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Abstract - This paper highlights the importance of and
requirements for an SCI cluster configuration system. A number
of cluster related design and implementation issues have been
raised and resolved through the work on Scali’s own SCI cluster
configuration system: ScaConf. This has resulted in both the
working application and some generally applicable methodolo-
gies which are presented.

I. INTRODUCTION

Scali AS is in the business of selling SCI [8] cluster based
supercomputing. Manual configuration of even small SCI
clusters has proved too error prone and time consuming, and
it rapidly gets worse with increasing cluster size. To a certain
extent this can be alleviated by using script based tools, but
especially in operational situations where high availability
and utilisation is crucial, one needs a more flexible configura-
tion system with possibilities for automatic reconfiguration as
a method of error correction. System administrators at end-
user sites must be able to maintain an SCI cluster without
massive amounts of expert knowledge. It is therefore evident
that an important factor for the mainstream acceptance of SCI
cluster based computing is the availability of more user-
friendly tools for configuration, monitoring and resource
management. The configuration software described in this
document is under development by Scali as part of the SISCI
project (ESPRIT 23174) [5].

II. REQUIREMENTS

The most important requirement for an SCI cluster config-
uration system is the ability to perform as many configuration
tasks as possible from a single point of interaction through
software. One should be able to view the SCI cluster as a sin-
gle entity and perform actions on it as such. The need for
repetitive remote logins to all nodes for system administration
tasks should be minimised. More specifically this includes:

• Distributing and setting nodeIDs for all SCI adapters.
• Setting up optimal routing tables for a selected intercon-

nect topology.
• Error detection, handling and reporting.
• Automatic re-configuration in case of node failure.
• Simple and flexible API to allow for integration with other

tools.
• A choice of user interfaces, GUI or ASCII to run remotely

as well as locally.
• Full functionality for remote configuration (customer 

support).
• Support for heterogeneous clusters and environments.

• Ability to cope with changes in SCI hardware, intercon-
nect topology etc.

• Distributed system load and low resource usage.
• Support for extended hardware related tasks, like power

and console switching.

III. DESIGN

A. System Architecture  

Figure 1 shows the organisation of the configuration sys-
tem. The rectangles represents physical computers, the ovals
represents processes and the lines represents network connec-
tions. The SCI cluster shown indicates a 4x4 2D torus. In a
sense the configuration system has a two-step client server
architecture. The configuration ServerDaemon is a server for
the user interfaces, and at the same time all the configuration
NodeDaemons act as servers for the client side of the server
daemon. Hence the ServerDaemon has been indicated to have
a server “S” and a client “C” side.

The NodeDaemon is running on each of the nodes in the
SCI cluster and serves as an interface between a defined mes-
sage format and the native SCI driver API. Differences
between APIs and SCI adapters will be handled transparently
by the NodeDaemon so that the ServerDaemon can be
designed to perform its tasks in a generic manner without
worrying about differences in hardwarea at the other end of
the socket connection.

Figure 1: ScaConf System Architecture
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Whereas the NodeDaemon may look as a simple com-
mand translator, the ServerDaemon is far more compli-
cated. It must:

• Build and maintain a database of all nodes in the system
with their current state.

• Contain algorithms for routing of all supported
topologies.

• Propagate user interactions to nodes.
• Propagate node state changes to all connected interfaces.
• Analyse error situations and reconfigure the cluster

according to set priorities.

As could be seen from figure 1, we have chosen to run
the configuration server daemon on a separate node outside
the SCI cluster. Although not strictly necessary the reason
for this is that the server node may require a special config-
uration with a display adapter and additional hardware for
console and power switching. Using a dedicated control
node also has the nice side effect that all cluster nodes will
remain equally configured and fully interchangeable. Since
the ServerDaemon should accept multiple connections to its
server side a security scheme is built in to avoid configura-
tion conflicts. 

The user interfaces only have to relate to the defined
message format and could be implemented as graphical or
text based applications. Using only socket communication
between the ServerDaemon and the user interfaces, they
should run equally well on the local server node as on a
remote machine.

B. Object Models

We used OMT [2] as a design method. It was also clear
that we would use a mix of C++ and Java for the implemen-
tation. Using OMT allowed the classes to come out of the
analysis and design phase to be implemented in either lan-
guage..  

To illustrate this we have chosen the configuration data-
base which is used by the ServerDaemon to keep the system

status information. Here we managed quite successfully to
use a physical object model of the system and translate it
into a usable object style database. The object model in
shown in figure 2 clearly resembles the physical system.
Attributes and operators have been removed from the figure
for clarity and space saving considerations, but all classes
contains attributes for all values of interest, access methods
for the attributes and convenience functions where appro-
priate. Classes with names ending in “Mgr” are managers
which means they keep a collection of other objects. For the
C++ implementation later we decided to base the managers
on the standard container classes of Standard Template
Library (STL) [9] to conform with the standards and gain
portability. 

The interface to the database is provided by the top level
class is the configuration manager ConfigurationMgr. The
ServerDaemon (not shown) therefore holds an instance of
the ConfigurationMgr class. Simple “persistence” was
gained by deciding that all classes of the configuration
manager had to implement the methods WriteGuts(bin-
stream) and ReadGuts(binstream) for full save and restore
from a binary stream, and Print(stream) and Parse(stream)
for reading and writing ASCII in a configuration file com-
patible format. The latter methods should also be available
as insertion << and extraction >> operators.

An interesting detail about this part of the design is that
the NodeMgr class including Node, Adapter and Controller
classes is used both by the ServerDaemon as part of the
ConfigurationMgr database and by the Java graphical user
interface client because it needs a place to put a copy of the
node status information. In the first case it is implemented
in C++ and in the second it is implemented in Java. By
sticking firmly to the design the two implementations will
have a compatible binary format. This means that when the
Java GUI requests nodemanager information the Server-
Daemon (C++) can simply dump the contents of the node-
manager into a message using WriteGuts() while the GUI
(Java) can restore the nodemanager from the message using
ReadGuts(), regardless of the platform either one is running
on. Refer to the next sections for more information about
the link between binary streams and messages.

IV. IMPLEMENTATION

A. Communications backbone: ScaComd

It became evident that a system for setting up connec-
tions between a central process like the ServerDaemon, and
applications or daemons running on every cluster node like
the NodeDaemon, should be generalised as it would be use-
ful for more applications than ScaConf. Several of the
requirements for the configuration system could also be met
by the proper implementation of such a system. This lead to
the separate task of developing the Scali communications
daemon: ScaComd. 

Figure 2: Confgiuration data object model
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Being a little concerned about the resource usage on the
control node with big clusters (notably file descriptors) we
wanted the daemon to have enough local intelligence to
provide a fan-out/fan-in mechanism whereby the Server-
Daemon could connect to any one node in the cluster with a
request to set up communication channels to all the other
nodes using only a single connection into the cluster.

The fanout mechanism works like this: The initiator, here
the ServerDaemon connects to a randomly selected node in
the cluster and sends a INIT_REQUEST message which
contains a fanout factor and the nodes to which connections
are required.

This newly appointed “top-node” will then randomly
select a number of nodes depending on the fanout factor
and the remaining number of nodes, connect to them and
send out new INIT_REQUESTs, for the remaining nodes.
This is repeated until connections to all nodes have been
established. The result is a “connection tree” structure
where the width of the tree is determined by the fanout fac-
tor. This is perhaps better explained by figure  

The communication load will of cause be higher closer to
the root of the tree since all communication to the server
will run through the parent node from its siblings. In the
example in figure  communication between the server and
node 41 will pass through nodes 14,23 and 32 on the way,
in fact communication to all nodes will pass through node
14. We do not anticipate this to be a problem because the
system is merely designed for control type messages which
are relatively small in size and low in frequency. For other

types of applications with higher bandwidth requirements
there are other solutions like our high performance MPI 1.1
implementation: ScaMPI. The communications backbone
on the other hand should be lightweight and use only the
standard TCP/IP protocol over the local Ethernet. This to be
usable for control and monitoring of the more specialised
interconnect technology: SCI.

If another application should need a connection to all
nodes the random selection of the “top-node” will ensure
that the communication load will be distributed evenly over
the cluster. Say if the next application connects to node 44
as “top-node” this connection tree will spread out entirely
different from the first with other nodes taking the greater
part of the load.

Error detection and a degree of correction is also built
into the system. A broken connections is taken as the indi-
cation that something is wrong. When an error is detected
by the communication daemon on the node immediately
above the failed one, two things happens: First a re-connec-
tion cycle is entered where the node tries to re-establish
connections to all nodes which were below it in the connec-
tion tree. Then after a timeout period NODE_DOWN mes-
sages are generated for all node that could not be
reconnected and sent up to the initiator. The
NODE_DOWN messages will then be extracted by the ini-
tiator and appropriate action taken. Using figure 3 again as
an example: If node 32 fails this will be discovered by node
23 which then tries to re-establish connections with
32,31,41, and 42. After the timeout node 32 could still not
be connected and a NODE_DOWN message for node 32 is
passed up to the server which has connected to node 14.

As always when faced with the possibility of a heteroge-
neous computing environment one needs to adress the byte
order (big-endian vs. little-endian) problem. Scali is already
using Sun’s SPARC and Intel IA-32 based clusters running
the Solaris 2.6 operating system so for us the endian-prob-
lem represents a “clear and present danger”. 

This implied a message format with a defined byte order
and field size. Since Java was already in the picture boast-
ing portability we decided to make a binary stream class on
the C++ side which would be compatible with the Java
DataInputStream and DataOutputStream classes (full
names are java.io.DataInputStream and java.io.DataOutput-
Stream). Apart from being well documented [6] this also
solved the problems of interfacing to the Java GUI, cross
platform compatibility and not the least defining a format of
our own. The smallest usable subset of read and write oper-
ations from the DataStreams was found to be Char, Int and
UTF (UTF is a string encoded using a modified UTF-8 for-
mat). The resulting binary stream class ScaBinStream
forms the basis for the communication backbone message
class: ScaComMsg. By only allowing access to the message
through ScaBinStream’s read and write operations platform

Figure 3: Communication backbone connections
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independent messaging has been obtained.  

The ScaComMsg has a 6 field header format as can be
seen in figure 4. All 6 fields are full 4 byte integers and
although this may seem as an overkill it makes the encoding
and decoding simpler. The size field gives total message
size including data. All addresses are full 32 bit IP
addresses. The target for a message which is an application
or daemon running on a node can be uniquely defined by
the to address + port. It is assumed that all applications/
daemons using the ScaComd communication backbone has
a unique well known port. The from address is used for
replies and the protocol version to avoid errors from incom-
patible message formats. The message type is used by the
application to interpret the data block following the header.
Since the ScaComMsg now is-a ScaBinStream and all
classes in the configuration database were required to pro-
vide binary save and restore to a ScaBinStream any part of
the database can easily be dumped to and restored from a
message. This means that we now have a way of transpar-
ently sending configuration data between daemons, servers
and clients regardless of platform or location.

It is the idea that other and more specialised messages
could be derived from the general ScaComMsg, adding
more header fields after the message type as needed. The
ScaConf message format SC_Message is one example. One
may discuss the usability of heterogeneous clusters with
non-compatible system architectures since this raises even
bigger challenges in application compatibility and mainte-
nance. But we decided that the configuration system should
be able to handle this anyway. Later this has proved to be
correct as we often run the ServerDaemon on a different
architecture from the cluster.

B. The Configuration file

One of the design goals of ScaConf has been to avoid
redundant and unnecessary information in the system. As
much as possible should be determined run-time and
deduced from existing information. Even so there are things
which must be fed into the system. Notably which compo-
nents the system is made up of and how they are physically
connected. This information has been collected in a human
editable ASCII file called the configuration file. The con-
figuration file is deliberately kept as small and simple as
possible to minimise the probability of errors.

The first thing the ServerDaemon does when it is started
is to read the configuration file. Since the operation of Sca-
Conf is based on the correctness of the contents of the con-
figuration file it runs a few sanity checks on the data before
it is accepted. For example the connections section which
describes the SCI network topology there are checks for
connection duplicates, endpoint duplicates (since the SCI
adapters has uniquely defined endpoints), broken rings,
loop-backs, dead-ends and unconnected rings. If the check
fails the ServerDaemon refuses to start. This catches prob-
lems like common typing errors at an early stage. 

C. Fault tolerance - reconfiguration

Scalability is advantageous in terms of capacity and per-
formance, however a cluster configuration system must
address the issue of increased error rate caused by scaling
the system to a large number of nodes. Being a collection of
autonomous nodes, a cluster survives failures by avoiding
dependencies. All nodes remains operational except the
failing ones. 

In general there are two classes of network topologies,
indirect and direct. In an indirect network all nodes are con-
nected to a centralized switch and adding fault tolerance
largely involves to ensure the switch handles a node failure
properly. In a direct network as used by the Scali comput-
ers, each node is part of the network and adding fault toler-
ance means that action must be taken to reconfigure the
network hardware of every node in the cluster in case of
node failure. When a node is detected as faulty or erroneous
its fail-state will fall into one of tree categories:

• Reachable (1)
• Unreachable with power on (2)
• Unreachable with power off (3)

From an SCI and routing point of view fail-states 1) and
2) will be treated similarly. The difference lies in how diffi-
cult it is to get the node back to operational state. Failed
state 2) usually requires a power-off-reset with implications
on the network. The Dolphin SCI adapters [3] we use are
able to keep the ringlet operational as long as there is power
on. The link controllers [4] even allows for configuration
over SCI from other nodes on the ringlet which means that
routing can be set up for nodes that is otherwise unreach-

Figure 4: ScaComMsg message format and object model
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able. This implies that a failed node still having power will
not impose any constraints on the routing. If power is lost
the ringlet is broken and useless. The difference in impact
on a system is of cause significant and varies with the inter-
connect topology. ScaConf so far handles ring and 2D torus
topologies. 

In the case of a ring topology ScaConf will handle fail-
states 1) and 2) by setting the routing to avoid the failed
nodes. In case of fail-state 3) the entire ring will be “down”
and there is nothing to do about it but wait till the faulty
node has been repaired. 

With a 2D torus topology there are more options: Con-
sider the situation in figure 5 The familiar 4x4 2D torus is
routed using the X-Y routing scheme and node 33 fails. All
nodes on the ringlets of node 33 are deemed unavailable.
This leaves the usable parts of the machine fractured as four
small partitions. Since we are dealing with a 2D torous
structure we can freely select a starting point for the ring-
lets. In this situation ScaConf would logically remap the
faulty node to the corner of the torus and generate new rout-
ing tables to enable the remaining nodes to be used as one
big partition as illustrated in figure 6 

Note that the remapping is a purely logical one and per-
formed only by changing the routing tables for the opera-
tional nodes. No end-point, that is SCI NodeIDs, are
changed. This has the very nice side effect that a running
application that was halted by the failure can continue as if

nothing happened provided it was not using the failed node.

The previous method with a simple rerouting still leaves
too many working nodes unused. The nodes on the horizon-
tal and vertical ringlets of the failed node could still be
reached via the other operational ringlets. Using even better
routing algorithms like the turn model [1], it will be possi-
ble to utilise all but the failed node as can be seen in
figure 7. 

D. A Java user interface

With portability, cross platform and network capabilities
as selection criteria Java was the natural choice for the Sca-
Conf graphical user interface. Based on JDK 1.1.3 [6] and
the Swing 1.0.2 GUI toolkit [7] from Sun Microsystems,
Inc. the interface was developed under Windows NT using
Borlands JBuilder. Without modification it now runs
equally well on Windows NT and on Solaris 2.6 on both
SPARC and Intel x86 platforms.

The Swing toolkit provides an option of having a virtual
Java desktop inside the native window system. We used this
to make a customised Scali Desktop on which ScaConf and
other Scali applications lives. This concept offered many
advantages, firstly the look and feel of the applications
would be completely similar down to window operations
across every platform. Secondly with the introduction of
more applications in the Scali suite the Scali Desktop will
be really neat way of organising things. Also as part of the
Scali Desktop we add centralised functions like a logging
service and a help file browser. 

When the ScaConf GUI connects to the ServerDaemon
the first message sent is a request for the NodeManager.
When the NodeManager message is received a picture
showing all nodes in the cluster and their states is drawn in
the main window. Thereafter all available functions in Sca-
Conf can be invoked in usual GUI style with multiple selec-
tion selections popup-menus etc. A screendump of
ScaDesktop with the ScaConf GUI can be seen in figure 8.

Figure 5: Failed node fractures cluster
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. 

E. Power and console switching

At first the ability to do power and console switching
from software may seem as an unnecessary luxury but it has
proved to be absolutely crucial for the usability of any but
the smallest system.

Firstly if a node (or worse tens of nodes) should fail to
boot you would want to have a look at the console to see
what went wrong. Since it is not economical to fit display
hardware in dedicated cluster nodes you’ll probably have to
manually plug a VT100 into the serial port of every node
that went wrong. This is bad enough even if you work close
to the physical location of the machine but it makes remote
maintenance at this level impossible. In addition, the bigger
the system, the more likely it lives in a special air-condi-
tioned room further away from your own desk. The intro-
duction of a software controlled serial port selection

through serial port multiplexers efficiently provides direct
access to console output from any node in the cluster.

The last resort for fixing a node which has become
unreachable is to do a power off-on cycle. The same argu-
ments applies here as it did for the console output. If you
are physically close to the machine it is just inconvenient
and time consuming. If you are further away it becomes
intolerable or impossible.

So, by supporting both power and console switching Sca-
Conf provides remote configuration and maintenance abili-
ties for everything except the physical cabling - which is
impossible anyway. 

The added information needed by ScaConf to do the
power and console switching is really minimal and kept in
the configuration file. Every node must have a console and

Figure 8: The Scali Desktop with ScaConf GUI, help file browser and log system



power switch name and port number for the switches it is
connected to, and there must be entries for the switches
themselves. The entire console/power switching logic is
built into the ServerDaemon. 

Since power switches and serial port multiplexers rarely
have more than eight channels ScaConf also supports multi-
plexer hierarchies for systems larger than 8 nodes. The
information needed to “route” through the multiplexer hier-
archies can be readily extracted from the configuration file.
With 8 channel multiplexers each new level introduced in
the hierarchy effectively increases the maximum number of
reachable nodes eightfold, i.e. three levels gives a maxi-
mum of 8 x 8 x 8 = 512 nodes. So capacity will not be a
problem in this area.

V. CONCLUSION AND FURTHER WORK

The design and implementation of ScaConf has provided
Scali with reusable solutions to cluster related development
issues. By initiating the development also of ScaComd,
ScaConf contributed even more to the Scali clustering soft-
ware platform than first anticipated. ScaConf is now mak-
ing its way into Scali’s product line and in this sense it will
follow a normal product life cycle with more features being
added with each release. As with any software product of
this complexity and size the possibility for improvements
and new features seems endless. Therefore the biggest chal-
lenge will be to react to customer demands, identify the
most important improvements and attend to those first. A
few items which already have been identified are listed
below

• More topologies, Currently ScaConf handles plain rings
and 2D torus SCI topologies. In the very near future we
foresee the need to handle 3D torus and counter-rotating
ring topologies.

• Handling of more failed nodes
• Support for SCI switches
• Handlling of multiple clusters
• A (graphical) configuration file editor
• Automatic performance optimization of routing
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