h is
included in the file complex.h.) In these cases, the external variable errno (see
“Programmer’s Reference Manual”) is set to the value EDOM or ERANGE.

FILES
complex.h
libcomplex.a

EXAMPLE
The following program fragment in cplxin.C declares a complex variable, initializes it, and
then outputs its value:

#include <stream.h>
#include <complex.h>

int main()
{
 complex c(1.0, 1.0);
 cout << "The complex number is " << c << "\n";
 return 0;
}

Compile cplxin.C with the command:

$ CC -X d cplxin.C -l complex

Run the compiled program with:

$ a.out

The complex number is (1,1)

Note that the operator << is overloaded for data type complex so that complex numbers can
be printed easily.

SEE ALSO
cplxcartpol (page 5), cplxerr (page 7), cplxexp (page 9), cplxops (page 11),
cplxtrig (page 14)

U25437-J-Z145-1-7600 5

Complex math cplxcartpol

cplxcartpol - Cartesian/Polar functions

This section describes the complex functions used for conversions between Cartesian and
Polar coordinate systems.

#include <complex.h>

class complex
{
public:

friend double abs(complex);
friend double arg(complex);
friend complex conj(complex);
friend double imag(const complex&);
friend double norm(complex);
friend complex polar(double, double = 0.0);
friend double real(const complex&);
/* other declarations */

};

The following functions are defined for the data type complex:

abs(complex x)
Returns the absolute value or magnitude of x.

arg(complex x)
Returns the angle of x, measured in radians in the range −π to +π.

conj(complex x)
Returns the complex conjugate of x. If x is specified in the form (real, imag), then conj(x)
is (real, -imag).

imag(complex x)
Returns the imaginary part of x.

norm(complex x)
Returns the square of the magnitude of x, and is intended for comparison of magni-
tudes. complex::norm() is faster than complex::abs(), but is more likely to cause an
overflow error.

polar(double m, double a=0.0);
Given a pair of polar coordinates, magnitude m, and angle a measured in radians, in the
range −π to +π.

6 U25437-J-Z145-1-7600

cplxcartpol Complex math

real(complex x)
Returns the real part of x.

EXAMPLE
The following program fragment in cplxcartpol.C converts a complex number to the Polar
coordinate system and then prints it:

#include <stream.h>
#include <complex.h>

 main ()
 {
 complex d;
 d = polar (10.0, 0.7);
 cout <<real(d)<<" "<<imag(d);
 cout <<"\n";
 return 0;
 }

Compile cplxcartpol.C with the following command:

$ CC -X d -o cplxcartpol cplxcartpol.C -l complex -lm

Run the compiled program with:

$ cplxcartpol

7.64842 6.44218

SEE ALSO
cplxintro (page 3), cplxerr (page 7), cplxexp (page 9), cplxops (page 11),
cplxtrig (page 14)

U25437-J-Z145-1-7600 7

Complex math cplxerr

cplxerr - Error handling functions

This section describes the error handling function implemented in the C++ complex math
library.

#include <complex.h>

static const complex complex_zero(0,0);
class c_exception
{

int type;
char *name;
complex arg1;
complex arg2;
complex retval;

public:
c_exception(char *n, const complex& a1, const complex& a2 = complex_zero);
friend int complex_error(c_exception&);

};

Users may define their own procedures for handling errors, by incorporating a function
named complex_error in their program.

complex_error(c_exception & x)
This is invoked when errors are detected in functions from the complex math library.

In the class c_exception, the element type is an integer describing the type of error that has
occurred; typemust have one of the following values (defined in the header file
<complex.h>):

SING argument singularity

OVERFLOW overflow range error

UNDERFLOW underflow range error

The element name points to a string containing the name of the function that produced the
error. The variables arg1 and arg2 are the arguments with which the function was invoked.
retval is set to the default value that is returned by the function unless the user’s
complex_error sets it to a different value.

If the user’s complex_error function returns a non-zero value, no error message is printed,
and errno is not set.

8 U25437-J-Z145-1-7600

cplxerr Complex math

The C++ error handling routine complex_error only handles errors caused by the use of one
of the following four functions:

complex exp(complex)
complex sinh(complex)
complex cosh(complex)
complex log(complex)

If complex_error is not supplied by the user, the default error handling procedures described
with the complex math functions involved, are invoked upon error. These procedures are
also summarized in the table below. In every case, errno is set to EDOM or ERANGE and
the program continues.

The following abbreviations are used in the table below:

M Message is printed (EDOM error).

(H, 0) (HUGE, 0) is returned.

(±H, ±H) (±HUGE, ±HUGE) is returned.

(0, 0) (0, 0) is returned.

SEE ALSO
cplxintro (page 3), cplxcartpol (page 5), cplxexp (page 9), cplxops (page 11),
cplxtrig (page 14), matherr() in “Programmer’s Reference Manual”

Default error handling procedures

Types of Errors

type SING OVERFLOW UNDERFLOW

errno EDOM ERANGE ERANGE

exp()
real too large or small
imag too large

-
-

(H, H)
(0, 0)

(0, 0)
-

log()
arg = (0, 0) M, (H, 0) - -

sinh()
real too large
imag too large

-
-

(H, H)
(0, 0)

-
-

cosh()
real too large
imag too large

-
-

(H, H)
(0, 0)

-
-

U25437-J-Z145-1-7600 9

Complex math cplxexp

cplxexp - Transcendental functions

This section describes the complex math functions for calculating natural logarithms,
exponentials, square roots, and the value of one argument raised to the power of another
argument.

#include <complex.h>

class complex
{
public:

friend complex exp(complex);
friend complex log(complex);
friend complex pow(double, complex);
friend complex pow(complex, int);
friend complex pow(complex, double);
friend complex pow(complex, complex);
friend complex sqrt(complex);

};

The following overloaded math functions are contained in the complex math library:

exp(complex x)
Returns ex.

log(complex x)
Returns the natural logarithm of x.

pow(complex x, complex y)
Returns xy.

sqrt(complex x)
Returns the square root of x, contained in the first or fourth quadrants of the complex
plane.

RETURN VALUES
exp returns (0.0, 0.0) when the real part of x is so small, or the imaginary part is so large,
as to cause overflow. When the real part is large enough to cause overflow, exp returns the
following values:

– (HUGE, HUGE) if the cosine and sine of the imaginary part of x is > 0;
– (HUGE, -HUGE) if the cosine is > 0 and the sine is ≤ 0;
– (-HUGE, HUGE) if the sine is > 0 and the cosine is ≤ 0;
– (-HUGE, -HUGE) if the sine and cosine are ≤ 0.

10 U25437-J-Z145-1-7600

cplxexp Complex math

In all these cases, errno is set to ERANGE.

The function complex::log() returns (-HUGE, 0.0) and sets errno to EDOM when x is
(0.0, 0.0). A message indicating SING error is printed on the standard error output.
These error handling procedures can be changed with the function complex_error().

EXAMPLE
The following program fragment in cplxexp.C prints a set of complex numbers and their
exponential powers.

#include <stream.h>
#include <complex.h>

main()
{
 complex c;
 for (c = complex(1.0,1.0); real(c) < 4.0; c += complex(1.0,1.0))
 {
 cout<< c<<" "<<exp(c)<<"\n";
 }
 return 0;
}

Compile cplxexp.C with the following command:

$ CC -X d cplxexp.C -l complex -l m

Run the compiled program with:

$ a.out
(1,1) (1.46869, 2.28736)
(2,2) (-3.07493, 6.71885)
(3,3) (-19.8845, 2.83447)

Note that the operator << is overloaded for data type complex so that complex numbers can
be printed easily.

SEE ALSO
cplxintro (page 3), cplxcartpol (page 5), cplxerr (page 7), cplxops (page 11),
cplxtrig (page 14)

U25437-J-Z145-1-7600 11

Complex math cplxops

cplxops - Operators

This section describes the arithmetic, comparison, and assignment operators which are
overloaded for complex numbers. Note that the entire range of mathematical operations is
available for complex objects.

#include <complex.h>

class complex
{
public:

friend complex operator+(complex, complex);
friend complex operator-(complex);
friend complex operator-(complex, complex);
friend complex operator*(complex, complex);
friend complex operator/(complex, complex);
friend int operator==(complex, complex);
friend int operator!=(complex, complex);
void operator+=(complex);
void operator-=(complex);
void operator*=(complex);
void operator/=(complex);

};

The operators have their conventional precedences. In the following descriptions for
complex operators, x, y, and z are variables of class complex.

Arithmetic operators:

z = x + y
Returns a complex which is the arithmetic sum of complex numbers x and y.

z = -x
Returns a complex which is the arithmetic negation of complex number x.

z = x - y
Returns a complex which is the arithmetic difference of complex numbers x and y.

z = x * y
Returns a complex which is the arithmetic product of complex numbers x and y.

z = x / y
Returns a complex which is the arithmetic quotient of complex numbers x and y.

12 U25437-J-Z145-1-7600

cplxops Complex math

Comparison operators:

x == y
Returns a non-zero integer if complex number x is equal to complex number y; returns
0 otherwise.

x != y
Returns a non-zero integer if complex number x is not equal to complex number y;
returns 0 otherwise.

Assignment operators:

x += y
Complex number x is assigned the value of the arithmetic sum of itself and complex
number y.

x -= y
Complex number x is assigned the value of the arithmetic difference of itself and
complex number y.

x *= y
Complex number x is assigned the value of the arithmetic product of itself and complex
number y.

x /= y
Complex number x is assigned the value of the arithmetic quotient of itself and complex
number y.

The above assignment operators do not produce a value that can be used in an
expression. In other words, the following construction is syntactically invalid:

complex x, y, z;
x = (y += z);

The following lines, by contrast:

x = (y + z);
x = (y == z);

are valid.

i

U25437-J-Z145-1-7600 13

Complex math cplxops

EXAMPLE
The following program fragment in cplxops.C defines the complex variables d and c, divides
d by c, and then prints the values of c and d:

#include <stream.h>
#include <complex.h>

main()
{
 complex c,d;
 d = complex(10.0, 11.0);
 c = complex (2.0, 2.0);

 while (norm(c) < norm(d))
 {
 d /= c;
 cout << c << " " <<d << "\n";
 }
 return 0;
 }

Compile cplxops.C with the following command:

$ CC -X d cplxops.C -l complex -l m

Run the compiled program with:

$ a.out
(2, 2) (5.25, 0.25)
(2, 2) (1.375, -1.25)

SEE ALSO
cplxintro (page 9), cplxcartpol (page 5), cplxerr (page 7), cplxexp (page 9),
cplxtrig (page 14)

14 U25437-J-Z145-1-7600

cplxtrig Complex math

cplxtrig - Trigonometric and hyperbolic functions

This section describes the trigonometric and hyperbolic functions for the data type complex.

#include <complex.h>

class complex
{
public:

friend complex sin(complex);
friend complex cos(complex);
friend complex sinh(complex);
friend complex cosh(complex);

};

The following trigonometric functions are defined for complex objects:

sin(complex x)
Returns the sine of x.

cos(complex x)
Returns the cosine of x.

sinh(complex x)
Returns the hyperbolic sine of x.

cosh(complex x)
Returns the hyperbolic cosine of x.

RETURN VALUES
If the imaginary part of x causes an overflow, complex::sinh() and complex::cosh() return the
value (0.0, 0.0). When the real part is large enough to cause an overflow, the functions
complex::sinh() and complex::cosh() return the following values:

– (HUGE, HUGE) if the cosine and sine of the imaginary part of x are ≥ 0;
– (HUGE, -HUGE) if the cosine is ≥ 0 and the sine is < 0;
– (-HUGE, HUGE) if the sine is ≥ 0 and the cosine is < 0.
– (-HUGE, -HUGE) if both sine and cosine are < 0.

In all these cases, errno is set to ERANGE.

These error handling procedures may be changed with the function complex_error() (see
cplxerr).

U25437-J-Z145-1-7600 15

Complex math cplxtrig

EXAMPLE
The following program fragment in cplxtrig.C prints a range of complex numbers and the
corresponding values calculated by the function complex::cosh():

#include <stream.h>
#include <complex.h>

main()
{
 complex c;
 while (norm(c) < 10.0)
 {
 cout << c <<" " <<cosh(c) << "\n";
 c += complex(1.0, 1.0);
 }
 return 0;
}

Compile cplxtrig.C with the following command:

$ CC -X d cplxtrig.C -l complex -l m

Run the compiled program with:

$ a.out

The result of executing the program:

(0, 0) (1, 0)
(1, 1) (0.83373, 0.988898)
(2, 2) (-1.56563, 3.29789)

Note that the operator << is overloaded for data type complex so that complex numbers can
be printed easily.

The constants of type double (e.g. 10.0, 1.0 etc) are used to construct complex numbers.

SEE ALSO
cplxintro (page 3), cplxcartpol (page 5), cplxerr (page 7), cplxexp (page 9),
cplxops (page 11)

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U25437-J-Z145-1-7600 17

Classes and functions for stream I/O

The following description is currently valid for both the Cfront C++ language mode
and the ANSI C++ language modes of the CDS++ compiler.
I/O interfaces that conform to ANSI/ISO C++ will be available in the ANSI C++
modes in a later version of the CDS++ development system. At that time, you will
be able to find a description of the interfaces in the appropriate manual for the
standard C++ library.

iosintro - Introduction to buffering, formatting, and input/output

The libraries libC.a (Cfront C++ mode) and libCstd.a (ANSI C++ modes) contains classes
and functions for formatted and non-formatted I/O in C++ programs.

This section describes the primary mechanism used to implement input and output in C++
programs.

The C++ iostream package declared in various header files consists primarily of a collection
of classes. Although originally intended only to support input/output, the package now
supports related activities such as incore formatting. This package is a mostly source-
compatible extension of the earlier datastream-oriented I/O package.

#include <iostream.h>
class streambuf;
class ios;
class istream : virtual public ios;
class ostream : virtual public ios;
class iostream : public istream, public ostream;
class istream_withassign : public istream;
class ostream_withassign : public ostream;
class iostream_withassign : public iostream;
static class Iostream_init;

i

18 U25437-J-Z145-1-7600

iosintro Stream I/O

extern istream_withassign cin;
extern ostream_withassign cout;
extern ostream_withassign cerr;
extern ostream_withassign clog;

#include <fstream.h>
class filebuf : public streambuf;
class fstreambase : virtual public ios;
class fstream : public iostream, public fstreambase;
class ifstream : public istream, public fstreambase;
class ofstream : public ostream, public fstreambase;

#include <strstream.h>
class strstreambuf : public streambuf;
class strstreambase : virtual public ios;
class istrstream : public istream, public strstreambase;
class ostrstream : public ostream, public strstreambase;

#include <stdiostream.h>
class stdiobuf : public streambuf;
class stdiostream : public ios;

In the iostream package, there are some functions which return characters, but which use
int as a return type. int is used so that all possible characters in the machine character set
can be returned, as well as the value EOF as an error indication. A character is usually
stored in a location of type char or unsigned char.

The iostream package consists of several core classes, which provide the basic functionality
for I/O conversion and buffering, and several specialized classes derived from the core
classes. Both groups of classes are listed below.

Core classes

The core of the iostream package comprises the following classes:

streambuf
This is the base class for buffers. It supports the output (storing) and input (extraction)
of characters. Most members are inlined for efficiency. The public interface of the class
streambuf is described in sbufpub and the protected interface (for derived classes) is
described in sbufprot.

ios
This class contains state variables that are common to the various stream classes, for
example, error states and formatting states. See ios.

U25437-J-Z145-1-7600 19

Stream I/O iosintro

istream
This class supports formatted and unformatted conversion from sequences of
characters fetched from streambufs. See istream.

ostream
This class supports formatted and unformatted conversion to sequences of characters
stored into streambufs. See ostream.

iostream
This class combines istream and ostream. It is intended for situations in which bidirec-
tional operations (i.e. output to or input from a single sequence of characters) are
desired. See ios.

istream_withassign
ostream_withassign
iostream_withassign

These classes add assignment operators and a constructor with no operands to the
corresponding class without assignment. The predefined streams (see below) cin, cout,
cerr, and clog, are objects of these classes. See istream, ostream, and ios.

Iostream_init
This class is present for technical reasons relating to initialization. It has no public
members. The Iostream_init constructor initializes the predefined streams (listed below).
Since an object of this class is declared in the iostream.h header file, the constructor is
called once each time the header is included (although the real initialization is only done
once), and therefore the predefined streams are initialized before they are used. In
some cases, global constructors may need to call the Iostream_init constructor explicitly
to ensure the standard streams are initialized before they are used.

Predefined streams

The following streams are predefined:

cin
The standard input (file descriptor 0), similar to stdin in the C language.

cout
The standard output (file descriptor 1), similar to stdout in the C language.

cerr
The standard error stream (file descriptor 2). Output through this stream is unit-
buffered, which means that characters are flushed from the buffer after each output
(inserter operation). (See ostream::osfx() in ostream and ios::unitbuf in ios.) It is like stderr
in the C language.

clog
This stream is also directed to file descriptor 2, but unlike cerr its output is buffered.

20 U25437-J-Z145-1-7600

iosintro Stream I/O

cin, cerr and clog are tied to cout so that any use of them causes cout to be flushed.

In addition to the core classes enumerated above, the iostream package contains additional
classes derived from them and declared in other headers. Programmers can use these, or
they may choose to define their own classes derived from the core iostream classes.

Classes derived from streambuf

Classes derived from streambuf define the details of how characters are produced or
consumed. Derivation of a class from streambuf (the protected interface) is discussed in
sbufprot. The available buffer classes are:

filebuf
This buffer class supports I/O through file descriptors. Members support opening,
closing, and seeking. Common uses do not require the program to manipulate file
descriptors. See page 22.

stdiobuf
This buffer class supports I/O through stdio FILE structures. It is intended for use when
mixing C and C++ code. New code should prefer to use filebufs. See page 77.

strstreambuf
This buffer class stores and fetches characters from arrays of bytes in memory (i.e.,
strings). See page 74.

Classes derived from istream, ostream, and iostream

Classes derived from istream, ostream, and iostream specialize the core classes for use with
particular kinds of streambufs. These classes are:

ifstream
ofstream
fstream

These classes support formatted I/O to and from files. They use a filebuf to do the I/O.

istrstream
ostrstream

These classes support “in core” formatting. They use a ssbuf. See page 79.

stdiostream
This class specializes iostream for stdio FILEs.

U25437-J-Z145-1-7600 21

Stream I/O iosintro

BUGS
Parts of the streambuf class of the old stream package that should have been private were
public. Most normal usage compiles properly, but any code that depends on details,
including classes that were derived from streambufs will have to be rewritten.

Performance of programs that copy from cin to cout can sometimes be improved by breaking
the tie between cin and cout and doing explicit flushes of cout.

The header file stream.h exists for compatibility with the earlier stream package. It includes
iostream.h, stdio.h, and some other headers, and it declares some obsolete functions,
enumerations and variables. Some members of streambuf and ios (not discussed in this
section) are present only for backward compatibility with the previous stream package.

SEE ALSO
filebuf (page 22), fstream (page 26), ios (page 30), istream (page 41), manip (page 48),
ostream (page 53), sbufprot (page 61), sbufpub (page 69), strstream (page 79),
ssbuf (page 74), stdiobuf (page 77)

22 U25437-J-Z145-1-7600

filebuf Stream I/O

filebuf - Buffer for file input/output

This section describes how the class filebuf should be used.

#include <iostream.h>

typedef long streamoff, streampos;

class ios
{
public:

enum io_state {goodbit=0, eofbit=1, failbit=2, badbit=4, hardfail=0200};
enum seek_dir {beg, cur, end};
enum open_mode {in, out, ate, app, trunc, nocreate, noreplace};
// and lots of other class members, see ios ...

};

#include <fstream.h>

class filebuf : public streambuf
{
public:

static const int openprot; /* default protection for open*/
filebuf();
filebuf(int d);
filebuf(int d, char* p, int l);

filebuf* attach(int d);
filebuf* close();

~filebuf();
int fd();
int is_open();
filebuf* open(const char *name, int mode, int prot=openprot);
virtual streampos seekoff(streamoff, ios::seek_dir, int);
virtual streambuf* setbuf(char* p, int len);
virtual int sync();
virtual int overflow(int=EOF);
virtual int underflow();

};

All the members and member functions identified below in italics which are not
specified by any different class belong to the filebuf class.i

U25437-J-Z145-1-7600 23

Stream I/O filebuf

filebufs specialize streambufs to use a file as source or sink of characters. Characters are
consumed by doing writes to the file, and are produced by doing reads. When the file is
seekable, a filebuf allows seeks. At least 4 characters of putback are guaranteed. When the
file permits reading and writing, the filebuf permits both storing and fetching. No special
action is required between gets and puts (unlike stdio). A filebuf that is connected to a file
descriptor is said to be open. Files are opened by default with a protection mode of openprot,
which is 0644.

The reserve area (or buffer, see page 69 and page 61) is allocated automatically if it is not
specified explicitly with a constructor or a call to setbuf(). filebufs can also be made unbuf-
fered with certain arguments to the constructor or setbuf(), in which case a system call is
made for each character that is read or written, (this is very resource intensive and not
recommended for normal use).

Constructors

filebuf()
Constructs an initially closed filebuf.

filebuf(int d)
Constructs a filebuf connected to file descriptor d.

filebuf(int d, char* p, int l)
Constructs a filebuf connected to file descriptor d, and initialized to use the reserve area
starting at p and containing l bytes. If p is NULL, or l is zero or less, the filebuf is unbuf-
fered.

Members

f.attach(int d)
Connects f to an open file descriptor, d. The attach() function normally returns &f, but
returns 0 if f is already open.

f.close()
Flushes any waiting output, closes the file descriptor, and disconnects f. Unless an error
occurs, f’s error state is cleared. close() returns &f unless errors occur, in which case it
returns 0. Even if errors occur, close() leaves the file descriptor and f closed.

f.fd()
Returns the file descriptor to which f is connected. If f is closed, fd returns EOF.

f.is_open()
Returns non-zero when f is connected to a file descriptor, and zero otherwise.

24 U25437-J-Z145-1-7600

filebuf Stream I/O

f.open(char* name, int mode, int prot)
Opens file name and connects f to it. If the file does not already exist, an attempt is made
to create it with protection mode prot, unless ios::nocreate is specified in mode. By
default, prot is filebuf::openprot, which is 0644. Failure occurs if f is already open. open()
normally returns &f, but if an error occurs it returns 0. The members of ios::open_mode
are bits that may be or’ed together. (Because the or’ing returns an int, open() takes an
int rather than an ios::open_mode argument.) The meanings of these bits in mode are
described in detail in fstream on page 26

f.seekoff(streamoff off, ios::seek_dir dir, int mode)
Moves the get/put pointer as designated by off and dir. It may fail if the file that f is
attached to does not support seeking, or if the attempted motion is otherwise invalid
(such as attempting to seek to a position before the beginning of file). off is interpreted
as a count relative to the place in the file specified by dir, as described in sbufpub on
page 69. mode is ignored. seekoff() returns the new position, or EOF if a failure occurs.
The position in the file after a failure is undefined.

f.setbuf(char* p, int len)
Sets up the reserve area as len bytes beginning at p. If p is NULL or len is less than or
equal to 0, f is unbuffered. setbuf() normally returns &f. However, if f is open and a buffer
has been allocated, no changes are made to the reserve area or to the buffering status,
and setbuf() returns the value NULL.

f.sync()
Attempts to force the state of the get/put pointer of f to agree (be synchronized) with the
state of the file f.fd(). This means it may write characters to the file if some have been
buffered for output or attempt to reposition (seek) the file if characters have been read
and buffered for input. Normally, sync() returns 0, but it returns EOF if synchronization
is not possible. However, sync() does not guarantee that the writes made were flushed
to disk.

Sometimes it is necessary to guarantee that certain characters are written together. To
do this, the program should use setbuf() (or a constructor) to guarantee that the reserve
area is at least as large as the number of characters that must be written together. It
can then call sync(), then store the characters, then call sync() again.

U25437-J-Z145-1-7600 25

Stream I/O filebuf

EXAMPLE
The following program fragment in filebuf.C tries to attach a variable of type filebuf to file
descriptor 1, which is a cout, and then prints a message showing the success or failure of
the attach():

#include <stream.h>
#include <fstream.h>
#include <osfcn.h>

int main()
{
 filebuf b; /* constructor with no parameters called */
 if (b.attach(1))
 {
 cout << "have attached filebuf b to file descriptor 1\n";
 b.detach();
 }
 else
 {
 cerr << "can't attach filebuf to file descriptor 1\n";
 exit(1); /* error return */
 }
 return 0;
}

Compile filebuf.C with the following command:

$ CC -X d filebuf.C # Cfront C++ mode
or
$ CC -X w filebuf.C # ANSI C++ mode

Run the compiled program with:

$ a.out
have attached filebuf b to file descriptor 1

BUGS
attach() and the constructors should test if the file descriptor they are given is open.

There is no way to force atomic (unsplittable) reads.

As the operating system does not usually report failures of the system call seek() (e.g. on a
tty device), nor does a filebuf.

SEE ALSO
fstream (page 26), sbufprot (page 61), sbufpub (page 69)
lseek in the “Programmer’s Reference Manual”

26 U25437-J-Z145-1-7600

fstream Stream I/O

fstream - Specialization of iostrem and streambuf for files

This section describes the classes ios, ifstream, ofstream, and fstream, which provide low
level operations on files and streams.

#include <fstream.h>

class fstreambase : virtual public ios
{
public:

fstreambase();
fstreambase(const char* name, int mode, int prot=filebuf::openprot);
fstreambase(int fd);
fstreambase(int fd, char* p, int l);
~fstreambase();

void open(const char* name, int mode, int prot=filebuf::openprot);
void attach(int fd);
int detach();
void close();
void setbuf(char* p, int l);
filebuf* rdbuf() { return &buf; }

private:
filebuf buf;

protected:
void verify(int);

};

class ifstream : public fstreambase, public istream
{
public:

ifstream();
ifstream(const char* name, int mode=ios::in, int prot=filebuf::openprot);
ifstream(int fd);
ifstream(int fd, char* p, int l);
~ifstream();

filebuf* rdbuf() { return fstreambase::rdbuf(); }
void open(const char* name, int mode=ios::in, int prot=filebuf::openprot);

};

class ofstream : public fstreambase, public ostream
{
public:

U25437-J-Z145-1-7600 27

Stream I/O fstream

ofstream();
ofstream(const char* name, int mode=ios::out, int prot=filebuf::openprot);
ofstream(int fd);
ofstream(int fd, char* p, int l);
~ofstream();

filebuf* rdbuf() { return fstreambase::rdbuf(); }
void open(const char* name, int mode=ios::out, int prot=filebuf::openprot);

};

class fstream : public fstreambase, public iostream
{
public:

fstream();
fstream(const char* name, int mode, int prot=filebuf::openprot);
fstream(int fd);
fstream(int fd, char*p, int l);
~fstream();

filebuf* rdbuf() { return fstreambase::rdbuf(); }
void open(const char* name, int mode, int prot=filebuf::openprot);

};

ifstream, ofstream, and fstream specialize istream, ostream, and iostream, respectively, to files.
That is, the associated streambuf is a filebuf.

All the members and member functions identified below in italics which are not
specified by any different class belong to one of the above classes.

Constructors

In xstream, x is either if, of, or f so that xstream stands for: ifstream, ofstream, or fstream

The constructors for xstream are:

xstream()
Constructs an unopened xstream.

xstream(char* name, int mode, int prot)
Constructs an xstream and opens file name using mode as the open mode and prot as the
protection mode. By default, prot is filebuf::openprot, which is 0644. The error state
(io_state) of the constructed xstream indicates failure in case the open fails.

xstream(int fd)
Constructs an xstream connected to file descriptor fd, which must be already open.

i

28 U25437-J-Z145-1-7600

fstream Stream I/O

xstream(int fd, char* p, int l)
Constructs an xstream connected to file descriptor fd, and, in addition, initializes the
associated filebuf to use the l bytes at p as the reserve area. If p is null or l is 0, the filebuf
is unbuffered.

Member functions

f.attach(int fd)
Connects f to the file descriptor fd. A failure occurs when f is already connected to a file.
A failure sets ios::failbit in f’s error state.

f.detach()
Breaks the connection between f and the file descriptor and releases the file descriptor.
Before the connection is broken, the data buffered for output are flushed out.

f.close()
Closes any associated filebuf and thereby breaks the connection of the f to a file. f’s
error state is cleared except on failure, which is when the Streams Library detects a
failure in the system call close().

f.open(char* name, int mode, int prot)
Opens file name and connects f to it. If the file does not already exist, an attempt is made
to create it with protection mode prot unless ios::nocreate is set. By default, prot is
filebuf::openprot, which is 0644. Failure occurs if f is already open, or the system call
open() fails. ios::failbit is set in f’s error status on failure. The members of open_mode are
bits that may be or’ed together. (Because the or’ing returns an int, open() takes an int
rather than an open_mode argument.)

The meanings of these bits in mode are:

ios::app
A seek to the end of file is performed. Subsequent data written to the file is always
appended to the end of file. ios::app implies ios::out.

ios::ate
A seek to the end of the file is performed during the open(). ios::ate does not imply
ios::out.

ios::in
The file is opened for input. ios::in is implied by construction and opens of ifstreams.
For fstreams it indicates that input operations should be allowed if possible. It is legal
to include ios::in in the modes of an ostream, in which case it implies that the original
file (if it exists) should not be truncated. If the file does not exist, an open error
occurs.

U25437-J-Z145-1-7600 29

Stream I/O fstream

ios::out
The file is opened for output. ios::out is implied by construction and opens of
ofstreams. For fstream it says that output operations are to be allowed. ios::out may
be specified even if prot does not permit output.

ios::trunc
If the file already exists, its contents are truncated (discarded). This mode is implied
when ios::out is specified (including implicit specification for ofstream) and neither
ios::ate nor ios::app is specified.

ios::nocreate
This variable is used to control files which are opened. If the file does not already
exist, the open() fails.

ios::noreplace
If the file already exists, the open() fails.

f.rdbuf()
Returns a pointer to the filebuf associated with f.
fstream::rdbuf() has the same meaning as iostream::rdbuf() but is typed differently.

f.setbuf(char* p, int l)
Has the usual effect of a setbuf() (see page 22), offering space for a reserve area or
requesting unbuffered I/O. An error occurs if f is open or the call to f.rdbuf()->setbuf fails.

SEE ALSO
filebuf (page 22), ios (page 30), istream (page 41), ostream (page 53), sbufpub (page 69)
close(), open() in the “Programmer’s Reference Manual”

30 U25437-J-Z145-1-7600

ios Stream I/O

ios - Base class for input/output

This section describes the operators that are common to both input and output.

#include <iostream.h>

class ios
{
public:

enum io_state {goodbit=0, eofbit=1, failbit=2, badbit=4, hardfail=0200};
enum open_mode {in, out, ate, app, trunc, nocreate, noreplace};
enum seek_dir {beg, cur, end};

/* flags for controlling format */
enum
{

skipws=01,
left=02, right=04, internal=010,
dec=020, oct=040, hex=0100,
showbase=0200, showpoint=0400,
uppercase=01000, showpos=02000,
scientific=04000, fixed=010000,
unitbuf=020000, stdio=040000

};

static const long basefield; /* dec | oct | hex */

static const long adjustfield; /* left | right | internal */

static const long floatfield; /* scientific | fixed */

public:
ios(streambuf*);
virtual ~ios();
int bad() const;
static long bitalloc();
void clear(int i=0);
int eof() const;
int fail() const;
char fill() const;
char fill(char);
long flags() const {return x_flags;}
long flags(long);
int good() const;
long& iword(int);
int operator!() const;

U25437-J-Z145-1-7600 31

Stream I/O ios

operator const void*() const;
operator void*();
int precision() const;
int precision(int);
streambuf* rdbuf();
void* & pword(int);
int rdstate() const;
long setf(long setbits, long field);
long setf(long);
static void sync_with_stdio();
ostream* tie();
ostream* tie(ostream*);
long unsetf(long);
int width(int);
static int xalloc();

protected:
ios();

void init(streambuf*);

private:
ios(ios&);

void operator=(ios&);

};

/* Manipulators */

ios& dec(ios&);

ios& hex(ios&);

ios& oct(ios&);

ostream& endl(ostream& i);

ostream& ends(ostream& i);

ostream& flush(ostream&);

istream& ws(istream&);

All the members and member functions identified below in italics which are not
specified by any different class belong to the ios class.

The stream classes derived from class ios provide a high level interface that supports trans-
ferring formatted and unformatted information into and out of streambufs.

i

32 U25437-J-Z145-1-7600

ios Stream I/O

Several enumerations are declared in class ios (open_mode, io_state, seek_dir), plus format
flags, to avoid burdening the global name space with these details. The io_states are
described in this section under “Error States” . The format fields are also described in this
section under “Formatting” . The open_modes are described in detail in fstream under open().
The seek_dirs are described in sbufpub under seekoff(). .

Constructors and assignment

ios(streambuf* sb)
The streambuf denoted by sb becomes the streambuf associated with the constructed ios.
If sb is NULL, the effect is undefined.

ios(ios& sr)
Copying of ioss is not well-defined in general, therefore the constructor and assignment
operators are private so that the compiler complains about attempts to copy ios objects.
Copying pointers to iostreams is usually what is required.

ios()
init(streambuf* sb)

Because class ios is now inherited as a virtual base class, a constructor with no
arguments must be used. This constructor is declared as protected. Therefore ios::init()
is declared protected and must be used for initialization of derived classes.

Error states

An ios has an internal error state (which is a collection of the bits declared as io_states).
Members related to the error state are:

s.rdstate()
Returns the current error state.

s.clear(int i)
Stores i as the error state. If i is zero, this clears all bits. To set a bit without clearing
previously set bits requires something like s.clear(ios::badbit|s.rdstate()).

s.good()
Returns non-zero if the error state has no bits set, zero otherwise.

s.eof()
Returns non-zero if eofbit is set in the error state, zero otherwise. Normally this bit is set
when an end-of-file has been encountered during an extraction.

s.fail()
Returns non-zero if either badbit or failbit is set in the error state, zero otherwise.
Normally this indicates that some insertion or conversion has failed, but the stream is
still usable. That is, once the failbit is cleared, I/O on s can usually continue.

U25437-J-Z145-1-7600 33

Stream I/O ios

s.bad()
Returns non-zero if badbit is set in the error state, zero otherwise. This usually indicates
that some operation on s.rdbuf() has failed, a severe error, from which recovery is
probably impossible. That is, it is probably impossible to continue I/O operations on s.

Operators

Two operators are defined to allow convenient checking of the error state of an ios object:
operator!() const and operator const void*() const. The latter converts an ios to a pointer so that
it can be compared to NULL. The conversion returns the value NULL if failbit or badbit is set
in the error state, and returns a pointer value otherwise. This pointer is not meant to be
used. This allows you to write expressions such as:

if (cin) ...

if (cin >> x) ...

The ! operator returns non-zero if failbit or badbit is set in the error state, which allows
expressions such as the following to be used:

if (!cout) ...

Formatting

An ios has a format state that is used by input and output operations to control the details of
formatting operations. For other operations the format state has no particular effect and its
components may be set and examined arbitrarily by user code. Most formatting details are
controlled by using the flags(), setf(), and unsetf() functions to set the following flags, which
are declared in an enumeration in class ios. Three other components of the format state are
controlled separately with the functions fill(), width(), and precision().

skipws
If skipws is set, whitespace is skipped on input. This applies to numeric, character and
string inputs.
In case of string input the extraction will stop at the first white space character. In the
special case that the first character in the input stream is white space, nothing will be
extracted.
In both cases the input stream will be read until the first white space character is found
and then no further.

34 U25437-J-Z145-1-7600

ios Stream I/O

left
right
internal

These flags control the padding of a value. When left is set, the value is left-adjusted,
that is, the fill character is added after the value. When right is set, the value is right-
adjusted, that is, the fill character is added before the value. When internal is set, the fill
character is added after any leading sign or base indication, but before the value. Right-
adjustment is the default if none of these flags is set. These fields are collectively
identified by the static member, ios::adjustfield. The fill character is controlled by the fill()
function, and the width of padding is controlled by the width() function.

dec
oct
hex

These flags control the conversion base of an integer value. The conversion base is 10
(decimal) if dec is set, but if oct or hex is set, conversions are done in octal or
hexadecimal, respectively. If none of these is set, numeric insertions are in decimal, but
extractions (inputs) are interpreted according to the C++ lexical conventions for integral
constants. These fields are collectively identified by the static member, ios::basefield.
The manipulators hex, dec, and oct, can also be used to set the conversion base, see
“Built-in Manipulators” below.

showbase
If showbase is set, insertions are converted to an external form that can be read
according to the C++ lexical conventions for integral constants. This means octals are
preceded by the character ’0’, and hexadecimals are preceded by the string ’0x’ (cf.
uppercase). showbase is unset by default.

showpos
If showpos is set, then a plus character ’+’ is inserted into a decimal conversion of a
positive integral value.

uppercase
If uppercase is set, then an uppercase X is used for hexadecimal output when showbase
is set, or an uppercase E is used to print floating point numbers in scientific notation.

showpoint
If showpoint is set, trailing zeros and decimal points appear in the result of a floating
point conversion.

U25437-J-Z145-1-7600 35

Stream I/O ios

scientific
fixed

These flags control the format to which a floating point value is converted for insertion
into a stream.

– If scientific is set, the value is converted to scientific notation, where there is one digit
before the decimal point and the number of digits after it is equal to the precision (see
below), which is six by default.

– If uppercase is set, an uppercase E introduces the exponent; a lowercase e appears
otherwise.

– If fixed is set, the value is converted to decimal notation with precision digits after the
decimal point, or six by default.

– If neither scientific nor fixed is set, then the value is converted using either notation,
depending on the value: scientific notation is used only if the exponent resulting
from the conversion is less than -4 or greater than or equal to the precision.

– If showpoint is not set, trailing zeros are removed from the result and a decimal point
appears only if it is followed by a digit.

scientific and fixed are collectively identified by the static member, ios::floatfield.

unitbuf
When unitbuf is set, a flush is performed by ostream::osfx() after each insertion. Unit
buffering provides a compromise between buffered output and unbuffered output.
Performance is better under unit buffering than unbuffered output, which makes a
system call for each character output. Unit buffering makes a system call for each
insertion operation, and doesn’t require the user to call ostream::flush().

stdio
When stdio is set, stdout and stderr are flushed by ostream::osfx() after each insertion.

The following functions use and set the format flags and variables.

s.fill(char c)
Sets the “fill character” format state variable to c and returns the previous value. c is
used as the padding character, if necessary (see width(), below). The default fill or
padding character is a space. The positioning of the fill character is determined by the
right, left, internal flags, see above. A parameterized manipulator, setfill is also available
for setting the fill character, see manip (page 48).

The “fill character” has no effect on input.

s.fill()
Returns the “fill character” format state variable.

36 U25437-J-Z145-1-7600

ios Stream I/O

s.flags()
Returns the current format flags.

s.flags(long f)
Resets all the format flags to those specified in f and returns the previous settings.

s.precision(int i)
Sets the “precision” format state variable to i and returns the previous value. This
variable controls the number of significant digits inserted by the floating point inserter
(output). The default is 6. A parameterized manipulator, setprecision is also available for
setting the precision, see manip (page 48).

s.precision()
Returns the “precision” format state variable.

s.setf(long b)
Turns on in s the format flags marked in b and returns the previous settings. All other
flags are left unchanged. A parameterized manipulator, setiosflags performs the same
function, see manip (page 48).

s.setf(long setbits, long field)
Resets in s only the format flags specified by field to the settings marked in setbits, and
returns the previous settings. That is, the format flags specified by field are cleared in s,
then reset to be those marked in setbits. For example, to change the conversion base in
s to be hex, you could write:

s.setf(ios::hex, ios::basefield)

Any previous settings to oct or dec will be cleared by this.

ios::basefield specifies the conversion base bits as candidates for change, and ios::hex
specifies the new value. s.setf(0, field) clears all the bits specified by field, as does a
parameterized manipulator, resetiosflags (see manip).

s.unsetf(long b)
Unsets in s the bits set in b and returns the previous settings.

s.width(int i)
Sets the “field width” format variable to i and returns the previous value.

This has two different meanings for either output or input streams:

– Output: When the field width is zero (the default), inserters only insert as many
characters as necessary to represent the value being inserted. When the field width
is non-zero, the inserters insert at least that many characters.
If the value being inserted requires fewer than field-width characters to be repre-
sented, the fill character is used to pad the value. However, values are never
truncated during numeric insertions, so if the value being inserted does not fit in
field-width characters, more than field-width characters are output.

U25437-J-Z145-1-7600 37

Stream I/O ios

The field width is always interpreted as a minimum number of characters; there is
no direct way to specify a maximum number of characters.
The field width format variable is reset to the default (zero) after each insertion.

– Input: A setting of the field width applies only for the extraction of char* and unsigned
char*, see istream (page 41). When the field width is non-zero, it is taken to be the
size of the array, and no more than field-width-1 characters are extracted.
The field width format variable is reset to the default (zero) after each extraction.

A parameterized manipulator, setw is also available for setting the width (see manip).

s.width()
Returns the “field width” format variable.

User-defined format flags

Several functions are provided to allow users to derive classes from the base class ios that
require additional format flags or variables. The two static member functions ios::xalloc and
ios::bitalloc, allow several such classes to be used together without interference.

ios::bitalloc()
Returns a long with a single, previously unallocated, bit set. This allows users who need
an additional flag to acquire one, and then pass it as an argument to ios::setf(), for
example.

ios::xalloc()
Returns a previously unused index into an array of words available for use as format
state variables by derived classes.

s.iword(int i)
When i is an index allocated by ios::xalloc, iword() returns a reference to the ith user-
defined word.

s.pword(int i)
When i is an index allocated by ios::xalloc, pword() returns a reference to the ith user-
defined word. pword() is similar to iword, except that it has a different return type.

Other members

s.rdbuf()
Returns a pointer to the streambuf associated with s when s was constructed.

ios::sync_with_stdio()
Solves problems that arise when mixing stdio and iostreams. The first time it is called it
resets the standard iostreams (cin, cout, cerr, clog; see iosintro (page 17)) to be streams
using stdiobufs.
After that input and output using these streams may be mixed with input and output
using the corresponding FILEs (stdin, stdout, and stderr) and is properly synchronized.

38 U25437-J-Z145-1-7600

ios Stream I/O

sync_with_stdio() makes cout and cerr unit buffered (see ios::unitbuf ans ios::stdio above).
Invoking sync_with_stdio() degrades performance a variable amount, depending on the
length of the strings being inserted.

s.tie(ostream* osp)
Sets the “tie” variable to osp, and returns its previous value. This variable supports
automatic “flushing” of ioss. If the tie variable is non-zero and an ios needs more
characters or has characters to be consumed, the ios pointed at by the tie variable is
flushed. By default, cin is tied initially to cout so that attempts to get more characters
from standard input result in flushing standard output. Additionally, cerr and clog are tied
to cout by default. For other ioss, the tie variable is set to zero by default.

s.tie()
Returns the “tie” variable.

Built-in manipulators

Some convenient manipulators (functions that take an ios&, an istream&, or an ostream&
and return their argument, (see manip)) are:

sr<<dec
sr>>dec

These set the conversion base format flag to 10.

sr<<hex
sr>>hex

These set the conversion base format flag to 16.

sr<<oct
sr>>oct

These set the conversion base format flag to 8.

sr>>ws
Extracts whitespace characters. See istream.

sr<<endl
Ends a line by inserting a newline character and flushing. See ostream.

sr<<ends
Ends a string by inserting a null(0) character. See ostream.

sr<<flush
Flushes sr. See ostream.

Shorter strings cause a greater performance degradation.i

U25437-J-Z145-1-7600 39

Stream I/O ios

Several parameterized manipulators that operate on ios objects are described in manip:
setw, setfill, setprecision, setiosflags, and resetiosflags.

The streambuf associated with an ios can be manipulated by other methods than through the
ios. For example, characters can be stored in a queuelike streambuf through an ostream while
they are being fetched through an istream, or for efficiency, some part of a program may
choose to do streambuf operations directly rather than through the ios. In most cases the
program does not have to worry about this possibility, because an ios never saves infor-
mation about the internal state of a streambuf. For example, if the streambuf is repositioned
between two extraction operations, the extraction (input) can be continued normally.

EXAMPLE
The following program fragment in ios.C uses some data members of class ios to change
the output format of both integers and doubles on cout:

#include <stream.h>
#include <math.h>

void someoutput()
{
 int i;
 const int N = 12;
 /* better to use const int than hash define */

 for (i = 1; i < N; i += 2)
 {
 cout << i << " " << pow((double) i, (double) i) << "\n";
 }
 cout << "\n";
}

int main()
{
 someoutput();
 /* show default formats for integers and doubles */

 cout.setf(ios::fixed, ios::floatfield);
 /* set the output format for floats and doubles to fixed */

 someoutput();

 cout.setf(ios::oct, ios::basefield);
 /* set the output format of integers to octal */

 someoutput();

 return 0;
}

40 U25437-J-Z145-1-7600

ios Stream I/O

The program requires the C math library, so the file ios.C must be compiled with the -l m
option:

$ CC -X d ios.C -l m # Cfront C++ mode
or
$ CC -X w ios.C -l m # ANSI C++ mode

Run the compiled program with:

$ a.out

 1 1
 3 27
 5 3125
 7 823543
 9 3.8742e+08
11 2.85312e+11

 1 1.000000
 3 27.000000
 5 3125.000000
 7 823543.000000
 9 387420489.000000
11 285311670610.999877

 1 1.000000
 3 27.000000
 5 3125.000000
 7 823543.000000
11 387420489.000000
13 285311670610.999877

The precision of these results depends on the machine used.

BUGS
The old stream package had a constructor that took a FILE* argument. This is now replaced
by stdiostream. To avoid having iostream.h depend on stdio.h, the old constructor is no longer
declared.

The old stream package allowed copying of streams. This is disallowed by the new iostream
package. However, objects of type istream_withassign, ostream_withassign, and
iostream_withassign can be assigned to. Old code using copying can usually be rewritten to
use pointers or these classes. (The standard streams cin, cout, cerr, and clog are members
of “withassign” classes, so they can be assigned to, as in cin=inputfstream.)

SEE ALSO
iosintro (page 17), istream (page 41), manip (page 48), ostream (page 53),
sbufprot (page 61), sbufpub (page 69)

U25437-J-Z145-1-7600 41

Stream I/O istream

istream - Formatted and unformatted input

This section describes the istream member functions and related functions for formatted and
unformatted input.

#include <iostream.h>
typedef long streamoff, streampos;

class ios {
public:

enum seek_dir {beg, cur, end};
enum open_mode {in, out, ate, app, trunc, nocreate, noreplace};
/* flags for controlling format */
enum
{

skipws=01,
left=02, right=04, internal=010,
dec=020, oct=040, hex=0100,
showbase=0200, showpoint=0400,
uppercase=01000, showpos=02000,
scientific=04000, fixed=010000,
unitbuf=020000, stdio=040000

};
// see ios for other class members ...

};

class istream : virtual public ios {
public:

istream(streambuf*);
virtual ~istream();
int gcount();
istream& get(char* ptr, int len, char delim=’\n’);
istream& get(unsigned char* ptr,int len, char delim=’\n’);
istream& get(unsigned char& c);
istream& get(char& c);
istream& get(streambuf& sb, char delim =’\n’);
int get();
istream& getline(char* ptr, int len, char delim=’\n’);
istream& getline(unsigned char* ptr, int len, char delim=’\n’);
istream& ignore(int n=1,int d=EOF);
int ipfx(int need=0);
int peek();
istream& putback(char);

42 U25437-J-Z145-1-7600

istream Stream I/O

istream& read(char* ptr, int n);
istream& read(unsigned char* s, int n);
istream& seekg(streampos);
istream& seekg(streamoff, ios::seek_dir);
int sync();
streampos tellg();
istream& operator>>(char*);
istream& operator>>(char&);
istream& operator>>(short&);
istream& operator>>(int&);
istream& operator>>(long&);
istream& operator>>(float&);
istream& operator>>(double&);
istream& operator>>(unsigned char*);
istream& operator>>(unsigned char&);
istream& operator>>(unsigned short&);
istream& operator>>(unsigned int&);
istream& operator>>(unsigned long&);
istream& operator>>(streambuf*);
istream& operator>>(istream& (*)(istream&));
istream& operator>>(ios& (*)(ios&));

};

class istream_withassign : public istream {
istream_withassign();

virtual ~istream_withassign();
istream_withassign& operator=(istream&);
istream_withassign& operator=(streambuf*);

};

extern istream_withassign cin;
istream& ws(istream&);
ios& dec(ios&);
ios& hex(ios&);
ios& oct(ios&);

istreams support interpretation of characters fetched from an associated streambuf. These
are commonly referred to as input or extraction operations.

All the members and member functions identified below in italics which are not
specified by any different class belong to the istream class.i

U25437-J-Z145-1-7600 43

Stream I/O istream

Constructors and assignment

istream(streambuf& sb)
Initializes ios state variables and associates buffer sb with the istream.

istream_withassign()
Does no initialization. istream_withassign must be defined with an assignment.

Input prefix function

ins.ipfx(int need)
If ins’s error state is non-zero, returns zero immediately. If necessary (and if it is non-
null), any ios tied to ins is flushed (see the description ios::tie() in ios, page 30). Flushing
is considered necessary if either need==0 or if there are fewer than need characters
immediately available. If ios::skipws is set in ins.flags() and need is zero, then leading
whitespace characters are extracted from ins.

ipfx() returns zero if an error occurs while skipping whitespace; otherwise it returns non-
zero.

Formatted input functions call ipfx(0), while unformatted input functions call ipfx(1); see
below.

Formatted input functions (extractors)

ins>>x
Calls ipfx(0) and if that returns non-zero, extracts characters from ins and converts them
according to the type of x. It stores the converted value in x. Errors are indicated by
setting the error state of ins. If ios::failbit is set, this means that characters in ins did not
match the required type. If ios::badbit is set, this indicates that attempts to extract
characters failed. ins is always returned.

The details of conversion depend on the values of ins’s format state flags and variables
(see ios, page 30) and the type of x. Apart from extractors which use a width and reset
the field width to 0, extraction operators do not alter the format state value of ostream.
Extractors are defined for the following types, with conversion rules as described below.

x might have one of the following types:

char*, unsigned char*
Characters are stored in the array pointed at by x until a whitespace character is
found in ins. The terminating whitespace is left in ins. If ins.width() is non-zero, it is
taken to be the size of the array, and no more than ins.width()-1 characters are
extracted. A terminating null character (0) is always stored (even when nothing else
is done because of ins’s error status). ins.width() is reset to 0.

44 U25437-J-Z145-1-7600

istream Stream I/O

char&, unsigned char&
A character is extracted and stored in x.

short&, unsigned short&,
int&, unsigned int&,
long&, unsigned long&

Characters are extracted and converted to an integral value according to the
conversion specified in ins’s format flags. Converted characters are stored in x. The
first character may be a sign (+ or -). After that, if ios::oct, ios::dec, or ios::hex is set
in ins.flags(), the conversion is octal, decimal, or hexadecimal, respectively.
Conversion is terminated by the first “nondigit” , which is left in ins. Octal digits are
the characters 0 to 7. Decimal digits are the octal digits plus 8 and 9. Hexadecimal
digits are the decimal digits plus the letters a to f (in either uppercase or lowercase).
If none of the conversion base format flags is set, then the number is interpreted
according to C++ lexical conventions. That is, if the first characters (after the
optional sign) are 0x or 0X, a hexadecimal conversion is performed on following
hexadecimal digits. Otherwise, if the first character is a 0, an octal conversion is
performed, and in all other cases a decimal conversion is performed. ios::failbit is
set if there are no digits (not counting the 0 in 0x or 0X during hex conversion)
available.

float&, double&
Converts the characters according to C++ syntax for a float or double, and stores the
result in x. ios::failbit is set if there are no digits available in ins or if it does not begin
with a well formed floating point number.

skipws should be left set during the extraction of numerical values. Otherwise an er-
ror can occur.

The type and name of the extraction functions are chosen to give a convenient syntax for
sequences of input operations. The operator overloading of C++ permits extraction
functions to be declared for user-defined classes. These operations can then be used with
the same syntax as the member functions described here.

ins>>sb
If ios.ipfx(0) returns non-zero, characters are extracted from ios and inserted into sb.
Extraction stops when the end-of-file (EOF) is reached. Always returns ins.

i

U25437-J-Z145-1-7600 45

Stream I/O istream

Unformatted input functions

These functions call ipfx(1) and proceed only if it returns non-zero:

ins.get(char* ptr, int len, char delim)
Extracts characters and stores them in the byte array beginning at ptr and extending for
len bytes. Input terminates when the delim character is encountered (delim is left in ins
and not stored), when ins has no more characters, or when the array has only one byte
left. get() always stores a terminating null, even if it doesn’t extract any characters from
ins because of its error status. ios::failbit is set only if get() encounters an end of file
before it stores any characters.

ins.get(char & c)
Extracts a single character and stores it in c.

ins.get(char* sb, char delim)
Extracts characters from ins.rdbuf() and stores them into sb. It stops if it encounters end
of file, or a store into sb fails, or it encounters the delim character (which it leaves in ins).
ios::failbit is set if it stops because the store into sb fails.

ins.get().
Extracts a character and returns it. EOF is output if extraction encounters end of file.
ios::failbit is never set.

ins.getline(char* ptr, int len, char delim)
Does the same thing as ins.get(char* ptr, int len, char delim) with the exception that it
extracts a terminating delim character from ins. If delim occurs after exactly len
characters have been extracted, termination is treated as being due to the array being
filled, and this delim is left in ins.

ins.ignore(int n, int d)
Extracts and throws away up to n characters. Extraction stops prematurely if the
character d is extracted or end of file is reached. If d is EOF it can never cause termi-
nation.

ins.read(char* ptr, int n)
Extracts n characters and stores them in the array beginning at ptr. If end of file is
reached before n characters have been extracted, read stores whatever it has already
extract and sets ios::failbit. The number of characters extracted can be determined via
ins.gcount().

46 U25437-J-Z145-1-7600

istream Stream I/O

Other members

ins.gcount()
Returns the number of characters extracted by the last unformatted input function.
Formatted input functions may call unformatted input functions and thereby reset this
number.

ins.peek()
Begins by calling ins.ipfx(1). If that call returns zero or if ins is at end of file, it returns
EOF. Otherwise it returns the next character without extracting it.

ins.putback(char c)
Attempts to back up ins.rdbuf() so that the character c can be read later. c must be the
character before ins.rdbuf()’s get pointer. (Unless other activity is modifying ins.rdbuf()
this is the last character extracted from ins). If it is not, the effect is undefined. putback()
may fail (and set the error state). Although it is a member of istream, putback() never
extracts characters, so it does not call ipfx(). However, it returns without doing anything
if the error state is non-zero.

ins.sync()
Establishes consistency between internal data structures and the external source of
characters. Calls ins.rdbuf()->sync(), which is a virtual function, so the details depend on
the derived class. Returns EOF to indicate errors.

ins>>manip
Equivalent to manip(ins). Syntactically this looks like an extractor operation, but seman-
tically it executes an arbitrary operation (rather than converting a sequence of
characters and storing the result in manip). A predefined manipulator, ws, is described
below.

Member functions related to positioning

ins.seekg(streamoff off, seek_dir dir)
Repositions ins.rdbuf()’s get pointer. See sbufpub (page 69), for a discussion of
positioning.

ins.seekg(streampos pos)
Repositions ins.rdbuf()’s get pointer. See sbufpub (page 69) for a discussion of
positioning.

ins.tellg()
Returns the current position of ios.rdbuf()’s get pointer. See sbufpub (page 69) for a
discussion of positioning.

U25437-J-Z145-1-7600 47

Stream I/O istream

Manipulators

ins>>ws
Extracts whitespace characters.

ins>>dec
Sets the conversion base format flag to 10. See ios (page 30).

ins>>hex
Sets the conversion base format flag to 16. See ios (page 30).

ins>>oct
Sets the conversion base format flag to 8. See ios, (page 30).

EXAMPLE
The following program reads one line text, and then prints it in the reverse order.

#include <iostream.h>

const int N = 80;
char text[N]; // text buffer

int main()
{
 int i;
 cout << " Please enter text :\n";
 cin.getline(text, N); // get at most N characters
 i = cin.gcount() - 1;
 while (i)
 {
 cout << text [--i]; // prints line in the reverse order
 }
 cout << endl;
 return 0; // successful return
}

The result of executing the program is:

Please enter text:
TOM
MOT

BUGS
There is no overflow detection on conversion of integers. There should be, and overflow
should cause the error state to be set.

SEE ALSO
ios (page 30), manip (page 48), sbufpub (page 69)

48 U25437-J-Z145-1-7600

manip Stream I/O

manip - iostream manipulation

This section describes how manipulators are used with iostream.

#include <iostream.h>
#include <iomanip.h>
IOMANIPdeclare(T);

class SMANIP(T) {
SMANIP(T)(ios& (*f)(ios&, T), T a) : fct(f), arg(a) { }
friend istream& operator>>(istream& i, const SMANIP(T)& m) {

ios* s = &i; (*m.fct)(*s,m.arg); return i; }
friend ostream& operator<<(ostream& o, const SMANIP(T)& m) {

ios* s = &o; (*m.fct)(*s,m.arg); return o; }

};

class SAPP(T) {
public:

SAPP(T)(ios& (*f)(ios&,T)) : fct(f) { }
SMANIP(T) operator()(T a) {return SMANIP(T)(fct,a); }

};

class IMANIP(T) {
public:

IMANIP(T)(istream& (*f)(istream&, T), T a) : fct(f), arg(a) { }
friend istream& operator>>(istream& s, const IMANIP(T)& m){ return(*m.fct)(s,m.arg); }

};

class IAPP(T) {
public:

IAPP(T)(istream& (*f)(istream&,T)) : fct(f) { }
IMANIP(T) operator()(T a) {return IMANIP(T)(fct,a); }

};

class OMANIP(T) {
public:

OMANIP(T)(ostream& (*f)(ostream&, T), T a) : fct(f), arg(a) { }
friend ostream& operator<<(ostream& s, const OMANIP(T)& m) {

return(*m.fct)(s,m.arg); }

};

U25437-J-Z145-1-7600 49

Stream I/O manip

class OAPP(T) {
public:

OAPP(T)(ostream& (*f)(ostream&,T)) : fct(f) { }
OMANIP(T) operator()(T a) {return OMANIP(T)(fct,a); }

};

class IOMANIP(T) {
public:

IOMANIP(T)(iostream& (*f)(iostream&, T), T a) : fct(f), arg(a) { }
friend istream& operator>>(iostream& s, const IOMANIP(T)& m) {

return(*m.fct)(s,m.arg); }
friend ostream& operator<<(iostream& s, const IOMANIP(T)& m) {

return(*m.fct)(s,m.arg); }

};

class IOAPP(T) {
public:

IOAPP(T)(iostream& (*f)(iostream&,T)) : fct(f) { }
IOMANIP(T) operator()(T a) {return IOMANIP(T)(fct,a); }

};

IOMANIPdeclare(int);

IOMANIPdeclare(long);

SMANIP(int) setbase(int b);

SMANIP(long) resetiosflags(long b);

SMANIP(long) setiosflags(long b);

SMANIP(int) setfill(int f);

SMANIP(int) setprecision(int p);

SMANIP(int) setw(int w);

Manipulators are values that may be “inserted into” or “extracted from” streams to achieve
some effect (other than to insert or extract values), with a convenient syntax. They enable
you to embed in an expression a function call containing several insertions or extractions.
For example, the predefined manipulator for ostreams, flush, can be used as follows:

cout << flush

to flush cout.

50 U25437-J-Z145-1-7600

manip Stream I/O

Several iostream classes supply manipulators, see ios (page 30), istream (page 41), and
ostream (page 53). flush is a simple manipulator; some manipulators take arguments, such
as the predefined ios manipulators, setfill and setw (see below). The header file iomanip.h
supplies macro definitions which programmers can use to define new parameterized
manipulators.

Ideally, the types relating to manipulators would be parameterized as “templates” . The
macros defined in iomanip.h are used to simulate templates. IOMANIPdeclare(T) declares
the various classes and operators. (All code is declared inline so that no separate defini-
tions are required.) Each of the other Ts (type names) is used to construct the real names
and therefore must be a single identifier. Each of the other macros also requires an identifier
and is expanded to form a name.

s<<SMANIP(T)(ios& (*)(ios&) f, T t)
s>>SMANIP(T)(ios& (*)(ios&) f, T t)
s<<SAPP(T)(ios& (*)(ios&) f, (T t))
s>>SAPP(T)(ios& (*)(ios&) f, (T t))

Returns f(s,t), where s is the left operand of the insertion or extractor operator (e.g. s, i,
o, or io).

i>>IMANIP(T)(istream& (*)(istream&) isf, T t)
i>>IAPP(T)(istream& (*)(istream&) isf, (T t)

Returns isf(i, T t).

o<<OMANIP(T)(ostream& (*)(ostream&) osf,T t)
o<<OAPP(T)(ostream& (*)(ostream&) osf,(T t)

Returns osf(o,t).

io<<IOMANIP(T)(iostream& (*)(iostream&) iof,T t)
io>>IOMANIP(T)(iostream& (*)(iostream&) iof,T t)
io<<IOAPP(T)(iostream& (*)(iostream&) iof,T t)
io>>IOAPP(T)(iostream& (*)(iostream&) iof,T t)

Returns iof(io,t).

iomanip.h contains the two declarations, IOMANIPdeclare(int) and IOMANIPdeclare(long),
and also some manipulators that take an int or a long argument. These manipulators all
have to do with changing the format state of a stream, see ios (page 30) for further details.

o<<setw(int n)
i>>setw(int n)

Sets the field width of the stream (left-hand operand: o or i) to n.

o<<setfill(int n)
i>>setfill(int n)

Sets the fill character of the stream (o or i) to be n.

U25437-J-Z145-1-7600 51

Stream I/O manip

o<<setprecision(int n)
i>>setprecision(int n)

Sets the precision of the stream (o or i) to be n.

o<<setiosflags(long l)
i>>setiosflags(long l)

Turns on in the stream (o or i) the format flags marked in l. (Calls o.setf(l) or i.setf(l)).

o<<resetiosflags(long l)
i>>resetiosflags(long l)

Clears in the stream (o or i) the format bits specified by l. (Calls o.setf(0, l) or i.setf(0, l)).

EXAMPLE
The following program fragment in manip.C shows the use of manipulators (like setw) which
globally alter output by changing private data members in cout:

#include <stream.h>
#include <iomanip.h>
#include <string.h>
void testline(const char * const p)
{
 /* put onto cout the parameter string, and set the field width */
 /* of the cout stream to be twice the length of the string */
 int N = 2 * strlen(p);
 cout << setw(N) ;
 cout << p;
}
void someoutput(const char* const p, const char* const q)
{
 /* Given a string and a string containing a list of fill */
 /* characters, display the string in a variety of fill */
 /* character contexts */
 int i;
 int M = strlen(q);
 for (i = 0; i < M; ++i)
 {
 cout << setfill(q[i]);
 testline(p);
 }
}

int main()
{
someoutput("A Test String\n", ".,!$%&*()");
/* Note how the output is right justified for text strings */
return 0;
}

Note how string.h must be included to get the function prototype for strlen(), and iomanip.h
must be included to get the prototypes for setw() and setfill().

52 U25437-J-Z145-1-7600

manip Stream I/O

Compile manip.C with the following command:

$ CC -X d -o manip manip.C # Cfront C++ mode
or
$ CC -X w -o manip manip.C # ANSI C++ mode

Run the compiled program with:

$ manip

The following output is produced on executing the program:

..............A Test String
,,,,,,,,,,,,,,A Test String
!!!!!!!!!!!!!!A Test String
$$$$$$$$$$$$$$A Test String
%%%%%%%%%%%%%%A Test String
&&&&&&&&&&&&&&A Test String
**************A Test String
((((((((((((((A Test String
))))))))))))))A Test String

BUGS
Syntax errors are reported if IOMANIPdeclare(T) occurs more than once in a file with the
same T.

SEE ALSO
ios (page 30), istream (page 41), ostream (page 53)

U25437-J-Z145-1-7600 53

Stream I/O ostream

ostream - Formatted and unformatted output

This section defines the ostream functions for formatted and unformatted output.

#include <iostream.h>

typedef long streamoff, streampos;

class ios
{
public:

enum seek_dir {beg, cur, end};
enum open_mode {in, out, ate, app, trunc, nocreate, noreplace};
enum
{

skipws=01,
left=02, right=04, internal=010,
dec=020, oct=040, hex=0100,
showbase=0200, showpoint=0400,
uppercase=01000, showpos=02000,
scientific=04000, fixed=010000,
unitbuf=020000, stdio=040000

};
// see ios for other class members

} ;

class ostream : virtual public ios
{
public:

ostream(streambuf*);
virtual ~ostream();
ostream& flush();
int opfx();
void osfx();
ostream& put(char);
ostream& seekp(streampos);
ostream& seekp(streamoff, ios::seek_dir);
streampos tellp();
ostream& write(const char* ptr, int n);
ostream& write(const unsigned char* ptr, int n);
ostream& operator<<(const char*);
ostream& operator<<(char);
ostream& operator<<(short);
ostream& operator<<(int);

54 U25437-J-Z145-1-7600

ostream Stream I/O

ostream& operator<<(long);
ostream& operator<<(float);
ostream& operator<<(double);
ostream& operator<<(unsigned char);
ostream& operator<<(unsigned short);
ostream& operator<<(unsigned int);
ostream& operator<<(unsigned long);
ostream& operator<<(void*);
ostream& operator<<(streambuf*);
ostream& operator<<(ostream& (*)(ostream&));
ostream& operator<<(ios& (*)(ios&));

};

class ostream_withassign : public ostream
{
public:

ostream_withassign() ;
virtual ~ostream_withassign() ;
ostream_withassign&operator=(ostream&) ;
ostream_withassign&operator=(streambuf*) ;

};

extern ostream_withassign cout;
extern ostream_withassign cerr;
extern ostream_withassign clog;
ostream& endl(ostream&);
ostream& ends(ostream&);
ostream& flush(ostream&);
ios& dec(ios&);
ios& hex(ios&);
ios& oct(ios&);

ostreams support insertion (storing) into a streambuf. These are commonly referred to as
output operations. The ostream member functions and related functions are described
below.

All the members and member functions identified below in italics which are not
specified by any different class belong to the ostream class.i

U25437-J-Z145-1-7600 55

Stream I/O ostream

In the following descriptions, assume:

– outs is an ostream.
– outswa is an ostream_withassign.
– sb is a streambuf*

Constructors and assignment

ostream(streambuf* sb)
Initializes ios and ostream state variables and associates buffer sb with the ostream.

ostream_withassign()
Does no initialization. This allows a file static variable of this type (cout for example) to
be used before it is constructed, provided it is assigned to first.

outswa=sb
Associates sb with outswa and initializes the entire state of outswa.

outswa=outs
Associates outs->rdbuf() with outswa and initializes the entire state of outswa.

Output prefix function

outs.opfx()
If outs’s error state is non-zero, returns zero immediately. Returns non-zero in all other
cases. If outs.tie() is non-null, it is flushed.

Output suffix function

osfx()
Performs “suffix” actions before returning from processing insertions. If ios::unitbuf is
set, osfx() flushes the ostream. If ios::stdio is set, osfx() flushes stdout and stderr.

osfx() is called by all predefined output functions, and should also be called by user-
defined output functions after any direct manipulation of the streambuf. It is not called by
the binary output functions.

56 U25437-J-Z145-1-7600

ostream Stream I/O

Formatted output functions (inserters)

outs<<x
First calls outs.opfx() and if that returns 0, does nothing. Otherwise inserts a sequence
of characters representing x into outs.rdbuf(). Errors are indicated by setting the error
state of outs. outs is always returned.
x is converted into a sequence of characters (its representation) according to rules that
depend on x’s type and outs’s format state flags and variables (see ios (page 30)):
Inserters are defined for the following types, with conversion rules as described below:

char*
The representation is the sequence of characters up to (but not including) the termi-
nating null of the string x points at.

any integral type (except char and unsigned char)

– If x is positive, the representation contains a sequence of decimal, octal, or
hexadecimal digits with no leading zeros, depending on whether ios::dec, ios::oct, or
ios::hex is set in ios’s format flags. If none of those flags are set, conversion defaults
to decimal.

– If x is 0, the representation consists of a single zero character(0).

– If x is negative, decimal conversion converts it to a minus sign (-) followed by
decimal digits.

– If x is positive and ios::showpos is set, decimal conversion converts it to a plus sign
(+) followed by decimal digits. The other conversions treat all values as unsigned. If
ios::showbase is set in ios’s format flags, the hexadecimal representation contains 0x
before the hexadecimal digits, or 0X if ios::uppercase is set. If ios::showbase is set,
the octal representation contains a leading 0.

void*
Pointers are converted to integral values and then converted to hexadecimal
numbers as if ios::showbase were set.

float, double
The arguments are converted according to the current values of outs.precision(),
outs.width() and outs’s format flags ios::scientific, ios::fixed, and ios::uppercase (see ios
(page 30)). The default value for outs.precision() is 6. If neither ios::scientific nor
ios::fixed is set, either fixed or scientific notation is chosen for the representation,
depending on the value of x.

char, unsigned char
No special conversion is necessary.

U25437-J-Z145-1-7600 57

Stream I/O ostream

After the representation is determined, padding occurs. If outs.width() is greater than 0
and the representation contains fewer than outs.width() characters, then enough
outs.fill() characters are added to bring the total number of characters to ios.width(). If
ios::left is set in ios’s format flags, the sequence is left-adjusted, that is, characters are
added after the characters determined above. If ios::right is set, the padding is added
before the characters determined above. If ios::internal is set, the padding is added after
any leading sign or base indication and before the characters that represent the value.
ios.width() is reset to 0, but all other format variables are unchanged. The resulting
sequence (padding plus representation) is inserted into outs.rdbuf().

outs<<sb
If outs.opfx() returns non-zero, the sequence of characters that can be fetched from sb
are inserted into outs.rdbuf(). Insertion stops when no more characters can be fetched
from sb. No padding is performed. Always returns outs.

Unformatted output functions

outs.put(char c)
Inserts c into outs.rdbuf(). Sets the error state if the insertion fails.

outs.write(char* ptr, int n)
Inserts the n characters starting at s into outs.rdbuf(). These characters may include zero
bytes (i.e., s need not be a null-terminated string).

Other member functions

outs.flush()
Storing characters into a streambuf does not always cause them to be consumed (e.g.,
written to the external file) immediately. flush() causes any characters that may have
been stored but not yet consumed to be consumed by calling outs.rdbuf()->sync.

outs<<manip
Equivalent to manip(outs). Syntactically this looks like an insertion operation, but seman-
tically it performs arbitrary operations rather than converting manip to a sequence of
characters as do the insertion operators.

58 U25437-J-Z145-1-7600

ostream Stream I/O

Positioning functions

outs.seekp(streamoff off, seek_dir dir)
Repositions outs.rdbuf()’s put pointer. See sbufpub (page 69) for a discussion of
positioning.

outs.seekp(streampos pos)
Repositions outs.rdbuf()’s put pointer. See sbufpub (page 69) for a discussion of
positioning.

outs.tellp()
Provides the current position of outs.rdbuf()’s put pointer. See subfpub (page 69) for a
discussion of positioning.

Manipulators

outs<<endl
Ends a line by inserting a newline character and flushing.

outs<<ends
Ends a string by inserting a null (0) character.

outs<<flush
Flushes outs.

outs<<dec
Sets the conversion base format flag to 10. See ios (page 30).

outs<<hex
Sets the conversion base format flag to 16. See ios (page 30).

outs<<oct
Sets the conversion base format flag to 8. See ios (page 30).

U25437-J-Z145-1-7600 59

Stream I/O ostream

EXAMPLE
The following program fragment in ostream.C displays a range of different data types in a
variety of different formats:

#include <stream.h> /* for cout + other declarations */
#include <iostream.h>
#include <iomanip.h> /* for setw */

int main(){
 int i = 50;
 char c = 'd';
 double d = 1.2;
 float f = 3.1232;
 const char* const p = "abcdefghijklmnopqrstuvwxyz";
 /* show the defaults for the various data types first */
 cout << i << endl;
 cout << c << endl;
 cout << d << endl;
 cout << f << endl;
 cout << p << endl;
 cout << endl;
 cout.setf(ios::oct, ios::basefield);
 cout << i << endl; /* same number in octal */
 cout << c << endl;
 cout.setf(ios::fixed, ios::floatfield);
 /* use fixed format for floats and doubles */
 cout << d << endl;
 cout << f << endl; /* above format still holds */
 cout.setf(ios::right, ios::basefield);
 cout << setw(50) << flush;
 cout << p << endl; /* put string out in field of width 50 */
 return 0;
}

Compile ostream.C with the following command:

$ CC -X d -o ostream ostream.C # Cfront C++ mode
or
$ CC -X w -o ostream ostream.C # ANSI C++ mode

Run the compiled program with:

$ ostream

50
d
1.2
3.1232
abcdefghijklmnopqrstuvwxyz

62
d
1.200000
3.123200
 abcdefghijklmnopqrstuvwxyz

60 U25437-J-Z145-1-7600

ostream Stream I/O

Note how the integer i has been printed out in two different formats, and the ease by which
the format of double and float values can be controlled. As shown in the first part of main(),
the output library provides sensible defaults, without the programmer explicitly setting them
up.

SEE ALSO
ios (page 30), manip (page 48), sbufpub (page 69)

U25437-J-Z145-1-7600 61

Stream I/O sbufprot

sbufprot - Protected interface of class streambuf

This section describes the protected and virtual parts of the streambuf class; especially inter-
esting for derived classes.

#include <iostream.h>

typedef long streamoff, streampos;

class ios {
public:

enum seek_dir {beg, cur, end};
enum open_mode {in, out, ate, app, trunc, nocreate, noreplace};
// and many other declarations, see ios ...

} ;

class streambuf {
public:

streambuf();
streambuf(char* p, int len);

virtual ~streambuf();
void dbp();

protected:
int allocate();
char* base();
int blen() const;
char* eback();
char* ebuf();
char* egptr();
char* epptr();
void gbump(int n);
char* gptr();
char* pbase();
void pbump(int n);
char* pptr();
void setb(char* b, char* eb, int a=0);
void setg(char* eb, char* g, char* eg);
void setp(char* p, char* ep);
int unbuffered() const;
void unbuffered(int);
virtual int doallocate();

62 U25437-J-Z145-1-7600

sbufprot Stream I/O

public:
virtual int pbackfail(int c);
virtual int overflow(int c=EOF);
virtual int underflow();
virtual streambuf* setbuf(char* ptr, int len);
virtual streampos seekpos(streampos, int=ios::in|ios::out);
virtual streampos seekoff(streamoff, ios::seek_dir, int=ios::in|ios::out);
virtual int sync();

};

streambufs implement the buffer abstraction described in sbufpub. However, the streambuf
class itself contains only basic members for manipulating the characters and normally a
class derived from streambuf is used. This section describes the interface needed by
programmers who are coding a derived class.

Broadly speaking there are two kinds of member functions described here. The non-virtual
functions are provided for manipulating a streambuf in ways that are appropriate in a derived
class. Their descriptions reveal details of the implementation that would be inappropriate in
the public interface. The virtual functions permit the derived class to specialize the streambuf
class in ways appropriate for the specific sources and destinations (for character transfers).

The descriptions of the virtual functions explain the obligations of the virtuals of the derived
class. If the virtuals behave as specified, the streambuf behaves as specified in the public
interface. However, if the virtuals do not behave as specified, then the streambuf may not
behave properly, and an iostream (or any other code) that relies on proper behaviour of the
streambuf may not behave properly either.

All the members and member functions identified below in italics which are not
specified by any different class belong to the streambuf class.

In the following descriptions assume:

– sb is a streambuf*.

Constructors

streambuf()
Constructs an empty buffer corresponding to an empty sequence.

streambuf(char* p, int len)
Constructs an empty buffer and then sets up the reserve area to be the len bytes
starting at p.

i

U25437-J-Z145-1-7600 63

Stream I/O sbufprot

The get, put, and reserve areas

The protected members of streambuf present an interface to derived classes organized
around three areas (arrays of bytes) managed cooperatively by the base and derived
classes. They are the get area, the put area, and the reserve area (or buffer). The get and the
put areas are normally disjointed, but they may both overlap the reserve area, whose
primary purpose is to be a resource in which space for the put and get areas can be
allocated. The get and the put areas are changed as characters are put into and taken from
the buffer, but the reserve area normally remains fixed. The areas are defined by a
collection of char* values. The buffer abstraction is described in terms of pointers that point
between characters, but the char* values must point at chars. To establish a correspon-
dence, the char* values should be thought of as pointing just before the byte they really
point at.

Functions to examine the pointers

sb->base()
Returns a pointer to the first byte of the reserve area. Space between sb->base() and
sb->ebuf() is the reserve area.

sb->eback()
Returns a pointer to a lower bound on sb->gptr(). Space between sb->eback() and
sb->gptr() is available for putback.

sb->ebuf()
Returns a pointer to the byte after the last byte of the reserve area.

sb->egptr()
Returns a pointer to the byte after the last byte of the get area.

sb->epptr()
Returns a pointer to the byte after the last byte of the put area.

sb->gptr()
Returns a pointer to the first byte of the get area. The available characters are those
between sb->gptr() and sb->egptr(). The next character fetched is *(sb->gptr()) unless
sb->egptr() is less than or equal to sb->gptr().

sb->pbase()
Returns a pointer to the put area base. Characters between sb->pbase() and sb->pptr()
have been stored into the buffer and not yet consumed.

sb->pptr()
Returns a pointer to the first byte of the put area. The space between sb->pptr() and
sb->epptr() is the put area and characters are stored here.

64 U25437-J-Z145-1-7600

sbufprot Stream I/O

Functions for setting the pointers

To indicate a particular area (get, put, or reserve) does not exist, all the associated pointers
should be set to zero.

sb->setb(char* b, char* eb, int a)
Sets base() and ebuf() to b and eb, respectively. a controls whether the area is subject to
automatic deletion. If a is non-zero, then b is deleted when base is changed by another
call of setb(), or when the destructor is called for *sb. If b and eb are both null then we
say that there is no reserve area. If b is non-null, there is a reserve area even if eb is
less than b, so the reserve area has zero length.

sb->setp(char* p, char* ep)
Sets pptr() to p, pbase() to p, and epptr() to ep.

sb->setg(cha* eb, char* g, char* eg)
Sets eback() to eb, gptr() to g, and egptr() to eg.

Other non-virtual members

sb->allocate()
Tries to set up a reserve area. If a reserve area already exists or if sb->unbuffered() is
nonzero, allocate() returns 0 without doing anything. If the attempt to allocate space
fails, allocate() returns EOF, otherwise (allocation succeeds) allocate() returns 1.
allocate() is not called by any non-virtual member function of streambuf.

sb->blen()
Returns the size (in chars) of the current reserve area.

dbp()
Writes directly on file descriptor 1 information in ASCII about the state of the buffer. It is
intended for debugging and nothing is specified about the form of the output. It is
considered part of the protected interface because the information it prints can only be
understood in relation to that interface, but it is a public function so that it can be called
anywhere during debugging.

sb->gbump(int n)
Increments gptr() by n which may be positive or negative. No checks are made on
whether the new value of gptr() is in bounds.

sb->pbump(int n)
Increments pptr() by n which may be positive or negative. No checks are made on
whether the new value of pptr() is in bounds.

U25437-J-Z145-1-7600 65

Stream I/O sbufprot

sb->unbuffered(int i)
sb->unbuffered()

There is a private variable known as sb’s buffering state.
sb->unbuffered(int i) sets the value of this variable to i and
sb->unbuffered() returns the current value. This state is independent of the actual
allocation of a reserve area. Its primary purpose is to control whether a reserve area is
allocated automatically by allocate().

Virtual member functions

Virtual functions may be redefined in derived classes to specialize the behaviour of
streambufs. This section describes the behaviour that these virtual functions should have in
any derived classes; the next section describes the behaviour that these functions are
defined to have in base class streambuf.

sb->doallocate()
Is called when allocate() determines that space is needed. doallocate() is used to call
setb() to provide a reserve area or to return EOF if this is not possible. It is only called if
sb->unbuffered() is zero and sb->base() is zero.

overflow(int c)
Is called to consume characters. If c is not EOF, overflow() also must either save c or
consume it. Usually it is called when the put area is full and an attempt is being made
to store a new character, but it can be called at other times. The normal action is to
consume the characters between pbase() and pptr(), call setp() to establish a new put
area, and if c!=EOF store it (using sputc()). sb->overflow() should return EOF to indicate
an error; otherwise it should return something else.

sb->pbackfail(int c)
Is called when eback() equals gptr() and an attempt has been made to putback c. If this
situation can be dealt with (e.g., by repositioning an external file), pbackfail() should
return c; otherwise it should return EOF.

sb->seekoff(streamoff off, seek_dir dir, int mode)
seekoff() is a public virtual member function. A detailed description is given in section
sbufpub (page 69).

sb->seekpos(streampos pos, int mode)
seekpos() is a public virtual member function. A detailed description is given in section
sbufpub (page 69).

sb->setbuf(char* ptr, int len)
Offers the array at ptr with len bytes to be used as a reserve area. The normal interpre-
tation is that if ptr or len are zero then this is a request to make the sb unbuffered. The
derived class may use this area or not as it chooses. If may accept or ignore the request
for unbuffered state as it chooses. setbuf() should return sb if it honours the request.
Otherwise it should return 0.

66 U25437-J-Z145-1-7600

sbufprot Stream I/O

sb->sync()
sync() is a public virtual member function. A detailed description is given in section on
sbufpub (page 69).

sb->underflow()
Is called to supply characters for fetching, i.e. to create a condition in which the get area
is not empty. If it is called when there are characters in the get area it should return the
first character. If the get area is empty, it should create a non-empty get area and return
the next character (which it should also leave in the get area). If there are no more
characters available, underflow() should return EOF and leave an empty get area.

The default definitions of the virtual functions

sb->streambuf::doallocate()
Attempts to allocate a reserve area using the new operator.

sb->streambuf::overflow(int c)
Is compatible with the old stream package, but that behaviour is not considered part of
the specification of the iostream package. Therefore, streambuf::overflow() should be
treated as if it had undefined behaviour. That is, derived classes should always define it.

sb->streambuf::pbackfail(int c)
Returns EOF on failure and c on success.

sb->streambuf::seekpos(streampos pos, int mode)
Returns sb->seekoff(streamoff(pos),ios::beg,mode). Thus to define seeking in a derived
class, it is frequently only necessary to define seekoff() and use the inherited
streambuf::seekpos().

sb->streambuf::seekoff(streamoff off, seekdir dir, int mode)
Returns EOF.

sb->streambuf::setbuf(char* ptr, int len)
Honours the request when there is no reserve area.

sb->streambuf::sync()
Returns 0 if the get area is empty and there are no unconsumed characters. Otherwise
it returns EOF.

sb->streambuf::underflow()
Is compatible with the old stream package, but that behaviour is not considered part of
the specification of the iostream package. Therefore, streambuf::underflow() should be
treated as if it had undefined behaviour. That is, it should always be defined in derived
classes.

U25437-J-Z145-1-7600 67

Stream I/O sbufprot

EXAMPLE
The following program fragment in sbufprot.C prints out the machine address of the base
area of a class derived from a streambuf. The program is an example of displaying memory
contents. It could have other trivial member functions like get_base which return the machine
addresses of the get and put areas.

#include <stream.h> /* For definition of cout */
const int N = 20;

class trivial : public streambuf
{
 int a; /* Some sample data in a class */
 public:
 trivial() : streambuf(new char[N], N)
 {
 /* Define trivial constructor by streambuf constructor */
 a = 0;
 };
 ˜trivial() {};
 /* Assume streambuf destructor will delete the N byte */
 /* reserve area*/
 char * get_base()
 {
 /* We need this function because the streambuf::base() */
 /* member function is protected */
 /* We don't need the streambuf:: qualifier since scope is ok */
 return base();
 };
};

int main()
{
 trivial test_var;
 cout << (void*) test_var.get_base() << endl;
 /* We must cast to void* to stop cout displaying the contents */
 /* of the first byte of the reserve area. */

 return 0;
}

Compile sbufprot.C with the following command:

$ CC -X d -o sbufprot sbufprot.C # Cfront C++ mode
or
$ CC -X w -o sbufprot sbufprot.C # ANSI C++ mode

Run the compiled program with:

$ sbufprot
0x804f920

Note that the value stored in the pointer will vary between individual machines and versions
of SINIX/UNIX, and that cout has a default format for pointer values.

68 U25437-J-Z145-1-7600

sbufprot Stream I/O

BUGS
The constructors are declared as public for compatibility with the old stream package. They
ought to be protected.

The interface for unbuffered actions is awkward. It’s hard to write underflow() and overflow()
virtuals that behave properly for unbuffered streambuf()s without special casing. Also there
is no way for the virtuals to react sensibly to multi-character get or put operations.

Although the public interface to streambufs deals in characters and bytes, the interface to
derived classes deals in chars. Since a decision had to be made on the types of the real
data pointers, it seemed easier to reflect that choice in the types of the protected members
than to duplicate all the members with both plain and unsigned char versions. But perhaps
all these uses of char* ought to have been implemented by a typedef.

The implementation contains a variant of setbuf() that accepts a third argument. It is present
only for compatibility with the old stream package.

SEE ALSO
istream (page 41), sbufpub (page 69)

U25437-J-Z145-1-7600 69

Stream I/O sbufpub

sbufpub - Public interface of class streambuf

This section describes the public member functions of streambuf.

#include <iostream.h>

typedef long streamoff, streampos;

class ios
{
public:

enum seek_dir {beg, cur, end};
enum open_mode {in, out, ate, app, trunc, nocreate, noreplace};
// and lots of other classes, see ios (page 30).

};

class streambuf
{
public :

int in_avail();
int out_waiting();
int sbumpc();
virtual streambuf* setbuf(char* ptr, int len);
streambuf* setbuf(unsigned char* ptr, int len);
streambuf* setbuf(char* ptr, int len, int count);
virtual streampos seekpos(streampos, int=ios::in|ios::out);
virtual streampos seekoff(streamoff, ios::seek_dir, int=ios::in|ios::out);
int sgetc();
int sgetn(char* ptr, int n);
int snextc();
int sputbackc(char ch);
int sputc(int c);
int sputn(const char* ptr, int n);
void stossc();
virtual int sync();

};

70 U25437-J-Z145-1-7600

sbufpub Stream I/O

All the members and member functions identified below in italics which are not
specified by any different class belong to the streambuf class.

In the following descriptions assume:

– sb is a streambuf*.

The streambuf class supports buffers into which characters can be inserted (put) or from
which characters can be fetched (get). Such a buffer is a sequence of characters, together
with one or two pointers (a get and/or a put pointer) that define the location at which
characters are to be inserted or fetched. The pointers should be thought of as pointing
between characters rather than at them. This makes it easier to understand the boundary
conditions (a pointer before the first character or after the last). Some of the effects of
getting and putting are defined by this class but most of the details are left to specialized
classes derived from streambuf (see also filebuf (page 22), ssbuf (page 74), and stdiobuf
(page 77)).

Classes derived from streambuf vary in their treatments of the get and put pointers. The
simplest are unidirectional buffers which permit only gets or only puts. Such classes serve
as pure sources (producers) or sinks (consumers) of characters. Queue-like buffers (see
strstream (page 53) and ssbuf (page 74)) have a put and a get pointer which move indepen-
dently of each other. In such buffers characters that are stored are held (i.e., queued) until
they are later fetched. Filelike buffers (e.g., filebuf, see filebuf (page 22)) permit both gets and
puts but have only a single pointer. (An alternative description is that the get and put pointers
are tied together so that when one moves so does the other.)

Most streambuf member functions are organized into two phases. As far as possible, opera-
tions are performed inline by storing into or fetching from arrays (the get area and the put
area, which together form the reserve area, or buffer). From time to time, virtual functions
are called to deal with collections of characters in the get and put areas. That is, the virtual
functions are called to fetch more characters from the ultimate producer or to flush a
collection of characters to the ultimate consumer. Generally the user of a streambuf does not
have to know anything about these details, but some of the public members pass back infor-
mation about the state of the areas. Further detail about these areas is provided in sbufprot,
which describes the protected interface.

Public member functions

sb->in_avail()
Returns the number of characters that are immediately available in the get area for
fetching. i characters may be fetched with a guarantee that no errors are reported.

sb->out_waiting()
Returns the number of characters in the put area that have not been consumed (by the
ultimate consumer).

i

U25437-J-Z145-1-7600 71

Stream I/O sbufpub

sb->sbumpc()
Moves the get pointer forward one character and returns the character it moved past.
Returns EOF if the get pointer is currently at the end of the sequence.

sb->seekoff(streamoff off, seek_dir dir, int mode)
Repositions the get and/or put pointers (i.e. the abstract get and put pointers, not pptr()
and gptr()). mode specifies whether the put pointer (ios::out bit set) or the get pointer
(ios::in bit set) is to be modified. Both bits may be set in which case both pointers should
be affected.

off is interpreted as a byte offset. (Notice that it is a signed quantity.) The meanings of
possible values of dir are
ios::beg The beginning of the stream.
ios::cur The current position.
ios::end The end of the stream (end of file.)

A class derived from streambuf is not required to support repositioning. seekoff() returns EOF
if the class does not support repositioning. If the class does support repositioning, seekoff()
returns the new position or EOF on error.

sb->seekpos(streampos pos, int mode)
Repositions the streambuf get and/or put pointer to pos. mode specifies which pointers are
affected as for seekoff(). Returns pos (the argument) or EOF if the class does not support
repositioning or an error occurs. In general, a variable of type streampos should not have
arithmetic performed upon it. Two particular values have special meaning:
streampos(0)The beginning of the file.
streampos(EOF)Used as an error indication.

sb->sgetc()
Returns the character after the get pointer. Contrary to what most people expect from
the name it does not move the get pointer. Returns EOF if there is no character
available.

sb->setbuf(char* ptr, int len, int count)
Offers the len bytes starting at ptr as the reserve area. If ptr is null or len is zero or less,
then an unbuffered state is requested. Whether the offered area is used, or a request
for unbuffered state is honoured depends on details of the derived class. setbuf()
normally returns sb, but if it does not accept the offer or honour the request, it returns 0.

sb->sgetn(char* ptr, int n)
Fetches the n characters following the get pointer and copies them to the area starting
at ptr. When there are fewer than n characters left before the end of the sequence sgetn()
fetches whatever characters remain. sgetn() repositions the get pointer following the
fetched characters and returns the number of characters fetched.

72 U25437-J-Z145-1-7600

sbufpub Stream I/O

sb->snextc()
Moves the get pointer forward one character and returns the character following the new
position. If the pointer is currently at the end of the sequence or is at the end of the
sequence after moving forward, EOF is returned.

sb->sputbackc(char ch)
Moves the get pointer back one character. ch must be the current content of the
sequence just before the get pointer. The underlying mechanism may simply back up
the get pointer or may rearrange its internal data structures so the ch is saved. Thus the
effect of sputbackc() is undefined if ch is not the character before the get pointer.
sputbackc() returns EOF when it fails. The conditions under which it can fail depend on
the details of the derived class.

sb->sputc(int c)
Stores c after the put pointer, and moves the put pointer past the stored character;
usually this extends the sequence. It returns EOF when an error occurs. The conditions
that can cause errors depend on the derived class.

sb->sputn(char* ptr, int n)
Stores the n characters starting at ptr after the put pointer and moves the put pointer
past them. sputn() returns i, the number of characters stored successfully. Normally i is
n, but it may be less when errors occur.

sb->stossc()
Moves the get pointer forward one character. If the pointer started at the end of the
sequence this function has no effect.

sb->sync()
Establishes consistency between the internal data structures and the external source
or sink. The details of this function depend on the derived class. sync() is called to give
the derived class a chance to look at the state of the areas, and synchronize them with
any external representation. Normally sync() should consume any characters that have
been stored into the put area, and if possible give back to the source any characters in
the get area that have not been fetched. When sync() returns there should not be any
unconsumed characters, and the get area should be empty. sync() returns EOF if some
kind of failure occurs. In other words, sync() “flushes” any characters that have been
stored but not yet consumed, and “gives back” any characters that may have been
produced but not yet fetched.

U25437-J-Z145-1-7600 73

Stream I/O sbufpub

EXAMPLE
The following program fragment in sbufpub.C defines a variable of type filebuf attached to cin
and reads in blocks of characters from that filebuf until end of file is reached. For each block
that is read in, the size of the buffer that is not used by the read in characters, is printed out:

#include <stream.h>
#include <fstream.h>

int main(){
 filebuf in_file(0); /* in_file is connected to cin */
 const int N = 1000;
 /* better to use a const int than a hash define */
 char text_b[N]; /* text buffer */
 cout << in_file.in_avail() << endl;
 /* check the get area before trying to call sgetn */
 while (in_file.sgetn(&text_b[0], N) > 0)
 {
 /* did get some characters */
 cout << in_file.in_avail() << endl;
 }
 return 0;
}

Compile sbufpub.C with the following command:

$ CC -X d -o sbufpub sbufpub.C # Cfront C++ mode
or
$ CC -X w -o sbufpub sbufpub.C # ANSI C++ mode

The program may be given any file as input.

The maximum value returned by the in_avail() member function can be up to 1024, the
default buffer size. The user may change the buffer size by calling the setbuf() member
function. Any buffer size may be set with setbuf().

BUGS
setbuf does not really belong in the public interface. It is there for compatibility with the stream
package.

SEE ALSO
istream (page 41), sbufprot (page 61)

74 U25437-J-Z145-1-7600

ssbuf (sstreambuf) Stream I/O

ssbuf (sstreambuf) - Specialization of streambuf for arrays

This section describes how a string may be used as a stream buffer.

#include <iostream.h>
#include <strstream.h>

class strstreambuf : public streambuf
{
public:

strstreambuf() ;
strstreambuf(char* ptr, int n, char* pstart=0);
strstreambuf(int);
strstreambuf(unsigned char* ptr, int n, unsigned char* pstart=0);
strstreambuf(void* (*a)(long), void(*f)(void*));
~strstreambuf();

void freeze(int n=1);
char* str();
virtual streambuf* setbuf(char*, int);

};

A strstreambuf is a streambuf that uses an array of bytes (a string) to hold the sequence of
characters. Given the convention that a char* should be interpreted as pointing just before
the char it really points at, the mapping between the abstract get/put pointers (see sbufpub
(page 69)) and char* pointers is direct. Moving the pointers corresponds exactly to incre-
menting and decrementing the char* values.

To accommodate the need for arbitrary length strings strstreambuf supports a dynamic
mode. When a strstreambuf is in dynamic mode, space for the character sequence is
allocated as needed. When the sequence is extended too far, it is copied to a new array.

All the members and member functions identified below in italics which are not
specified by any different class belong to the strstreambuf class.

In the following descriptions assume:

– ssb is a strstreambuf*.

i

U25437-J-Z145-1-7600 75

Stream I/O ssbuf (sstreambuf)

Constructors

strstreambuf()
Constructs an empty strstreambuf in dynamic mode. This means that space is automat-
ically allocated to accommodate the characters that are put into the strstreambuf (using
operators new and delete). Because this may require copying the original characters, it
is recommended that when many characters are to be inserted, the program should use
setbuf() (described below) to inform the strstreambuf.

strstreambuf(void (*a)(long), void* (*f)(void*))
Constructs an empty strstreambuf in dynamic mode. a is used as the allocator function
in dynamic mode. The argument passed to a is a long denoting the number of bytes to
be allocated. If a is null, operator new is used. f is used to free (or delete) areas returned
by a. The argument to f is a pointer to the array allocated by a. If f is null, operator delete
is used.

strstreambuf(int n)
Constructs an empty strstreambuf in dynamic mode. The initial allocation of space is at
least n bytes.

strstreambuf(char* ptr, int n, char* pstart)
Constructs a strstreambuf to use the bytes starting at ptr. The strstreambuf is in static
mode; it does not grow dynamically. If n is positive, then the n bytes starting at ptr are
used as the strstreambuf. If n is zero, ptr is assumed to point to the beginning of a null-
terminated string and the bytes of that string (not including the terminating null
character) constitutes the strstreambuf. If n is negative, the strstreambuf is assumed to
continue indefinitely. The get pointer is initialized to ptr. The put pointer is initialized to
pstart. If pstart is null, then stores are treated as errors. If pstart is non-null, then the initial
sequence for fetching (the get area) consists of the bytes between ptr and pstart. If pstart
is null, then the initial get area consists of the entire array.

Member functions

ssb->freeze(int n)
Inhibits (when n is non-zero) or permits (when n is zero) automatic deletion of the
current array. Deletion normally occurs when more space is needed or when ssb is being
destroyed. Only space obtained via dynamic allocation is ever freed. It is an error (and
the effect is undefined) to store characters into a strstreambuf that was in dynamic
allocation mode and is now frozen. It is possible, however, to thaw (unfreeze) such a
strstreambuf and resume storing characters.

76 U25437-J-Z145-1-7600

ssbuf (sstreambuf) Stream I/O

ssb->str()
Returns a pointer to the first char of the current array and freezes ssb. If ssb was
constructed with an explicit array, ptr points to that array. If ssb is in dynamic allocation
mode, but nothing has yet been stored, ptr may be null.

ssb->setbuf(char* ptr, int n)
ssb remembers n and the next time it does a dynamic mode allocation, it makes sure
that at least n bytes are allocated.

EXAMPLE
The following program fragment in strstreambuf.C declares a variable of type strstreambuf and
initializes it with string p. The str() member function is called to ensure that the text string p
is successfully processed by the strstreambuf constructor.

#include <strstream.h>
#include <stream.h>
#include <string.h>
char* const p = "A very long string indeed "
 " abcdefghijlkmnopqrstuvwxyz";
int main()
{
 strstreambuf s(p, 0, 0);
 /* The string p is the strstreambuf. */
 /* The get ptr is to the start of p. */
 char *tp = s.str();
 cout << "length of original string " << strlen(p) << endl;
 cout << "no. of chars in the strstreambuf string " << strlen(tp) << endl;
 return 0;
}

Compile strstreambuf.C with the following command:

$ CC -X d -o strstreambuf strstreambuf.C # Cfront C++ mode
or
$ CC -X w -o strstreambuf strstreambuf.C # ANSI C++ mode

Run the compiled program with:

$ strstreambuf
length of original string 53
length of strstreambuf string 53

Note how the original string length has not changed.

SEE ALSO
sbufpub (page 69), strstream (page 79)

Unlike previous versions of C++, str() no longer terminates the contents of a
stream buffer with a zero (see also page 14).i

U25437-J-Z145-1-7600 77

Stream I/O stdiobuf

stdiobuf - Specialization of iostream for sdtio FILEs

This section describes stdiobuf, which is a class which specializes a streambuf to deal with
the top level input/output structure FILE.

stdiobuf is intended to be used when mixing C and C++ code in the same program. New
C++ code should use filebufs.

#include <iostream.h>
#include <stdiostream.h>
#include <stdio.h>

class stdiobuf : public streambuf
{

stdiobuf(FILE* f);
FILE* stdiofile();
virtual ~stdiobuf();

};

Operations on a stdiobuf are reflected on the associated FILE. A stdiobuf is constructed in
unbuffered mode, which causes all operations to be reflected immediately in the FILE.
seekg()s and seekp()s are translated into fseek()s. setbuf() has its usual meaning; if it supplies
a reserve area, buffering is turned back on.

78 U25437-J-Z145-1-7600

stdiobuf Stream I/O

EXAMPLE
The following program fragment in stdiobuf.C opens the file /etc/passwd for reading, attaches
a variable of type stdiobuf to the file, and then prints out a message to show if the stdiobuf is
attached properly to the file.

#include <stdiostream.h>
#include <stdio.h>
#include <stream.h>
#include <osfcn.h>
#include <fcntl.h>

int main()
{
 FILE *qw;
 if (!(qw = fopen("/etc/passwd", "r")))
 {
 cerr << "can't open /etc/passwd\n";
 exit(1);
 }
 stdiobuf s(qw);

 FILE *rt = s.stdiofile();
 if (rt != qw)
 {
 cerr << "Error in stdiofile()" << endl;
 }
 else
 {
 cerr << "stdiofile() is working ok" << endl;
 }

 return 0;
}

Compile stdiobuf.C with the following command:

$ CC -X d -o stdiobuf stdiobuf.C # Cfront C++ mode
or
$ CC -X w -o stdiobuf stdiobuf.C # ANSI C++ mode

Run the compiled program with:

$ stdiobuf
stdiofile() is working ok

This program shows that the stdiofile() member function of stdiobuf returns the correct result
in this case.

SEE ALSO
filebuf (page 22), istream (page 41), ostream (page 53), sbufpub (page 69)

U25437-J-Z145-1-7600 79

Stream I/O strstream (sstream)

strstream (sstream) - Specialization of iostream for arrays

This section describes class strstream, which is a specialization of class iostream. strstream
deals with input and output style operations on arrays of bytes.

#include <strstream.h>
#include <iostream.h>

class ios {
public:

enum open_mode {in, out, ate, app, trunc, nocreate, noreplace};
// and many others, see ios ...

};

class istrstream : public strstreambase, public istream {
public:

istrstream(char*);
istrstream(char*, int) ;
istrstream(const char*);
istrstream(const char*, int);
~istrstream() ;

};

class ostrstream : public strstreambase, public ostream {
public:

ostrstream();
ostrstream(char*, int, int=ios::out);
~ostrstream();

int pcount();
char* str();

};

class strstream : public strstreambase, public iostream {
public:

strstream();
strstream(char*, int, int mode);
~strstream();

char* str();

};

80 U25437-J-Z145-1-7600

strstream (sstream) Stream I/O

strstream specializes iostream for “incore” operations, that is, storing and fetching from arrays
of bytes. The streambuf associated with a strstream is a strstreambuf (see ssbuf).

In the following descriptions assume:
– ssb is a strstreambuf*.
– ss is a strstream.
– iss is an istrstream.
– oss is an ostrstream.

Constructors

istrstream(char* cp)
Characters are fetched from the (null-terminated) string cp. The terminating null
character is not part of the sequence. Seeks (istream::seekg()) are allowed within that
array.

istrstream(char* cp, int len)
Characters are fetched from the array beginning at cp and extending for len bytes. Seeks
(istream::seekg()) are allowed anywhere within that array.

ostrstream()
Space is dynamically allocated to hold stored characters.

ostrstream(char* cp, int n, int mode)
Characters are stored into the array starting at cp and continuing for n bytes. If ios::ate
or ios::app is set in mode, then cp is assumed to be a null-terminated string and storing
begins at the null character. Otherwise, storing begins at cp. Seeks are allowed
anywhere in the array.

strstream()
Space is dynamically allocated to hold stored characters.

strstream(char* cp, int n, int mode)
Characters are stored into the array starting at cp and continuing for n bytes. If ios::ate
or ios::app is set in mode, then cp is assumed to be a null-terminated string and storing
begins at the null character. Otherwise, storing begins at cp. Seeks are allowed
anywhere in the array.

istrstream member function

iss.rdbuf()
Returns the strstreambuf associated with iss.

i

U25437-J-Z145-1-7600 81

Stream I/O strstream (sstream)

ostrstream members

oss.rdbuf()
Returns the strstreambuf associated with oss.

oss.str()
Returns a pointer to the array being used and “freezes” the array. Once str has been
called the effect of storing more characters into oss is undefined. If oss was constructed
with an explicit array, cp is just a pointer to the array. Otherwise, cp points to a dynami-
cally allocated area. Until str is called, deleting the dynamically allocated area is the
responsibility of oss. After str returns, the array becomes the responsibility of the user
program.

oss.pcount()
Returns the number of bytes that have been stored into the buffer. This is mainly of use
when binary data has been stored and oss.str() does not point to a null-terminated
string.

strstream member functions

ss.rdbuf()
Returns the strstreambuf associated with ss.

ss.str()
Returns a pointer to the array being used and “freezes” the array. Once str() has been
called, the effect of storing more characters into ss is undefined. If ss was constructed
with an explicit array, cp is just a pointer to the array. Otherwise, cp points to a dynami-
cally allocated area. Until str is called, deleting the dynamically allocated area is the
responsibility of ss. After str() returns, the array becomes the responsibility of the user
program.

82 U25437-J-Z145-1-7600

strstream (sstream) Stream I/O

EXAMPLE
The following program fragment in strstream.C defines a string str1 and then reads from the
string like an input stream, by using the >> operator. Each character read from the string is
printed on cout.

#include <stream.h>
#include <strstream.h>

const char* const str1 = "A test string to check strstream\n";
/* Use const to make sure that the string, and the pointer */
/* to it, cannot be changed */

int main()
{
 istrstream is((char*) str1);
 /* Declare variable is using str1 string */

 is.unsetf(ios::skipws);
 /* By default, an istrstream will skip white space on */
 /* input, change the default behaviour by clearing the */
 /* skipws flag so that it will not skip white space on */
 /* input */

 while (EOF != is.peek())
 {

 char c;

 is >> c;
 /* Note how the text string is accessed like an input */
 /* string */

 cout << c;
 }
 return 0;
}

Compile strstream.C with the following command:

$ CC -X d -o strstream strstream.C # Cfront C++ mode
or
$ CC -X w -o strstream strstream.C # ANSI C++ mode

Run the compiled program with:

$ strstream
A test string to check strstream

SEE ALSO
istream (page 41), ssbuf (page 74)

U25437-J-Z145-1-7600 83

Related publications

Manuals from Siemens Nixdorf Informationssysteme AG

Please apply to your local office for ordering the manuals.

[1] C/C++ Compiler V1.0
(Reliant UNIX)
User Guide

Contents
– Overview of the C/C++ development system CDS++
– Compiling and linking of C and C++ programs with the commands cc, c89 and CC
– Programming notes and detailed information on: precompiled header files, optimiza-

tion, binding, C and C++ language support of the compiler (implementation specific
behaviour and extensions)

[2] Standard C++ Library V1.2
User‘s Guide and Reference

Contents
Problem-oriented description and reference work for the ANSI C++ libraries Strings,
Containers, Iterators, Algorithms and Numerics.

[3] Tools.h++ V7.0
User‘s Guide

Contents
Problem-oriented description of the C++ class libraries Tools.h++.

[4] Tools.h++ V7.0
Class Reference

Contents
Reference work for the C++ class libraries Tools.h++.

84 U25437-J-Z145-1-7600

Related publications Stream I/O

[5] Reliant UNIX 5.43
Programmers‘s Reference Manual

Contents
Description of the commands for program development, C library functions and system
calls, and a description of a number of header files and C-specific file formats.

Other publications

[6] The C++ Programming Language
(2nd Edition)
by Bjarne Stroustrup

Contents
This standard work by C++ originator Bjarne Stroustrup includes an introduction to C and
C++ with a large number of examples, three chapters on software development using C++
and a complete reference manual.

U25437-J-Z145-1-7600 85

Index
- operator 11

!= operator 12
* operator 11
*= operator 12
+ operator 11
+= operator 12
/ operator 11
/= operator 12
-= operator 12
== operator 12

A
abs() 5
allocate() 64
angle 5
arg() 5
arithmetic operators 11
assignment operators 11, 12
attach() 23, 28

B
bad() 33
base() 63
bitalloc() 37
blen() 64
buffer classes 20
buffer extraction 62, 63

C
C math library 3, 8, 40
c_exception 7
Cartesian functions 5
cerr 19
cin 19

86 U25437-J-Z145-1-7600

Index Stream I/O

clear() 32
clog 19
close() 23, 28
comparison operators 11, 12
complex element functions 5
complex math library 3
complex.h 3, 4, 7
complex_error() 7, 14
conj() 5
conjugation 5
coordinate systems 3
core classes (iostream) 18
cos() 14
cosh() 8, 14
cosine 3, 14
cout 19
cplxcartpol 3, 5
cplxerr 3, 7
cplxexp 3, 9
cplxintro 3
cplxops 3, 11
cplxtrig 14

D
dec 34
difference

arithmetic 11
doallocate() 65

E
eback() 63
ebuf() 63
EDOM 4, 8, 10
egptr() 63
eof() 32
epptr() 63
ERANGE 4, 8, 10, 14
errno 4, 7, 8, 10, 14
error handling 7
exp() 8, 9
exponential function 3, 9
extraction operation 42

U25437-J-Z145-1-7600 87

Stream I/O Index

F
fail() 32
fd() 23
FILE 77
file descriptor 0 19
file descriptor 1 19
file descriptor 2 19
filebuf 20, 22

member function 23, 24, 25
filebuf() 23
fill() 35
fixed 35
flags() 36
flush() 57
format state 33
formatted input 41
formatted output 53
freeze() 75
fstream 20, 26

member function 28, 29
fstream() 27
functions

Cartesian 5
hyperbolic 14
polar 5
trigonometric 14

G
gcount() 46
get area 63, 66, 70
get pointer 24
get() 45
good() 32
gptr() 63

H
hex 34
HUGE 4, 8, 9, 14
hyperbolic cosine 14
hyperbolic functions 3, 14
hyperbolic sine 14

I
I/O stream library

88 U25437-J-Z145-1-7600

Index Stream I/O

standard 17
ifstream 20, 26

member function 28, 29
ifstream() 27
imag() 5
in_avail() 70
init() 32
input

formatted 41
unformatted 41

input operation 42
input/output 77
internal 34
iomanip.h 50, 51
ios 18, 26, 30

format state 33
manipulators 38
member function 32, 33, 35, 36, 37, 38

ios() 32
iosintro 17
iostream 19, 79
iostream manipulators 48
iostream.h 17, 19, 21, 40
Iostream_init 19
iostream_withassign 19
is_open() 23
istream 19, 41

manipulators 47
member function 43, 45, 46

istream() 43
istream_withassign 19
istream_withassign() 43
istrstream 20
istrstream() 80
iword() 37

L
left 34
libC.a 17
libcomplex.a 3
library

complex math 3
math (C) 3

log() 8, 9

U25437-J-Z145-1-7600 89

Stream I/O Index

logarithms 3, 9

M
magnitude 5
manipulators iostreams 48
math library

C 3, 8, 40
math.h 4

N
natural logarithm 9
negation

arithmetic 11
norm() 5

O
oct 34
ofstream 20, 26

member function 28, 29
ofstream() 27
open() 24, 28
operator

10, 15
- 11
!= 12
* 11
*= 12
+ 11
+= 12
/ 11
/= 12
-= 12
== 12
arithmetic 11
assignment 11, 12
comparison 11, 12

opfx() 55
osfx() 55
ostream 19, 53

member function 55, 57, 58
output operations 54

ostream() 55
ostream_withassign 19
ostream_withassign() 55

90 U25437-J-Z145-1-7600

Index Stream I/O

ostrstream 20
ostrstream() 80
out_waiting() 70
output

formatted 53
operations 54
unformatted 53

outstream
manipulators 58

OVERFLOW 7, 8
overflow() 65

P
pbackfail() 65
pbase() 63
pcount() 81
polar functions 5
polar() 5
pow() 9
power 3
power function 9
pptr() 63
precision() 36
predefined streams 19
product

arithmetic 11
put area 63, 70
put pointer 24
put() 45, 57
pword() 37

Q
quotient

arithmetic 11

R
rdbuf() 29, 37, 80, 81
rdstate() 32
real() 6
reserve area 63
right 34

S
sbufprot 61

U25437-J-Z145-1-7600 91

Stream I/O Index

sbufpub 69
sbumpc() 71
scientific 35
seekoff() 24, 65, 71
seekp() 58
seekpos() 65, 71
setbuf() 24, 29, 65, 71, 76
setf() 36
sgetc() 71
sgetn() 71
showbase 34
showpoint 34
showpos 34
sin() 14
sine 3, 14
SING 7, 8, 10
sinh() 8, 14
skipws 33
snextc() 72
sputbackc() 72
sputc() 72
sputn() 72
sqrt() 9
square of a magnitude 5
square root 3, 9
sstream 79
sstream entry 79
sstreambuf 74
standard error 19
standard I/O stream library 17
standard input 19
standard library

for input/output 17
standard output 19
stderr 19
stdin 19
stdio 35
stdio.h 21, 40
stdiobuf 20, 77
stdiostream 20
stdiostream.h 20
stdout 19
str() 81
stream.h 21

92 U25437-J-Z145-1-7600

Index Stream I/O

streambuf 18, 42, 54, 77
pointer 64

streambuf ff 62, 66
streambuf() 62
streams

predefined 19
string.h 51
strstream 80
strstream ff 79
strstreambuf 20, 74
strstreambuf() 75
sum

arithmetic 11
sync() 24, 66, 72

T
tellg() 46
tellp() 58
templates 50
tie() 38
trigonometric functions 3, 14

U
unbuffered() 65
UNDERFLOW 7, 8
underflow() 66
unformatted input 41
unformatted output 53
unitbuf 35
unsetf() 36
uppercase 34

W
whitespace ff 33
width() 36
write() 57

X
xalloc() 37

U25437-J-Z145-1-7600 93

Contents
Preface 1
Notational conventions .2

Complex math classes and functions . 3
cplxintro - Introduction to complex mathematics . 3
cplxcartpol - Cartesian/Polar functions . 5
cplxerr - Error handling functions . 7
cplxexp - Transcendental functions . 9
–cplxops - Operators . 11
–cplxtrig - Trigonometric and hyperbolic functions . 14

–Classes and functions for stream I/O . 17
–iosintro - Introduction to buffering, formatting, and input/output . 17
–filebuf - Buffer for file input/output . 22
–fstream - Specialization of iostrem and streambuf for files . 26
–ios - Base class for input/output . 30
–istream - Formatted and unformatted input . 41
–manip - iostream manipulation . 48
–ostream - Formatted and unformatted output . 53
–sbufprot - Protected interface of class streambuf . 61
–sbufpub - Public interface of class streambuf . 69
–ssbuf (sstreambuf) - Specialization of streambuf for arrays . 74
–stdiobuf - Specialization of iostream for sdtio FILEs . 77
–strstream (sstream) - Specialization of iostream for arrays . 79

Related publications . 83

Index 85

94 U25437-J-Z145-1-7600

Contents Stream I/O

U25437-J-Z145-1-7600 95

Stream I/O

Cfront C++ Library

(Reliant UNIX)

C++ Classes for Complex Math and Stream I/O

Reference Manual

Target group
C++ programmers who work on Reliant UNIX with the
CDS++ development system.
Contents
Description of all classes, functions and operations which the CDS++ development system
with the C++ libraries compatible with Cfront V3.0.3 provides for complex math and stream
I/O.

Edition: April 1997

File:

BS2000 is registered trademarks of Siemens Nixdorf Informationssyteme AG.

Copyright © Siemens Nixdorf Informationssysteme AG, 1997.

All rights, including rights of translation, reproduction by printing, copying or similar
methods, even of parts, are reserved.

Offenders will be liable for damages. All rights, including rights created by patent grant or
registration of a utility model or design, are reserved.

Delivery subject to availability; right of technical modifications reserved.

	Title
	Contents
	Preface
	Complex math classes and functions
	cplxintro - Introduction to complex mathematics
	cplxcartpol - Cartesian/Polar functions
	cplxerr - Error handling functions
	cplxexp - Transcendental functions
	cplxops - Operators
	cplxtrig - Trigonometric and hyperbolic functions

	Classes and functions for stream I/O
	iosintro - Introduction to buffering, formatting, ...
	filebuf - Buffer for file input/output
	fstream - Specialization of iostrem and streambuf ...
	ios - Base class for input/output
	istream - Formatted and unformatted input
	manip - iostream manipulation
	ostream - Formatted and unformatted output
	sbufprot - Protected interface of class streambuf
	sbufpub - Public interface of class streambuf
	ssbuf (sstreambuf) - Specialization of streambuf f...
	stdiobuf - Specialization of iostream for sdtio FI...
	strstream (sstream) - Specialization of iostream f...

	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X

