
1. ScaMPI � Design and Implementation

L.P. Huse, K. Omang, H. Bugge, H. Ry, A.T. Haugsdal, and E. Rustad

Scali AS, Norway
Email: {lph,knuto,hob,hwr,ath,eir}@scali.no

1.1 Introduction

MPI (Message Passing Interface) [8] is an established and de-facto standard

for information exchange based on the message-passing paradigm. MPI was

standardized by the MPI Forum in 1996. Academia, industry, and vendors of

high-performance computers drove the e�ort.

The MPI has a rapidly growing community as a standard user API (appli-

cation programming interface) for parallel programming. Today, MPI is the

preferred API for portable, parallel programs, and the success of the standard

can be illustrated by applications running on both shared and distributed

memory systems. Examples of the former are systems from SGI and Sun,

whereas IBM, Cray (now SGI), and Scali deliver systems adhering to the lat-

ter category. Applications written using MPI are deemed very portable, and

they can easily be ported between shared and distributed memory systems.

Thus, seen from an ISV (independent software vendor), a message passing

application is more portable than an application using the shared memory

paradigm, since the message passing application can run on either shared or

distributed memory systems.

In the rest of the chapter the design and implementation of ScaMPI,

Scali's high performance MPI implementation is presented. Key technical

achievements of ScaMPI are low latency, high bandwidth and �exibility of

transport medium as well as options for speeding up application performance

within SMPs by allowing the use of threads. The programming environment

for ScaMPI provides various built-in options for debugging and tuning. In ad-

dition ScaMPI is integrated with powerful third party software. Performance

of important ScaMPI primitives are discussed in light of recent performance

measurements. These measurements also document excellent scalability of

ScaMPI for up to 96 inexpensive dual CPU nodes.

1.2 Scali Systems

Scali systems use SCI as interconnect. To make a�ordable systems, Scali

has chosen to use standard I/O (input/output) buses, such as PCI [14] and

Sbus [6], as attachment point to the SCI interconnect fabric. SCI has speci�ed

cache coherency as an option, but since the I/O buses for most workstations

2 L.P. Huse, K. Omang, H. Bugge, H. Ry, A.T. Haugsdal, and E. Rustad

are decoupled from the main memory bus by an I/O bridge (see Figure 1.1),

the I/O bus cannot intercept a processor accessing the local memory. This

������

��	

�� �����

��	

�� �����

	
��
����� �������� ��	

��� ���

���� 	
��

�

���

���� � �
���� ���

Fig. 1.1. Block diagram of a node

inhibits a global cache coherent memory model to be implemented in hard-

ware. A clear bene�t of using the I/O bus as attachment point is that the I/O

buses are standardized. For the IHVs (independent hardware vendors) this

means having a larger market for their products, and larger volumes again

imply lower prices. Also, the evolution of new generations of I/O buses, e.g.,

faster clock frequencies, wider buses etc., is less frequent compared to the

evolution of processors and their accompanying buses. As a consequence, the

cost for peripheral boards tends to be low compared to special, proprietary

hardware components.

1.3 The SCI Memory Model

The cache coherency in SCI is documented in detail. The memory consistency

model on the other hand, is left to the implementers. Thus, any memory con-

sistency model, such as the sequential, processor, weak, or release consistency

model might be implemented. This applies to systems using either the I/O or

the cache coherent processor bus as the attachment point. Software running

on SCI based systems, must therefore either be explicitly or implicitly aware

of the memory consistency model provided by the system.

Systems using the I/O bus as the attachment point are in most cases

distributed memory systems, where each node runs its own instance of the

operating system. Such systems, e.g., SCI based, are able to provide a shared

address space programming model, where portions of the virtual address

1. ScaMPI � Design and Implementation 3

space of one process can be made visible to a process running on another

node. The conceptual simplicity of this model compared to the traditionally

layered ISO/OSI model can easily be illustrated. For two user level processes

running on di�erent nodes to communicate, both need to map the same SCI

shared memory segment into their virtual address space. The SCI shared

memory is for performance reasons always physically located on the receiver

side. For two processes to communicate, the sender process writes data to the

remote memory segment and the receiver reads the data from local memory,

without any system calls or expensive protocol processing.

Middleware for this shared address space model must be explicitly aware

of the underlying memory consistency model, which is in�uenced by the char-

acteristics of the processor, the I/O bridge, the SCI adapter, and the SCI

interconnect fabric. For example, common hardware techniques for perfor-

mance enhancements, such as write bu�ering, write combining, and prefetch-

ing might be implemented in multiple of these hardware components. To

Scali, this illustrates two problems with the shared address space model: the

user must have an intimate knowledge of the hardware components, and very

few applications are written for the shared address space model.

1.3.1 Coordinating Use of Shared Locations

There are several ways of using shared locations to exchange data as needed to

implement message passing. One well known technique is to use the concept

of critical regions where only one process at a time has access to a particular

shared resource. An example from MPI is how to implement bu�er allocation.

With mutual exclusion, an implementation can allow multiple sender nodes

to allocate receive bu�ers at a particular remote node from the same bu�er

pool. This technique has been frequently employed in MPI implementations

for SMPs. The approach is simple and makes it easy to implement space

e�cient resource management policies and can be implemented with e�ciency

between processors on the same memory bus. However, as the number of

communicating processes grows, contention for the involved locks may hurt

performance.

E�cient implementation of mutual exclusion locks requires atomic mem-

ory operations. Atomic operations such as compare-and-swap and various

forms of fetch-and-op are available (or can be built with the available basic

atomic primitives) in most modern system bus architectures. The SCI stan-

dard speci�es a number of such operations, but only a very limited atomic

operation support (fetch-and-increment-by-one) is available for the current

Dolphin PCI/SCI implementation [3].

E�ciency is also complicated by the fact that remote loads (fetching data

over the network) are an order of magnitude slower than local loads. To

achieve the atomicity provided by the PCI/SCI hardware in absence of prop-

erly implemented locking primitives on the PCI bus, all accesses to the lock

4 L.P. Huse, K. Omang, H. Bugge, H. Ry, A.T. Haugsdal, and E. Rustad

memory must go through the PCI/SCI hardware, i.e., they are remote ac-

cesses from a performance perspective [11].

A simple solution where locks are avoided is to make access to shared

locations disjoint with respect to stores, that is, only a single process has

the right to store to a particular location. For the example on dynamic bu�er

allocation in the receiver, this means that there must be separate bu�er pools

for each sender at each receiver. Thus this may look like a speed-at-cost-of-

space trade-o�. However, with the option of allocating the bu�er pool for a

particular sender at a particular receiver only when needed, the extra bu�er

capacity spent can be kept low.

1.3.2 Ensuring Safe Data Transport in SCI - Checkpointing

Usually when transferring data from one node to another over a SCI network,

the data arrive at its destination fast and accurate. However, in a multi-node

shared memory environment there is always the possibility of nodes being

temporary unavailable (e.g., due to high priority OS calls), data alteration

in the network due to electronic noise (detected by CRC checks), the I/O

bus may be occupied with other high priority tra�c etc. All of these events

are detected in Scali systems, and those that are related to the SCI network

corrected by the SCI driver. To make certain that the data arrive correctly

over the network, checkpointing needs to be employed.

Checkpointing is a common programming technique used in systems

where dynamic errors may occur, e.g. in shared memory and database sys-

tems. Before and after all operations su�cient status information is gathered

to check if the operation was completed successfully. If the checkpoint fails

the e�ects of the faulty operation has to be nulli�ed and the operation has to

be repeated. For SCI, the checkpoint procedure is initiated by �rst �ushing

all data on to the network. The checkpoint state is then derived from the

state of the driver and an interrupt counter. If the checkpoint state changes

during a data transfer, the data has to be retransmitted. A shadow of all nec-

essary driver information is mapped into user-space for fast checkpointing.

An example of using checkpointing in shared memory programming is given

in Figure 1.2 Section 1.5.1.

1.3.3 Shared Address Space Programming without the Drawbacks

To enable users to exploit the bene�t of the shared address space model

without detailed hardware knowledge, standardized APIs are provided to the

application programmers. A large existing base of applications can then be

used directly (without modi�cation of even old "dusty deck" applications),

just by recompiling. The applications are by this able to communicate e�-

ciently, without being burdened by excess copying, system calls, interrupts

etc. as would have been necessary if a typical software stack of the traditional

1. ScaMPI � Design and Implementation 5

ISO/OSI model had been used. Today, MPI [8], PVM [5], Fast Messages [12],

and Split-C [2] are also available on Scali systems. ScaMPI is Scali's own

high performance implementation of MPI, the others are available through

various academic institutions.

1.4 ScaMPI Design Goals

The following goals were set forth in the design process of ScaMPI:

Scalability: System size ranging from one to hundreds of nodes should be

supported.

Low latency: We aimed at message latency around 10 µs for exchanging MPI

messages from user level to user level. The latency of collective MPI

operations should grow with O(log(N)), whereN is the size of the system.

High bandwidth: Point-to-point bandwidth should be close to the theoretical

maximum for the actual implementations. The bandwidth available to

each node performing MPI collective operations should be constant and

not be reduced with increased system size.

Fault tolerance: The SCI interconnect fabric might be subject to errors, such

as CRC errors, cables being unplugged etc. Such transient errors should

be transparent to applications. For example, it should be possible to ex-

change cables while an application is running, without a�ecting it except

for reduced performance. Another example is that it should be possible

to change the routing function in the SCI interconnect fabric, i.e., the

communication paths, transparent to the running application.

Flexibility of transport medium: Although SCI shared address space was in-

tended as the primary transport medium, we aimed at leveraging this im-

plementation and support true shared memory as the transport medium

for MPI processes communicating on the same SMP node. The selection

of the actual transport medium should be automatically and transparent

to the user.

User friendliness: To ease application development we aimed at providing

di�erent levels of startup procedures to accommodate di�erent require-

ments, such as debugging, pro�ling, logging etc.

Thread-safe implementation: ScaMPI must support di�erent mappings of

MPI processes to hardware resources. In a one-to-one mapping each MPI

process is mapped to its own CPU, while in the one-to-many model each

MPI process is mapped to a set of CPUs - typically all the CPUs in a

node. In the one-to-many model, explicit multithreading programming

or an automatic parallelization tool is used to e�cient exploit all system

resources. Here di�erent threads constituting a single MPI process might

simultaneously request services from the MPI library. Thus, ScaMPI as

well as the SCI middleware had to be designed thread-safe in a way that

enables a high level of parallelism.

6 L.P. Huse, K. Omang, H. Bugge, H. Ry, A.T. Haugsdal, and E. Rustad

1.5 ScaMPI Implementation

ScaMPI was designed to take advantage of SCI's shared address space ar-

chitecture. The focus has been on utilizing those features ensuring the best

possible performance, both with respect to latency and bandwidth. A write-

only protocol [4] was chosen for two reasons. First, performance of remote

writes are better than remote reads, as described in [11]. Furthermore, using

a write-only protocol ensures cache coherency, even though the attachment

point is the I/O bus, as discussed in Section 1.3. Since reading data from

local memory is much faster than fetching it over the SCI network, ScaMPI

always use a remote-write-local-read policy. This contributes signi�cantly to

ful�l one of the design goals of ScaMPI: to be able to scale performance to

very large systems.

1.5.1 Fault Tolerance

Three important items are required to securely manipulate data structures

on a remote node:

� Atomicity of multi-byte entities must be controlled. This implies that either

all or nothing of a multi-byte entity is modi�ed, i.e., that it is never partially

modi�ed. Consider for example a simple ring-bu�er structure with a write

and a read index. The receiver polls the senders write-index, and compares

it to the read-index. If the two indexes di�er, the ring-bu�er contains valid

data. If the write-index is represented by a two-byte entity, and if those

where updated one at a time, catastrophic errors could be the consequence

when the index wrap from the least to the most signi�cant byte!

� Enforcing memory consistency, i.e., ensuring that all previously issued

write-requests have been globally performed. For example, if one process

writes a block of data to a remote bu�er, and then signals the completion

of the transfer by writing to a �ag in the receiver node memory. If the

memory consistency is not enforced between the data transfer phase and

the signaling phase the receiver might consume stale data.

� Error checkpointing. As discussed in Section 1.3.2, a transfer might have

been corrupted, e.g., the cable has been unplugged. A methodology of

checkpointing is needed to ensure correct data transfers.

The natural sequence of operations to securely transfer a data block and set

a �ag at the receiver is depicted in Figure 1.2.

Scali's SCI driver, ScaSCI, has combined the functionality of enforcing

memory consistency and checkpointing, to improve speed. As illustrated in

Figure 1.2, memory consistency has to be enforced before the checkpointing

routine is called. Otherwise, active outstanding write-operations might be in

progress when the EndCheckPoint() routine is called, and those might later

be exposed to errors. Another important observation from Figure 1.2 is that

1. ScaMPI � Design and Implementation 7

void SendMsg(long *remoteFlag, void *remoteDst,
 void *localSrc, int sizeOfMsg)
{
 CheckPointToken token;
 StartCheckPoint (&token);
 do {
 Memcpy(remoteDst, localSrc, sizeOfMsg);
 MemBarrier();
 } while (EndCheckPoint(&token) != SUCCESS);

 StartCheckPoint (&token);
 do {
 *remoteFlag = SUCCESS;
 MemBarrier();
 } while (EndCheckPoint(&token) != SUCCESS);
}

void RecvMsg(long *localFlag, void *localSCIMem,
 void *localUser, int sizeOfMsg)
{
 while (*localFlag != SUCCESS) {
 sleep();
 }
 Memcpy(localUser, localSCIMem, sizeOfMsg);
}

Fig. 1.2. Pseudo-code for secure one-way data transfer

the side-e�ect exposed to a remote memory region might be exposed more

than once, in case of error indications. The SCI responses might have been

subject to errors, and not the requests. If this is the case, the side e�ect has

taken place, but the requestor node can not distinguish between a failure of a

request or of the response. Therefore, the requestor node has to re-issue the

data transfer. As a consequence, the data structures used in ScaMPI had to

be designed idempotent. A data structure being idempotent will be consistent

even if an update was carried out more than once.

Another important aspect from Figure 1.2 is that messages actually are

securely transferred to the remote node, before the sender is able to signal

to the receiver that the messages is ready for consumption. The time spent

to enforce memory consistency and to perform the checkpointing will be di-

rectly added to the latency of transferring a message. The impact will be

more severe the smaller the message is. To avoid this added latency, ScaMPI

has a combined message data structure for small payloads, the MPI message

envelope [8, Section 3.2.3] and a �eld, ready, indicating to the receiver that

this structure represents a new, unconsumed MPI message. ScaMPI uses 64

bytes to represent this information, including 32 bytes of MPI data payload.

As discussed above, atomicity, or merely lack thereof, must be handled. Since

few processor instruction sets have provisions for 64-byte atomic store opera-

tions, a mechanism to prevent the consumer from receiving a partly received

message had to be found. Even if the sender speci�cally wrote the ready �eld

as the last part of the transfer, the data could appear at the receiving node

8 L.P. Huse, K. Omang, H. Bugge, H. Ry, A.T. Haugsdal, and E. Rustad

in a di�erent order, due to the possibility of reordering of packets in the SCI

interconnect fabric. To avoid this pitfall, ScaMPI has included a CRC check

value in the structure to protect its integrity. This approach enables ScaMPI

to send self-synchronizing messages in a safe way. As a bonus of this the

receiver may read the message while the sender complete enforcing memory

consistency and perform the checkpointing, thus reducing the latency.

1.5.2 User Friendliness

Scali has put an e�ort into making ScaMPI and its environment user friendly.

The execution of an MPI-program is started and controlled by a monitor pro-

gram (mpimon). The monitor takes two types of parameters on the command

line:

Parameters controlling ScaMPI set-up. These parameters include customiz-

ing set-up of SCI memory allocation, bu�er sizes, barrier fanin/fanout etc.

The parameters are checked for validity and, if not correct, the program

execution is aborted and appropriate error messages are given. Being

tuned for performance, in ScaMPI by default bu�ers are allocated the

�rst time a communication channel is used. For performance measure-

ments and communication debugging, ScaMPI can be set to initialize all

the communication channels at startup time.

MPI program names, their parameters and node speci�ers. The parameters

are automatically distributed to all processes constituting the parallel

program, not only process zero. The node speci�ers are checked for legal

node names. Each node can occur several times within a node speci�er,

enabling more than one process per node. For full control over process-to-

node mapping, ranks are allocated sequentially from the node speci�ers.

ScaMPI has the ability to have multiple MPI programs in one run (MIMD-

paradigm). This is speci�ed by adding multiple blocks of MPI programs,

parameters and node speci�ers on the command line to the monitor.

Input from the user (stdin) can be distributed to all or some of the

processes. Output from the processes (stdout and stderr) is displayed in

the window where the monitor was started. All processes inherit the run-

ning environment from the monitor shell, e.g., the current directory path,i.e.,

where the monitor was stared. The user can choose to have none, some or all

environment variables copied to the processes.

Scali has added some functionality to ScaMPI and the monitor to ease

debugging and to get a better overview of what is happening when running

an MPI program. Output from selected nodes can be printed in separate

windows or �les. MPI programs can selectively be started within a separate

window or debugger to allow use of other debug/trace tools.

1. ScaMPI � Design and Implementation 9

1.5.3 Third Party Software

From a user perspective, a Scali system interface is a parallel-tools envi-

ronment. The parallel user environment consists of three basic components,

system access control, parallel debugger and parallel performance analysis.

The purpose of a parallel-tools environment is to create a single system im-

age of a parallel computer. It is however not possible to shield the user com-

pletely from the added parallel complexity needed to get more computational

power. But a high quality parallel-programming environment contributes sig-

ni�cantly to reduce the time spent in developing and debugging code.

Any standard MPI parallel tools [16, 9] can be used with ScaMPI. Since

a Scali system is built from COTS (commercial o�-the-shelf) technology by

using standard hardware and software components, third party parallel tools

by any independent cluster vendor can be used on a Scali system running

ScaMPI. To provide the ScaMPI user with basic state-of-the-art parallel

tools, ScaMPI is available with the TotalView [17] parallel debugger and

the Vampir [13, 15] parallel performance analysis tools.

The TotalView [17] graphical parallel debugger has support for the most

important parallel programming models: threads, MPI, PVM and HPF. Sup-

ported platforms come from the major supercomputing vendors including

Compaq, Digital, SGI, IBM and Sun. The main parallel feature is the single

point of control for debugging ScaMPI programs. From a single window it

is possible to control individual groups of processes, hide unnecessary and

display essential information. On startup, TotalView give the user an option

to stop in MPI_Init(), the starting point of any MPI program. After this

initial stop, the user can set appropriate action points before continuing the

parallel debug session. TotalView has a fast and intuitive GUI, with the pos-

sibility of data visualization, a useful aid in debugging numerical programs.

TotalView is designed for multiprocessing and o�er the debugger features a

programmer expects.

Vampir [13] is a tool for performance analysis of MPI programs. In the

NHSE (National HPC Community Software Exchange) Parallel Tools re-

view [10] Vampir was rated as the best parallel performance tool. It is avail-

able on all major supercomputer platforms. To collect performance data,

the ScaMPI program is linked with the VampirTrace library, and run. The

performance data is logged to a �le for post-processing. Vampir ScaMPI

performance analysis helps the user to organize the performance data, un-

derstand application and communication behavior, evaluate load balancing

and identify communication hotspots. A very useful feature is the extensive

space-time �ltering of data to extract relevant information only. A timeline

window display application and message passing activities and shows par-

allelism as the sum of active non-communicating processes. Communication

statistics can be displayed for selected intervals of time and message length.

10 L.P. Huse, K. Omang, H. Bugge, H. Ry, A.T. Haugsdal, and E. Rustad

1.6 Performance Results

The tests were run on a 96 node system with dual Pentium 450 MHz proces-

sors PCs interconnected with PCI-SCI cards from Dolphin ICS [3]. The SCI

network was organized as an 8 x 12 2D mesh/torus. ScaMPI delivered a 9.4 µs

ping latency and up to 76 MByte/s between two MPI processes on separate

nodes over the SCI network (4.5 µs and 130 MByte/s between two processes

on the same PC). This ful�lls two of the ScaMPI design goals (Section 1.4);

low latency and high bandwidth.

As stated in the design goals for ScaMPI, latency of collective MPI oper-

ations should grow with O(log(N)), where N is the size of the system, while

bandwidth per node should be near constant for all system sizes. Restrictions

of the bandwidth in multi dimensional toruses is analytically calculated in [1]

and indicate the feasibility of this goal, and in the next two subsections the

achievement of these goals will be shown through practical measurements. To

get comparative results the test programs were run on a far more expensive

state-of-the-art 128 processor (MIPS R10k) Cray Origin 2000 equipped with

192 MByte main memory.

1.6.1 Barrier

Barrier is a collective operation that carries no data, but synchronizes all

processes. Since barrier does not carry any data, it is a good measure for the

collective latency. ScaMPI's barrier implementation uses a �xed fanin/fanout

tree and operates directly on SCI shared memory.

Nodes 2 4 8 16 32 48 64 80 96
Timing 8.1 8.2 9.3 20.6 24.4 26.1 29.9 30.8 33.1

Table 1.1. Barrier performance in µs

Table 1.1 shows absolute timing of barrier over the SCI network. As can

be seen, this is a very fast implementation with sub-latency performance up

to 8 nodes! A barrier involving two processes on the same PC use only 1.4 µs.

The Origin 2000 used 25.9 µs to synchronize two processes (739 µs for 64

processes) [7]. Figure 1.3 shows graphically how the performance results of

the barrier compare to a const � log(N) trend. As can be seen, ScaMPI over

SCI shows good match between the timing of barrier, i.e., collective latency,

and a const � log(N) trend.

1.6.2 All-to-All Communication

The most demanding communication situation for a machine is when all

nodes communicate with all the other nodes. Performance of MPI_Alltoall()

is therefore a good measure of the aggregate bandwidth of a system.

1. ScaMPI � Design and Implementation 11

Barrier timing

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 20 40 60 80 100

Nodes

T
im

e
[u

se
c]

Fig. 1.3. Barrier performance compared to const � log(N)

Nodes 2 4 8 16 32 64 96
Throughput 30.9 35.2 36.5 31.1 32.3 31.7 26.2

Table 1.2. All-to-all communication performance per node in MByte/s.

Table 1.2 shows measured communication performance per node of all-to-

all communication for long messages over the SCI network. For two processes

on the same PC throughput was measured to 54.6 MByte/s. The SCI based

system shows far better scaling than on the Origin 2000, which delivered a per

node performance of 42.1 MByte/s between 2 processes, 26.9 MByte/s be-

tween 16 processes and ends up with a mere 7.3 MByte/s for 32 processes [7].

The very poor performance scaling on the Origin 2000 may have to do with

interference from other user programs due to lack of resource reservation.

The all-to-all performance is calculated on the basis of the network traf-

�c. Since MPI_Alltoall() use two bu�ers, an N-th part of the send bu�er

is copied internally to the receive bu�er and is therefore not part of the

network data volume. For all-to-all communication between two nodes, half

of the data are transferred and the other half is copied. This is the reason

for the apparently low performance between two nodes. The shift in perfor-

mance between 8 and 16 nodes is caused by a change of the algorithm. If

the algorithm for larger con�gurations had been used for all con�gurations

no performance shift would have appeared, but the performance for small

con�gurations would have su�ered. For up to 8 nodes, the SCI network deliv-

ers su�cient throughput for all nodes to communicate at full speed. This is

compliant with the constant per node performance of up to 64(= 8�8) nodes
and a small decrease for 96 nodes. By going from a 2D to a 3D torus network,

the interconnect performance should scale "perfectly" to 8�8�8 = 512 nodes.
This is conformant with the conclusions in [1].

12 L.P. Huse, K. Omang, H. Bugge, H. Ry, A.T. Haugsdal, and E. Rustad

1.7 Conclusions

Our initial ambitions were make a thread-safe, scalable, low latency, high

bandwidth, fault-tolerant, user friendly and �exible (with respect of transport

medium) implementation of the MPI standard. ScaMPI are meeting all of

these design goals.

The 96 node (192 processor) Scali system at PC2 in Paderborn is currently

the world's largest system using SCI as the interconnect technology. Since

Scali are using standard workstations as nodes in our systems, technology

advances should ensure a continued and increasingly good price-performance

ratio. By using COTS components the performance growth does not only

apply to new machines buyers, but the existing nodes of an upgraded machine

can be passed on in the organization as personal desktop workstations. This

adds an important option for cost reduction.

By using a standard programming interface, MPI-conforming third party

applications will run on Scali systems without additional work, although op-

timizing for the architecture may give additional speedup. ScaMPI supports

a variety of options and tools to ease the programming e�ort to get to correct

and e�cient applications. As shown by the performance measurements in sec-

tion 1.6.2, Scali systems scales well, thus enabling us to deliver very powerful

systems to a low price. In this picture ScaMPI and its support modules plays

an important role.

1.8 Acknowledgements

Thanks to Thierry Matthey at Parallab, for making performance numbers

on the Origin 2000 and to the service team at PC2, Paderborn, for excellent

support in bringing up their 192 processor system.

10

1. Håkon Bugge. A�ordable Scalability using Multicubes. In Proceedings of SCI
Europe `98 at European Multimedia, Microprocessor Systems and Electronic
Commerce, September 1998.

2. David E. Culler, Andrea Dusseau, Seth Copen GoldStein, Arvind Krishna-
murthy, Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Parallel
Programming in Split-C. In Proceedings of Supercomputing'93, Portland, Ore-
gon, November 1993.

3. Dolphin Interconnect Solutions. PCI-SCI Bridge Functional Speci�cation, ver-
sion 3.01 edition, November 1996.

4. Manolis G.H. Katevenis Evangelos P. Markatos and Penny Vatsolak. The Re-
mote Enqueue Operation on Networks of Workstations. In Proceedings of Work-
shop on Communication and Architectural Support for Network-based Parallel
Computing Las Vegas, USA, Lecture Notes in Computer Science. Springer-
Verlag, February 1998.

5. G.A. Geist and V.S. Sunderam. The Evolution of the PVMConcurrent Comput-
ing System. In Proceedings of COMPCON spring'93, pages 549�557, February
1993.

6. James D. Lyle. Sbus: Information, Applications, and Experience. Springer-
Verlag, 1992. ISBN 0-387-97862-3.

7. Thierry Matthey. Personal communication, 1999.
8. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,

June 1995. Version 1.1.
9. National HPCC Software Exchange - Parallel Tools Library. At

http://www.nhse.org/ptlib.
10. Review of Performance Analysis Tools for MPI Parallel Programs. At

http://www.cs.utk.edu/ browne/perftools-review/.
11. Knut Omang. Synchronization Support in I/O Adapter Based SCI Clusters.

In Proceedings of Workshop on Communication and Architectural Support for
Network-based Parallel Computing, San Antonio, Texas, volume 1199 of Lecture
Notes in Computer Science, pages 158�172. Springer-Verlag, February 1997.

12. Scott Pakin, Mario Lauria, and Andrew Chien. High Performance Messaging
on Workstations: Illinois Fast Messages (FM) for Myrinet. In Proceedings of
Supercomputing '95, San Diego, 1995. Avaliable at http://www-csag.cs.uiuc.edu/
papers/index.html#communication.

13. Pallas GmbH. VAMPIRtrace for Solaris x86, 1998. Release 1.0 for VAMPIR-
trace version 1.5. At http://www.pallas.de.

14. PCI Local Bus Speci�cation, Revision 2.1.
15. Scali AS. ScaMPI Installation and User's Guide version 1.6, 1999.
16. IEEE CS Task Force of Cluster Computing. At http://www.dgs.monash.edu.au/

rajkumar/tfcc/, 1998.

14 L.P. Huse, K. Omang, H. Bugge, H. Ry, A.T. Haugsdal, and E. Rustad

17. TotalView Multiprocessor Debugger User's Guide, 1998. Version 3.0. At
http://www.etnus.com/tw.

