
Page-1ISCA 2000 tutorial

IA-64 Architecture
and

Compiler Technology

 Allan Knies at Intel/IPD
 Jesse Fang at Intel/MRL
 Wei Li at Intel/MSL

Page-2ISCA 2000 tutorial

Compiler Technology for IA-64 (Part II)

Jesse Fang
Microprocessor Research Lab

Page-3ISCA 2000 tutorial

Overview
l Optimizations

½Profiling-based optimizations
½ Interprocedural optimizations

l Predication
½ If-conversion

✔ Uses regular, unconditional and parallel compares

l Global scheduling
½ Instruction scheduling cross basic block boundaries

✔ Uses control and data speculation, predication, post-
increments, multiway branches

l Global register allocation
½Allocate registers for predicate code

✔ Uses register stack, ALAT associativity

l Driven by information provided by machine model

Page-4ISCA 2000 tutorial

1. Profile-based Optimizations

lNew IA-64 features enable aggressive
optimizations and scheduling.

lThe highest performance can be achieved
with the most accurate profiling
information.
½Characterize the execution behavior of the

program
½Use the profile information to guide

optimizations

Page-5ISCA 2000 tutorial

Profile Generation

l Static profiling
½Program-based heuristics (e.g. loop branch, pointer, call,

opcode, loop exit, return, store, loop header, guard, error) for
branch probabilities.

½Estimation of execution frequencies on basic blocks and
edges from probabilities and control-flow graph.

l Dynamic profiling
½Program instrumentation (compile once with counters

inserted).
½Run the instrumented program with a sample input set.
½Performance monitor registers in IA-64

Page-6ISCA 2000 tutorial

Using Profile

l Profile can be used in many parts of the IA-64
compiler

l Branch probability guide (examples)
½Predication region
½Scheduling region
½Speculation
½Code placement

l Execution frequency guide (examples)
½Procedure inlining/partial inlining
½Loop optimizations
½Software pipelining
½Register allocation

l D-Cache missing guide (examples)
½Data speculation
½Data prefetch

Page-7ISCA 2000 tutorial

Interprocedural Analysis and
Optimization

l Use of Alias Analysis
½ Indirect call conversion
½Better disambiguation

l Use of Mod/ref Analysis
½Fewer kills due to unknown modification (PRE) or reference

(PDSE)
l Constant propagation

½Makes constant parameters and globals explicit.
½Enables cloning.
½Remove unnecessary conditional code.
½ Improves data dependence analysis.

l Inlining
½ Increase scope of optimization and instruction scheduling
½Partial inlining

Page-8ISCA 2000 tutorial

Procedure Inlining

lBenefits:
½Larger code region to schedule
½Larger code region for optimizations (such as

loop transformations)
½Interprocedural information for a specific call

site.

l Cost:
½Code size increases

l Selective integration (partial inlining and
cloning) to reduce code size growth.

Page-9ISCA 2000 tutorial

Inlining

void func1()
{

int i;
for (i=0;…)

func2(i);
}
void func2(int x)
{

a[x] = 1.0;
}

void func1()
{

int i;
for (i=0;…)

a[i] = 1.0
}

• Inlining a function body into a call site.

Page-10ISCA 2000 tutorial

Partial Inlining

void foo(x)
{
 if (P(x))
 a hot region here
 else
 a large cold region

here.
}

void main()
{
 call foo(y)
}

void foo_cold(x)
{
 a large cold region

here.
}

void main()
{
 if (P(y))
 a hot region here
 else
 call foo_cold(y)
}

• Copy the hot portion of a function into a call site.
• Remainder becomes a splinter function.

Page-11ISCA 2000 tutorial

Cloning

void func1()
{

func2(0, n);
func2(0, m);
func2(i, m);

}
void func2(int i, int j)
{

if (i == 0)
 // do something
else
 // do something else

}

void func1()
{

func2_0(n);
func2_0(m);
func2(i, m);

}

void func2_0(int j)
{

// do something
}

• Specializing a function to a specific class of call sites.

Page-12ISCA 2000 tutorial

(2) Predication

lWhen branch misprediction rate is high, it
is better to predicate

lPredication creates more ILP
lPredication has the potential cost of

increasing the critical path length
lTechniques

½If-conversion
½Parallel compare to reduce control height

Page-13ISCA 2000 tutorial

If-conversion for Predication

s = s + a

*p = s

a < b

cmp.lt p1,p2=a,b
(p1) s = s + a
(p2) s = s + b

*p = s

• Identifying region of basic blocks based on resource
requirement and profitability (branch miss rate, miss cost,
and parallelism)
• Result: a single predicated basic block

s = s + b

Page-14ISCA 2000 tutorial

Reducing Control Height
with parallel compares

p1=0
cmp.lt.or p1,p0=a,b
cmp.lt.or p1,p0=b,c

(p1) br s1
s2

• Convert nested if’s into a single predicate
• Result: shorter control path by reducing the number of
branches

a < b

b < c

s1
s2

Y

N

Y N

Page-15ISCA 2000 tutorial

Multiway Branch Example

l Use Multiway branches
½ Speculate compare

(i.e.move above branch)
½ Do not reduce number of

branches
½ Avoid predicate

initialization

B>C

A>B

cmp.le p1,p0=a,b
cmp.le p2,p0=b,c

(p1) br X
(p2) br X

Y

X Y

If (a>b && b>c)

then Y

else X

Page-16ISCA 2000 tutorial

If-Conversion Algorithm
Procedure assign-predicate-to-bblock (bblock-list G) {
 rearrange G in Breadth First Order;
 create post-dominate list P;
 set T to head block with order # 0;
 for (each bblock BB of G in forward order) {
 empty post-dominate list P;
 add all BB’s predecessors to P;
 for (each bblock BP of P in backward order of G) {
 if (BB post-dominate BP)
 if (BP dominate BB) BB.predicate = BP.predicate
 else add all BP’s predecessors to P instead of BP;
 else { BB.predicate = new (predicate);
 if (BB post-dominate true-successor of BP)
 add BB.predicate into BP’s true-list
 else add BB.predicate into BP’s false-list;
 }
 }
 }
 }

Page-17ISCA 2000 tutorial

Example of If-Conversion

BB1:
br1

BB0:
br0

BB3:

BB2:

BB4:
br4

BB5: BB6:

BB7:

T:

P1: P2:

P3: P4:

P5: P6:

T:

(P1) (P2,P4)

(P4)
(P3,P5)

(P6)
(P5)

Page-18ISCA 2000 tutorial

(3) Global Code Scheduling

lObjective
½Increase parallelism
½Remove unnecessary dependencies
½Fully use machine width

lNeeds
½Accurate machine model

lUses architectural features
½Large number of registers
½Control and data speculation, checks and

recovery code
½Multiway branches

Page-19ISCA 2000 tutorial

Region Formation

A

B

C

D E

F

G

E

 NR

 F

B

G

• Scheduling Regions are acyclic

{A,C,D} a nested region as NR

Page-20ISCA 2000 tutorial

Speculative Upward Code Movement

 cmp.unc.eq p1,p2 = r1,r2
 :
(p1) br label
 :
 ld r4 = [r3]
 add r4 = r4,1

 cmp.unc.eq p1,p2 = r1,r2
 :
 ld.s r4 = [r3]
 add r4 = r4,1
 :
(p1) br label
 chk.s r4

• Speculate both the load and the use
• Result: efficient use of machine resources

Page-21ISCA 2000 tutorial

Predicated Upward Code Movement

 cmp.unc.eq p1,p2 = r1,r2
 :
(p1) br label
 :
 ld r4 = [r3]
 add r4 = r4,1

 cmp.unc.eq p1,p2 = r1,r2
 :
(p2) ld r4 = [r3]
(p2) add r4 = r4,1
 :
(p1) br label

• Predicate with fall-though predicate
• motion bounded by compare

• Result: predication can avoid speculative side effects

Page-22ISCA 2000 tutorial

Example of Instruction Scheduling
- Control Flow Graph

add t1 = 8,p

 ld4 t2 = [log]

 add t2 = 1,t2

mov out0 = 0

br.ret rp

 ld4 out0 = [t4]

shladd t4 = n,4,t3

 ld4 t3 = [p]

 st4 [log] = t2

ld4 count = [t1]

cmp4.ge p1,p2=n,count

struct dyn-array {
int *x;
int count;
}
dyn-array *p;

If(n < p->count) {
 (*log)++;
 return p->x[n];
} else {
 return 0;
}

Page-23ISCA 2000 tutorial

Example of Instruction Scheduling
- with predication and possible speculation

add t1 = 8,p

(p1) ld4 t2 = [log]

(p1) add t2 = 1,t2

(p2) mov out0 = 0

br.ret rp

(p1) ld4.a out0 = [t4]

(p1) shladd t4 = n,4,t3

(p1) ld4.a t3 = [p]

(p1) st4 [log] = t2

ld4 count = [t1]

cmp4.ge p1,p2=n,count

(p1) chk.a out0

(p1) chk.a t3

l If-conversion to generate
predicates

l During dependence
graph construction,
potentially control and
data speculative edges
and nodes are identified

l Check nodes are added
where possibly needed
(note that only data
speculation checks are
shown here)

Page-24ISCA 2000 tutorial

Example of Instruction Scheduling
- ready for scheduling

add t1 = 8,p (p0) ld4.s t2 = [log]

(p0) add t2 = 1,t2

(p2) mov out0 = 0

br.ret rp

(p0) ld4.sa t5 = [t4]

(p0) shladd t4 = n,4,t3

(p0) ld4.sa t3 = [p]

(p1) st4 [log] = t2

ld4 count = [t1]

cmp4.ge p1,p2=n,count

(p1) chk.a out0(p1) chk.a t3

l Speculative edges may be violated. Here the graph is re-drawn to show
the enhanced parallelism

l Note that the speculation of both writes to the out0 register would require
insertion of a copy. The scheduler must consider this in its scheduling

l Nodes with sufficient slack (e.g. writes to out0) will not be speculated

(p1) out0 = t5

Page-25ISCA 2000 tutorial

Downward Code Movement

A B

C

Predication enables
downward code
movement from A to C
without compensation
code in B

A

C

Compensation Block

Merge Block

Main Trace

Use predication to
merge sparse code in
compensation block with
code in merge block

Page-26ISCA 2000 tutorial

Code Motion Tradeoffs

A

D

CB

Slots available in hot path

Predication can pull instructions
from lower weight path

Downward
Code Motion

Upward
Code Motion

Scheduler can move
instructions from above and
below

Page-27ISCA 2000 tutorial

Multiple Branches in Single Cycle

cmp.lt p1,p0=a,b
cmp.lt p2,p0=b,c

(p1) br s1
(p2) br s2

s3

• Multiway branches: Speculate compare to get predicates
ready
• Result: processing multiple branches in single cycle

a < b

b < c
s1

s2
s3

Page-28ISCA 2000 tutorial

Global Code Scheduling Design

l Move code above
branches using predication
and/or speculation

l Move code below branches
using predication

l Move loads and uses
across stores that are
unlikely to interfere and
generates checks and
recovery

l Combine memory
references and address
increments to generate
post-increments if r6 and r7
only have life-range in the
blocks

br

ld r5= [r6]
r7= r6+4
st [r7]=

br

ld.s r5 =[r6],4
br

(p1) chk.s r5
(p1) st [r6]=

r5=

r5=

Before:

After:

Page-29ISCA 2000 tutorial

(4) Global Register Allocation

lObjective
½Eliminate memory references. Minimize register

spill and copying after load-store elimination
(virtual registers)

lIncorporating architectural features
½Large number of registers
½Predication
½Data speculation

Page-30ISCA 2000 tutorial

Register Allocation Example

lModeled as a graph-
coloring problem
½Nodes in the graph

represent live ranges
of variables

½Edges represent a
temporal overlap of the
live ranges

½Nodes sharing an
edge must be
assigned different
colors (registers)

x = ...
y = ...

= ... x
z = ...
 = … y
 = … z

y

zx

Requires Two Colors

y

z

x

Page-31ISCA 2000 tutorial

Register Allocation Example

x = ...
y = ...

x

zy

With Control Flow

z = ...
 = … z

 = … y
x = ...

 = … x

x

y

z

Requires Two Colors

Page-32ISCA 2000 tutorial

Register Allocation Example

x

zy

With Predication

xx = ...

y = ...

z = ...

 = …y

x = ...

 = …z

 = … x

z

Now Requires Three
 Colors

y

(p2)

(p1)

(p1)

(p2)

Page-33ISCA 2000 tutorial

Predicate Analysis for the Example

p0

p2p1

x

y
x = ...

y = ...

z = ...

 = …y

x = ...

 = …z

 = … x

z

p1 and p2 are disjoint
If p1 is TRUE, p2 is false

and vice versa

(p2)

(p1)

(p1)

(p2)

Page-34ISCA 2000 tutorial

Register Allocation Example

x

zy

With Predicate Analysis

x

y
x = ...

y = ...

z = ...

 = …y

x = ...

 = …z

 = … x

z

Now Back to Two
 Colors

(p2)

(p1)

(p1)

(p2)

Page-35ISCA 2000 tutorial

Effect of Predicate-Aware Register
Allocation

(p1) r32 = 10
(p2) r32 = 20 ;;
(p1) st4 [r33]= r32
(p2) r34 = r32 + 1 ;;

• Reduces register requirements for individual
procedures by 0% to 75%

• Depends upon how aggressively predication is applied

• Average dynamic reduction in register stack allocation
for gcc is 4.7%

(p1) v1 = 10
(p2) v2 = 20 ;;
(p1) st4 [v10]= v1
(p2) v11 = v2 + 1 ;;

v1 v2

overlapped
 live ranges

same register for v1 and v2

Page-36ISCA 2000 tutorial

Minimize ALAT Conflict

ld.a rx = ...

ld.a ry = ...

st

chk.a rx, ..

chk.a ry, ..

• Assign registers to the live ranges of the advanced loads
to eliminate possible conflict in ALAT (Advanced Load
Address Table)

ALAT

Entry iReg # Address

Page-37ISCA 2000 tutorial

(5) Modeling The Machine

l Objective: Provide
micro-architecture
information to the rest
of the compiler
½Machine characteristics

read from
microarchitecture
description file, which is
used by simulator and
other tools.

Machine Model

PRDSWP Misc.GCS

Descriptor

Page-38ISCA 2000 tutorial

Modeling The Machine

l Objective
½Map instruction to resources as instructions are

scheduled. Manage machine resources
½Help in the scheduling of the backend of the pipeline

(after decoupling buffer)
½Handle the bundling details, coupled with dispersal

knowledge
½Decide on mid bundle stop bits based on

✔ resource requirements
✔ code size

l Details of the machine are abstracted away for the
rest of the compiler

Page-39ISCA 2000 tutorial

Summary

l Compiler is critical for IA-64 performance
½backend should take full advantages of IA-64

architectural features to generate optimal code
l Optimizations

½Profiling
½ Interprocedural optimizations

l If-conversion
½predication with various compares

l Global scheduling cross basic block boundaries
½control and data speculation, post-increments, multiway

branches,
l Global register allocation

½ register stack, ALAT associativity
l Driven by information provided by machine model

Page-40ISCA 2000 tutorial

Dynamic Optimization Technology on
IA-64

Jesse Fang
Microprocessor Research lab

Page-41ISCA 2000 tutorial

IA-64 Architecture Advantages for Java

lJava has more method invocations than C/C++
function calls
½IA-64 has more registers and register stack engine

lJava has smaller basic blocks in methods
½IA-64 has predication and speculation

lGarbage collection has write barrier as bottleneck
½IA-64 has more registers and predication

lJava has exception handling functionality
½IA-64 recovery code mechanism can handle it very

well
lJini requires large “name space” for Java

½IA-64 has 64-bit address

Page-42ISCA 2000 tutorial

IA-64 Java Software Convention

l JIT generated code follows IA-64 software conventions
including
½parameter passing
½memory stack management
½general register usage guidelines

l JVM may reserve extra registers within IA-64 register
usage guidelines for memory and thread management,
which should be allocated
½ from r4 up for preserved registers
½ from r14 up for scratch registers
½JVM cannot assume that native code abides by the additional

Java register usage restrictions

Page-43ISCA 2000 tutorial

Java JVM/JIT Design on IA-64

l Dynamic profiling information
½not only branch frequency but also info from performance

monitor registers

l Dynamic optimization JIT for hot regions
½not only hot methods but also hot basic blocks
½book-keeping in JVM

l Light-weight optimization algorithms
½speculation in global code motion
½predication in if-conversion

l Garbage collection on IA-64
½memory hierarchy management
½preserve registers for write-barrier (read-barrier)

l Java virtual machine on IA-64
½64-bit pointer

Page-44ISCA 2000 tutorial

Object-Oriented Code on IA-64

Challenges
½Small Procedures, many

indirect (virtual)
✔ Limits size of regions,

scope for ILP

½Exception Handling

½Bounds Checking (Java)
✔ Inherently serial - must

check before executing
load or store

½Garbage collection

Solutions
InliningInlining

•• for non-virtual functions orfor non-virtual functions or
provably unique virtualprovably unique virtual
functionsfunctions
•• Speculative inlining for most Speculative inlining for most
common variantcommon variant

LivenessLiveness analysis analysis
Architectural support forArchitectural support for
speculation ensuresspeculation ensures
recoverabilityrecoverability

Dynamic optimization (Java)Dynamic optimization (Java)
Make use of dynamic profileMake use of dynamic profile

Speculative executionSpeculative execution
Guarantees correct eventGuarantees correct event
 behavior behavior

More register preserved for GC

Page-45ISCA 2000 tutorial

Dynamic Optimizations for C/C++

l Profiling information is not always ready for static
compiler
½ it relies on input data files sometimes
½not all ISVs would like to use profiling

l Advantages of IA-64 to support dynamic profiling
½not only collect branch frequency but also info from

performance monitor registers

l Dynamic optimizations focus on
½cache missing
½branch misprediction

l Various models for dynamic optimizations
½on-line profiling collection
½off-line (or on-line) optimizations

l More challenging for C/C++ than for Java

Page-46ISCA 2000 tutorial

Summary

lJava on IA-64
½IA-64 advantages for Java
½IA-64 Java software convention
½JVM/JIT design on IA-64

lObject-Oriented code on IA-64
½virtual procedure calls
½precise exception handle
½garbage collection

lTake advantages of IA-64 architecture
for dynamic optimizations

