
Intel Virtual Interface (VI) Architecture
Developer’s Guide

Revision 1.0
September 9, 1998

 Intel Corporation.

Intel VI Architecture Developer’s Guide

Page 2

DISCLAIMERS

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

No license, expressed or implied, by estoppel or otherwise, to any intellectual property rights is granted
herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to use of
information in this specification. Intel does not warrant or represent that such use will not infringe such rights.

Nothing in this document constitutes a guarantee, warranty, or license, express or implied. Intel disclaims all
liability for all such guaranties, warranties, and licenses, including but not limited to: fitness for a particular
purpose; merchantability; non-infringement of intellectual property or other rights of any third party or of Intel;
indemnity; and all others. The reader is advised that third parties may have intellectual property rights which
may be relevant to this document and the technologies discussed herein, and is advised to seek the advice
of competent legal counsel, without obligation to Intel.

Intel retains the right to make changes to this document at any time, without notice. Intel makes no warranty
for the use of this document and assumes no responsibility for any errors, which may appear in the
document, nor does it make a commitment to update the information contained herein.

The Intel Virtual Interface (VI) Architecture Developer’s Guide may contain design defects or errors known
as errata which may cause the product to deviate from published specifications. Currently characterized
errata are available on request.

AlertVIEW, i960, iCOMP, iPSC, Indeo, Insight960, Intel, Intel Inside, Intercast, LANDesk, MCS, NetPort, OverDrive,
Pentium, ProShare, SmartDie, Solutions960, the Intel logo, the Intel Inside logo, and the Pentium Processor logo are
registered trademarks of Intel.

BunnyPeople, CablePort, Celeron, Connection Advisor, Intel Create & Share, EtherExpress, ETOX, FlashFile, i386, i486,
InstantIP, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel® InBusiness, Intel® StrataFlash, Intel®

TeamStation, MMX, NetportExpress, Paragon, Pentium® II Xeon, Performance at Your Command, RemoteExpress,
StorageExpress, SureStack, The Computer Inside, TokenExpress, the Indeo logo, the MMX logo, the OverDrive logo, the
Pentium OverDrive Processor logo, and the ProShare logo are trademarks of Intel.

Intel® AnswerExpress, Mediadome, and PC DADS are service marks of Intel.

*Third-party brands and names are the property of their respective owners.

Copyright Intel Corporation 1998

Intel VI Architecture Developer’s Guide

Page 3

Table of Contents
1. Introduction ... 6

1.1. Overview.. 6
1.2. Terminology... 6

1.2.1. Acronyms and Abbreviations ... 6
1.2.2. Industry Terms ... 7
1.2.3. VI Architecture Terms .. 8

2. Virtual Interface Provider Library (VIPL)... 12
2.1. Overview.. 12
2.2. Conformance Phases .. 12

2.2.1. Early Adopter.. 12
2.2.2. Functional... 13
2.2.3. Full Conformance ... 13

2.3. Multi-Threading Considerations .. 13
2.4. Reliability Considerations .. 14

3. VIPL Calls ... 15
3.1. Hardware Connection.. 15

3.1.1. VipOpenNic .. 15
3.1.2. VipCloseNic.. 15

3.2. Endpoint Creation and Destruction ... 16
3.2.1. VipCreateVi .. 16
3.2.2. VipDestroyVi... 17

3.3. Connection Management .. 17
3.3.1. VipConnectWait.. 19
3.3.2. VipConnectAccept.. 20
3.3.3. VipConnectReject... 21
3.3.4. VipConnectRequest ... 22
3.3.5. VipDisconnect .. 23
3.3.6. VipConnectPeerRequest.. 24
3.3.7. VipConnectPeerDone... 25
3.3.8. VipConnectPeerWait .. 26

3.4. Memory protection and registration... 27
3.4.1. VipCreatePtag .. 27
3.4.2. VipDestroyPtag .. 27
3.4.3. VipRegisterMem... 28
3.4.4. VipDeregisterMem ... 29

3.5. Data transfer and completion operations .. 30
3.5.1. VipPostSend... 30
3.5.2. VipSendDone ... 30
3.5.3. VipSendWait... 31
3.5.4. VipPostRecv... 32
3.5.5. VipRecvDone ... 32
3.5.6. VipRecvWait... 33
3.5.7. VipCQDone .. 34
3.5.8. VipCQWait.. 35
3.5.9. VipSendNotify... 36
3.5.10. VipRecvNotify... 37
3.5.11. VipCQNotify.. 38
3.5.12. Notify Semantics .. 39

3.6. Completion Queue Management .. 39
3.6.1. VipCreateCQ.. 39
3.6.2. VipDestroyCQ .. 40
3.6.3. VipResizeCQ.. 41

3.7. Querying Information ... 41
3.7.1. VipQueryNic ... 41

Intel VI Architecture Developer’s Guide

Page 4

3.7.2. VipSetViAttributes .. 42
3.7.3. VipQueryVi ... 42
3.7.4. VipSetMemAttributes.. 43
3.7.5. VipQueryMem .. 44
3.7.6. VipQuerySystemManagementInfo ... 44

3.8. Error handling .. 46
3.8.1. VipErrorCallback .. 46

3.9. Name Service .. 47
3.9.1. VipNSInit .. 47
3.9.2. VipNSGetHostByName .. 48
3.9.3. VipNSGetHostByAddr .. 49
3.9.4. VipNSShutdown ... 50

4. Data Structures and Values.. 51
4.1. Generic VIPL Types .. 51
4.2. Return Codes .. 51
4.3. VI Descriptor .. 52
4.4. Error Descriptor ... 54
4.5. NIC Attributes .. 55
4.6. VI Attributes ... 56
4.7. Memory Attributes ... 57
4.8. VI Endpoint State... 57
4.9. VI Network Address... 58

5. Descriptors.. 59
5.1. Descriptor Format Overview.. 59
5.2. Descriptor Control Segment .. 60
5.3. Descriptor Address Segment .. 64
5.4. Descriptor Data Segment .. 65
5.5. Descriptor Handoff and Ownership ... 65

6. VI Provider Notes.. 68
6.1. Completion Queue Ordering.. 68
6.2. Disconnect Notification .. 68
6.3. Error Handling ... 68

6.3.1. Catastrophic Hardware Errors.. 68
6.3.2. Completion Queue Overrun ... 69
6.3.3. Connection Lost on an Unreliable Delivery VI ... 69

6.4. Thread Safety .. 69
6.5. VI Device Name... 69
6.6. Implications of Posting a Send Descriptor... 69
6.7. Connection Management Clarification .. 69
6.8. VIP_NOT_REACHABLE ... 76

7. Application Notes.. 77
7.1. Completion Queue Usage ... 77
7.2. Interaction of Notify, Done and Wait Calls... 77
7.3. Data Alignment .. 77
7.4. Connection Discriminator Usage... 77
7.5. Catastrophic Hardware Error Handling ... 78
7.6. Error Reporting on Unreliable VIs ... 78
7.7. Interconnect Failure Detection .. 78
7.8. Blocked VipConnectWait ... 78

8. Programming Examples ... 79
8.1. Overview.. 79

8.1.1. EchoServer... 79
8.1.2. EchoClient .. 79
8.1.3. Application Limitations: .. 79
8.1.4. Helper Functions .. 80

9. Future Considerations .. 81

Intel VI Architecture Developer’s Guide

Page 5

9.1. Discriminator Binding... 81
9.2. VI Handle Extensions .. 81
9.3. Error Codes ... 82
9.4. Hardware Heartbeat NIC Attribute Field.. 82

10. Appendix A - Include Files .. 83
10.1. Vipl.h .. 83
10.2. vipl.def.. 94

Intel VI Architecture Developer’s Guide

Page 6

1. Introduction

1.1. Overview
The Intel VI Architecture Developer’s Guide describes the Virtual Interface Provider Library (VIPL)
and the VI Kernel Agent along with illustrative programming examples and application notes.
VIPL is based on the example VI User Agent in Appendix A of the VI Architecture Specification
Version 1.0, with annotations, errata corrections and proposed extensions in italics to provide a
more complete interface for implementers and developers. The VI Kernel Agent is a component
of the operating system required by the VI Architecture that subsumes the role of the device
driver for the VI NIC and includes the kernel software needed to register communication memory
and manage VIs.

1.2. Terminology

1.2.1. Acronyms and Abbreviations
API Application Programming Interface. A collection of function calls exported by

libraries and/or services.

CRC Cyclic Redundancy Check. A number derived from, and stored or transmitted
with, a block of data in order to detect corruption. By recalculating the CRC and
comparing it to the value originally transmitted, the receiver can detect some
types of transmission errors.

DMA Direct Memory Access. A facility that allows a peripheral device to read and write
memory without intervention by the CPU.

IHV Independent Hardware Vendor. Any vendor providing hardware. Used
synonymously at times with VI Hardware Vendor.

MTU Maximum Transfer Unit. The largest frame length that may be sent on a physical
medium.

NIC Network Interface Controller. A NIC provides an electro-mechanical attachment
of a computer to a network. Under program control, a NIC copies data from
memory to the network medium, transmission, and from the medium to memory,
reception, and implements a unique destination for messages traversing the
network.

OSV Operating System Vendor. The software manufacturer of the operating system
that is running on the node under discussion.

QOS Quality of Service. Metrics that predict the behavior, speed and latency of a
given network connection.

SAN System Area Network. A high-bandwidth, low-latency network interconnecting
nodes within a distributed computer system.

SAR Segmentation and Re-assembly. The process of breaking data to be transferred
into quantities that are less than or equal to the MTU, transmitting them across
the network and then reassembling them at the receiving end to reconstruct the
original data.

TCP/IP Transmission Control Protocol/Internet Protocol. A standard networking protocol
developed for LANs and WANs. This is the standard communication protocol
used in the Internet.

Intel VI Architecture Developer’s Guide

Page 7

VM Virtual Memory. The address space available to a process running in a system
with a memory management unit (MMU). The virtual address space is usually
divided into pages, each consisting of 2N bytes. The bottom N address bits (the
offset within a page) are left unchanged, indicating the offset within a page, and
the upper bits give a (virtual) page number that is mapped by the MMU to a
physical page address. This is recombined with the offset to give the address of
a location in physical memory.

1.2.2. Industry Terms
Callback A scheme used in event-driven programs where the program registers a function,

called the callback handler, for a certain event. The program does not call the
callback handler directly. Rather, when the event occurs, the handler is invoked
asynchronously, possibly with arguments describing the event.

Data Payload The amount of data, not including any control or header information, that can be
carried in one packet.

Frame One unit of data encapsulated by a physical network protocol header and/or
trailer. The header generally provides control and routing information for directing
the frame through the network fabric. The trailer generally contains control and
CRC data for ensuring packets are not delivered with corrupted contents.

Link A full duplex channel between any two network fabric elements, such as nodes,
routers or switches.

Message An application-defined unit of data interchange. A primitive unit of communication
between cooperating sequential processes.

Message Latency
The elapsed time from the initiation of a message send operation until the
receiver is notified that the entire message is present in its memory.

Message Overhead
The sum of the times required to initiate transmission of a message, notify the
receiver that the message is available, and the non-bandwidth dependent
latencies (e.g. time for a NIC to process data) incurred in moving a message
from the source to the destination.

Network Fabric
The collection of routers, switches, connectors, and cables that connects a set of
nodes.

Network Partition
 A network partition is when a network of nodes breaks into two (or more)

separate subnetworks where no communication can occur between the
subnetworks.

Node A computer attached by a NIC to one or more links of a network, and forming the
origin and/or destination of messages within the network.

Packet A primitive unit of data interchange between nodes, comprised of a set of data
segments transmitted in an ordered stream. A packet may be sent as a single
frame, or may be fragmented into smaller units (cells) such that cells for various
packets may be interleaved in the fabric but the transmission order of cells for a
packet is preserved and manifest as a contiguous unit at a receiving node.

Server The class of computers that emphasize I/O connectivity and centralized data
storage capacity to support the needs of other, typically remote, client computers.

Workstation, or Client
The class of computers that emphasize numerical and/or graphic performance
and provide an interface to a human being.

Intel VI Architecture Developer’s Guide

Page 8

1.2.3. VI Architecture Terms

The following terms are introduced in this document.

Address Segment
The second of the three segments that comprise a remote-DMA operation
Descriptor, specifying the memory region to access on the target.

Communication Memory
Any region of a process’ memory that is registered with the VI Provider to serve
for storage of Descriptors and/or as communication buffers; i.e., any region of a
process’ memory that will be accessed by the VI NIC.

Connection An association between a pair of VIs such that messages sent using either VI
arrives at the other VI. A VI is either unconnected, or connected to one and only
one other VI.

Control Segment
The first component of a Descriptor containing information regarding the type of
VI NIC data movement operation to be performed, the status of a completed VI
NIC data movement operation, and the location of the next Descriptor on a Work
Queue.

Completion Queue
A queue containing information about completed Descriptors. Used to create a
single point of completion notification for multiple queues.

Completion Queue Entry
A single data structure on a Completion Queue that describes a completed
Descriptor. This entity contains sufficient information to determine the queue that
holds the completed Descriptor.

Data Segment A component of a Descriptor specifying one memory region for the VI NIC to use
as a communication buffer.

Descriptor A data structure recognized by the VI NIC that describes a data movement
request. A Descriptor is organized as a list of segments. A Descriptor is
comprised of a control segment followed by an optional address segment and an
arbitrary number of data segments. The data segments describe a
communication buffer gather or scatter list for a VI NIC data movement
operation.

Doorbell A mechanism for a process to notify the VI NIC that work has been placed on a
Work Queue. The Doorbell mechanism must be protected by the operating
system—i.e., for address protection, only the operating system should be able to
establish a Doorbell—and the VI NIC must be able to identify the owner of a VI
by the use of its Doorbell.

Done The state of a Descriptor when the VI NIC has completed processing it. This term
is not used in this document, refer to Section 5.5 for a description of Descriptor
states.

Immediate Data
Data contained in a Descriptor that is sent along with the data to the remote node
and placed in the remote node’s pre-posted Receive Queue Descriptor.

Kernel Agent A component of the operating system required by the VI Architecture that
subsumes the role of the device driver for the VI NIC and includes the kernel
software needed to register communication memory and manage VIs.

Intel VI Architecture Developer’s Guide

Page 9

Memory Handle
A programmatic construct that represents a process’s authorization to specify a
memory region to the VI NIC. A memory handle is created by the VI Kernel Agent
when a process registers communication memory. A process must supply a
corresponding Memory Handle with any virtual address to qualify it to the VI NIC.
The VI NIC will not perform an access to a virtual address if the supplied memory
handle does not agree with the memory region containing the virtual address or if
the memory region is registered to a process other than the process that owns a
Virtual Interface (VI).

Memory Protection Attributes
The access rights for RDMA granted to VIs and to Memory Regions.

Memory Protection Tag
A unique identifier generated by the VI Provider for use by the VI Consumer.
Memory Protection Tags are associated with VIs and Memory Regions to define
the access permission the VI has to a memory region.

Memory Region
An arbitrary sized region of a process’s virtual address space registered as
communication memory such that it can be directly accessed by the VI NIC.

Memory Registration
The act of creating a memory region. The memory registration operation returns a
Memory Handle that the process is required to provide with any virtual address
within the memory region.

VI NIC Address
The logical network address of the VI NIC. This address is assigned to a VI NIC
by the operating system and allows processes within a network to identify a
remote node with respect to a VI NIC attachment of the remote node to the
network.

NIC Handle A programmatic construct representing a process’s authorization to perform
communication operations using a local VI NIC.

Outstanding The state of a Descriptor after it has been posted on a Work Queue, but before it
is Done. This state represents the interval of time between a process posting a
Descriptor and the completion of the Descriptor by the VI NIC. This term is not
used in this document, refer to Section 5.5 for a description of Descriptor states.

Peer A generic term for the process at the other end of a connection.

Post To place a Descriptor on a VI Work Queue.

RDMA Remote Direct Memory Access. A Descriptor operation whereby data in a local
gather or scatter list is moved directly to or from a memory region on a remote
node. A process authorizes remote access to its memory by creating a VI with
remote-DMA operations enabled, connecting it to a remote VI, and making the
memory handle for the memory region to be shared available to the peer that will
perform the remote-DMA operation. There are two remote-DMA operations: write
and read.

Receive Queue
One of the two queues associated with a VI. This queue contains Descriptors
that describe where to place incoming data.

Reliable Delivery

 The middle communication reliability level. Guarantees that all data submitted for
transfer will arrive at its destination exactly once, intact and in the order
submitted, in the absence of errors. The VI Provider must deliver an error to the
VI Consumer if a transfer is lost, corrupted or delivered out of order.

Intel VI Architecture Developer’s Guide

Page 10

Reliable Reception

 The most reliable communication reliability level. A Descriptor is completed with a
successful status only when the data has been delivered into the target memory
location. If an error occurs that prevents a successful (in-order, intact and exactly
once) delivery of the data into the target memory, the error is reported through
the Descriptor status. Otherwise, a Reliable Reception VI behaves like a Reliable
Delivery VI.

Retired The state of a Descriptor after the VI NIC completes the operation specified by
the Descriptor, but before the done operation has been used to synchronize the
process with the status stored in the Descriptor. This term is not used in this
document, refer to Section 5.5 for a description of Descriptor states.

Send Queue One of the two queues associated with a VI. This queue contains Descriptors
that describe the data to be transmitted.

Unreliable Delivery

The least reliable communication level. This level guarantees that a Send or
RDMA Write is delivered at most once to the receiving VI and corrupted transfers
are detected on the receiving side. Sends and RDMA Writes may be lost on an
Unreliable Delivery VI. In addition, requests are not guaranteed to be delivered to
the receiver in the order submitted by the sender. However, the order must
adhere to the Descriptor processing ordering rules.

User Agent A software component that enables an Operating System communication facility
to utilize a particular VI Provider. The VI User Agent abstracts the details of the
underlying VI NIC hardware in accordance with an interface defined by the
Operating System communication facility.

VI Virtual Interface. An interface between a VI NIC and a process allowing a VI NIC
direct access to the process’ memory. A VI consists of a pair of Work Queues—
one for send operations and one for receive operations. The queues store a
Descriptor between the time it is posted and the time it is Done. A pair of VIs are
associated using the connect operation to allow packets sent at one VI to be
received at the other.

VI Address The logical name for a VI. The VI address identifies a remote end-point to be
associated with a local end-point using the connect-VI operation.

VI Application An application that uses the primitives provided by the VI User Agent.

VI Consumer A software process that communicates using a Virtual Interface. The VI
Consumer typically consists of an application program, an Operating System
communications facility, and a VI User Agent.

VI Handle A programmatic construct that represents a processes authorization to perform
operations on a specific VI. A VI handle is returned by the operation that creates
the VI and is supplied as an identifier parameter to the other VI operations.

VI Hardware Vendor
Anyone who produces a VI Architecture enabled NIC implementation. The
vendor is responsible for providing the VI NIC, VI Kernel Agent and the VI User
Agent.

VI NIC A Network Interface Controller that complies with the VI Architecture
Specification.

VIPL An implementation of the VI User Agent. VIPL is an acronym for Virtual Interface
Provider Library.

VI Provider The combination of a VI NIC and a VI Kernel Agent. Together, these two
components instantiate a Virtual Interface.

Intel VI Architecture Developer’s Guide

Page 11

Work Queue A posted list of Descriptors being processed by a VI NIC. Every VI has two Work
Queues: a send queue and a receive queue. The combination of the Work
Queue selected by a post operation and the operation type indicated by the
Descriptor determine the exact type of data movement that the VI NIC will
perform.

Intel VI Architecture Developer’s Guide

Page 12

2. Virtual Interface Provider Library (VIPL)

2.1. Overview
This section describes a reference interface to the VI Architecture, referred to as VIPL. The
material is presented in the form of groups of related routines, followed by definitions of data
structures, constants and error codes. Semantic clarifications on specific routines are provided at
the end of respective sections, whenever deemed necessary.

2.2. Conformance Phases
The conformance phases have been defined with input from ISVs and consultation with IHVs that
are planning products developed to the VIPL interface. The ISV community can use the phases to
determine which VI NIC products provide the functions needed for demonstrations and products
and the VI NIC vendors can use this to understand the needs of the ISVs. The Intel VI
conformance test suite will provide the means to report the highest phase of conformance to this
guide attained by a VI NIC offering.

Three phases have been defined and have been named as follows: Early Adopter, Functional
and Full Conformance. The Early Adopter phase has been broadly defined as the set of VIPL API
calls and other functionality in the API required for demonstrations and application prototyping.
The Functional phase contains the additional functions that ISVs plan to use to develop products.
Finally, Full Conformance is defined to be the full set of API and functions defined in this guide.

The details of each of the phases are contained in the following sections.

2.2.1. Early Adopter
The following are the calls and functionality required to meet the requirements of the Early
Adopter phase:

VipOpenNic VipPostSend
VipCloseNic VipSendDone

VipSendWait
VipCreateVi VipPostRecv
VipDestroyVi VipRecvDone

VipRecvWait
VipConnectWait
VipConnectAccept VipRegisterMem
VipConnectReject VipDeregisterMem
VipConnectRequest
VipDisconnect

VipQueryNic
VipQueryVi
VipQueryMem

Additional functionality requirements: Reliable Delivery and RDMA Write. (Although Reliable
Delivery is not a requirement in the VI Architecture Specification, many of the ISVs have stated
they require Reliable Delivery).

Note: It is acceptable to ignore the memory protection tags in the memory protection checks for
the early adopter release.

Intel VI Architecture Developer’s Guide

Page 13

2.2.2. Functional
VipConnectPeerRequest VipCreatePtag
VipConnectPeerDone VipDestroyPtag
VipConnectPeerWait

VipNSInit
VipCQDone VipNSGetHostByName
VipCQWait VipNSGetHostByAddr
VipCreateCQ VipNSShutdown
VipDestroyCQ
VipResizeCQ VipErrorCallback

Additional Requirements: Protection Tag support

2.2.3. Full Conformance
VipSendNotify
VipRecvNotify
VipCQNotify

VipSetViAttributes
VipSetMemAttributes

VipQuerySystemManagementInfo

Additional Requirements: Unreliable Delivery

RDMA Read capability is not a requirement to be conformant to any phase, but some ISVs have
expressed an interest in using it.

2.3. Multi-Threading Considerations

Multi-threaded applications or transport layers above VIPL layer commonly employ locks to
protect their own data structures. A non thread-safe version of VIPL can avoid overhead and
deadlock conditions from redundant locking when working with these applications. Applications
can determine whether the library supplied is thread-safe or not by checking the ThreadSafe field
in the NIC Attributes. (Section 3.7.1 explains how to retrieve NIC Attributes). General guidelines
for multi-threaded usage of a non thread-safe version of VIPL are described below.

Running on a multi-processor system in itself does not require locking as each VI is owned by a
single process. Explicit locking is required only when multiple threads are accessing the same
queue within a VI. For example, locks are required when two threads are sending to the same VI,
but not if one thread is sending and the other is receiving. Explicit locking is also necessary
between threads when manipulating the same completion queue. The VI provider must ensure
that explicit application level locking is not required to ensure correct operation when multiple
threads are accessing different queues within a VI. Since the creation and destruction of a VI
affect all the associated queues, locks for all queues must be taken before performing these
operations if multiple threads are accessing the same VI.

A non-thread-safe implementation of VIPL does not provide thread synchronization to access the
VI work queues and completion queues in order to reduce the overheads in the speed paths of
data movement operations. This is the only difference between thread-safe and non-thread-safe
implementations of VIPL. Both thread-safe and non-thread-safe VIPL implementations are
expected to provide thread synchronization for all other resources. This means the VI Application
needs to only manage locks for the VI work queues and completion queues when using a non-
thread-safe VIPL. For more information, see Section 6.4.

Intel VI Architecture Developer’s Guide

Page 14

2.4. Reliability Considerations
Section 2.5.2 Reliable Delivery in the VI Architecture Specification is not clear regarding how
asynchronous errors affect Descriptor processing, especially receive Descriptor processing for
Reliable Delivery VIs. A condition for a Reliable Delivery VI is the guarantee that all data
submitted for transfer will arrive exactly once, intact and in the order submitted. In order to meet
this guarantee, the VI Provider must detect transfers that are corrupted or delivered out of order
at the receiver in a synchronous manner. Note that detecting an out of order transfer will also
catch a lost transfer.

When an error is detected, the VI transitions immediately to the Error state before processing any
more Descriptors and the VI Provider drops the connection. All Descriptors pending or posted
while in the Error state are marked completed in error. This ensures that no subsequent receive
Descriptors complete successfully after the Descriptor where the error occurred.

It is possible for one or more send Descriptors to have completed successfully before receiving a
non-local asynchronous error notification. The status of transfers initiated by these Descriptors is
unknown.

The send side Descriptor processing is the primary difference between Reliable Delivery and
Reliable Reception. Reliable Reception guarantees that no subsequent send Descriptors are
processed after the Descriptor that generated the error.

Intel VI Architecture Developer’s Guide

Page 15

3. VIPL Calls

3.1. Hardware Connection

3.1.1. VipOpenNic

Synopsis

VIP_RETURN
VipOpenNic(

IN const VIP_CHAR *DeviceName,
OUT VIP_NIC_HANDLE *NicHandle

)

Parameters

DeviceName: Symbolic name of the device (VI Provider instance) associated with the NIC.

NicHandle: Handle returned. The handle is used with the other functions to specify a
particular instance of a VI NIC.

Description

VipOpenNic associates a process with a VI NIC, and provides a NIC handle to the VI Consumer.
The NIC handle is used in subsequent functions in order to specify a particular NIC. A process is
allowed to open the same VI NIC multiple times. Each time a process calls VipOpenNic with the
same device name, a different NIC handle is returned that references the same NIC.

Returns

VIP_SUCCESS – Operation completed successfully.

VIP_ERROR_RESOURCE – An error was detected due to insufficient resources.

VIP_INVALID_PARAMETER – One of the parameters was invalid.

3.1.2. VipCloseNic

Synopsis

VIP_RETURN
VipCloseNic(

IN VIP_NIC_HANDLE NicHandle
)

Parameters

NicHandle: The NIC handle.

Description

VipCloseNic removes the association between the calling process and the VI NIC that was
established via the corresponding VipOpenNic function.

When a VI NIC is closed, it is the responsibility of the VI Provider to clean up all resources
associated with that NIC instance. This includes any resources allocated by the library and
threads started on behalf of the NIC, such as error callback and notify threads .

Intel VI Architecture Developer’s Guide

Page 16

Returns

VIP_SUCCESS – Operation completed successfully.

VIP_INVALID_PARAMETER – Caller specified an invalid NIC handle.

3.2. Endpoint Creation and Destruction

3.2.1. VipCreateVi

Synopsis

VIP_RETURN
VipCreateVi(

IN VIP_NIC_HANDLE NicHandle,
IN VIP_VI_ATTRIBUTES *ViAttribs,
IN VIP_CQ_HANDLE SendCQHandle,
IN VIP_CQ_HANDLE RecvCQHandle,
OUT VIP_VI_HANDLE *ViHandle

)

Parameters

NicHandle: Handle of the associated VI NIC.

ViAttribs: The initial attributes to set for the new VI.

SendCQHandle: The handle of a Completion Queue. If a valid handle, the send Work Queue of
this VI will be associated with the Completion Queue. If NULL, the send queue is
not associated with any Completion Queue.

RecvCQHandle: The handle of a Completion Queue. If valid, the receive Work Queue of this VI
will be associated with the Completion Queue. If NULL, the receive queue is not
associated with any Completion Queue.

ViHandle: The handle for the newly created VI instance.

Description

VipCreateVi creates an instance of a Virtual Interface to the specified NIC.

The ViAttribs input parameter specifies the initial attributes for this VI instance.

The SendCQHandle and RecvCQHandle parameters allow the caller to associate the Work
Queues of this VI with a Completion Queue. If one or both of the Work Queues are associated
with a Completion Queue, the calling process cannot wait on that queue via VipSendWait or
VipRecvWait.

When a new instance of a VI is created, it begins in the Idle state.

Returns

VIP_SUCCESS – Operation completed successfully.

VIP_ERROR_RESOURCE – The operation failed due to insufficient resources.

VIP_INVALID_PARAMETER – One of the input parameters was invalid.

VIP_INVALID_RELIABILITY_LEVEL – The requested reliability level attribute was invalid or not
supported.

VIP_INVALID_MTU – The maximum transfer size attribute was invalid or not supported.

VIP_INVALID_QOS – The quality of service attribute was invalid or not supported.

Intel VI Architecture Developer’s Guide

Page 17

VIP_INVALID_PTAG – The protection tag attribute was invalid.

VIP_INVALID_RDMAREAD – The attributes requested support for RDMA Read, but the VI
Provider does not support it.

3.2.2. VipDestroyVi

Synopsis

VIP_RETURN
VipDestroyVi(

IN VIP_VI_HANDLE ViHandle
)

Parameters

ViHandle: The handle of the VI instance to be destroyed.

Description

VipDestroyVi tears down a Virtual Interface. A VI instance may only be destroyed if the VI is in
the Idle state and all Descriptors on its work queues have been de-queued, otherwise an error is
returned to the caller. Use of the destroyed handle in any subsequent operation will fail.

Returns

VIP_SUCCESS – Operation completed successfully

VIP_INVALID_PARAMETER – An invalid VI Handle was specified.

VIP_INVALID_STATE – The VI is not in the Idle state or there are still Descriptors posted on the
work queues.

VIP_ERROR_RESOURCE - The operation failed due to insufficient resources.

3.3. Connection Management
This section illustrates the various connection management models available in VIPL and
describes their semantics. Sections 3.3.1 to 3.3.4 provide the client/server connection
management APIs. The client/server connection model is described in detail in the VI
specification, and is intended for use by standard client/server applications. Section 3.3.5
describes the disconnect semantics for all the connection models. Sections 3.3.6 to 3.3.8 show
the extended peer-to-peer connection management APIs. The peer-to-peer connection model is
intended for use by applications having distributed modules that logically fit into a peer-to-peer
relation rather than a client/server relation. The additional APIs for the peer-to-peer connection
management model were added to VIPL based on feedback from application developers and
ISVs. The client/server and peer-to-peer connection models are completely separate and
applications must use the same model on both sides of the same connection. Both models can
be used in an application as long as the rule requiring the same model on both sides of a
connection is followed.

NOTE: In response to feedback from application developers and ISVs, the minimum value that is
required for the maximum discriminator length is 16 bytes. This means that all applications are
guaranteed that 16 byte discriminators can be used during connection setup for VIPL
implementations that conform to this developer's guide.

The client-server connection model provides blocking semantics. The peer-to-peer connection
model provides both blocking and non-blocking semantics. A typical peer-to-peer connection
scenario starts with a peer initiating a connection request by calling VipConnectPeerRequest. In
this scenario, there is no matching peer connection request with the given remote attributes at the

Intel VI Architecture Developer’s Guide

Page 18

time the connection request is initiated by the first peer. At some point, before the timeout expires
for the first peer’s connect request, the second peer comes up and issues a
VipConnectPeerRequest. The existence of a matching ConnectPeerRequest in the first peer is
determined and acknowledged. Finally, the ConnectPeerRequest is accepted and both VI’s
transition to the Connected State. The timing diagram for this sequence is illustrated in Figure 1.

Peer Process Peer Process

Waiting

ConnectPeerRequest
Issued

ConnectPeerRequest matching
ConnectionAddress criteria ReceivedConnection

Request
Times Out

ConnectPeerRequest
issued

Connection Request
Times out

ConnectPeerRequest
Accepted

Create
VI

VI
Conn-
ected

ConnectPeerWait or Done
Returns Successfully

Wait on
Response

Wait on
Response

ConnectPeerWait or Done
Returns Successfully

ConnectPeerRequest
 acknowledged

VI
Conn-
ected

Create
VI

Wait on
Response

ConnectPeerRequest

No Match Found

Figure 1: Peer-to-Peer Connection Model Timing Diagram

The detailed state diagram for a client/server connection model is provided in the VI Architecture
Specification. A VI may be in one of four states throughout its life. The four states are Idle,
Pending Connect, Connected, and Error. Transitions between states are driven by requests
issued by the VI Consumer and network events. Requests that are not valid while a VI is in a
given state, such as submitting a connect request while in the Pending Connect state, must be
returned with an error by the VI Provider. The VI state diagram for peer-to-peer connections is
exactly the same as the state diagram for client server connections except that the API call that
causes state transitions between the Idle state and the Pending Connect state and between the
Pending Connect state and the Connected state are peer-to-peer connection calls. The state
diagram for the peer-to-peer connection model is shown in Figure 2.

Intel VI Architecture Developer’s Guide

Page 19

Create VI

Idle Pending
Connect

ConnectedError

Destroy VI

ConnectPeerRequest is called

ConnectPeerWait or ConnectPeerDone
returns VIP_TIMEOUT or Disconnect

Disconnect

ConnectPeerWait or
ConnectPeerDone succeeds
(VIP_SUCCESS)

ConnectPeerRequest E
rro

r

VI Error on
Reliable VI

Disconnect

Figure 2: Peer-to-Peer Connection Model State Diagram

Net Address Matching Rules

This section describes the rules for matching connection requests for the client/server and the
peer-to-peer model. Note that the matching rules for the two models are different.

In the client/server model, the client request must specify a host and a discriminator in the
RemoteAddr parameter. The server waits for a connection request from any client node that
matches the discriminator portion of the net address specified in RemoteAddr by the client
application. The server application may accept or reject a connection request based on the
client’s remote address and other criteria, such as the VI attributes.

The peer-to-peer connection model requires that both the address and the discriminator portions
of the net address specified in RemoteAddr match in order to complete the connection.

3.3.1. VipConnectWait

Synopsis

VIP_RETURN
VipConnectWait(

IN VIP_NIC_HANDLE NicHandle,
IN VIP_NET_ADDRESS *LocalAddr,
IN VIP_ULONG Timeout,
OUT VIP_NET_ADDRESS *RemoteAddr,
OUT VIP_VI_ATTRIBUTES *RemoteViAttribs,
OUT VIP_CONN_HANDLE *ConnHandle

)

Intel VI Architecture Developer’s Guide

Page 20

Parameters

NicHandle: Handle for an instance of a VI NIC.

LocalAddr: Local network address on which to wait. Only the discriminator portion of the net
address is used to determine if the request matches. The host address portion
must match the local NIC address.

Timeout: The count, in milliseconds, that VipConnectWait will wait to complete before
returning to the caller. VIP_INFINITE if no time-out is desired. A timeout of zero
indicates immediate return.

RemoteAddr: The remote network address (host address and discriminator) that is requesting
a connection. The value of the network address returned is the same as the
LocalAddr parameter supplied to the matching VipConnectRequest.

RemoteViAttribs: The attributes of the remote VI endpoint that is requesting the connection.

ConnHandle: A handle to an opaque connection object subsequently used in calls to
VipConnectAccept and VipConnectReject.

Description

VipConnectWait is used to look for incoming connection requests on the server side of the
client/server connection model.

The caller passes in a local network address that is used to filter incoming connection requests.
The format of the network address is VI Provider specific.

If a matching connection request is not found immediately, VipConnectWait will wait for a request
until the Timeout period has expired.

If a connection request is found that matches the discriminator in the LocalAddress, the caller is
returned the remote network address including the discriminator that is requesting a connection.
The attributes of the remote endpoint that is requesting the connection and a connection handle
to be used in subsequent calls to VipConnectAccept or VipConnectReject are also returned to the
caller.

If the host portion of the LocalAddr parameter does not match the local NIC address (the
LocalNicAddress field of the NicAttributes structure), then a VIP_INVALID_PARAMETER error is
returned.

Returns

VIP_SUCCESS – The operation has successfully found a connection request.

VIP_TIMEOUT – The operation timed out, no connection request was found.

VIP_ERROR_RESOURCE – The operation failed due to a resource limit.

VIP_INVALID_PARAMETER – One of the parameters was invalid.

3.3.2. VipConnectAccept

Synopsis

VIP_RETURN
VipConnectAccept(

IN VIP_CONN_HANDLE ConnHandle,
IN VIP_VI_HANDLE ViHandle

)

Intel VI Architecture Developer’s Guide

Page 21

Parameters

ConnHandle: A handle to an opaque connection object created by VipConnectWait.

ViHandle: Instance of a local VI endpoint.

Description

VipConnectAccept is used to accept a connection request and associate the connection with a
local VI endpoint. This function is called on the server side of the client/server connection model.

The caller passes in the handle of an Idle, unconnected VI endpoint to associate with the
connection request. If the attributes of the local VI endpoint conflict with those of the remote
endpoint, VipConnectAccept will fail. It is the function of the VI Provider to determine if the
connection should succeed based on the attributes of the two endpoints. Note: The VI attributes
that must match when establishing a connection are ReliabilityLevel, MaxTransferSize and QoS.

If VipConnectAccept fails, no explicit notification is sent to the remote end. The caller may
choose to modify the attributes of the local VI endpoint, and try again. In order to reject a
connection request, the VI Consumer must explicitly reject the connection request via the
VipConnectReject function.

For NICs that can detect network partitions, a VIP_NOT_REACHABLE error is returned if a
network partition is detected. For Reliable Delivery and Reliable Reception, the VI transitions to
the Error State and any pending receive descriptors are marked as flushed.

Returns

VIP_SUCCESS – The connection was successfully established.

VIP_INVALID_PARAMETER – One of the parameters was invalid.

VIP_INVALID_ RELIABILITY_LEVEL – The reliability level attribute of the local endpoint
conflicted with the reliability level of the remote VI.

VIP_INVALID_MTU – The maximum transfer size attribute of the local endpoint conflicted with
the maximum transfer size of the remote endpoint.

VIP_INVALID_QOS – The quality of service attribute was invalid, or conflicted with the remote
endpoint.

VIP_TIMEOUT - The connection could not be completed, possibly due to a timeout failure on the
matching VipConnectRequest on the client node.

VIP_ERROR_RESOURCE - The operation failed due to insufficient resources.

VIP_INVALID_STATE - The specified VI endpoint is not in the Idle state.

VIP_NOT_REACHABLE - A network partition was detected.

3.3.3. VipConnectReject

Synopsis

VIP_RETURN
VipConnectReject(

IN VIP_CONN_HANDLE ConnHandle
)

Parameters

ConnHandle: A handle to an opaque connection object created by VipConnectWait.

Intel VI Architecture Developer’s Guide

Page 22

Description

VipConnectReject is used to reject a connection request. This function is called on the server side
of the client/server connection model. Notification is sent to the remote end that the associated
connection request was rejected.

For NICs that can detect network partitions, a VIP_NOT_REACHABLE error is returned if a
network partition is detected. For Reliable Delivery and Reliable Reception, the VI transitions to
the Error State and any pending receive descriptors are marked as flushed.

Returns

VIP_SUCCESS – The operation completed successfully.

VIP_INVALID_PARAMETER – The ConnHandle parameter was invalid.

VIP_ERROR_RESOURCE - The operation failed due insufficient resources.

VIP_NOT_REACHABLE - A network partition was detected.

3.3.4. VipConnectRequest

Synopsis

VIP_RETURN
VipConnectRequest(

IN VIP_VI_HANDLE ViHandle,
IN VIP_NET_ADDRESS *LocalAddr,
IN VIP_NET_ADDRESS *RemoteAddr,
IN VIP_ULONG Timeout,
OUT VIP_VI_ATTRIBUTES *RemoteViAttribs

)

Parameters

ViHandle: Handle for the local VI endpoint.

LocalAddr: Local network address. The local address is used solely for naming purposes
and is not used for matching by VipConnectWait. The host address portion of this
network address must match the client NIC address. The discriminator portion is
passed unchanged to the RemoteAddr structure returned from the matching
VipConnectWait.

RemoteAddr: The remote network address. The remote network address must contain both the
host address and discriminator.

Timeout: The count, in milliseconds, that VipConnectRequest will wait for connection to
complete before returning to the caller, VIP_INFINITE if no time-out is desired. A
timeout value of zero is invalid.

RemoteViAttribs: The attributes of the remote endpoint if successful.

Description

VipConnectRequest requests that a connection be established between the local VI endpoint,
and a remote endpoint. This function is called on the client side of the client/server connection
model. The user specifies a local and remote network address for the connection. Only the
remote network address is used by the server to match to a VipConnectWait.

When a connection is successfully established, the local address is bound to the local VI
endpoint, and the attributes of the remote endpoint are returned to the caller. The attributes of the

Intel VI Architecture Developer’s Guide

Page 23

remote endpoint allow the caller to determine whether the indicated RDMA operations can be
executed on the resulting connection.

If the remote end rejects the connection explicitly by calling VipConnectReject, a rejection error is
returned. If a connection cannot be established before the specified Timeout period, a timeout
error is returned. Specifying a timeout value of zero is invalid and will result in an immediate
VIP_INVALID_PARAMETER error. If a VipConnectAccept or the VipConnectReject response is
not returned within the specified timeout period (including a non-functional server or
interconnect), VIP_TIMEOUT is returned after the timeout period expires. If the server is
responding but is not waiting for a connection that matches the discriminator specified in
RemoteAddr, or is not in the right state to handle connection requests, a VIP_NO_MATCH error
is returned.

For NICs that can detect network partitions, a VIP_NOT_REACHABLE error is returned
immediately if a network partition is detected. For Reliable Delivery and Reliable Reception, the
VI transitions to the Error State and any pending receive descriptors are marked as flushed.

If the host portion of the LocalAddr parameter does not match the local NIC address (the
LocalNicAddress field of the NicAttributes structure), then a VIP_INVALID_PARAMETER error is
returned.

Returns

VIP_SUCCESS – The connection was successfully established.

VIP_TIMEOUT – The connection operation timed out or the server is not functional.

VIP_ERROR_RESOURCE – The connection operation failed due to insufficient resources.

VIP_INVALID_PARAMETER – One of the parameters was invalid.

VIP_REJECT – The connection was rejected by the remote end.

VIP_NO_MATCH - The server is up and is not waiting for a connection request with the specified
discriminator.

VIP_INVALID_STATE - The specified VI endpoint is not in the Idle state.

VIP_NOT_REACHABLE - A network partition was detected.

3.3.5. VipDisconnect

Synopsis

VIP_RETURN
VipDisconnect(

IN VIP_VI_HANDLE ViHandle
)

Parameters

ViHandle: Instance of a connected Virtual Interface endpoint.

Description

VipDisconnect is used to terminate a connection. When the local endpoint is disconnected, it
stops processing of all posted Descriptors, all pending (not completed) Descriptors are marked
completed because of disconnection with a Descriptor Flushed error, and the local endpoint
transitions to the Idle state. When the remote endpoint causes a connection to terminate by
closing the endpoint or by calling VipDisconnect, an asynchronous error callback happens
indicating the disconnected connection. The node that initiated the VipDisconnect will not get an
error callback. The local client should call VipDisconnect to reset the disconnected connection
from the Error state to the Idle state.

Intel VI Architecture Developer’s Guide

Page 24

VipDisconnect can be called in any VI state to cause pending Descriptors on the VI to be
completed with the Descriptor Flushed error bit set and transition the VI to the Idle state.
Specifically, VipDisconnect can be called in the Idle state to force pending receive Descriptors to
be completed in error so they can be de-queued prior to calling VipDestroyVi.

For NICs that can detect network partitions, a VIP_NOT_REACHABLE error is returned if a
network partition is detected. For Reliable Delivery and Reliable Reception, the VI transitions to
the Error State and any pending receive descriptors are marked as flushed.

Returns

VIP_SUCCESS – The disconnect was successful.

VIP_INVALID_PARAMETER – The ViHandle parameter was invalid.

VIP_ERROR_RESOURCE - The operation failed due to insufficient resources.

VIP_NOT_REACHABLE - A network partition was detected.

3.3.6. VipConnectPeerRequest

Synopsis

VIP_RETURN
VipConnectPeerRequest(

IN VIP_VI_HANDLE ViHandle,
IN VIP_NET_ADDRESS *LocalAddr,
IN VIP_NET_ADDRESS *RemoteAddr,
IN VIP_ULONG Timeout

)

Parameters

ViHandle: Handle for the local VI endpoint.

Local Addr: Local network address. The local address is used solely for administrative
purposes and is not used for matching connection requests. The host portion of
this network address must match the NIC’s address.

RemoteAddr: The remote network address.

Timeout: The count, in milliseconds, that VipConnectPeerRequest will wait for connection
to complete. VIP_INFINITE if no time-out is desired. A timeout value of zero
results in a VIP_INVALID_PARAMETER error return.

Description

VipConnectPeerRequest posts a request that a connection be established between the local VI
endpoint and a remote VI endpoint. The user specifies local and remote network addresses as
part of the connection request. This call returns as soon as the connection request is initiated.
The caller of VipConnectPeerRequest can check the status of the connection request or wait for
connection completion by calling VipConnectPeerDone or VipConnectPeerWait respectively.

If a connection is successfully established, the local address is bound to the local VI endpoint and
the attributes of the remote VI endpoint are returned to the caller when the connect completion
status is delivered. If a connection cannot be established before the specified Timeout period, a
VIP_TIMEOUT error is returned in the return status of VipConnectPeerDone or
VipConnectPeerWait.

If the host portion of the LocalAddr parameter does not match the local NIC address (specified in
the LocalNicAddress field of the NicAttributes structure), then a VIP_INVALID_PARAMETER
error is returned.

Intel VI Architecture Developer’s Guide

Page 25

Returns

VIP_SUCCESS - The connection request was queued.

VIP_ERROR_RESOURCE - The request failed due to insufficient resources.

VIP_INVALID_STATE - The specified VI endpoint is not in the Idle state.

VIP_INVALID_PARAMETER - One of the parameters was invalid.

3.3.7. VipConnectPeerDone

Synopsis

VIP_RETURN
VipConnectPeerDone(

IN VIP_VI_HANDLE ViHandle,
OUT VIP_VI_ATTRIBUTES *RemoteViAttribs

)

Parameters

ViHandle: Handle for the local VI endpoint.

RemoteVIAttribs: The attributes of the remote VI endpoint if the connection was
successfully completed.

Description

VipConnectPeerDone is called by a client to determine the results of a previously posted
VipConnectPeerRequest call on the specified VI handle, without blocking the calling thread.

If a connection is successfully established, the attributes of the remote endpoint are returned to
the caller. The attributes of the remote endpoint allow the caller to determine whether/which
RDMA operations can be executed on the resulting connection. Note: The VI attributes that must
match are ReliabilityLevel, MaxTransferSize and QoS.

If the connection was not successfully established within the Timeout period specified in
VipConnectPeerRequest, a VIP_TIMEOUT error is returned. VipConnectPeerDone returns
VIP_NOT_DONE if the connection operation is still in progress.

For NICs that can detect network partitions, a VIP_NOT_REACHABLE error is returned if a
network partition is detected. For Reliable Delivery and Reliable Reception, the VI transitions to
the Error State and any pending receive descriptors are marked as flushed.

Returns

VIP_SUCCESS – The connection completed successfully. Attributes of the remote endpoint are
returned through the second function parameter.

VIP_INVALID_PARAMETER – One of the parameters was invalid.

VIP_INVALID_ RELIABILITY_LEVEL – The reliability level attribute of the local endpoint
conflicted with the reliability level of the remote VI.

VIP_INVALID_MTU – The maximum transfer size attribute of the local endpoint conflicted with
the maximum transfer size of the remote endpoint.

VIP_INVALID_QOS – The quality of service attribute was invalid, or conflicted with the remote
endpoint.

VIP_TIMEOUT – The connection request timeout expired before a successful connection
completion

VIP_NOT_DONE - The connection operation is still in progress.

Intel VI Architecture Developer’s Guide

Page 26

VIP_ERROR_RESOURCE - The operation failed due to insufficient resources.

VIP_INVALID_STATE - The specified VI endpoint is not in the Pending Connect state.

VIP_NOT_REACHABLE - A network partition was detected.

3.3.8. VipConnectPeerWait

Synopsis

VIP_RETURN
VipConnectPeerWait(

IN VIP_VI_HANDLE ViHandle,
OUT VIP_VI_ATTRIBUTES *RemoteViAttribs

)

Parameters

ViHandle: Handle for the local VI endpoint.

RemoteVIAttribs: The attributes of the remote VI endpoint if the connection was
successfully completed

Description

VipConnectPeerWait is used by a client to determine the results of a previously posted
VipConnectPeerRequest call on the specified VI handle, blocking the calling thread until the result
of the connection request is available.

If a connection is successfully established, the attributes of the remote endpoint are returned to
the caller. The attributes of the remote endpoint allow the caller to determine whether/which
RDMA operations can be executed on the resulting connection. Note: The VI attributes that must
match when establishing a connection are ReliabilityLevel, MaxTransferSize and QoS.

If the connection was not successfully established within the Timeout period specified in
VipConnectPeerRequest, a VIP_TIMEOUT error is returned. VipConnectPeerWait blocks until a
connection is established, the timeout expires or an error is detected.

For NICs that can detect network partitions, a VIP_NOT_REACHABLE error is returned if a
network partition is detected. For Reliable Delivery and Reliable Reception, the VI transitions to
the Error State and any pending receive descriptors are marked as flushed

Returns

VIP_SUCCESS – The connection completed successfully; Attributes of the remote endpoint are
returned through the second function parameter.

VIP_INVALID_PARAMETER – One of the parameters was invalid.

VIP_INVALID_ RELIABILITY_LEVEL – The reliability level attribute of the local endpoint
conflicted with the reliability level of the remote VI.

VIP_INVALID_MTU – The maximum transfer size attribute of the local endpoint conflicted with
the maximum transfer size of the remote endpoint.

VIP_INVALID_QOS – The quality of service attribute was invalid, or conflicted with the remote
endpoint.

VIP_TIMEOUT – The connection request timeout expired before a successful connection
completion.

VIP_ERROR_RESOURCE - The operation failed due to insufficient resources.

Intel VI Architecture Developer’s Guide

Page 27

VIP_INVALID_STATE - The specified VI endpoint is not in the Pending Connect state.

VIP_NOT_REACHABLE - A network partition was detected.

3.4. Memory protection and registration

3.4.1. VipCreatePtag

Synopsis

VIP_RETURN
VipCreatePtag(

IN VIP_NIC_HANDLE NicHandle,
OUT VIP_PROTECTION_HANDLE *Ptag

)

Parameters

NicHandle: The NIC handle associated with the protection tag.

Ptag: The new protection tag.

Description

The VipCreatePtag function creates a new protection tag for the calling process. The protection
tag is subsequently associated with VI endpoints via the VipCreateVi function, as well as memory
regions via the VipRegisterMem function. A process may request multiple protection tags.

For all memory references by the VI Provider, including Descriptors and message buffers, the
protection tag of the VI instance, and the memory region, must match in order to pass the
memory protection check.

The Protection Tag is an element in the VI attributes data structure and the Memory Region
Attributes data structure. The protection tag of a memory region and/or a VI can be changed by
changing their attributes.

Returns

VIP_SUCCESS – The memory protection tag was successfully created.

VIP_ERROR_RESOURCE – The operation failed due to insufficient resources.

VIP_INVALID_PARAMETER – One of the parameters was invalid.

3.4.2. VipDestroyPtag

Synopsis

VIP_RETURN
VipDestroyPtag(

IN VIP_NIC_HANDLE NicHandle,
IN VIP_PROTECTION_HANDLE Ptag

)

Parameters

NicHandle: The NIC handle associated with the protection tag.

Ptag: The protection tag.

Intel VI Architecture Developer’s Guide

Page 28

Description

The VipDestroyPtag function destroys a protection tag.

If the specified protection tag is associated with either a VI instance or a registered memory
region at the time of the call, an error is returned.

Returns

VIP_SUCCESS – The memory protection tag was successfully destroyed.

VIP_ERROR_RESOURCE – A VI instance or a registered memory region is still associated with
the specified protection tag or the operation failed due to insufficient resources.

VIP_INVALID_PARAMETER – One of the input parameters was invalid.

3.4.3. VipRegisterMem

Synopsis

VIP_RETURN
VipRegisterMem(

IN VIP_NIC_HANDLE NicHandle,
IN VIP_PVOID VirtualAddress,
IN VIP_ULONG Length,
IN VIP_MEM_ATTRIBUTES *MemAttribs,
OUT VIP_MEM_HANDLE *MemoryHandle

)

Parameters

NicHandle: Handle for a currently open NIC.

VirtualAddress: Starting address of the memory region to be registered.

Length: The length, in bytes, of the memory region.

MemAttribs: The memory attributes to associate with the memory region.

MemoryHandle: If successful, the new memory handle for the region, otherwise NULL.

Description

VipRegisterMem allows a process to register a region of memory with a VI NIC. Memory used to
hold Descriptors or data buffers must be registered with this function.

The user may specify an arbitrary size region of memory, with arbitrary alignment, but the actual
area of memory registered will be registered on page granularity. Registered pages are locked
into physical memory.

The memory attributes include the Protection Tag, and the RDMA enable bits that are initially
associated with the memory region.

Descriptors and data buffers contained within registered memory can be used by any VI with a
matching protection tag that is owned by the process. A new memory handle is generated for
each region of memory that is registered by a process.

The EnableRdmaWrite memory attribute can be used to ensure that no remote process can
modify a region of memory, this could be particularly useful to protect regions of memory that
contain Descriptors (control information). The EnableRdmaRead parameter can be used to
ensure that no remote process can read a particular region of memory.

Note that the implementation of VipRegisterMem should always check for read-only pages of
memory and not allow modification to those pages by the VI Hardware.

Intel VI Architecture Developer’s Guide

Page 29

A Length parameter of zero will result in a VIP_INVALID_PARAMETER error.

The contents of the memory region being registered are not altered. The memory region must
have been previously allocated by the VI Consumer.

Returns

VIP_SUCCESS – The memory region was successfully registered.

VIP_ERROR_RESOURCE – The registration operation failed due to insufficient resources.

VIP_INVALID_PARAMETER – One of the parameters was invalid.

VIP_INVALID_PTAG – The protection tag attribute was invalid.

VIP_INVALID_RDMAREAD – the attributes requested the memory region be enabled for RDMA
Read, but the VI Provider does not support it.

3.4.4. VipDeregisterMem

Synopsis

VIP_RETURN
VipDeregisterMem(

IN VIP_NIC_HANDLE NicHandle,
IN VIP_PVOID VirtualAddress,
IN VIP_MEM_HANDLE MemoryHandle

)

Parameters

NicHandle: The handle for the NIC that owns the memory region being de-registered.

VirtualAddress: Address of the region of memory to be de-registered.

MemoryHandle: Memory handle for the region; obtained from a previous call to VipRegisterMem.

Description

VipDeregisterMem de-registers memory that was previously registered using the
VipRegisterMem function and unlocks the associated pages from physical memory. The contents
and attributes of the region of virtual memory being de-registered are not altered in any way.

Returns

VIP_SUCCESS – The memory region was successfully de-registered.

VIP_INVALID_PARAMETER – One or more of the parameters was invalid.

VIP_ERROR_RESOURCE - The operation failed due to insufficient resources.

Intel VI Architecture Developer’s Guide

Page 30

3.5. Data transfer and completion operations

3.5.1. VipPostSend

Synopsis

VIP_RETURN
VipPostSend(

IN VIP_VI_HANDLE ViHandle,
IN VIP_DESCRIPTOR *DescriptorPtr,
IN VIP_MEM_HANDLE MemoryHandle

)

Parameters

ViHandle: Instance of a Virtual Interface.

DescriptorPtr: Pointer to a Descriptor to be posted on the send queue.

MemoryHandle: The handle for the memory region of the Descriptor being posted.

Description

VipPostSend adds a Descriptor to the tail of the send queue of a VI, notifies the NIC that a new
Descriptor is available, and returns immediately.

Returns

VIP_SUCCESS – The send Descriptor was successfully posted.

VIP_INVALID_PARAMETER – The VI handle was invalid.

3.5.2. VipSendDone

Synopsis

VIP_RETURN
VipSendDone(

IN VIP_VI_HANDLE ViHandle,
OUT VIP_DESCRIPTOR **DescriptorPtr

)

Parameters

ViHandle: Instance of a Virtual Interface.

DescriptorPtr: Address of the Descriptor that has completed, if any.

Description

VipSendDone checks the Descriptor at the head of the send queue to see if it has been marked
complete. If the operation has completed, the Descriptor is removed from the head of the queue
and the address of the Descriptor is returned. A VIP_DESCRIPTOR_ERROR is returned if the
operation completed with errors returned in the Descriptor status or the send queue is empty. If
the send queue is empty, DescriptorPtr is set to NULL. VipSendDone is a non-blocking call. In
particular, VipSendDone is not allowed to block behind a VipSendWait, even in a thread-safe
implementation.

Intel VI Architecture Developer’s Guide

Page 31

Returns

VIP_SUCCESS – A completed Descriptor was returned with a successful completion status.

VIP_DESCRIPTOR_ERROR - If the send queue is empty, the Descriptor pointer is set to NULL,
otherwise, a completed Descriptor is returned with an error completion status.

VIP_NOT_DONE – No completed Descriptor was found.

VIP_INVALID_PARAMETER – The VI handle was invalid.

3.5.3. VipSendWait

Synopsis

VIP_RETURN
VipSendWait(

IN VIP_VI_HANDLE ViHandle,
IN VIP_ULONG TimeOut,
OUT VIP_DESCRIPTOR **DescriptorPtr

)

Parameters

ViHandle: Instance of a Virtual Interface.

TimeOut: The count, in milliseconds, before control is returned to the caller, VIP_INFINITE
if no time-out is desired.

DescriptorPtr: Address of the Descriptor that has completed.

Description

VipSend Wait checks the Descriptor on the head of the send queue to see if it has been marked
complete. If the send has completed, the Descriptor is removed from the head of the queue and
the address of the Descriptor is immediately returned. A VIP_DESCRIPTOR_ERROR is returned
if the operation completed with errors returned in the Descriptor status. If the send queue is
empty a VIP_DESCRIPTOR_ERROR is returned and DescriptorPtr is set to NULL.

If the Descriptor at the head of the send queue has not been marked complete, VipSendWait
blocks the caller until a Descriptor is completed, or until the specified timeout has expired.

VipSendWait cannot be used to block on a send queue that has been associated with a
completion queue. Refer to VipCQWait for a more complete description.

Returns

VIP_SUCCESS – A completed Descriptor was found on the send queue with a successful
completion status.

VIP_DESCRIPTOR_ERROR - If the send queue is empty, the Descriptor pointer is set to NULL,
otherwise a completed Descriptor is returned with an error completion status.

VIP_INVALID_PARAMETER – The VI handle was invalid.

VIP_TIMEOUT – The timeout expired and no completed Descriptor was found.

VIP_ERROR_RESOURCE – This send queue is associated with a completion queue or the
operation failed due to insufficient resources.

Intel VI Architecture Developer’s Guide

Page 32

3.5.4. VipPostRecv

Synopsis

VIP_RETURN
VipPostRecv(

IN VIP_VI_HANDLE ViHandle,
IN VIP_DESCRIPTOR *DescriptorPtr,
IN VIP_MEM_HANDLE MemoryHandle

)

Parameters

ViHandle: Instance of a Virtual Interface.

DescriptorPtr: Pointer to a Descriptor to be posted on the receive queue.

MemoryHandle: The handle for the memory region of the Descriptor being posted.

Description

VipPostRecv adds a Descriptor to the tail of the receive queue of the specified VI, notifies the NIC
that a new Descriptor is available, and returns immediately.

Returns

VIP_SUCCESS – The receive Descriptor was successfully posted.

VIP_INVALID_PARAMETER – The VI handle was invalid.

3.5.5. VipRecvDone

Synopsis

VIP_RETURN
VipRecvDone(

IN VIP_VI_HANDLE ViHandle,
OUT VIP_DESCRIPTOR **DescriptorPtr

)

Parameters

ViHandle: Instance of a Virtual Interface.

DescriptorPtr: Address of the Descriptor that has completed, if any.

Description

VipRecvDone checks the Descriptor on the head of the receive queue to see if it has been
marked complete. If the receive has completed, the Descriptor is removed from the head of the
queue and the address of the Descriptor is returned. A VIP_DESCRIPTOR_ERROR is returned if
the operation completed with errors returned in the Descriptor status or the receive queue is
empty. If the receive queue is empty, DescriptorPtr is set to NULL. VipRecvDone is a non-
blocking call. In particular, VipRecvDone is not allowed to block behind a VipRecvWait, even in a
thread-safe implementation.

Intel VI Architecture Developer’s Guide

Page 33

Returns

VIP_SUCCESS – A completed receive Descriptor was returned with a successful completion
status.

VIP_DESCRIPTOR_ERROR - If the receive queue is empty, the Descriptor pointer is set to
NULL, otherwise a completed Descriptor is returned with an error completion
status.

VIP_NOT_DONE – No completed Descriptor was found.

VIP_INVALID_PARAMETER – The VI handle was invalid.

3.5.6. VipRecvWait

Synopsis

VIP_RETURN
VipRecvWait(

IN VIP_VI_HANDLE ViHandle,
IN VIP_ULONG Timeout,
OUT VIP_DESCRIPTOR **DescriptorPtr

)

Parameters

ViHandle: Instance of a Virtual Interface.

TimeOut: The count, in milliseconds, before control is returned to the caller, VIP_INFINITE
if no time-out is desired.

DescriptorPtr: Address of the Descriptor that has completed.

Description

VipRecvWait checks the Descriptor on the head of the receive queue to see if it has been marked
complete. If the receive has completed, the Descriptor is removed from the head of the queue
and the address of the Descriptor is immediately returned. A VIP_DESCRIPTOR_ERROR is
returned if the operation completed with errors returned in the Descriptor status or the receive
queue is empty. If the receive queue is empty, DescriptorPtr is set to NULL. If the Descriptor at
the head of the receive queue has not been marked complete, VipRecvWait blocks the caller until
a Descriptor is completed, or until the specified timeout has expired.

VipRecvWait cannot be used to block on a receive queue that has been associated with a
completion queue. Refer to VipCQWait for a more complete description.

Returns

VIP_SUCCESS – A completed receive Descriptor was found on the receive queue with a
successful completion status.

VIP_DESCRIPTOR_ERROR - If the receive queue is empty, the Descriptor pointer is set to
NULL, otherwise a completed Descriptor is returned with an error completion
status.

VIP_INVALID_PARAMETER – The VI handle was invalid.

VIP_TIMEOUT – The timeout expired and no completed Descriptor was found.

VIP_ERROR_RESOURCE – This receive queue is associated with a completion queue or the
operation failed due to insufficient resources.

Intel VI Architecture Developer’s Guide

Page 34

3.5.7. VipCQDone

Synopsis

VIP_RETURN
VipCQDone(

IN VIP_CQ_HANDLE CQHandle,
OUT VIP_VI_HANDLE *ViHandle,
OUT VIP_BOOLEAN *RecvQueue

)

Parameters

CQHandle: The handle of the Completion Queue.

ViHandle: The handle of the VI endpoint associated with the completion, if the return status
indicates success. Undefined otherwise.

RecvQueue: If VIP_TRUE, indicates that the completion was associated with the receive
queue of the VI. If VIP_FALSE, indicates that the completion was associated
with the send queue of the VI. Undefined if the returned status does not indicate
success.

Description

VipCQDone polls the specified Completion Queue for a completion entry (a completed operation).
If a completion entry is found, it returns the VI handle, along with a flag to indicate whether the
completed Descriptor resides on the send or receive queue. VipCQDone is a non-blocking call. In
particular, VipCQDone is not allowed to block behind a VipCQWait, even in a thread-safe
implementation.

It is up to the calling process to subsequently invoke the appropriate function to actually de-queue
the completed Descriptor. The completed Descriptor may only be de-queued by the function
VipSendDone or VipRecvDone. VipCQDone only dequeues the completion entry from the
Completion Queue.

It is possible for a process to have multiple threads, some of which are waiting for completions on
a Completion Queue, and others polling the Work Queues of an associated VI. In this case, the
caller must be prepared for the case where the Completion Queue indicated a completion, but a
subsequent call to de-queue the Descriptor fails.

If a process has associated a Work Queue of a VI instance with a Completion Queue, it may not
block directly on that Work Queue via the VipSendWait or VipRecvWait functions.

Returns

VIP_SUCCESS – A completion entry was found on the Completion Queue.

VIP_NOT_DONE – No completion entries are on the Completion Queue.

VIP_INVALID_PARAMETER – The Completion Queue handle was invalid.

Intel VI Architecture Developer’s Guide

Page 35

3.5.8. VipCQWait

Synopsis

VIP_RETURN
VipCQWait(

IN VIP_CQ_HANDLE CQHandle,
IN VIP_ULONG TimeOut,
OUT VIP_VI_HANDLE *ViHandle,
OUT VIP_BOOLEAN *RecvQueue

)

Parameters

CQHandle: The handle of the Completion Queue.

TimeOut: The number of milliseconds to block before returning to the caller, VIP_INFINITE
if no time-out is desired.

ViHandle: Returned to the caller. The handle of the VI endpoint associated with the
completion if returned status indicates success.

RecvQueue: If VIP_TRUE, indicates that the completion was associated with the receive
queue of the VI. If VIP_FALSE, indicates that the completion was associated
with the send queue of the VI. Undefined if the returned status does not indicate
success.

Description

VipCQWait polls the specified completion queue for a completion entry (a completed operation).
If a completion entry was found, it immediately returns the VI handle, along with a flag to indicate
the send or receive queue, where the completed Descriptor resides.

If no completion entry is found, the caller is blocked until a completion entry is generated, or until
the TimeOut value expires.

It is up to the calling process to subsequently invoke the appropriate function to actually de-queue
the completed Descriptor. The completed Descriptor may only be de-queued by the function
VipSendDone or VipRecvDone. VipCQWait only dequeues the completion entry from the
Completion Queue.

It is possible for a process to have multiple threads, some of which are checking for completions
on a Completion Queue, and others polling the work queues of an associated VI directly. In this
case, the caller must be prepared for the case where the Completion Queue indicated a
completion, but a subsequent call to de-queue the Descriptor fails.

If a process has associated a work queue of a VI instance with a completion queue, it may not
block directly on that work queue via the VipSendWait or VipRecvWait functions. If this is
attempted, the function returns VIP_ERROR_RESOURCE.

Returns

VIP_SUCCESS – A completion entry was found on the Completion Queue.

VIP_INVALID_PARAMETER – The Completion Queue handle was invalid.

VIP_TIMEOUT – The request timed out and no completion entry was found.

VIP_ERROR_RESOURCE - The operation failed due to insufficient resources.

Intel VI Architecture Developer’s Guide

Page 36

3.5.9. VipSendNotify

Synopsis

VIP_RETURN
VipSendNotify(

IN VIP_VI_HANDLE ViHandle,
IN VIP_PVOID Context,
IN void(*Handler)(

IN VIP_PVOID Context,
IN VIP_NIC_HANDLE NicHandle,
IN VIP_VI_HANDLE ViHandle,
IN VIP_DESCRIPTOR *DescriptorPtr

)
)

Parameters

ViHandle: Instance of a Virtual Interface.

Context: Data to be passed through to the Handler as a parameter. Not used by the VI
Provider.

Handler: Address of the user-defined function to be called when a single Descriptor
completes. This function is not guaranteed to run in the context of the calling
thread. The handler function is called with the following input parameters:

Context: Data passed through from the function call. Not used by the VI
Provider.

NicHandle: Handle of the NIC.

ViHandle: Instance of a Virtual Interface.

DescriptorPtr: Address of the Descriptor that has completed.

Description

VipSendNotify is used by the VI Consumer to request that a Handler routine be called when a
Descriptor completes.

VipSendNotify checks the Descriptor on the head of the send queue to see if it has been marked
complete. If the Descriptor has completed, it is removed from the head of the queue and the
Handler associated with the Descriptor is invoked with the address of the completed Descriptor
as a parameter.

If the Descriptor at the head of the send queue has not been marked complete, VipSendNotify will
enable interrupts for the given VI Send Queue. When a Descriptor is completed, the Handler will
be invoked with the address of the completed Descriptor as a parameter.

This registration is only associated with the VI Send Queue for a single completed Descriptor. In
order for the Handler to be invoked multiple times, the function must be called multiple times.
Multiple handlers can be registered at one time and will be queued in Descriptor order.

Destruction of the VI will result in cancellation of any pending function calls.

VipSendNotify cannot be used to block on a send queue that has been associated with a
Completion Queue. Refer to VipCQNotify for a more complete description.

If the send queue is empty at the time that VipSendNotify is called, the function returns
VIP_DESCRIPTOR_ERROR. The Handler is called for outstanding Notify requests with the
Descriptor pointer set to NULL if the send queue becomes empty.

Intel VI Architecture Developer’s Guide

Page 37

Returns

VIP_SUCCESS – The routine was successfully completed.

VIP_INVALID_PARAMETER – The VI handle was invalid or the function call address was invalid.

VIP_DESCRIPTOR_ERROR - The send queue was empty when VipSendNotify was called.

VIP_ERROR_RESOURCE – The send queue of the VI is associated with a Completion Queue or
the operation failed due to insufficient resources.

3.5.10. VipRecvNotify

Synopsis

VIP_RETURN
VipRecvNotify(

IN VIP_VI_HANDLE ViHandle,
IN VIP_PVOID Context,
IN void(*Handler)(

IN VIP_PVOID Context,
IN VIP_NIC_HANDLE NicHandle,
IN VIP_VI_HANDLE ViHandle,
IN VIP_DESCRIPTOR *DescriptorPtr

)
)

Parameters

ViHandle: Instance of a Virtual Interface.

Context: Data to be passed through to the Handler as a parameter. Not used by the VI
Provider.

Handler: Address of the user-defined function to be called when a single Descriptor
completes. This function is not guaranteed to run in the context of the calling
thread. The handler function is called with the following input parameters:

Context: Data passed through from the function call. Not used by the VI
Provider.

NicHandle: Handle of the NIC.

ViHandle: Instance of a Virtual Interface.

DescriptorPtr: Address of the Descriptor that has completed.

Description

VipRecvNotify is used by the VI Consumer to request that a Handler routine be called when a
Descriptor completes.

VipRecvNotify checks the Descriptor on the head of the receive queue to see if it has been
marked complete. If the Descriptor has completed, it is removed from the head of the queue and
the Handler associated with the Descriptor is invoked with the address of the completed
Descriptor as a parameter.

If the Descriptor at the head of the receive queue has not been marked complete, VipRecvNotify
will enable interrupts for the given VI Receive Queue. When a Descriptor is completed, the
Handler will be invoked with the address of the completed Descriptor as a parameter.

Intel VI Architecture Developer’s Guide

Page 38

This registration is only associated with the VI Receive Queue for a single completed Descriptor.
In order for the Handler to be invoked multiple times, the function must be called multiple times.
Multiple handlers can be registered at one time and will be queued in Descriptor order.

Destruction of the VI will result in cancellation of any pending function calls.

VipRecvNotify cannot be used to block on a receive queue that has been associated with a
Completion Queue. Refer to VipCQNotify for a more complete description.

If the receive queue is empty at the time VipRecvNotify is called, the function returns
VIP_DESCRIPTOR_ERROR. The Handler is called for outstanding Notify requests with the
Descriptor pointer set to NULL if the receive queue becomes empty.

Returns

VIP_SUCCESS – The routine was successfully completed.

VIP_INVALID_PARAMETER – The VI handle was invalid or the function call address was invalid.

VIP_DESCRIPTOR_ERROR - The receive queue was empty when VipRecvNotify was called.

VIP_ERROR_RESOURCE – The receive queue of the VI is associated with a Completion Queue
or the operation failed due to insufficient resources.

3.5.11. VipCQNotify

Synopsis

VIP_RETURN
VipCQNotify(

IN VIP_CQ_HANDLE CQHandle,
IN VIP_PVOID Context,
IN void(*Handler)(

IN VIP_PVOID Context,
IN VIP_NIC_HANDLE NicHandle,
IN VIP_VI_HANDLE ViHandle,
IN VIP_BOOLEAN RecvQueue

)
)

Parameters

CQHandle: Instance of a Completion Queue.

Context: Data to be passed through to the Handler as a parameter. Not used by the VI
Provider.

Handler: Address of the user-defined function to be called when a single Descriptor
completes. This function is not guaranteed to run in the context of the calling
thread. The handler function is called with the following input parameters:

Context: Data passed through from the function call. Not used by the VI
Provider.

NicHandle: Handle of the NIC.

ViHandle: Instance of a Virtual Interface.

RecvQueue: VIP_TRUE indicates that the completion was associated with the receive queue
of the VI. VIP_FALSE indicates that the completion was associated with the
send queue of the VI.

Intel VI Architecture Developer’s Guide

Page 39

Description

VipCQNotify is used by the VI Consumer to request that a Handler routine be called when a
Descriptor completes on a VI Work Queue that is associated with a Completion Queue.

VipCQNotify checks the Entry on the head of the Completion queue to see if it indicates that a
Descriptor has been marked complete. If there is an entry, the Entry is removed from the
Completion Queue and the Handler associated with the Entry is invoked. The ViHandle and
RecvQueue are set appropriately to indicate to the VI Consumer which Work Queue contains the
completed Descriptor.

If there is no valid Completion Queue Entry, VipCQNotify enables interrupts for the given
Completion Queue. When a Completion Queue Entry is generated, the handler will be invoked.

This registration is only associated with the Completion Queue for a single entry. In order for the
Handler to be invoked multiple times, the function must be called multiple times. Multiple handlers
can be registered at one time and will be queued in Completion Queue Entry order.

Destruction of the Completion Queue will result in cancellation of any pending function calls.

Returns

VIP_SUCCESS – The routine was successfully completed.

VIP_INVALID_PARAMETER – The VI handle, the CQ Handle or the function call address was
invalid.

VIP_ERROR_RESOURCE – The operation failed due to insufficient resources.

3.5.12. Notify Semantics
This is a description of the recommended semantics for the notify calls VipSendNotify,
VipRecvNotify and VipCQNotify. These semantics were selected because they can be
implemented in a simple and straightforward manner by VI Providers and provide predictable
operation.

A single, dedicated thread per queue is used for all notify operations on a specified send, receive
or completion queue. This thread is started on the first notify call for the queue and persists
throughout the life of the associated queue. With this model, the handler routine will always run in
the context of the dedicated notify thread for the queue and not in the context of the calling
thread.

Notify calls should not be used concurrently with either Done or Wait calls on the same work
queue. If a Notify is outstanding when a Done or a Wait call is made, the order in which
completed Descriptors are associated with the calls is indeterminate.

3.6. Completion Queue Management

3.6.1. VipCreateCQ

Synopsis

VIP_RETURN
VipCreateCQ(

IN VIP_NIC_HANDLE NicHandle,
IN VIP_ULONG EntryCount,
OUT VIP_CQ_HANDLE *CQHandle

)

Intel VI Architecture Developer’s Guide

Page 40

Parameters

NicHandle: The handle of the associated NIC.

EntryCount: The number of completion entries that this Completion Queue will hold.

CQHandle: Returned to the caller. The handle of the newly created Completion Queue.

Description

VipCreateCQ creates a new Completion Queue. The caller must specify the minimum number of
completion entries that the queue must contain. If successful, it returns a handle to the newly
created Completion Queue. A Completion queue is created with at least the specified number of
completion entries. To avoid dropped completion notifications, applications should make sure that
the number of operations posted on send/receive queues attached to a completion queue does
not exceed the completion queue capacity at any time. A common technique to deal with this in
multi-threaded environments is to use atomic increment/decrement variables to keep track of the
available space in completion queues.

Returns

VIP_SUCCESS – A new Completion Queue was successfully created.

VIP_INVALID_PARAMETER – The NIC handle was invalid.

VIP_ERROR_RESOURCE – The Completion Queue could not be created due to insufficient
resources.

3.6.2. VipDestroyCQ

Synopsis

VIP_RETURN
VipDestroyCQ(

IN VIP_CQ_HANDLE CQHandle
)

Parameters

CQHandle: The handle of the Completion Queue to be destroyed.

Description

VipDestroyCQ destroys a specified Completion Queue. If any VI Work Queues are associated
with the Completion Queue, the Completion Queue is not destroyed and an error is returned.

Returns

VIP_SUCCESS – The Completion Queue was successfully destroyed.

VIP_INVALID_PARAMETER – The Completion Queue handle was invalid.

VIP_ERROR_RESOURCE – The Completion Queue could not be destroyed because the Work
Queues of one or more VI instances are still associated with it.

Intel VI Architecture Developer’s Guide

Page 41

3.6.3. VipResizeCQ

Synopsis

VIP_RETURN
VipResizeCQ(

IN VIP_CQ_HANDLE CQHandle,
IN VIP_ULONG EntryCount

)

Parameters

CQHandle: The handle of the Completion Queue to be resized.

EntryCount: The new number of completion entries that the Completion Queue must hold.

Description

VipResizeCQ modifies the size of a specified Completion Queue by specifying the new minimum
number of completion entries that it must hold. This function is useful when the potential number
of completion entries that could be placed on this queue changes dynamically.

Returns

VIP_SUCCESS – The Completion Queue was successfully resized.

VIP_INVALID_PARAMETER – The Completion Queue handle was invalid.

VIP_ERROR_RESOURCE – The Completion Queue could not be resized because of insufficient
resources.

3.7. Querying Information

3.7.1. VipQueryNic

Synopsis

VIP_RETURN
VipQueryNic(

IN VIP_NIC_HANDLE NicHandle,
OUT VIP_NIC_ATTRIBUTES *NicAttribs

)

Parameters

NicHandle: The handle of a VI NIC.

NicAttribs: Returned to the caller, contains NIC-specific information.

Description

VipQueryNic returns information for a specific NIC instance. The information is returned in the
NicAttribs data structure.

Returns

VIP_SUCCESS – Operation completed successfully.

VIP_INVALID_PARAMETER – The NIC handle was invalid.

VIP_ERROR_RESOURCE - The operation failed due to insufficient resources.

Intel VI Architecture Developer’s Guide

Page 42

3.7.2. VipSetViAttributes

Synopsis

VIP_RETURN
VipSetViAttributes(

IN VIP_VI_HANDLE ViHandle,
IN VIP_VI_ATTRIBUTES *ViAttribs

)

Parameters

ViHandle: The handle of a VI instance.

ViAttribs: The attributes to be set for the VI.

Description

VipSetViAttributes attempts to modify the attributes of a VI instance. If the VI Provider does not
support the requested attributes, or if the VI is in a state that does not allow the attributes to be
modified, then it returns an error.

Changing VI attributes is valid only when the VI is in the Idle state. An error is returned if
VipSetViAttributes is called while the VI is in any other state. When an error is returned, all of the
attributes remain unchanged. For instance, if only one of many requested attributes is invalid or
not supported, an error is returned and none of the new attributes requested are updated.

Returns

VIP_SUCCESS – Operation completed successfully.

VIP_INVALID_PARAMETER – One of the input parameters was invalid.

VIP_INVALID_STATE – The VI is not in a state where the attributes can be modified.

VIP_INVALID_ RELIABILITY_LEVEL – The requested reliability level attribute was invalid or not
supported.

VIP_INVALID_MTU – The maximum transfer size attribute was invalid or not supported.

VIP_INVALID_QOS – The quality of service attribute was invalid or not supported.

VIP_INVALID_PTAG – The protection tag attribute was invalid.

VIP_INVALID_RDMAREAD – The attributes requested support for RDMA Read, but the VI
Provider does not support it.

VIP_ERROR_RESOURCE - The operation failed due to insufficient resources.

3.7.3. VipQueryVi

Synopsis

VIP_RETURN
VipQueryVi(

IN VIP_VI_HANDLE ViHandle,
OUT VIP_VI_STATE *State,
OUT VIP_VI_ATTRIBUTES *ViAttribs,
OUT VIP_BOOLEAN *ViSendQEmpty,
OUT VIP_BOOLEAN *ViRecvQEmpty

)

Intel VI Architecture Developer’s Guide

Page 43

Parameters

ViHandle: The handle of a VI instance.

State: The current state of the VI.

ViAttribs: Returned to caller, contains VI-specific information.

ViSendQEmpty:If VIP_TRUE, the send queue is empty.

ViRecvQEmpty: If VIP_TRUE, the receive queue is empty.

Description

VipQueryVi returns information for a specific VI instance. The VI Attributes data structure and the
current VI State are returned.

Returns

VIP_SUCCESS – Operation completed successfully.

VIP_INVALID_PARAMETER – The VI handle was invalid.

VIP_ERROR_RESOURCE - The operation failed due to insufficient resources.

3.7.4. VipSetMemAttributes

Synopsis

VIP_RETURN
VipSetMemAttributes(

IN VIP_NIC_HANDLE NicHandle,
IN VIP_PVOID Address,
IN VIP_MEM_HANDLE MemHandle,
IN VIP_MEM_ATTRIBUTES *MemAttribs

)

Parameters

NicHandle: The handle of the NIC where the memory region is registered.

Address: The base address of the memory region.

MemHandle: The handle of the memory region.

MemAttribs: The memory attributes to set for this memory region.

Description

VipSetMemAttributes modifies the attributes of a registered memory region. If the VI Provider
does not support the requested attribute, it returns an error. Modifying the attributes of a memory
region, while a data transfer operation is in progress that refers to that memory region, can result
in undefined behavior, and should be avoided by the VI Consumer.

When an error is returned, all of the attributes remain unchanged. For instance if only one of
many requested attributes is invalid or not supported, an error is returned and none of the new
attributes requested are updated.

Returns

VIP_SUCCESS – Operation completed successfully.

VIP_INVALID_PARAMETER – The Memory Handle or Address was invalid.

VIP_INVALID_PTAG – The protection tag attribute was invalid.

Intel VI Architecture Developer’s Guide

Page 44

VIP_INVALID_RDMAREAD – The attributes requested support for RDMA Read, but the VI
Provider does not support it.

VIP_ERROR_RESOURCE - The operation failed due to insufficient resources.

3.7.5. VipQueryMem

Synopsis

VIP_RETURN
VipQueryMem(

IN VIP_NIC_HANDLE NicHandle,
IN VIP_PVOID Address,
IN VIP_MEM_HANDLE MemHandle,
OUT VIP_MEM_ATTRIBUTES *MemAttribs

)

Parameters

NicHandle: The handle of the NIC where the memory region is registered.

Address: The base address of the memory region.

MemHandle: The handle of a memory region.

MemAttribs: The memory attributes of this memory region.

Description

VipQueryMem returns the attributes of a registered memory region to the caller.

Returns

VIP_SUCCESS – Operation completed successfully.

VIP_INVALID_PARAMETER – The Memory Handle or Address was invalid.

VIP_ERROR_RESOURCE - The operation failed due to insufficient resources.

3.7.6. VipQuerySystemManagementInfo

Synopsis

VIP_RETURN
VipQuerySystemManagementInfo(

IN VIP_NIC_HANDLE NicHandle,
IN VIP_ULONG InfoType,
IN OUT VIP_PVOID SysManInfo

)

Parameters

NicHandle: The handle of a VI NIC.

InfoType: Specifies a particular piece of system management information.

SysManInfo: Pointer to a system management information structure.

Description

VipQuerySystemManagementInfo returns system management information about the specified
NIC. The InfoType parameter allows the caller to specify specific pieces of information. The

Intel VI Architecture Developer’s Guide

Page 45

types of information that can be retrieved are VI Provider specific. The content of the System
Management Information Structure is VI Provider specific.

The only defined InfoType is VIP_SMI_AUTODISCOVERY. This provides a mechanism for
applications to access auto-discovery information to get the network addresses of other nodes
that are attached to the SAN fabric.

The SysManInfo structure is interpreted as both an IN and OUT parameter for the network
configuration request. The structure is as follows:

typedef struct {

VIP_ULONG NumberOfHops;

VIP_NET_ADDRESS **ADAddrArray;

VIP_ULONG NumAdAddrs;

} VIP_AUTODISCOVERY_LIST;

Structure Element Definitions

NumberOfHops: Specifies the maximum “depth” of interest to the requester. Only network
addresses within the specified “depth” are returned. Depth is defined as
the number of links that are traversed by the auto-discovery operation. A
depth of one is defined as the collection of nodes that are directly
connected.

ADAddrArray: Pointer to an array of pointers to the actual VIP_NET_ADDRESS
structures that will receive the discovered addresses. It is up to the caller
of this routine to allocate the ADAddrArray and initialize the pointers to
point to the appropriately sized VIP_NET_ADDRESS structures.

The VIP_NET_ADDRESS structures must be large enough to hold an
address for the specified NIC (specified by the NicAddressLen field of
the NicAttributes structure). The HostAddress field must be long enough
to hold the host portion of the address and HostAddressLen must specify
a length equal to or greater than the number of bytes needed to specify
the HostAddress. The DiscriminatorLen field and the discriminator
portion of the HostAddress field are ignored.

NumAdAddrs: Specifies the number of elements in the ADAddrArray. If the number of
addresses discovered is larger than the number requested, then an error
is returned and this field is updated to contain the number of entries
required to return the full list of node addresses.

Returns

VIP_SUCCESS – Operation completed successfully.

VIP_INVALID_PARAMETER – The NIC handle was invalid.

VIP_ERROR_RESOURCE - The number of entries specified to hold the auto-discovery
information is less than the number of addresses that were discovered
within the specified NumberOfHops or the operation failed due to
insufficient resources.

Intel VI Architecture Developer’s Guide

Page 46

3.8. Error handling

3.8.1. VipErrorCallback

Synopsis

VIP_RETURN
VipErrorCallback(

IN VIP_NIC_HANDLE NicHandle,
IN VIP_PVOID Context,
IN void(*Handler)(

IN VIP_PVOID Context,
IN VIP_ERROR_DESCRIPTOR *ErrorDesc

)
)

Parameters

NicHandle: Handle of the NIC

Context: Data to be passed through to the Handler as a parameter. Not used by the VI
Provider.

Handler: Address of the user-defined function to be called when an asynchronous error
occurs. This function is not guaranteed to run in the context of the calling thread.
The error handler function is called with the following input parameters:

Context: Data passed through from the function call. Not used by the VI
Provider.

ErrorDesc: The error Descriptor.

Description

VipErrorCallback is used by the VI Consumer to register an error handling function with the VI
Provider. If the VI Consumer does not register an error handling function via this call, a default
error handler will log the error. If an error handling function has been specified via the
VipErrorCallback function, the default error handling function can be restored by calling
VipErrorCallback with a NULL Handler parameter.

Asynchronous errors are those errors that cannot be reported back directly into a Descriptor. The
following is a list of possible asynchronous errors:

• Post Descriptor Error – This error occurs under the following conditions:

• The virtual address and memory handle of the Descriptor was not valid when the
Descriptor was posted.

• The Next Address and/or Next Handle field was inadvertently modified after the
Descriptor was posted.

• The Descriptor address was not aligned on a 64-byte boundary.

• Connection Lost – The connection on a VI was lost and the associated VI is in the error state.

• Receive Queue Empty – An incoming packet was dropped because the receive queue was
empty.

• VI Overrun – The VI Consumer attempted to post too many Descriptors to a Work Queue of a
VI.

Intel VI Architecture Developer’s Guide

Page 47

• RDMA Write Protection Error – A protection error was detected on an incoming RDMA Write
operation. If the RDMA write operation contained immediate data, this status would be
reported in the associated Descriptor, and not via the asynchronous error mechanism.

• RDMA Write Data Error – A data corruption error was detected on an incoming RDMA Write
operation. If the RDMA write operation contained immediate data, this status would be
reported in the associated Descriptor, and not via the asynchronous error mechanism.

• RDMA Write Packet Abort – Indicates a partial packet was detected on an incoming RDMA
Write operation. If the RDMA write operation contained immediate data, this status would be
reported in the associated Descriptor, and not via the asynchronous error mechanism.

• RDMA Transport Error - A transport error was detected on an incoming RDMA operation that
does not consume a Descriptor.

• RDMA Read Protection Error – A protection error was detected on an incoming RDMA Read
operation.

• Completion Protection Error - When reporting completion, this could result from a user de-
registering a memory region containing a Descriptor after the Descriptor was read by the
hardware but before completion status was written.

This error can also result if a Completion Queue becomes inaccessible to the hardware. In
this case, an error will be generated for each VI that was associated with the Completion
Queue. Note that the status (Done or Done with Errors) of the Descriptors on work queues
associated with the Completion Queue may have already been written.

• Catastrophic Error - The hardware has failed or has detected a fatal configuration problem.

Post Descriptor Error, VI Overrun, Completion Protection Error and Catastrophic Error are
catastrophic hardware errors. For more information on how these are handled, see Section 6.3.1
Catastrophic Hardware Error Handling.

Returns

VIP_SUCCESS – Operation completed successfully.

VIP_INVALID_PARAMETER – One or more of the input parameters were invalid.

VIP_ERROR_RESOURCE - The operation failed due to insufficient resources.

3.9. Name Service
This section describes a set of routines to be used to resolve names and addresses for VIPL
applications. The description is intended to capture the semantics of how VIPL applications would
do simple name and address lookups It is not intended to specify how a name service is
implemented. It is intended that a variety of nameservices (such as file based (e.g. /etc/hosts)) or
network based (such as DNS, NIS, NDS, ActiveDirectory, etc) could be used to store the
information that VIPL applications would request through this simple set of procedures.

3.9.1. VipNSInit

Synopsis

VIP_RETURN
VipNSInit(

IN VIP_NIC_HANDLE NicHandle,
IN VIP_PVOID NSInitInfo

)

Intel VI Architecture Developer’s Guide

Page 48

Parameters

NicHandle: The VI NIC context in which to initialize the name service.

NSInitInfo: Initialization information for the name service. In the case of a file based name
service, this could be the name of the alternate file to use for name lookups. A
value of (VIP_PVOID)0 specifies default behavior.

Description

VipNSInit initializes the name service using the specified parameters. It is recommended that it be
possible to successfully initialize the name service by specifying default behavior (e.g. set the
NSInitInfo parameter to (VIP_PVOID) 0).

It is up to the provider of the name service routines to specify the format of the initialization
parameter. It is recommended that file-based name service implementations use the initialization
parameter to specify an alternate database file. It is also recommended that other name service
implementations use string-based initialization parameters.

Returns

VIP_SUCCESS – Operation completed successfully.

VIP_INVALID_PARAMETER – The NSInitInfo parameter or NicHandle parameter was invalid.

VIP_ERROR_NAMESERVICE – Name service for the specified NIC context is already initialized.

VIP_ERROR_RESOURCE - The operation failed due to insufficient resources or was unable to
initialize resources.

3.9.2. VipNSGetHostByName

Synopsis

VIP_RETURN
VipNSGetHostByName(

IN VIP_NIC_HANDLE NicHandle,
IN VIP_CHAR *Name,
IN OUT VIP_NET_ADDRESS *Address,
IN VIP_ULONG NameIndex,

)

Parameters

NicHandle: The VI NIC context in which to resolve the name.

Name: The NULL terminated string that will be used to query the name service to find a
matching address.

Address: The VIP_NET_ADDRESS structure that will receive the NIC address of the
specified host. The HostAddress field must be at least the size specified by the
NICAddressLen field in the VI_NIC_ATTRIBUTES structure.

NameIndex: The “index” of NIC address to return. If a node has multiple NICs on a particular
SAN, the client application can start at a NameIndex of 0 and increment the
index until an error is returned to fully enumerate all of the NIC addresses
associated with a particular nodename

Intel VI Architecture Developer’s Guide

Page 49

Description

VipNSGetHostByName maps string names to network addresses that are recognized by
VipConnectRequest and VipConnectPeerRequest for connect operations. The name matching is
case insensitive.

The name service is queried and returns an address in the context of the specified VI NIC. If this
operation completes successfully, a valid VIP_NET_ADDRESS structure is contained in the
network address structure specified by Address. The Address structure must be allocated by the
caller with the HostAddressLen field initialized.

The NameIndex is used to allow the name service to associate multiple NIC addresses with the
same name on a SAN (as specified by the NicHandle parameter). For example, if a node on a
single SAN has two NICs to allow for twice the bandwidth and number of VIs than a single NIC,
the first call to this routine (with a NameIndex value of 0) returns one NIC address and the second
call (with a NameIndex value of 1) returns the other NIC address. A call to this routine with the
same name but with a NameIndex value of 2 or more returns a VIP_ERROR_NAMESERVICE.

Returns

VIP_SUCCESS – Operation completed successfully

VIP_ERROR_NAMESERVICE - The name specified was not found by the name service, the
NameIndex for the given name is invalid or the name service was not initialized
for the specified NIC context.

VIP_INVALID_PARAMETER – One of the parameters was invalid.

VIP_ERROR_RESOURCE - The operation failed due to insufficient resources.

3.9.3. VipNSGetHostByAddr

Synopsis

VIP_RETURN
VipNSGetHostByAddr (

IN VIP_NIC_HANDLE NicHandle,
IN VIP_NET_ADDRESS *Address,
OUT VIP_CHAR *Name,
IN OUT VIP_ULONG *NameLen

)

Parameters

NicHandle: A NicHandle for which the Address parameter is valid.

Address: The network address used to query the name service.

Name: A pointer to the array where the name associated with the specified Address
returned by the name service will be stored. The array must be allocated by the
caller of this routine.

NameLen: The size of the Name array. The caller of the routine sets this parameter to the
size of the array allocated. The array allocated must have enough storage to
include the NULL termination. It is updated by the routine to contain the actual
length of the host name string (does not include the NULL termination character).

Description

VipNSGetHostByAddr maps the Address to a host name by querying the name service in the
context of the specified NicHandle. The name associated with the Address is returned to the
caller in the Name parameter. If the size specified by NameLen is not sufficient to hold the entire

Intel VI Architecture Developer’s Guide

Page 50

name, a VIP_INVALID_PARAMETER is returned. VipNSGetHostByAddr returns the size of the
array required to hold the entire string in NameLen so the caller can increase the size of the array
and call VipNSGetHostByName again with the larger array to retrieve the name.

Returns

VIP_SUCCESS – Operation completed successfully.

VIP_ERROR_NAMESERVICE - The address specified was not found by the name service or the
name service was not initialized for the specified NIC context.

VIP_INVALID_PARAMETER – One of the parameters was invalid. If the NameLen size set by the
caller is too small to hold the entire name, the value returned in the NameLen
field is the size of the array required to hold the name.

VIP_ERROR_RESOURCE - The operation failed due to insufficient resources.

3.9.4. VipNSShutdown

Synopsis

VIP_RETURN
VipNSShutdown(

IN VIP_NIC_HANDLE NicHandle
)

Parameters

NicHandle: The VI NIC context to shutdown an already initialized name service.

Description

VipNSShutdown is called to indicate to the name service that no more name resolutions will be
required. It is expected that programs that use the VI Provider name service will call this routine
for each VipNSInit call made previously prior to normal shutdown.

Returns

VIP_SUCCESS – Operation completed successfully.

VIP_ERROR_NAMESERVICE - The name service was already shutdown or was not initialized
for the specified NIC context.

VIP_INVALID_PARAMETER – An invalid NicHandle parameter was specified.

VIP_ERROR_RESOURCE – An error occurred while shutting down the name service, possibly
due to insufficient resources available to process the shutdown request.

Intel VI Architecture Developer’s Guide

Page 51

4. Data Structures and Values

4.1. Generic VIPL Types
The following are generic VIPL types that were defined for portability.

typedef void * VIP_PVOID;
typedef int VIP_BOOLEAN;
typedef char VIP_CHAR;
typedef unsigned char VIP_UCHAR;
typedef unsigned short VIP_USHORT;
typedef unsigned long VIP_ULONG;
typedef unsigned __int64 VIP_UINT64;
typedef unsigned __int32 VIP_UINT32;
typedef unsigned __int16 VIP_UINT16;
typedef unsigned __int8 VIP_UINT8;

VIP_TRUE and VIP_FALSE have been defined to provide a common definition for TRUE and
FALSE.

#define VIP_TRUE (1)
#define VIP_FALSE (0)

The following is an implementation convenience defining the memory alignment required by the
NIC for descriptors, in bytes.

#define VIP_DESCRIPTOR_ALIGNMENT 64

4.2. Return Codes
The various functions described herein return error or success codes of the type VIP_RETURN.
The possible values for VIP_RETURN follow:

• VIP_SUCCESS – The function completed successfully.

• VIP_NOT_DONE – No Descriptors are completed on the specified queue.

• VIP_INVALID_PARAMETER – One or more input parameters were invalid.

• VIP_ERROR_RESOURCE – An error occurred due to insufficient resources or resource
conflict.

• VIP_TIMEOUT – The request timed out before it could successfully complete.

• VIP_REJECT – A connection request was rejected by the remote end.

• VIP_INVALID_RELIABILITY_LEVEL – The reliability level attribute for a VI was invalid or not
supported.

• VIP_INVALID_MTU – The maximum transfer size attribute for a VI was invalid or not
supported.

• VIP_INVALID_QOS – The quality of service attribute for a VI was invalid or not supported.

• VIP_INVALID_PTAG – The protection tag attribute for a VI or a memory region was invalid.

• VIP_INVALID_RDMAREAD - A memory or VI attribute requested support for RDMA Read,
but the VI Provider does not support it.

Intel VI Architecture Developer’s Guide

Page 52

• VIP_DESCRIPTOR_ERROR - A completed Descriptor was returned with errors in the
completion status, or the VI work queue was empty.

• VIP_INVALID_STATE - The operation is not valid in the current VI state.

• VIP_ERROR_NAMESERVICE - An unexpected error occurred while initializing, shutting
down or resolving a name/address in the name service.

• VIP_NO_MATCH - The local and remote connection discriminators do not match.

• VIP_NOT_REACHABLE - A network partition was detected while attempting to establish a VI
connection.

The declaration for VIP_RETURN is as follows:

typedef enum {
VIP_SUCCESS,
VIP_NOT_DONE,
VIP_INVALID_PARAMETER,
VIP_ERROR_RESOURCE,
VIP_TIMEOUT,
VIP_REJECT,
VIP_INVALID_RELIABILITY_LEVEL,
VIP_INVALID_MTU,
VIP_INVALID_QOS,
VIP_INVALID_PTAG,
VIP_INVALID_RDMAREAD,
VIP_DESCRIPTOR_ERROR,
VIP_INVALID_STATE,
VIP_ERROR_NAMESERVICE,
VIP_NO_MATCH,
VIP_NOT_REACHABLE

} VIP_RETURN

4.3. VI Descriptor
The VI Descriptor is the data structure that describes the system memory associated with a VI
Packet. For data to be transmitted, it describes a gather list of buffers that contain the data to be
transmitted. For data that is to be received, it describes a scatter list of buffers to place the
incoming data. It also contains fields for control and status information, and has variants to
accommodate send/receive operations as well as RDMA operations.

Descriptors are made up of three types of segments; control, address and data segments. The
control segment is the first segment for all Descriptors. An address segment follows the control
segment for Descriptors that describe RDMA operations. A variable number of data segments
come last that describe the system buffer(s) on the local host.

typedef union {
VIP_ADDRESS_SEGMENT Remote;
VIP_DATA_SEGMENT Local;

} VIP_DESCRIPTOR_SEGMENT

typedef struct _VIP_DESCRIPTOR {
VIP_CONTROL_SEGMENT CS;
VIP_DESCRIPTOR_SEGMENT DS[2];

} VIP_DESCRIPTOR

Intel VI Architecture Developer’s Guide

Page 53

typedef union {
VIP_UINT64 AddressBits;
VIP_PVOID Address;

} VIP_PVOID64

typedef struct {
VIP_PVOID64 Next;
VIP_MEM_HANDLE NextHandle;
VIP_UINT16 SegCount;
VIP_UINT16 Control;
VIP_UINT32 Reserved;
VIP_UINT32 ImmediateData;
VIP_UINT32 Length;
VIP_UINT32 Status;

} VIP_CONTROL_SEGMENT

typedef struct {
VIP_PVOID64 Data;
VIP_MEM_HANDLE Handle;
VIP_UINT32 Reserved;

} VIP_ADDRESS_SEGMENT

typedef struct {
VIP_PVOID64 Data;
VIP_MEM_HANDLE Handle;
VIP_UINT32 Length;

} VIP_DATA_SEGMENT

The possible values for the Control field of the Control Segment are as follows:

#define VIP_CONTROL_OP_SENDRECV 0x0000
#define VIP_CONTROL_OP_RDMAWRITE 0x0001
#define VIP_CONTROL_OP_RDMAREAD 0x0002
#define VIP_CONTROL_OP_RESERVED 0x0003
#define VIP_CONTROL_OP_MASK 0x0003
#define VIP_CONTROL_IMMEDIATE 0x0004
#define VIP_CONTROL_QFENCE 0x0008
#define VIP_CONTROL_RESERVED 0xFFF0

The possible values for the Status field of the Control Segment are as follows:

#define VIP_STATUS_DONE 0x00000001
#define VIP_STATUS_FORMAT_ERROR 0x00000002
#define VIP_STATUS_PROTECTION_ERROR 0x00000004
#define VIP_STATUS_LENGTH_ERROR 0x00000008
#define VIP_STATUS_PARTIAL_ERROR 0x00000010
#define VIP_STATUS_DESC_FLUSHED_ERROR 0x00000020
#define VIP_STATUS_TRANSPORT_ERROR 0x00000040
#define VIP_STATUS_RDMA_PROT_ERROR 0x00000080
#define VIP_STATUS_REMOTE_DESC_ERROR 0x00000100
#define VIP_STATUS_ERROR_MASK 0x000001FE
#define VIP_STATUS_OP_SEND 0x00000000
#define VIP_STATUS_OP_RECEIVE 0x00010000
#define VIP_STATUS_OP_RDMA_WRITE 0x00020000
#define VIP_STATUS_OP_REMOTE_RDMA_WRITE 0x00030000
#define VIP_STATUS_OP_RDMA_READ 0x00040000
#define VIP_STATUS_OP_MASK 0x00070000
#define VIP_STATUS_IMMEDIATE 0x00080000
#define VIP_STATUS_RESERVED 0xFFF0FE00

Intel VI Architecture Developer’s Guide

Page 54

4.4. Error Descriptor
The error Descriptor is used by the error handling routine VipErrorCallback. It is used to
determine the layer of software or hardware that caused the failure, and all relevant information
that is available about the error.

An error Descriptor is passed to the user supplied error handler that was registered via
VipErrorCallback. The error Descriptor contains the following fields:

• NIC handle – Indicates the NIC, or VI Provider, that is reporting the error.

• VI handle – If non-NULL, refers to the VI instance related to the error.

• CQ handle - If non-NULL, refers to the Completion Queue related to the error.

• Descriptor pointer – If non-NULL, refers to the Descriptor related to the error.

• Operation code – Describes the operation being performed when the error was detected.
This code is the same as the ‘completed operation’ code that is described in the Descriptor
status field.

• Resource code – Allows the application to tell if the error was due to a NIC problem, VI
problem, queue problem or Descriptor problem.

• Error code – A numeric code that identifies the specific error.

The declaration of the error Descriptor is as follows:

typedef struct {
VIP_NIC_HANDLE NicHandle;
VIP_VI_HANDLE ViHandle;
VIP_CQ_HANDLE CQHandle;
VIP_DESCRIPTOR *DescriptorPtr;
VIP_ULONG OpCode;
VIP_RESOURCE_CODE ResourceCode;
VIP_ERROR_CODE ErrorCode;

} VIP_ERROR_DESCRIPTOR

Possible values for ResourceCode are:

typedef enum _VIP_RESOURCE_CODE {
VIP_RESOURCE_NIC,
VIP_RESOURCE_VI,
VIP_RESOURCE_CQ,
VIP_RESOURCE_DESCRIPTOR

} VIP_RESOURCE_CODE

Possible values for ErrorCode follow, refer to the description of VipErrorCallback for a more
complete description:

typedef enum _VIP_ERROR_CODE {
VIP_ERROR_POST_DESC,
VIP_ERROR_CONN_LOST,
VIP_ERROR_RECVQ_EMPTY,
VIP_ERROR_VI_OVERRUN,
VIP_ERROR_RDMAW_PROT,
VIP_ERROR_RDMAW_DATA,
VIP_ERROR_RDMAW_ABORT,
VIP_ERROR_RDMAR_PROT,
VIP_ERROR_COMP_PROT,
VIP_ERROR_RDMA_TRANSPORT,
VIP_ERROR_C ATASTROPHIC

} VIP_ERROR_CODE

Intel VI Architecture Developer’s Guide

Page 55

4.5. NIC Attributes
The NIC attributes structure is returned from the VipQueryNic function. It contains information
related to an instance of a NIC within a VI Provider. All values that are returned in the NIC
Attributes structure are static values that are set by the VI Provider at the time that it is initialized.
It is not required that the VI Provider return dynamically updated values within this structure at
run-time.

• Name – The symbolic name of the NIC device.

• HardwareVersion – The version of the VI Hardware.

• ProviderVersion – The version of the VI Provider.

• NicAddressLen – The length, in bytes, of the local NIC address.

• LocalNicAddress – Points to a constant array of bytes containing the NIC Address.

• ThreadSafe – Synchronization model (thread safe / not thread safe)

• MaxDiscriminatorLen – The maximum number of bytes that the VI Provider allows for a
connection discriminator. VI Providers are required to handle discriminators of at least 16
bytes in length. The value returned in this field must be at least 16 bytes.

• MaxRegisterBytes – Maximum number of bytes that can be registered

• MaxRegisterRegions – Maximum number of memory regions that can be registered.

• MaxRegisterBlockBytes – Largest contiguous block of memory that can be registered, in
bytes.

• MaxVI – Maximum number of VI instances supported by this VI NIC.

• MaxDescriptorsPerQueue – Maximum Descriptors per VI Work Queue supported by this VI
Provider.

• MaxSegmentsPerDesc – Maximum data segments per Descriptor that this VI Provider
supports. The address segment is included in this count.

• MaxCQ – Maximum number of Completion Queues supported.

• MaxCQEntries – The maximum number of Completion Queue entries that this VI NIC will
support per Completion Queue.

• MaxTransferSize – The maximum transfer size, specified in bytes, supported by this VI NIC.
The maximum transfer size is the amount of data that can be described by a single VI
Descriptor.

• NativeMTU – The native MTU size, specified in bytes, of the underlying network. For frame-
based networks, this could reflect its native frame size. For cell-based networks, it could
reflect the MTU of the appropriate abstraction layer that it supports.

• MaxPTags – The maximum number of Protection Tags that is supported by this VI NIC. It is
required that all VI Providers can support at least one Protection Tag for each VI supported.

• ReliabilityLevelSupport - Indicates the reliability levels that are supported by this VI NIC.

• RDMAReadSupport - Indicates which reliability levels support RDMA Read operations. Zero
or more bits may be set.

Intel VI Architecture Developer’s Guide

Page 56

The declaration of the NIC attributes structure is as follows:

typedef struct {
VIP_CHAR Name [64];
VIP_ULONG HardwareVersion;
VIP_ULONG ProviderVersion;
VIP_UINT16 NicAddressLen;
const VIP_UINT8 *LocalNicAddress;
VIP_BOOLEAN ThreadSafe;
VIP_UINT16 MaxDiscriminatorLen;
VIP_ULONG MaxRegisterBytes;
VIP_ULONG MaxRegisterRegions;
VIP_ULONG MaxRegisterBlockBytes;
VIP_ULONG MaxVI;
VIP_ULONG MaxDescriptorsPerQueue;
VIP_ULONG MaxSegmentsPerDesc;
VIP_ULONG MaxCQ;
VIP_ULONG MaxCQEntries;
VIP_ULONG MaxTransferSize;
VIP_ULONG NativeMTU;
VIP_ULONG MaxPtags;
VIP_RELIABILITY_LEVEL ReliabilityLevelSupport;
VIP_RELIABILITY_LEVEL RDMAReadSupport;

} VIP_NIC_ATTRIBUTES

4.6. VI Attributes
The VI attributes contain VI specific information. The VI attributes are set when the VI is created
by VipCreateVi, can be modified by VipSetViAttributes, and can be discovered by VipQueryVi.
The VI attributes structure contains:

• ReliabilityLevel – Reliability level of the VI (unreliable service, reliable delivery, reliable
reception). As an attribute of a VI, it is the requested class of service for the requested
connection.

• MaxTransferSize – The requested maximum transfer size for this connection. The Transfer
Size specifies the amount of payload data that can be transferred in a single VI packet.

• QoS – The requested quality of service for the connection

• Ptag – The protection tag to be associated with the VI.

• EnableRdmaWrite – If VIP_TRUE, accept RDMA Write operations on this VI from the remote
end of a connection.

• EnableRdmaRead – If VIP_TRUE, accept RDMA Read operations on this VI from the remote
end of a connection.

The declaration of the VIP_VI_ATTRIBUTES is as follows:

typedef struct {
VIP_RELIABLITY_LEVEL ReliabilityLevel;
VIP_ULONG MaxTransferSize;
VIP_QOS QoS;
VIP_PROTECTION_HANDLE Ptag;
VIP_BOOLEAN EnableRdmaWrite;
VIP_BOOLEAN EnableRdmaRead;

} VIP_VI_ATTRIBUTES

typedef VIP_USHORT VIP_RELIABILITY_LEVEL;

Intel VI Architecture Developer’s Guide

Page 57

The possible values for VIP_RELIABILITY_LEVEL are:

#define VIP_SERVICE_UNRELIABLE 0x01
#define VIP_SERVICE_RELIABLE_DELIVERY 0x02
#define VIP_SERVICE_RELIABLE_RECEPTION 0x04

The VIP_QOS is currently undefined, but is declared as:

typedef VIP_PVOID VIP_QOS; /* details are not defined */

Note: The only VI attributes that are checked when establishing a connection are ReliabilityLevel,
MaxTransferSize and QoS. The details for QoS have not been defined in the 1.0 VI Architecture
Specification.

4.7. Memory Attributes

The memory attributes structure contains the attributes of registered memory regions. The
attributes of a registered memory region are set by VipRegisterMem, can be modified by
VipSetMemAttributes, and can be discovered by VipQueryMem. The memory attributes structure
contains:

• Ptag – The protection tag to be associated with a registered memory region.

• EnableRdmaWrite – If VIP_TRUE, allow RDMA Write operations into this registered memory
region.

• EnableRdmaRead – If VIP_TRUE, allow RDMA Read operations from this registered
memory region.

typedef struct {
VIP_PROTECTION_HANDLE Ptag;
VIP_BOOLEAN EnableRdmaWrite;
VIP_BOOLEAN EnableRdmaRead;

} VIP_MEM_ATTRIBUTES

4.8. VI Endpoint State
The VI State (Idle, Pending Connect, Connected, and Error). The VI State is returned from
the query VI function. The type for VI endpoint state is VIP_VI_STATE, the possible values
are:

typedef enum {
VIP_STATE_IDLE,
VIP_STATE_CONNECTED,
VIP_STATE_CONNECT_PENDING,
VIP_STATE_ERROR

} VIP_VI_STATE

Intel VI Architecture Developer’s Guide

Page 58

4.9. VI Network Address
A VI Network Address holds the network specific address for a VI endpoint. Each VI Provider may
have a unique network address format. It is composed of two elements, a host address and an
endpoint discriminator. These elements are qualified with a byte length in order to maintain
network independence.

typedef struct {
VIP_UINT16 HostAddressLen;
VIP_UINT16 DiscriminatorLen;
VIP_UINT8 HostAddress[1];

} VIP_NET_ADDRESS

The HostAddress array contains the host address, followed by the endpoint discriminator.

Figure 3 depicts how a network address is laid out in memory.

Figure 3: VIP_NET_ADDRESS memory layout

Number of bytes in the
host address

Number of bytes in the
Discriminator

HostAddressLen DiscriminatorLen
HostAddress

Constant Width
NicAddressLen Bytes

Variable Width
0 to MaxDiscriminatorLen bytes

Host Address Portion Discriminator Portion

Intel VI Architecture Developer’s Guide

Page 59

5. Descriptors

5.1. Descriptor Format Overview
This section describes the format for Descriptors. The NIC hardware is aware of this format, and
cooperates with software in managing it. The format of a Descriptor is independent of physical
media type.

Descriptors are in little-endian byte order. Any media or architecture that cannot support this byte
order will require software or hardware translation of Descriptors and data. Note that length fields
are specified in number of bytes, unless explicitly stated otherwise.

Descriptors are composed of segments. There are three types of segments: control, address and
data. All segments of a single Descriptor must be in the order described below. Descriptors
always begin with a Control Segment. The Control Segment contains control and status
information, as well as reserved fields that are used for queuing.

An Address Segment follows the Control Segment for RDMA operations. This segment contains
remote buffer address information for RDMA Read and RDMA Write operations.

The Data Segment contains information about the local buffers of a send, receive, RDMA Write,
or RDMA Read operation. A Descriptor may contain multiple Data Segments.

The format of a send or receive Descriptor is shown in Figure 4. The format of an RDMA
Descriptor is shown in Figure 5.

Figure 4: Send and Receive Descriptor Format

Figure 5: RDMA Descriptor Format

next descriptor virtual addressmemory handlecontrol
seg

count

seg length buffer virtual addressmemory handle

total length immediate datastatus reserved

 Control
 Segment

 Data
 Segment

13:1215:14 7:011:8 byte offset

Data
 Segment

next descriptor virtual addressmemory handlecontrol
seg

count

total length immediate datastatus reserved

Control
 Segment

seg length buffer virtual addressmemory handle

Address
 Segmentreserved remote buffer virtual addressremote

memory handle

13:1215:14 7:011:8 byte offset

Intel VI Architecture Developer’s Guide

Page 60

5.2. Descriptor Control Segment
The fields of a Control Segment are described below. All Reserved fields must be zero or a
format error will occur.

Next Descriptor Virtual Address (control segment bytes 7:0):

This field links a series of Descriptors to form the send and receive queues for a VI. The
value is the virtual address of the next Descriptor on a queue. A VI User Agent may fill in
this field in the Descriptor that is currently the tail of a queue to add a new Descriptor to
the queue. The VI Application should not expect this field to be returned intact upon
completion of a VI operation.

Next Descriptor Memory Handle (control segment bytes 11:8)

This field is the matching memory handle for the Next Descriptor Virtual Address. A VI
User Agent fills in this field when it fills in the Next Descriptor Virtual Address field.

Descriptor Segment Count (control segment bytes 13:12)

This field contains the number of segments following the Control Segment, including the
Address Segment, if present. A VI Application sets this field when formatting the
Descriptor.

Control Field (control segment bytes 15:14)

This field contains control bits or information pertaining to the entire Descriptor. The VI
Application sets the bits in this field when formatting the Descriptor. These bits indicate
specific actions to be taken by the VI when processing the Descriptor.

This Control Field contains sub-fields, as follows:

Control field bits 1:0: Operation Type

Defines the operation for this Descriptor. Acceptable values are:

00: Indicates that this is a Send operation if this Descriptor is posted on the send
queue. Indicates that this is a Receive operation if this Descriptor is posted
on the receive queue.

01: Indicates that this is a RDMA Write Descriptor if posted on the send queue.
This value is invalid if this Descriptor is posted on the receive queue, and will
result in a format error.

10: Indicates that this is a RDMA Read Descriptor if posted on the send queue.
This value is only valid if the underlying VI Provider supports RDMA Read
operations. This value is invalid if this Descriptor posted on the receive
queue, and will result in a format error.

11: This value is undefined and will result in a format error.

Control field bit 2: Immediate Data Indication

If this bit is set, it indicates that there is valid data in the Immediate Data field of
this Descriptor.

If this is a Send Descriptor, it indicates that the data in the Immediate Data field is
to be transferred to the corresponding Receive Descriptor on the remote end of
the connection.

If this is an RDMA Write Descriptor, it indicates that the data in the Immediate
Data field is to be transferred to the corresponding Receive Descriptor on the
remote end of the connection. Normally RDMA Writes do not consume
Descriptors on the remote node, but Immediate Data will cause this to happen.

Intel VI Architecture Developer’s Guide

Page 61

This bit is ignored for RDMA Read operations. Immediate Data is not transferred
with RDMA Read operations. This will not result in a format error. The
Immediate Data is simply ignored.

If this is a pending Receive Descriptor, this bit is ignored. A format error will not
be generated if this bit is set.

Control field bit 3: Queue Fence

The Queue Fence bit, when set, inhibits processing of the Descriptor until all
previous RDMA Read operations on the same queue are complete.

If this is a pending Receive Descriptor, this bit is ignored. A format error will not
be generated if this bit is set.

Control field bits 15:4: Reserved

These bits are reserved for future use. They must be set to zero by the VI
Application or a format error will occur.

Reserved (control segment bytes 19:16):

This field is a reserved field. It must be set to zero by the VI Application or a format error
will result.

Immediate Data (control segment bytes 23:20):

This field allows 32 bits of data to be transferred from the Descriptor of a Send or RDMA
Write operation to a corresponding Descriptor in the connected VI’s Receive Queue.
Immediate Data is used in conjunction with the Immediate Data Indication bit of the
Control Field in the Control Descriptor.

This field is optionally set by the VI Application in the case of Send and RDMA Write
operation and is returned to the VI Application in the case of Receives. The Immediate
Data field is ignored for RDMA Read operations.

Length Field (control segment bytes 27:24)

This field contains the total length of the data described by the Descriptor. The VI
Application sets this field when formatting the Descriptor. For send Descriptors and
RDMA Read requests, this field must specify the sum of the Local Buffer Length fields of
all Data Segments for the packet. For outstanding receive Descriptors, this field is
undefined. The VI NIC will use the length parameters in the individual Data Segments
when determining reception length.

Upon completion of data transfer, this field is set by the VI NIC to reflect the total number
of bytes transferred from, in the case of a Send or RDMA Write, or to, in the case of
Receive or RDMA Read, the Data Segment buffers. If the Descriptor completed with an
error, the Length field is undefined.

Note that the 1.0 VI Architecture Specification is internally inconsistent. Section 6.4.1
Completing Descriptors by the VI Provider, states: “If a data transfer incurs a data
overrun error, the Receive Descriptor’s total length is set to zero, the data is undefined
and may result in the VI transitioning to the Error state as per the discussions in Sections
2.5 and 5.” This is inconsistent with the statement in the above paragraph: “If the
Descriptor completed with an error, the Length field is undefined.” For portability, the
recommendation is to assume the Length field is undefined in the case of a data overrun.
In order to conform to the specification, the VI Provider must set the length field to zero in
the case of a data overrun error.

The length field does not include the length of the immediate data field.

When a receive Descriptor is completed for an RDMA Write with immediate data, the
length field contains the number of bytes transferred.

Intel VI Architecture Developer’s Guide

Page 62

Status (control segment bytes 31:28):

This field contains status information that is written by a VI NIC in order to complete a
Descriptor. A VI User Agent polls for completion of a Descriptor by reading this field in the
Work Queue completion model. In general, the format of the status field is that bits 0:15
allow the VI User Agent to easily check for successful completion or for completion in
error. Bits 16:31 contain flags to provide additional information to the VI User Agent. The
VI User Agent must set this field to zero before posting a Descriptor to the VI NIC.

The format for the Status Field is shown in Figure 6.

Figure 6: Status Field Format

The individual bits of the Status Field are defined as follows:

Status Field, bit 0: Done

This bit is set to 1 by a VI Provider to indicate that Descriptor execution has
completed. Zeroes in bits 1 through 15 of the status field indicate successful
completion. A 1 in any of the bits 1 through 15 of this field indicates that an error
was detected during Descriptor execution.

This bit in the Descriptor is set according to the level of reliability of the
Connection.

Status Field, bit 1: Local Format Error

This bit is set if the locally posted Descriptor has a format error. This includes
errors such as invalid operation codes and reserved fields set by the software. It
does not include errors covered by other error bits.

This bit is valid on all Descriptor and Connection types.

Status Field, bit 2: Local Protection Error

This bit is set if the locally posted Descriptor’s data segment address and
memory handle pair does not point to a protection table entry that is valid for the
requested operation. This may indicate a bad memory handle, a bad virtual
address, mismatched protection tags, insufficient rights for the requested
operation, or one or more of the specified data segments is not accessible due to
a protection violation.

This bit is also set in the Descriptor posted to the receive queue corresponding to
an RDMA Write operation with Immediate data when a protection error occurs at
the target of the RDMA Write.

This bit is valid on all Descriptor and Connection types.

Status Field, bit 3: Local Length Error

This bit is set under the following conditions for the Send and Receive queues for
a VI.

For Descriptors posted on either the Send or Receive Queue:

• The Segment Count field exceeds the capabilities of this NIC.

Intel VI Architecture Developer’s Guide

Page 63

Descriptors posted on the Send Queue:

• The total length field in the control segment exceeds the maximum transfer
size setting of this VI.

• The total length field in the control segment does not match the sum of the
locally posted Descriptor’s Data Segment lengths.

Descriptors posted on the Receive Queue:

• The sum of the locally posted Descriptor’s Data Segment lengths was too
small to receive the incoming packet.

• The length of the incoming send exceeds the maximum transfer size setting
of this VI.

This bit is valid on all Descriptor and Connection types.

Status Field, bit 4: Partial Packet Error

This bit will be set on a Descriptor posted to the send queue if an error was
detected after a partial packet was put on the fabric. This bit will be set in
conjunction with another bit that indicates the error causing the abort.

For Descriptors posted to the receive queue, this bit indicates and aborted or
truncated packet was received.

This bit is valid on all Descriptor and Connection types.

Status Field, bit 5: Descriptor Flushed

This bit indicates that the Descriptor was flushed from the queue when the VI
was disconnected. The VI may have been disconnected either explicitly or due
to an error.

This bit is valid on all Descriptor and Connection types.

Status Field, bit 6: Transport Error

This bit is used to indicate that there was an unrecoverable data error, data could
not be transferred, data was transferred but corrupted, the corresponding
endpoint was not responding or VI NIC link problem. For reliable delivery and
reliable reception modes, a set bit indicates the VI has transitioned to Error State.
On Unreliable connections, this bit is only valid on Receive Descriptors. For
reliable delivery connections, this bit is only valid on receive and RDMA read
Descriptors. On reliable reception connections, this bit is valid on all types of
Descriptors.

Status Field, bit 7: RDMA Protection Error

This bit is set if the source of the RDMA Read, or destination of an RDMA Write,
had a protection error detected at the remote node. Possible causes include a
bad memory handle, a bad virtual address, mismatched protection tags, or
insufficient rights for the requested operation.

This bit is not valid for Descriptors on Unreliable Connections. For Reliable
Delivery Connections, this bit is set only on RDMA Read Descriptors. On
Reliable Reception Connections, this bit is set either on RDMA Read or RDMA
Write Descriptors. This bit is not set on other Descriptor types.

Status Field, bit 8: Remote Descriptor Error

This bit is set if there was a length, format, or protection error in a Descriptor
posted at the remote node. It is also set if there was no receive Descriptor
posted for the incoming packet.

Intel VI Architecture Developer’s Guide

Page 64

For Unreliable and Reliable Delivery Connections, this bit is not valid for any
Descriptor posted. For Reliable Reception Connections, this bit is only set on
Send Descriptors and RDMA Write Descriptors with Immediate Data.

Status Field, bits 15:9: Reserved Error Bits

These bits are reserved for future use and must be set to zero by VI Providers
complying with this version of the specification.

Status Field, bits 18:16: Completed Operation Code

This field describes the type of operation completed for this Descriptor. The
codes within this field are arranged such that the least significant bit (LSB)
denotes the queue on which this operation completed. An LSB of zero denotes
that the operation completed on the Send Queue, while an LSB of 1 denotes that
the operation completed on the Receive Queue. The possible (binary) values
are:

000b: Send operation completed.

001b: Receive operation completed.

010b: RDMA Write operation completed.

011b: Remote RDMA Write operation completed. This value indicates
that an RDMA Write operation that was initiated on the remote end of the
connection completed and consumed this Descriptor (implying that
immediate data is available in the Immediate Data field).

100b: RDMA Read operation completed (if supported, otherwise
undefined).

101b through 111b: are undefined.

Status Field, bit 19: Immediate Flag

This bit is set when the Immediate Data field is valid for a Descriptor on the
Receive queue. The Immediate Flag is set at the completion of a Receive
operation, or at the target side of a RDMA Write operation when a Receive
Descriptor is consumed.

Status Field, bit 31:20 Reserved Flag Bits

These bits are reserved for future use and must be set to zero by VI Providers
complying with this version of the specification.

5.3. Descriptor Address Segment
The second Segment in a Descriptor is the Address Segment. This segment is only included in
RDMA operations. It is not included in normal Send operation nor in Receive Descriptors of any
type, since all RDMA requests are posted to the Send queue.

The purpose of this segment is to identify to the VI NIC the virtual address on the remote node
where the RDMA Data is to be read from or written to. The virtual address must reside in a
Memory Region registered by the process associated with the remote VI. The remote virtual
address and corresponding memory handle must be known to the local process before an RDMA
request is initiated.

Intel VI Architecture Developer’s Guide

Page 65

Remote Buffer Virtual Address (address segment bytes 7:0):

For an RDMA Write operation, this value specifies the virtual address of the destination
buffer at the remote end of the connection. For RDMA Read operation, it specifies the
source buffer at the remote end of the connection.

Remote Buffer Memory Handle (address segment bytes 11:8):

This field contains the memory handle that corresponds to the Remote Buffer Virtual
Address.

Reserved (address segment bytes 15:12):

This field is reserved, and must be set to zero by the VI Consumer or the Descriptor will
be completed in error due to a format error.

5.4. Descriptor Data Segment
Zero or more Data Segments can exist within a Descriptor.

Every VI NIC has a limit on the number of Data Segments that a Descriptor may contain. All VI
NICs must be able to handle at least 252 Data Segments in a single Descriptor. Each VI Provider
should supply a mechanism by which a VI Application can determine the maximum number of
Data Segments supported by the Provider.

The minimum number of Data Segments that can be included in a Descriptor is zero. It is
possible to send only Immediate Data in a Descriptor, although even that need not be sent.

The total sum of the buffer lengths described by the Data Segments in a Descriptor cannot
exceed the maximum transfer size of the VI or a length error will result.

Local Buffer Virtual Address (data segment bytes 7:0):

This field contains the virtual address of the data buffer described by the segment. This
field must be filled in by the VI Application.

Local Buffer Memory Handle (data segment bytes 11:8):

This field contains the corresponding Memory Handle for the Local Buffer Virtual
Address.

Local Buffer Length (data segment bytes 15:12):

This field contains the length of the Local Buffer pointed to by the Local Buffer Virtual
Address field. Zero is a valid value for this field.

5.5. Descriptor Handoff and Ownership
This section describes the handoff of the descriptor between the VI Application, the VI Library
(VIPL) and the VI NIC from the point of view of the VI Application. The figures contained in this
section show the descriptor at each stage of the handoff. The sections that are shaded are filled
in by the current owner of the Descriptor.

VI Application
The Descriptor fields that the VI Application must fill in (the Immediate Data field is optional
depending upon whether Immediate Data is to be sent with a send or RDMA write operation) are
shaded in gray in Figure 7. On a send or RDMA write operation, the Application generates the
data in the data buffers. The descriptor is passed to VIPL when the application calls VipPostSend
or VipPostRecv.

Intel VI Architecture Developer’s Guide

Page 66

Figure 7: Descriptor fields updated by VI Application

VIPL
VIPL is responsible for setting the Status field to zero, enqueuing the Descriptor and writing the
Doorbell token. The Descriptor fields that VIPL is responsible for updating are shown in gray in
Figure 8. The VI NIC takes ownership of the Descriptor when the Doorbell token is posted to the
Doorbell register on the VI NIC.

Figure 8: Descriptor fields updated by VIPL

VI NIC
The VI NIC “processes” the descriptor. The VI NIC writes the Immediate Data, Length and Status
fields. When the VI NIC writes the Done bit, the Descriptor is handed off to VIPL.

Data buffers that are associated with Descriptors posted on a receive queue may have their
contents modified by the VI NIC at any time while the VI NIC owns those Descriptors. The
application can make no assumptions about the contents of data buffers that are associated with
Descriptors that were completed in error or the contents of the unused portion of data buffers
when the Descriptor completes successfully.

The Immediate Data field is only valid when the Immediate Flag is set in the status field and the
Descriptor completes without error.

.

.

. .
.
.Segment Length

Data Buffer
Memory Handle

Data Buffer Virtual Address

Segment Length
Data Buffer

Memory Handle
Data Buffer Virtual Address

Status Total Length Immediate Data Reserved

Control
Segment

Count
Next Memory

Handle
Next Descriptor Virtual Address

C
on

tr
ol

S
eg

m
en

t
D

at
a

S
eg

m
en

t(
s)

Data
Buffer(s)

.

.

. .
.
.Segment Length

Data Buffer
Memory Handle

Data Buffer Virtual Address

Segment Length
Data Buffer

Memory Handle
Data Buffer Virtual Address

Status Total Length Immediate Data Reserved

Control
Segment

Count
Next Memory

Handle
Next Descriptor Virtual Address

C
on

tr
ol

S
eg

m
en

t
D

at
a

S
eg

m
en

t(
s)

Data
Buffer(s)

Intel VI Architecture Developer’s Guide

Page 67

Figure 9: Descriptor fields updated by VI NIC on completion

VIPL
When the VI Application calls VipSendDone or VipRecvDone, VIPL checks the Done bit,
dequeues the Descriptor and returns the updated Descriptor to the VI Application as shown in
Figure 10. The VI application cannot use or make assumptions about the contents of the Next
Handle and Virtual Address fields. (Note that for these discussions the Wait and Notify calls have
the same effect as the Done calls).

Figure 10: Descriptor fields updated by VIPL on completion

VI Application
The VI Application takes ownership of the Descriptor when the Descriptor pointer is returned by
VipSendDone or VipRecvDone.

.

.

. .
.
.Segment Length

Data Buffer
Memory Handle

Data Buffer Virtual Address

Segment Length
Data Buffer

Memory Handle
Data Buffer Virtual Address

Status Total Length Immediate Data Reserved

Control
Segment

Count
Next Memory

Handle
Next Descriptor Virtual Address

C
on

tr
ol

S
eg

m
en

t
D

at
a

S
eg

m
en

t(
s)

Data
Buffer(s)

.

.

. .
.
.Segment Length

Data Buffer
Memory Handle

Data Buffer Virtual Address

Segment Length
Data Buffer

Memory Handle
Data Buffer Virtual Address

Status Total Length Immediate Data Reserved

Control
Segment

Count
Next Memory

Handle
Next Descriptor Virtual Address

C
on

tr
ol

S
eg

m
en

t
D

at
a

S
eg

m
en

t(
s)

Data
Buffer(s)

Intel VI Architecture Developer’s Guide

Page 68

6. VI Provider Notes
This section contains clarifications and recommendations for VI Providers.

6.1. Completion Queue Ordering
To preserve the Completion Queue semantics, the Completion Queue entries must be written in
the same order as the Descriptor entries on the VI work queues. For example, an RDMA Read
could complete after a Send (or RDMA Write) operation even though the Descriptor for the RDMA
Read is ahead of the Send (or RDMA Write) Descriptor in the VI work queue. In this case, the
Completion Queue entry for the Send (or RDMA Write) operation must not appear on the
Completion Queue before the entry for the completed RDMA Read.

6.2. Disconnect Notification
In Section 4.2, the VI Architecture Specification states the following: “ A VI Provider may issue an
asynchronous notification to the VI Consumer of a VI that has been disconnected by the remote
end, but this feature is not a requirement. A VI Provider is required to detect that a VI is no longer
connected and notify the VI Consumer. Minimally, the consumer must be notified upon the first
data transfer operation that follows the disconnect.”

In some cases, it is not possible to notify the consumer that the remote side has disconnected
without an asynchronous error. For this reason, it is recommended that the VI Provider issue a
Connection Lost error at both ends of the connection when the connection is dropped as a result
of an error. It is also recommended that a Connection Lost error be issued when the
corresponding endpoint requests the connection be broken.

Questions have been raised about the proper behavior if a VI that has been disconnected is
associated with a Completion Queue. Section 4.2 of the VI Architecture Specification states: "A
Disconnect request will result in the completion of all outstanding Descriptors on that VI endpoint.
The Descriptors are completed with the appropriate error bit set". Section 6.4.1 of the VI
Specification reads: "If a Completion Queue has been registered for the queue that this
Descriptor is on, the VI NIC will place an entry on the Completion Queue that indicates the
completed Descriptor's VI and queue". The only time that completed Descriptors would not
appear in the Completion Queue is when a catastrophic error occurred such that the hardware
could no longer update the Completion Queue.

6.3. Error Handling
For a detailed table depicting the details of error handling for each reliability level, please see the
Error Supplement that accompanies this Developer's Guide.

6.3.1. Catastrophic Hardware Errors
The VI Architecture Specification does not specify how catastrophic hardware errors are handled.
Catastrophic hardware errors are asynchronous errors that render the Work Queues and/or
Completion Queues inoperable by the hardware. That is, the hardware is unable to read
Descriptors, write status to Descriptors and/or write Completion Queue entries. The
recommendation for handling catastrophic hardware errors is for the VI Provider software (VI
Kernel Agent or VIPL) to clean up the VI Work Queues and transition the VI to the Error state for
all reliability levels. The catastrophic asynchronous errors are Post Descriptor Error (due to all
causes), VI Overrun Error and Catastrophic Error.

Intel VI Architecture Developer’s Guide

Page 69

6.3.2. Completion Queue Overrun
For those hardware implementations where a Completion Queue overrun could result in data
corruption, it is recommended that the VI Provider generate a VIP_ERROR_CATASTROPHIC
asynchronous error and disconnect the VIs.

6.3.3. Connection Lost on an Unreliable Delivery VI
When a connection is lost on an Unreliable Delivery VI for any reason other than a call to
VipDisconnect, an asynchronous error should be issued and transition the VI to the Error state. If
VipDisconnect is called, the local endpoint breaks the connection and transitions the VI to the Idle
state.

6.4. Thread Safety
The threads created within VIP to service Notify requests will need to synchronize the use of data
structures between the Notify service threads entering VipSendNotify, VipRecvNotify and
VipCQNotify. Even a non-thread-safe VIPL must ensure exclusive access to these data
structures by implementing explicit mutual exclusion algorithms, since the user application has no
control over the operation of the Notify service threads.

6.5. VI Device Name
Use of a common VI NIC device allows VI applications to use the same DeviceName parameter
for VipOpenNic()across multiple NIC implementations. The recommended VI NIC device naming
convention is the ASCII NULL terminated string, VINIC. The ASCII representation for a number
can be appended to VINIC to allow multiple NICs from the same vendor to be installed in the
system. For example, if two VI NICs are installed in the system, the first NIC is assigned the
device name VINIC (VINIC is equivalent to VINIC0) and the second is named VINIC1. This is not
intended to solve the problem where a user wants to install and run multiple VI NICs from
different vendors at the same time.

6.6. Implications of Posting a Send Descriptor
Section 6.2 of the VI Architecture Specification reads: "Once a Descriptor has been prepared, the
VI Consumer submits it to the VI NIC for processing by posting it to the appropriate VI Work
Queue and ringing the queue’s Doorbell." Section 6.3 reads: "Once a Descriptor has been posted
to a queue, the VI NIC can begin processing it. Data is transferred between two connected VIs
when a VI NIC processes a Descriptor or as the data arrives on the network."

The above two paragraphs indicate that on a send, data is transferred when the VI NIC
processes a Descriptor and Descriptor processing can begin as soon as it has been posted on a
queue. No other VIPL call is needed to initiate the data transfer.

6.7. Connection Management Clarification
This section contains details regarding comparison and exchange of net addresses during the
connection negotiation process. The five diagrams and explanations that follow detail the portions
of the addresses (both local and remote) and the VI attributes (both local and remote) that are
compared and exchanged as part of the connection management process.

Intel VI Architecture Developer’s Guide

Page 70

The five diagrams are:

1. Local and remote address comparison and data exchange for peer-to-peer connections
(VipConnectPeerRequest)

2. Local and remote address comparison and exchange for client/server connections
(VipConnectWait and VipConnectRequest)

3. Local and remote VI attributes comparison and exchange for all connection types

4. Combined address and VI attribute comparison and data exchange diagram for peer-to-peer
connections

5. Combined address and VI attribute comparison and data exchange diagram for client/server
connections

Address Comparison and Data Exchange for Peer-to-peer Connections

As shown in Figure 11, the address parameters are not exchanged for peer-to-peer connections.
Since the peer-to-peer connection model is rendezvous based, the comparison of the host
portions of the local and remote addresses and the discriminators in the remote addresses occurs
after both peers have issued their connect requests. It is not specified where this comparison
occurs. That is, the comparison can occur on either of the two peers involved or on another node
that provides connection services.

Figure 11: Address Comparison and Data Exchange for Peer-to-Peer

Peer 2

LocalAddr (LA)

Remote Addr (RA)

Remote Address
(Host Portion)

Remote Address
(Discriminator Portion)

Local Address
(Host Portion)

Local Address
(Discriminator Portion)

Host Portion must match
Peer 2 NIC Address

Peer 1

LocalAddr (LA)

Local Address
(Host Portion)

Local Address
(Discriminator Portion)

Remote Address
(Host Portion) (H)

Remote Address
(Discriminator Portion)

Host Portion must match
Peer 1 NIC address

Peer1.RA.Host ==
Peer2.LA.Host

Peer1.RA.Discrim == Peer2.RA.Discrim

Remote Addr (RA)

Peer2.RA.Host ==
Peer1.LA.Host

Naming Use
Only

Naming Use
Only

= Compared during
connection management

Legend

Intel VI Architecture Developer’s Guide

Page 71

Address Comparison and Data Exchange for Client/Server Connections

The comparison of addresses follows a different pattern for client/server connections, as shown in
Figure 12. Notice that the remote address for the server is above the local address on the Server
side of the diagram. The client/server model requires the server VipConnectWait() to be issued
prior to the client VipConnectRequest(). As mentioned in the previous section, the location of the
comparison occurs is not specified. (Possible locations are the server node or some other node
that provides connections services)

Figure 12: Address Comparison and Data Exchange for Client/Server

VI Attribute Comparison and Exchange
As detailed in Figure 13, the comparison of the VI attributes is the same for both connection
types. The local attributes for the VIs involved in the connection are compared. Notice that the
Ptag field of the VIP_VI_ATTRIBUTES structure is neither compared nor exchanged as part of
the connection process. (Ptags are used only to validate the relationship between VIs and
memory regions locally). Again, the location of the comparison is not specified, though it is likely
that the location is coincident with the location where the address parameters are compared.

ServerClient

Remote Addr (RA)

Remote Address
(Host Portion)

Remote Address
(Discriminator Portion)

LocalAddr (LA)

Local Address
(Host Portion)

Local Address
(Discriminator Portion)

Host Portion must match
Client NIC address

LocalAddr (LA)

Local Address
(Host Portion)

Local Address
(Discriminator Portion)

Host Portion must match
Server NIC Address

Remote Address
(Host Portion)

Remote Address
(Discriminator Portion)

Client.RA.Host == Server.LA.Host

Client.RA.Discrim == Server.LA.Discrim

Remote Addr (RA)

= Compared during
connection management

Legend

= Data Flow

Intel VI Architecture Developer’s Guide

Page 72

Figure 13: VI Attribute Comparison and Exchange

Peer-to-peer Combined Address and VI Attribute Comparison and
Exchange
Figure 14 combines Figure 11 and Figure 13 and shows the ordering of the address and data
comparisons described in the previous figures. Space limitations prevent the first two steps of the
control flow shown in Figure 14 from fully documenting the correct behavior.

The diagram assuems that all peer-to-peer requests between two nodes (as identified by the
tuple <Peer1.LA.Host, Peer2.LA.Host>) are tracked in a single “peer pool” and have their
discriminators matched in an ordered way. Once two outstanding peer-to-peer connection
requests are determined to have matching discriminators, the requests are removed from the
“peer pool” and the rest of the control steps in the diagram are followed. Otherwise, the
outstanding peer-to-peer connection requests remain in the “peer pool” until they have timed out.
This is represented by the VIP_TIMEOUT transition in Figure 14.

Enable RDMA information
specifies what operations

Client or Peer1 allows

Enable RDMA information
specifies what operations

Server or Peer2 allows

Local VI
Attributes (LVI)

Remote VI
Attributes

Local VI
Attributes (LVI)

Reliability Level (RL)

QOS

Max Transfer Size (MTS)

Enable RDMA Read

Enable RDMAWrite

Reliability Level (RL)

QOS

Enable RDMA Read

Enable RDMAWrite

Reliability Level (RL)

QOS

Max Transfer Size (MTS)

Enable RDMA Read

Enable RDMAWrite

Reliability Level (RL)

QOS

Max Transfer Size (MTS)

Enable RDMA Read

Enable RDMAWrite

Remote VI
Attributes

Client or Peer1 Server or Peer2

LVI.RL == LVI.RL

LVI.QOS == LVI.QOS

LVI.MTS == LVI.MTS Max Transfer Size (MTS)

= Compared during
connection management

Legend

= Data Flow

Intel VI Architecture Developer’s Guide

Page 73

Figure 14: Peer-to-Peer Combined

LocalAddr (LA)

Remote Addr (RA)

Local VI
Attributes

Peer 2
VipConnectPeerRequest

Remote VI
Attributes

LocalAddr (LA)

Remote Addr (RA)

Local VI
Attributes

 Peer 1
VipConnectPeerRequest

Remote VI
Attributes

Enable RDMA information
specifies which operations

Peer 2 allows

Start of Peer to PeerConnection
(Peer 1 and Peer2 issue
VipPeerConnectRequest)

Match

No
(VIP_INVALID_*)

VI Attributes Match?
(Peer1. RL == Peer2.RL &&

Peer1.QOS == Peer2.QOS &&
Peer1.MTS == Peer2.MTS)

Yes

Return Remote Attributes
(VipConnectPeer{Wait,Done})

Enable RDMA information specifies
which operations Peer 1 allows

Connection
Failed

Connection
Established

Local Address
(Host Portion)

Local Address
(Discriminator Portion)

Remote Address
(Host Portion)

Remote Address
(Discriminator Portion)

Remote Address
(Host Portion)

Remote Address
(Discriminator Portion)

Local Address
(Host Portion)

Local Address
(Discriminator Portion)

Reliability Level (RL)

QOS

Max Transfer Size (MTS)

Enable RDMA Read

Enable RDMAWrite

Reliability Level (RL)

QOS

Max Transfer Size (MTS)

Enable RDMA Read

Enable RDMAWrite

Reliability Level (RL)

QOS

Max Transfer Size (MTS)

Enable RDMA Read

Enable RDMAWrite

Reliability Level (RL)

QOS

Max Transfer Size (MTS)

Enable RDMA Read

Enable RDMAWrite

Timeout
(VIP_TIMEOUT)

= Control Flow

Legend

= Data Flow

Host Portion must match
Peer 1 NIC address

Host Portion must match
Peer 2 NIC address

Wait for
Addr & Discriminator Match?

(Peer1.RA..Host == Peer2.LA.Host &&
Peer2.RA.Host == Peer1.LA.Host &&

Peer1.RA.Discrim == Peer2.RA.Discrim)
or Timeout

Intel VI Architecture Developer’s Guide

Page 74

Client Server Combined Address and VI Attribute Comparison and
Exchange
Figure 15 combines Figure 12 and Figure 13 and shows the ordering of the address and data
comparisons described in the previous figures.

The diagram assumes that all client/server connection requests between two nodes (as identified
by the tuple <Client.Host, Server.Host>) are tracked in a single “client/server pool”. Server
connection requests are kept in the “client/server pool” until a matching client connection request
arrives or the server request times out. Client connection requests are either immediately
matched upon arrival in the “client/server pool” or they fail. (VipConnectRequest returns
VIP_NO_MATCH). When a client connection request is matched to a server connection request,
both are removed from the “client/server pool” and the subsequent control steps in Figure 15 are
performed.

Space limitations prevent the transition from below the “VI Attributes Match?” decision to above
the “Server Issues VipConnectAccept or VipConnectReject” from fully documenting the correct
behavior.

This transition occurs when a server supplies a VI by calling VipConnectAccept with attributes
that do not match the client VI’s attributes. An error is returned on the server and client does not
receive an error. In addition, if the server does not supply another VI with the correct attributes or
rejects the request by calling VipConnectReject within the timeout period specified by the client,
the client will time out and VipConnectRequest returns VIP_TIMEOUT). If the server attempts to
accept the connection by calling VipConnectAccept after the client has timed out, the error
returned is VIP_TIMEOUT. If the server attempts to reject the connection via VipConnectReject,
then VIP_SUCCESS is returned, because the connection is not established and the client and
server both agree that the connection request has failed.

Intel VI Architecture Developer’s Guide

Page 75

Figure 15: Client/Server Combined

Server Process issues
VipConnectReject

or
VipConnectAccept

Start of Client/Server
Connection

(Server calls VipConnectWaiit
Client calls

VipConnectRequest)

Client RA and Server LA
Match?

(Client.Host == Server.Host &&
Client.Discrim ==
Server.Discrim)

Client
VipConnectRequest

Server
VipConnectWait

Connection
Failed

Server
VipConnectWait Returns
(Client VI Attributes and

 Addr returned)

Connection
Established

VI Attributes Match?
(Client.RL == Server.RL &&

Client.QOS == Server.QOS &&
Client.MTS == Server.MTS)

Yes

Client VipConnect
Request returns

on client
(Server VI Attributes

returned)

Enable RDMA information
specifies what operations

Client allows

Enable RDMA information
specifies what operations

Server allows

LocalAddr (LA)

Remote Addr (RA)

Local VI
Attributes

(supplied in
VipConnectAccept)

Remote VI
Attributes

LocalAddr (LA)

Remote Addr (RA)

Local VI
Attributes

Remote VI
Attributes

Local Address
(Host Portion)

Local Address
(Discriminator Portion)

Remote Address
(Host Portion)

Remote Address
(Discriminator Portion)

Remote Address
(Host Portion)

Remote Address
(Discriminator Portion)

Local Address
(Host Portion)

Local Address
(Discriminator Portion)

Reliability Level (RL)

QOS

Max Transfer Size (MTS)

Enable RDMA Read

Enable RDMAWrite

Reliability Level (RL)

QOS

Max Transfer Size (MTS)

Enable RDMA Read

Enable RDMAWrite

Reliability Level (RL)

QOS

Max Transfer Size (MTS)

Enable RDMA Read

Enable RDMAWrite

Reliability Level (RL)

QOS

Max Transfer Size (MTS)

Enable RDMA Read

Enable RDMAWrite

No
(VIP_NO_MATCH)

Reject
(VIP_REJECT)

Accept

No
(No client error)

Host Portion must match
Client NIC address

Host Portion must match
Server NIC Address

VIP_INVALID_*
returned on

server

= Control Flow

Legend

= Data Flow

Yes

Intel VI Architecture Developer’s Guide

Page 76

6.8. VIP_NOT_REACHABLE
The error code, VIP_NOT_REACHABLE is an optional error return for VI connection operations
for VI Providers that can detect a network partition. This error code is returned if a network
partition is detected.

A permissible alternative for interconnects that cannot distinguish network partitions is to continue
to attempt to make a connection until the timeout period expires and return a VIP_TIMEOUT error
in the case of a network partition.

Intel VI Architecture Developer’s Guide

Page 77

7. Application Notes
This section contains recommendations and warnings for application developers on using the
VIPL interface.

7.1. Completion Queue Usage
It is recommended that the VI Application maintain a one-to-one mapping between entries on the
Completion Queue and the Descriptors on the work queues associated with the Completion
Queue. That is, the application should first check the Completion Queue for a completion prior to
de-queuing the corresponding completed Descriptor from a work queue.

Furthermore, the application developer should take the appropriate precautions to avoid a
Completion Queue overrun. The application developer will not be notified when a Completion
Queue overrun occurs. When a Completion Queue overrun occurs, the one-to-one mapping of
completion entries to completed Descriptors on the associated VI work queues will no longer be
maintained and Completion Queue entries may be silently lost, corrupted or duplicated. The
effect on the application of a Completion Queue overrun error is undefined.

7.2. Interaction of Notify, Done and Wait Calls
Notify calls should not be used concurrently with either Done or Wait calls on the same work
queue. If a Notify is outstanding when a Done or a Wait call is made, the order in which
completed Descriptors are associated with the calls is indeterminate.

Done and Wait calls should not be used concurrently even in a thread-safe implementation. If one
thread invokes a Done call while another thread is waiting on the same VI work queue, the order
in which completed Descriptors are associated with the calls is indeterminate.

7.3. Data Alignment
It is permissible to align data buffers on any arbitrary byte boundary. However, system
performance may improve if data buffers are aligned on natural boundaries. The following is a list
of alignments from best to least desirable: page, cache line, 8 byte and byte.

For the best future performance, the recommendation is to align data buffers on either 256 byte
or page boundaries and Descriptors on 256 byte boundaries.

7.4. Connection Discriminator Usage
A connection discriminator can be interpreted as a port number, a Universally Unique Identifier
(UUID) or as a sequence of arbitrary bytes. The VI Providers are expected to provide a minimum
of 16 bytes as the MaxDiscriminatorLen to allow the application to interpret the discriminator as a
UUID.

In the client/server connection model, the application must be aware that it is possible that more
than one server process could be using the same discriminator. If more than one server process
is using the same discriminator, it is indeterminate which server process will handle the incoming
connection request from the client specifying that discriminator.

For portability it is recommended that the application use a different discriminator for each
VipConnectRequest() call. Some VI Provider implementations may not allow multiple
VipConnectRequest() calls with the same discriminator, even though they are connecting to
different nodes.

Intel VI Architecture Developer’s Guide

Page 78

7.5. Catastrophic Hardware Error Handling
If the application receives a notification of a catastrophic hardware error on a VI, the application
should follow the steps outlined below:

1. Call VipDisconnect to disconnect the VI.

2. Remove the Descriptors on both Work Queues associated with the VI using the Work Queue
completion calls, VipSendDone and VipRecvDone.

3. Destroy the VI.

4. If a Completion Queue is associated with the VI that suffered the catastrophic error, destroy
the CQ.

The application must also be able to handle “stale” Completion Queue indications for VIs that
suffer a catastrophic hardware error. That is, the application must be able to handle encountering
Completion Queue indications for a VI that was destroyed when “normal” processing resumes.

If the application receives a notification of a catastrophic hardware error on a Completion Queue,
the application should follow the steps outlined in the previous paragraph to clean up all of the VIs
associated with the Completion Queue. When the VIs have been destroyed, the application
should destroy the Completion Queue.

7.6. Error Reporting on Unreliable VIs
If a transport error occurs on an operation that does not consume a Descriptor for Unreliable VIs,
an error will not be reported. (This includes transport errors that result in data corruption).
Therefore, it is highly recommended that an application that uses RDMA Write operations on
Unreliable VIs also specify Immediate Data to allow transport errors to be reported in the
Descriptor status.

7.7. Interconnect Failure Detection
The VI Architecture Specification only guarantees that the application is notified of an
interconnect failure when the next send Descriptor is processed. If the application has receive
Descriptors posted and needs to know immediately that a failure has occurred, the application
must provide the mechanism to detect the failure.

7.8. Blocked VipConnectWait
If a VipConnectWait call is blocked, the only way that the application can cancel the operation
prior to the timeout expiration is to kill the thread that issued the call.

Intel VI Architecture Developer’s Guide

Page 79

8. Programming Examples

8.1. Overview

This section describes a sample VI application that demonstrates the mechanics of writing a
Client-Server application using the VIPL APIs described in the previous sections. The source and
instructions on how to build and run the sample application can be found at the following web
address: http://www.intel.com/design/servers/vi/developer/ia_imp_guide.htm#imp_guide. The
sample application is intended for documenting important concepts when using the VIPL APIs,
such as name service, memory management rules, connection semantics, data transfer
operations, handling completion events, and managing multiple VI connections simultaneously.
The sample application is composed of two parts. a) an EchoServer, and b) an EchoClient.

8.1.1. EchoServer

The EchoServer is the server side module of the application. This module allows a pre-specified
maximum number of concurrent clients to connect to the server and run a simple Request/Reply
protocol. Clients are free to connect to the server, use the echo-service of the server and
disconnect from the server at any time. The server echoes any request message received back to
the originating client as the reply message. The server uses a listen thread to accept new client
connections. The Receive Queues of the connected VIs are attached to a global Completion
Queue. The server runs a worker thread to constantly wait (poll) on the global completion queue
and invokes a user-level handler function to process completed receive operations. The handler
function dequeues the message received from the corresponding client and echoes the received
request message back to the client. The server polls the corresponding Send Queue to wait for a
send operation to complete because the Send Queues are not associated with any Completion
Queue. This application illustrates the use of both the Work Queue Model and the Completion
Queue Model for processing the Descriptors.

8.1.2. EchoClient

The EchoClient takes a server name and the number of Request/Reply iterations as the
command line parameters. It is a single threaded application that connects to the target service
address on the specified server, runs the Request/Reply loop over the specified iterations by
using VIPL Data transfer and completion operations, and finally disconnects from the server.

8.1.3. Application Limitations:

The sample application makes several assumptions for the sake of simplicity and ease of
understanding. The following list provides a brief description of some of the application’s
limitations.

• All application messages are assumed to be less than or equal to the MaxTransferSize of the
VI NIC.

• The sample application does not address issues like flow-control, error recovery, reliability
etc.

• The application only uses Reliable Delivery VIs.

• Most of the error conditions are handled by using a MessageBox, rather than by using error
handlers. In EchoServer, errors encountered during data transfer operations on a specific

Intel VI Architecture Developer’s Guide

Page 80

client connection result in disconnecting the erroneous connection, without affecting the
service of any other client connections.

• The application does not register an asynchronous error handler. The behavior of the default
error handler is assumed. Real world applications with specific error logic should use
appropriate error handlers.

• Since the VipConnectWait call blocks until a client requests a connection (or until timeout
expires), multiple server listen threads are required to accept more than one client connection
at a time. This sample application accepts only one client connection at a time. This does not
mean that only one client can be connected to the server at any time.

• Only Client/Server connection semantics are used in the sample application. The Peer-to-
Peer connection model is not used in the sample application.

• The application does not illustrate the use of Vip{Send,Recv,CQ}Notify routines.

• RDMA data-transfer operations are not used by this sample application.

Standard disclaimers and Copyright notice described in Appendix (Section 6.1) applies to any
code samples, programs, and application notes described in this document. This sample
application targets a WindowsTM NT 4.0 operating system environment and uses the standard
Win32 APIs for requesting operating systems specific operations.

8.1.4. Helper Functions
For easier illustration, the sample application program is divided into a set of helper functions and
the core client and server code. The helper functions abstract out various VIPL operations
including endpoint initialization and shutdown, communication memory management, managing
connections, setting up Descriptors, etc.

Intel VI Architecture Developer’s Guide

Page 81

9. Future Considerations
This section contains issues that are under consideration for incorporation into a future release of
the Intel VI Architecture Developer’s Guide. These issues were brought up too late in the cycle to
be resolved and incorporated into the first VI NIC products and the 1.0 version of the guide.

9.1. Discriminator Binding
Few restrictions exist on the usage of discriminators in the Intel VI Architecture Developer’s
Guide. The semantics were intentionally left broad because connection management can be
implemented successfully with the minimal restrictions.

However, requests have been made to be able to "bind" discriminators, similar to the BSD
sockets "bind" procedure call. This is an area to be investigated further. If required, API additions
will be specified to provide clear semantics for discriminator usage across multiple
implementations of VIPL.

9.2. VI Handle Extensions
A useful extension to the VI handle is to allow a user supplied handle to be associated with a VI
handle along with a way to access the user handle from the VI handle. This provides an efficient
mechanism for the application to find the data structure used to access the VI. A code fragment
that shows how this feature could be used is shown below:

status = VipCQDone(CqHandle, &ViHandle, &RecvQueue);

// Look up the structure associated with the VI Handle

AppViStructP = LookUpAppViStruct(ViHandle);

// If implementation is not thread safe, lock access
if(RecvQueue)
{

GrabViLock(AppViStructP->LockStructure);
Status = VipRecvDone(ViHandle, &DescriptorPtr);
ReleaseViLock(AppViStructP->LockStructure);

}
else
{

GrabViLock(AppViStructP->LockStructure);
Status = VipSendDone(ViHandle, &DescriptorPtr);
ReleaseViLock(AppViStructP->LockStructure);

}

This example shows how a call such as LookUpAppViStruct() that returns the user defined
pointer, AppViStructP, could be used. In this example, the data structure pointed to by
AppViStructP is used for locking access to the queue. Associating the data structure with the
VI Handle is a convenient way to keep track and access the application data structure for the VI.

Extensions to provide this functionality may be proposed in a future release of this guide.

Intel VI Architecture Developer’s Guide

Page 82

9.3. Error Codes
A request was made to provide a mechanism to help application developers determine exactly
what caused an error. For example, in the case of a VIP_INVALID_PARAMETER the error code
does not reflect which parameter was invalid. Another example is VIP_ERROR_RESOURCE
when it is used both for reporting resource conflicts and insufficient system resources. This is an
area to investigate for the future.

9.4. Hardware Heartbeat NIC Attribute Field
A request was made to add a field to the NIC Attributes structure that the user application can
use to determine whether a hardware implementation provides a "heartbeat" mechanism that
automatically informs the application of hardware failures. The application could avoid duplicating
the functionality if a mechanism was provided to determine whether the NIC already had a
"heartbeat" mechanism built in and thus improve performance.

Intel VI Architecture Developer’s Guide

Page 83

10. Appendix A - Include Files

10.1. Vipl.h
/*++

Copyright (c) 1996, 1997 Intel Corp. All Rights Reserved.

VIRTUAL INTERFACE ARCHITECTURE VIPL.H

Copyright (c) - 1998 Intel Corporation

Intel Corporation hereby grants a non-exclusive license under Intel’s
copyright to copy, modify and distribute this software for any purpose
and without fee, provided that the above copyright notice and the
following paragraphs appear on all copies.

Intel Corporation makes no representation that this source code
is correct or is an accurate representation of any standard.

IN NO EVENT SHALL INTEL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, OR
SPECULATIVE DAMAGES, (INCLUDING WITHOUT LIMITING THE FORGOING,
CONSEQUENTIAL, INCIDENTAL AND SPECIAL DAMAGES) INCLUDING, BUT NOT
LIMITED TO INFRINGEMENT, LOSS OF USE, BUSINESS INTERRUPTIONS, AND LOSS
OF PROFITS, IRRESPECTIVE OF WHETHER INTEL HAS ADVANCE NOTICE OF THE
POSSIBILITY OF ANY SUCH DAMAGES.

INTEL CORPORATION SPECIFICALLY DISCLAIMS ANY WARRANTIES INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NON-INFRINGEMENT. THE SOFTWARE PROVIDED
HEREUNDER IS ON AN "AS IS" BASIS AND INTEL CORPORATION HAS NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS OR
MODIFICATIONS.

Module Name:
vipl.h

Abstract:

 vipl.h contains the complete user interface to the VIPL.

--*/

#ifndef _VIPL_
#define _VIPL_ 1

/**
 * Constants
**/

#define IN
#define OUT

Intel VI Architecture Developer’s Guide

Page 84

/**
 * Data Types
 ***/

/*
 * Generic types for portability
 */
typedef void * VIP_PVOID;
typedef int VIP_BOOLEAN;
typedef char VIP_CHAR;
typedef unsigned char VIP_UCHAR;
typedef unsigned short VIP_USHORT;
typedef unsigned long VIP_ULONG;

/*
 * The following are NT specific
 */
typedef unsigned __int64 VIP_UINT64;
typedef unsigned __int32 VIP_UINT32;
typedef unsigned __int16 VIP_UINT16;
typedef unsigned __int8 VIP_UINT8;

typedef VIP_PVOID VIP_QOS; /* details are not defined */

/*
 * This constant is used only by the user and the VIPL library.
 */

#ifndef VIP_KERNEL

#define VIP_INFINITE (~(VIP_ULONG) 0)

#endif /* !VIP_KERNEL */

/*
 * Constants used with VIP_BOOLEAN
 */
#define VIP_TRUE (1)
#define VIP_FALSE (0)

/*
 * Handles are used for opaque objects.
 */
typedef VIP_PVOID VIP_NIC_HANDLE;
typedef VIP_PVOID VIP_VI_HANDLE;
typedef VIP_PVOID VIP_PROTECTION_HANDLE;
typedef VIP_PVOID VIP_CONN_HANDLE;
typedef VIP_PVOID VIP_CQ_HANDLE;

/*
 * Handles used by the NIC hardware
 */
typedef VIP_UINT32 VIP_MEM_HANDLE;

Intel VI Architecture Developer’s Guide

Page 85

/*
 * Recommended NIC name
 */
#define VINICBASENAME "VINIC"

/*
 * VI Network Address
 *
 * A VI Network Address holds the network specific address for a VI
 * endpoint. Each VI Provider may have a unique network address format.
 * It is composed of two elements, a host address and an endpoint
 * discriminator. These elements are qualified with a byte length in
 * order to maintain network independence.
 */
typedef struct {
 VIP_UINT16 HostAddressLen;
 VIP_UINT16 DiscriminatorLen;
 VIP_UINT8 HostAddress[1];
} VIP_NET_ADDRESS;

typedef VIP_USHORT VIP_RELIABILITY_LEVEL;

/*
 * Bit values for VIP_RELIABILITY_LEVEL
 */
#define VIP_SERVICE_UNRELIABLE 0x01
#define VIP_SERVICE_RELIABLE_DELIVERY 0x02
#define VIP_SERVICE_RELIABLE_RECEPTION 0x04

/*
 * A VIP_NIC_ATTRIBUTES describes a nic.
 *
 * The NIC attributes structure is returned from the VipQueryNic
 * function. It contains information related to an instance of a NIC
 * within a VI Provider. All values that are returned in the NIC
 * Attributes structure are static values that are set by the VI
 * Provider at the time that it is initialized.
 */
typedef struct {
 VIP_CHAR Name [64];
 VIP_ULONG HardwareVersion;
 VIP_ULONG ProviderVersion;
 VIP_UINT16 NicAddressLen;
 const VIP_UINT8 *LocalNicAddress;
 VIP_BOOLEAN ThreadSafe;
 VIP_UINT16 MaxDiscriminatorLen;
 VIP_ULONG MaxRegisterBytes;
 VIP_ULONG MaxRegisterRegions;
 VIP_ULONG MaxRegisterBlockBytes;
 VIP_ULONG MaxVI;
 VIP_ULONG MaxDescriptorsPerQueue;
 VIP_ULONG MaxSegmentsPerDesc;
 VIP_ULONG MaxCQ;
 VIP_ULONG MaxCQEntries;
 VIP_ULONG MaxTransferSize;
 VIP_ULONG NativeMTU;
 VIP_ULONG MaxPtags;

Intel VI Architecture Developer’s Guide

Page 86

 VIP_RELIABILITY_LEVEL ReliabilityLevelSupport;
 VIP_RELIABILITY_LEVEL RDMAReadSupport;
} VIP_NIC_ATTRIBUTES;

/*
 * Memory alignment required by the NIC for descriptors, in bytes.
 */
#define VIP_DESCRIPTOR_ALIGNMENT 64

/*
 * The address structure for registered memory accesses.
 */
typedef union {
 VIP_UINT64 AddressBits;
 VIP_PVOID Address;
} VIP_PVOID64;

/*
 * The control portion of the descriptor.
 */
typedef struct {
 VIP_PVOID64 Next;
 VIP_MEM_HANDLE NextHandle;
 VIP_UINT16 SegCount;
 VIP_UINT16 Control;
 VIP_UINT32 Reserved;
 VIP_UINT32 ImmediateData;
 VIP_UINT32 Length;
 VIP_UINT32 Status;
} VIP_CONTROL_SEGMENT;

/*
 * Descriptor RDMA Segment
 */
typedef struct {
 VIP_PVOID64 Data;
 VIP_MEM_HANDLE Handle;
 VIP_UINT32 Reserved;
} VIP_ADDRESS_SEGMENT;

/*
 * Descriptor Data Segment
 */
typedef struct {
 VIP_PVOID64 Data;
 VIP_MEM_HANDLE Handle;
 VIP_UINT32 Length;
} VIP_DATA_SEGMENT;

typedef union {
 VIP_ADDRESS_SEGMENT Remote;
 VIP_DATA_SEGMENT Local;
} VIP_DESCRIPTOR_SEGMENT;

Intel VI Architecture Developer’s Guide

Page 87

/*
 * Complete VI Descriptor
 */
typedef struct _VIP_DESCRIPTOR {
 VIP_CONTROL_SEGMENT CS;
 VIP_DESCRIPTOR_SEGMENT DS[2];
} VIP_DESCRIPTOR;

/*
 * Bit field macros for descriptor control segment: Control field
 */
#define VIP_CONTROL_OP_SENDRECV 0x0000
#define VIP_CONTROL_OP_RDMAWRITE 0x0001
#define VIP_CONTROL_OP_RDMAREAD 0x0002
#define VIP_CONTROL_OP_RESERVED 0x0003
#define VIP_CONTROL_OP_MASK 0x0003
#define VIP_CONTROL_IMMEDIATE 0x0004
#define VIP_CONTROL_QFENCE 0x0008
#define VIP_CONTROL_RESERVED 0xFFF0

/*
 * Bit field macros for descriptor control segment: Status field
 */
#define VIP_STATUS_DONE 0x00000001
#define VIP_STATUS_FORMAT_ERROR 0x00000002
#define VIP_STATUS_PROTECTION_ERROR 0x00000004
#define VIP_STATUS_LENGTH_ERROR 0x00000008
#define VIP_STATUS_PARTIAL_ERROR 0x00000010
#define VIP_STATUS_DESC_FLUSHED_ERROR 0x00000020
#define VIP_STATUS_TRANSPORT_ERROR 0x00000040
#define VIP_STATUS_RDMA_PROT_ERROR 0x00000080
#define VIP_STATUS_REMOTE_DESC_ERROR 0x00000100
#define VIP_STATUS_ERROR_MASK 0x000001FE

#define VIP_STATUS_OP_SEND 0x00000000
#define VIP_STATUS_OP_RECEIVE 0x00010000
#define VIP_STATUS_OP_RDMA_WRITE 0x00020000
#define VIP_STATUS_OP_REMOTE_RDMA_WRITE 0x00030000
#define VIP_STATUS_OP_RDMA_READ 0x00040000
#define VIP_STATUS_OP_MASK 0x00070000
#define VIP_STATUS_IMMEDIATE 0x00080000
#define VIP_STATUS_RESERVED 0xFFF0FE00

/*
 * VIP_VI_STATE is used in the return of VipQueryVi.
 */
typedef enum {
 VIP_STATE_IDLE,
 VIP_STATE_CONNECTED,
 VIP_STATE_CONNECT_PENDING,
 VIP_STATE_ERROR
} VIP_VI_STATE;

Intel VI Architecture Developer’s Guide

Page 88

/*
 * VIP_VI_ATTRIBUTES is used to create and query VIs.
 */
typedef struct {
 VIP_RELIABILITY_LEVEL ReliabilityLevel;
 VIP_ULONG MaxTransferSize;
 VIP_QOS QoS;
 VIP_PROTECTION_HANDLE Ptag;
 VIP_BOOLEAN EnableRdmaWrite;
 VIP_BOOLEAN EnableRdmaRead;
} VIP_VI_ATTRIBUTES;

/*
 * VIP_MEM_ATTRIBUTES is used to create and query Memory regions.
 */
typedef struct _VIP_MEM_ATTRIBUTES {
 VIP_PROTECTION_HANDLE Ptag;
 VIP_BOOLEAN EnableRdmaWrite;
 VIP_BOOLEAN EnableRdmaRead;
} VIP_MEM_ATTRIBUTES;

/*
 * Error Descriptor Error Codes
 */
typedef enum _VIP_ERROR_CODE {
 VIP_ERROR_POST_DESC,
 VIP_ERROR_CONN_LOST,
 VIP_ERROR_RECVQ_EMPTY,
 VIP_ERROR_VI_OVERRUN,
 VIP_ERROR_RDMAW_PROT,
 VIP_ERROR_RDMAW_DATA,
 VIP_ERROR_RDMAW_ABORT,
 VIP_ERROR_RDMAR_PROT,
 VIP_ERROR_COMP_PROT,
 VIP_ERROR_RDMA_TRANSPORT,
 VIP_ERROR_CATASTROPHIC
} VIP_ERROR_CODE;

/*
 * Error Descriptor Resource Codes
 */
typedef enum _VIP_RESOURCE_CODE {
 VIP_RESOURCE_NIC,
 VIP_RESOURCE_VI,
 VIP_RESOURCE_CQ,
 VIP_RESOURCE_DESCRIPTOR
} VIP_RESOURCE_CODE;

Intel VI Architecture Developer’s Guide

Page 89

/*
 * Error Descriptor for Asynch. errors
 */
typedef struct _VIP_ERROR_DESCRIPTOR {
 VIP_NIC_HANDLE NicHandle;
 VIP_VI_HANDLE ViHandle;
 VIP_CQ_HANDLE CQHandle;
 VIP_DESCRIPTOR *DescriptorPtr;
 VIP_ULONG OpCode;
 VIP_RESOURCE_CODE ResourceCode;
 VIP_ERROR_CODE ErrorCode;
} VIP_ERROR_DESCRIPTOR;

/*
 * Return codes from the functions.
 */
typedef enum {
 VIP_SUCCESS,
 VIP_NOT_DONE,
 VIP_INVALID_PARAMETER,
 VIP_ERROR_RESOURCE,
 VIP_TIMEOUT,
 VIP_REJECT,
 VIP_INVALID_RELIABILITY_LEVEL,
 VIP_INVALID_MTU,
 VIP_INVALID_QOS,
 VIP_INVALID_PTAG,
 VIP_INVALID_RDMAREAD,
 VIP_DESCRIPTOR_ERROR,
 VIP_INVALID_STATE,
 VIP_ERROR_NAMESERVICE,

VIP_NO_MATCH,
 VIP_NOT_REACHABLE
 } VIP_RETURN;

/*
 * InfoType values
 */
#define VIP_SMI_AUTODISCOVERY ((VIP_ULONG) 1)

/*
 * AutoDiscovery List fields
 */
typedef struct {
 VIP_ULONG NumberOfHops;
 VIP_NET_ADDRESS *ADAddrArray;
 VIP_ULONG NumAdAddrs;
 } VIP_AUTODISCOVERY_LIST;

/**
 * Functions
**/

extern VIP_RETURN
VipOpenNic(IN const VIP_CHAR *DeviceName,
 OUT VIP_NIC_HANDLE *NicHandle);

Intel VI Architecture Developer’s Guide

Page 90

extern VIP_RETURN
VipCloseNic(IN VIP_NIC_HANDLE NicHandle);

extern VIP_RETURN
VipCreateVi(IN VIP_NIC_HANDLE NicHandle,
 IN VIP_VI_ATTRIBUTES *ViAttribs,
 IN VIP_CQ_HANDLE SendCQHandle,
 IN VIP_CQ_HANDLE RecvCQHandle,
 OUT VIP_VI_HANDLE *ViHandle);

extern VIP_RETURN
VipDestroyVi(IN VIP_VI_HANDLE ViHandle);

extern VIP_RETURN
VipConnectWait(IN VIP_NIC_HANDLE NicHandle,
 IN VIP_NET_ADDRESS *LocalAddr,
 IN VIP_ULONG Timeout,
 OUT VIP_NET_ADDRESS *RemoteAddr,
 OUT VIP_VI_ATTRIBUTES *RemoteViAttribs,
 OUT VIP_CONN_HANDLE *ConnHandle);

extern VIP_RETURN
VipConnectAccept(IN VIP_CONN_HANDLE ConnHandle,
 IN VIP_VI_HANDLE ViHandle);

extern VIP_RETURN
VipConnectReject(IN VIP_CONN_HANDLE ConnHandle);

extern VIP_RETURN
VipConnectRequest(IN VIP_VI_HANDLE ViHandle,
 IN VIP_NET_ADDRESS *LocalAddr,
 IN VIP_NET_ADDRESS *RemoteAddr,
 IN VIP_ULONG Timeout,
 OUT VIP_VI_ATTRIBUTES *RemoteViAttribs);

extern VIP_RETURN
VipDisconnect(IN VIP_VI_HANDLE ViHandle);

extern VIP_RETURN
VipCreatePtag(IN VIP_NIC_HANDLE NicHandle,
 OUT VIP_PROTECTION_HANDLE *Ptag);

extern VIP_RETURN
VipDestroyPtag(IN VIP_NIC_HANDLE NicHandle,
 IN VIP_PROTECTION_HANDLE Ptag);

extern VIP_RETURN
VipRegisterMem(IN VIP_NIC_HANDLE NicHandle,
 IN VIP_PVOID VirtualAddress,
 IN VIP_ULONG Length,
 IN VIP_MEM_ATTRIBUTES *MemAttribs,
 OUT VIP_MEM_HANDLE *MemoryHandle);

extern VIP_RETURN
VipDeregisterMem(IN VIP_NIC_HANDLE NicHandle,
 IN VIP_PVOID VirtualAddress,
 IN VIP_MEM_HANDLE MemoryHandle);

Intel VI Architecture Developer’s Guide

Page 91

extern VIP_RETURN
VipPostSend(IN VIP_VI_HANDLE ViHandle,
 IN VIP_DESCRIPTOR *DescriptorPtr,
 IN VIP_MEM_HANDLE MemoryHandle);

extern VIP_RETURN
VipSendDone(IN VIP_VI_HANDLE ViHandle,
 OUT VIP_DESCRIPTOR **DescriptorPtr);

extern VIP_RETURN
VipSendWait(IN VIP_VI_HANDLE ViHandle,
 IN VIP_ULONG Timeout,
 OUT VIP_DESCRIPTOR **DescriptorPtr);

extern VIP_RETURN
VipPostRecv(IN VIP_VI_HANDLE ViHandle,
 IN VIP_DESCRIPTOR *DescriptorPtr,
 IN VIP_MEM_HANDLE MemoryHandle);

extern VIP_RETURN
VipRecvDone(IN VIP_VI_HANDLE ViHandle,
 OUT VIP_DESCRIPTOR **DescriptorPtr);

extern VIP_RETURN
VipRecvWait(IN VIP_VI_HANDLE ViHandle,
 IN VIP_ULONG Timeout,
 OUT VIP_DESCRIPTOR **DescriptorPtr);

extern VIP_RETURN
VipCQDone(IN VIP_CQ_HANDLE CQHandle,
 OUT VIP_VI_HANDLE *ViHandle,
 OUT VIP_BOOLEAN *RecvQueue);

extern VIP_RETURN
VipCQWait(IN VIP_CQ_HANDLE CQHandle,
 IN VIP_ULONG Timeout,
 OUT VIP_VI_HANDLE *ViHandle,
 OUT VIP_BOOLEAN *RecvQueue);

extern VIP_RETURN
VipSendNotify(IN VIP_VI_HANDLE ViHandle,
 IN VIP_PVOID Context,
 IN void(*Handler)(
 IN VIP_PVOID Context,
 IN VIP_NIC_HANDLE NicHandle,
 IN VIP_VI_HANDLE ViHandle,
 IN VIP_DESCRIPTOR *DescriptorPtr
)
);

Intel VI Architecture Developer’s Guide

Page 92

extern VIP_RETURN
VipRecvNotify(IN VIP_VI_HANDLE ViHandle,
 IN VIP_PVOID Context,
 IN void(*Handler)(
 IN VIP_PVOID Context,
 IN VIP_NIC_HANDLE NicHandle,
 IN VIP_VI_HANDLE ViHandle,
 IN VIP_DESCRIPTOR *DescriptorPtr
)
);

extern VIP_RETURN
VipCQNotify(IN VIP_CQ_HANDLE CQHandle,
 IN VIP_PVOID Context,
 IN void(*Handler)(
 IN VIP_PVOID Context,
 IN VIP_NIC_HANDLE NicHandle,
 IN VIP_VI_HANDLE ViHandle,
 IN VIP_BOOLEAN RecvQueue
)
);

extern VIP_RETURN
VipCreateCQ(IN VIP_NIC_HANDLE NicHandle,
 IN VIP_ULONG EntryCount,
 OUT VIP_CQ_HANDLE *CQHandle);
extern VIP_RETURN
VipDestroyCQ(IN VIP_CQ_HANDLE CQHandle);

extern VIP_RETURN
VipResizeCQ(IN VIP_CQ_HANDLE CQHandle,
 IN VIP_ULONG EntryCount);

extern VIP_RETURN
VipQueryNic(IN VIP_NIC_HANDLE NicHandle,
 OUT VIP_NIC_ATTRIBUTES *NicAttribs);

extern VIP_RETURN
VipSetViAttributes(IN VIP_VI_HANDLE ViHandle,
 IN VIP_VI_ATTRIBUTES *ViAttribs);

extern VIP_RETURN
VipQueryVi(IN VIP_VI_HANDLE ViHandle,
 OUT VIP_VI_STATE *State,
 OUT VIP_VI_ATTRIBUTES *ViAttribs,

OUT VIP_BOOLEAN *ViSendQEmpty,
OUT VIP_BOOLEAN *ViRecvQEmpty);

extern VIP_RETURN
VipSetMemAttributes(IN VIP_NIC_HANDLE NicHandle,
 IN VIP_PVOID Address,
 IN VIP_MEM_HANDLE MemHandle,
 IN VIP_MEM_ATTRIBUTES *MemAttribs);

Intel VI Architecture Developer’s Guide

Page 93

extern VIP_RETURN
VipQueryMem(IN VIP_NIC_HANDLE NicHandle,
 IN VIP_PVOID Address,
 IN VIP_MEM_HANDLE MemHandle,
 OUT VIP_MEM_ATTRIBUTES *MemAttribs);

extern VIP_RETURN
VipQuerySystemManagementInfo(IN VIP_NIC_HANDLE NicHandle,
 IN VIP_ULONG InfoType,
 OUT VIP_PVOID SysManInfo);

extern VIP_RETURN
VipErrorCallback(IN VIP_NIC_HANDLE NicHandle,
 IN VIP_PVOID Context,
 IN void(*Handler)(
 IN VIP_PVOID Context,
 IN VIP_ERROR_DESCRIPTOR *ErrorDesc
)
);

/**
 * Peer-to-Peer Connection Model APIs
 ***/

extern VIP_RETURN
VipConnectPeerRequest(IN VIP_VI_HANDLE ViHandle,
 IN VIP_NET_ADDRESS *LocalAddr,
 IN VIP_NET_ADDRESS *RemoteAddr,
 IN VIP_ULONG Timeout);
extern VIP_RETURN
VipConnectPeerDone(IN VIP_VI_HANDLE ViHandle,
 OUT VIP_VI_ATTRIBUTES *RemoteViAttribs);

extern VIP_RETURN
VipConnectPeerWait(IN VIP_VI_HANDLE ViHandle,
 OUT VIP_VI_ATTRIBUTES *RemoteViAttribs);

/**
 * Name service APIs
 ***/

extern VIP_RETURN
VipNSInit(IN VIP_NIC_HANDLE NicHandle,
 IN VIP_PVOID NSInitInfo);

extern VIP_RETURN
VipNSGetHostByName(IN VIP_NIC_HANDLE NicHandle,
 IN VIP_CHAR *Name,
 OUT VIP_NET_ADDRESS *Address,
 IN VIP_ULONG NameIndex);

extern VIP_RETURN
VipNSGetHostByAddr(IN VIP_NIC_HANDLE NicHandle,
 IN VIP_NET_ADDRESS *Address,
 OUT VIP_CHAR *Name,
 IN OUT VIP_ULONG *NameLen);

Intel VI Architecture Developer’s Guide

Page 94

extern VIP_RETURN
VipNSShutdown(IN VIP_NIC_HANDLE NicHandle);

#endif /* _VIPL_ */

10.2. vipl.def
LIBRARY vipl

EXPORTS
 VipOpenNic @1
 VipCloseNic @2
 VipCreateVi @3
 VipDestroyVi @4
 VipConnectWait @5
 VipConnectAccept @6
 VipConnectReject @7
 VipConnectRequest @8
 VipDisconnect @9
 VipConnectPeerRequest @10
 VipConnectPeerDone @11
 VipConnectPeerWait @12
 VipCreatePtag @13
 VipDestroyPtag @14
 VipRegisterMem @15
 VipDeregisterMem @16
 VipPostSend @17
 VipSendDone @18
 VipSendWait @19
 VipPostRecv @20
 VipRecvDone @21
 VipRecvWait @22
 VipCQDone @23
 VipCQWait @24
 VipSendNotify @25
 VipRecvNotify @26
 VipCQNotify @27
 VipCreateCQ @28
 VipDestroyCQ @29
 VipResizeCQ @30
 VipQueryNic @31
 VipSetViAttributes @32
 VipQueryVi @33
 VipSetMemAttributes @34
 VipQueryMem @35
 VipQuerySystemManagementInfo @36
 VipErrorCallback @37
 VipNSInit @38
 VipNSGetHostByName @39
 VipNSGetHostByAddr @40
 VipNSShutdown @41

