

IBM ~ pSeries 650
Performance and Tuning

Bret Olszewski
 breto@us.ibm.com

December 4, 2002

Introduction

On November 12 2002, IBM announced the
IBM ~™ pSeries™ 650 server. This is the first
POWER4+™ microprocessor in a UNIX ® mid-range
system. The p650 gives customers unprecedented
performance, granularity, and reliability in a package
which should appeal to the most demanding customers.
This document discusses aspects of software tuning
associated with the p650 system.

p650 Structure

The p650 system structure is inspired by its award-
winning1 sibling, the pSeries 690 server. The p650 is
the first pSeries system to utilize the POWER4+ chip.
This chip is an enhanced version of the POWER4™

microprocessor that powers the p690. The POWER4+
chip is fabricated with IBM’s latest 0.13 micron
technology. This allows the chip to be faster, smaller
and to consume less power, even with an increase in the
amount of on-chip cache. Since a POWER4+ chip
contains two independent microprocessors, the
processor granularity, or increment of processing
power, is by chip. Thus, a p650 system may have two,
four, six, or eight POWER4+ microprocessors. Each
POWER4+ chip is packaged on a single chip module
(SCM), as part of the processor “book”. Also
incorporated onto this processor book is a Level 3 (L3)
cache and eight memory DIMM slots.

Memory must be populated in groups of four identical
DIMMs. Each processor book can contain two four
DIMM groups of differing sizes. All processor books
must have the same DIMM configuration. Sustainable
bandwidth is not significantly affected by the size of the
memory DIMMs.

The p650 is packaged to allow flexibility in both
processing density and I/O expandibility. Each p650
occupies an eight EIA unit (8U) drawer, allowing up to
five p650 systems in an 19-inch T42 IBM rack. It is
possible to add up to eight I/O expansion drawers,
giving a maximum of 55 I/O slots. IBM’s hardware
management console (HMC) support is optional, but is
required to support logical partitioning (LPAR) and
clustering (planned for 1H03). LPAR allows running
multiple operating system instances simultaneously on
a single system. The p650 LPAR support, when used
with AIX 5L™ v5.2, allows dynamic reconfiguration of
processors, memory, and I/O between operating system
instances without the need to reboot the partition.

Figure 1 shows an overview of the p650 packaging and
features.

RS232

IBM

H C R U6

server

IBM

H C R U6

server

IBM

H C R U6

server

IBM

H C R U6

server

IBM

H C R U6

server

HMC

p650

p650

p650

p650

p650

p650
8U 19" rack-mount drawer
Up to 5 p650 systems / 42U rack
2, 4, 6, 8 procesors / system
Up to 64 GB / system
7 PCI-X slots
4 hot-swappable disk bays
2 hot-swappable media bays

Optional 4U 7311-D10 I/O Drawer
Each drawer has one PCI and
five PCI-X slots
Half-wide drawers are mounted
side-by-side in 4U space
Hot-plug PCI support

Hardware Management Console
(HMC)
LPAR and dynamic LPAR
support

Figure 1 - p650 Features

p650 Specific System Tuning

The p650 system generally functions with excellent
performance for all applications. System specific
tuning is not required for either 32-bit or 64-bit
applications. The AIX 5L v5.2 operating system
optimizes a number of common library operations (e.g.
bzero, memset, memmove) using architecture-specific
instruction sequences. These optimizations maximize
performance for POWER4 systems and are transparent
to applications. The AIX 5L operating system provides
two kernel alternatives, the 32-bit kernel and the 64-bit
kernel. Both AIX® kernels support the 64GB
maximum physical memory configurable on the p650.
However, kernel intensive workloads usually show
slightly better performance using the 64-bit kernel. In
general the performance differences between the
kernels on p650 typically measure at most a few
percent. The p650 may operate with logical
partitioning (LPAR mode) or without (symmetric
multiprocessing mode). The overhead of running
under LPAR is normally proportional to the amount of
time in the operating system. This is a result of the fact
that the hypervisor, or software which provides
isolation between operating system instances, runs
function on behalf of the operating system. For kernel
intensive workloads, LPAR generally results in
overhead on the order of two to five percent.

Computationally intensive applications can benefit from
POWER4 specific optimizations. The IBM compilers,
including C for AIX Version 6.0, Visual Age C++
Professional for AIX Version 6.0 and XL Fortran for
AIX Version 8.1, support POWER4 code optimizations.
The subject of POWER4 coding and optimization is
covered in the IBM Redbook “The POWER4 Processor
Introduction and Tuning Guide”, ISBN0738423556.

p650 Tuning_120402.lwp Page 2 of 8

As with the p690, the p650 provides a hardware option
which can be used to optimize performance of
applications.

p650 Performance Firmware Option

The p650 provides one level of hardware specific
tuning to the end customer. This is applicable only on
the 1.45 GHz version of the product. The tuning mode
can be selected via the service processor menu, as
shown in Figure 2.

 L3 Mode Menu

 Default L3 Mode : Currently Shared (/Private)

 1. Private/Shared L3 Mode:
 Currently Shared (/Private)

 98. Return to Previous Menu
 0>

Figure 2 - Firmware Menu

To understand the effects of this mode option, it is
necessary to describe the cache structure of the p650.
As described earlier, each processor book contains a
POWER4+ chip, memory, and an L3 cache. An
eight-way system is constructed using four processor
books, each with a POWER4+ chip, L3 cache and
memory. On the 1.45 GHz model, each L3 cache is
32MB in size, giving a total of 128MB of L3 cache for
an eight-way system. The 1.45 GHz model is identified
by the processor card feature code 5208 or 8051. On
the 1.2 GHz model, each L3 cache is 8MB in size,
giving a total of 32MB of L3 cache on an eight-way
system. The 1.2 GHz model is identified by the
processor card feature code 5122 or 8050. The memory
and L3 which is on the processor book is referred to as
“local” when accessed by a POWER4+ processor on the
book. When memory or L3 is accessed by a processor
from another processor book, it is referred to as a
“remote” access. While the latency differences between
local and remote accesses are fairly small, on the order
of 16 percent, they are measurable in some application
environments.

The processor books are connected in a ring topology.
The address and data paths that connect the processor
books are separate and are generically referred to as the
fabric bus. Addresses and data for bus transactions
that involve moving data between books in the system
traverse the ring. Within each book, multiple paths
exist for address and data traffic. Figure 3 shows the

internal topology for the processor book. The figure
shows address bus paths to the POWER4+
microprocessor’s L3 cache controller (L3C), the
on-chip shared Level 2 (L2) cache, the GX I/O
controller logic, and two non-cacheable units (NCU).
Data paths exist connecting the L3C, the L2 and the
GX bus along with additional internal data paths. If
either of the two processors on the chip extract data
from the local L3 cache or the local memory, the data
travels internally within the processor book, avoiding a
hop on the inter-book bus fabric.

The internal working of the microprocessor make it
possible to efficiently source data, whether from the
memory, L3 cache, or one of the internal
microprocessor caches to the fabric bus. The wealth of
data paths makes the system very scalable as contention
to data paths is minimized.

NCU

CPU CPU

L2 NCU GXL3C

Data

Address

L3
Data

Memory

Figure 3 - p650 Book Dataflow

Two modes of L3 operation are permitted on the
1.45 GHz model, private and shared. In private mode,
shared data for the same cache line may exist in other
L3 caches simultaneously, but modified data for a cache
line can only be resident in the L3 associated with its
memory. So, in general, a processor has access to the
amount of L3 cache local to it for unmodified data. The
mapping of an address to memory location is on a page
basis. All of the cache misses for a physical page will
go to the same processor book’s memory.

In shared L3 mode, there is always a one-to-one
mapping from an address to a cache block where the
data resides. This has three obvious benefits. First, for
shared data there is never more than one copy
occupying cache. In private mode, it is possible for a
shared item, for example part of a program’s executable
file, to occupy space in all of the L3 caches at the same

p650 Tuning_120402.lwp Page 3 of 8

time. Second, it gives a single program the ability to
use all of the cache available on the system if needed.
Third, the mapping of address to physical memory is
striped on 512-byte boundaries. This gives the
processor the ability to distribute the access for cache
lines of a page across memory on all of the processor
books in the system. Figure 4 shows each 4096 byte
page is backed by memory on each processor book on
an eight-way system. The first 512 bytes of the page
map to one book, with each 512 bytes mapping to the
next book, until after 2048 bytes the mapping returns to
the first book.

SCM0
Memory

SCM1
Memory

0000

0128

0256

0384

0512
0640

0768

0896

1024

1152

1280

1408

1536

1664

1792

1920

SCM2
Memory

SCM3
Memory

Program addresses are mapped to
cache lines of 128 bytes. Each
contiguous group of 4 caches lines
is mapped to the same SCM memory.
On an 8-way system, there are
four distinct SCM's and memory.
Since the mapping of program
addresses to memory is 1-to-1,
sweeping through memory "stripes"
accesses across all of the SCM
memory, optimizing bandwidth

2048
SCM0

Memory

Figure 4 - Shared L3 Page Mapping

Shared L3 mode usually provides the best performance
for applications. But, shared L3 mode has a
performance drawback for some workloads. Due to the
dataflow properties of the POWER4+ microprocessor,
data which is sourced from memory to a remote book’s
processor is not always cached in L3. The impact of
this is that workloads that share large amounts of data
which is not modified will sometimes run more
efficiently in private L3 mode. The effect has been seen
to be largest in workloads with extremely large
executable files. Since executable files are not usually
modified, the instruction fetches may go all the way to
memory when they could be cached in L3. In general,
the range of performance difference between shared L3
mode and private L3 mode is less than ten percent, with
most workloads observed at just a few percent.

Shared L3 mode requires symmetric memory subsystem
configuration. On a multi-book system, if some
component of the memory subsystem fails on a card,
such as a DIMM, the next system reboot will be in
private L3 mode. Thus, some hardware failures which
can be functionally tolerated will result in a change to
system performance behavior. The six-way 1.45 GHz
system always runs in private L3 mode. When
benchmarking an 8-way system with two processors

disabled, it is not equivalent to a true 6-way system. In
this case, the L3 associated with the disabled processors
continues to run, allowing additional L3 cache as well
as the opportunity to run in shared mode. Additionally,
memory attached to the processor book is allocated
whether or not the processors on that book are disabled.

Run Time Variability

The elapsed or CPU time it takes to run a task can be
impacted by a number of factors. While most
customers understand that the run time for a given task
can be affected by other tasks on the system as well as
nuances of operating system resource management,
there are cases where having consistent CPU
consumption across runs of the same program is
desirable. Since CPU consumption is accounted by a
sampling technique in AIX, it is unreasonable to
assume that run to run CPU consumption will be
consistent for tasks that run only a short period of time.

For programs with long execution time, variability can
be introduced a number of ways. For example, if two or
more threads are running on the same POWER4+ chip,
they may compete for shared resources. These shared
resources include the L2 cache and the bandwidth from
the chip to memory. Normally, the high level of
associativity of the L2 cache will keep variability to a
minimum. But if a thread assumes it has the entire L2
cache to itself, say to “block” an array, the cache will
not be exclusively available if a thread on the other
processor on the chip is also running. The bandwidth
to memory is infrequently an issue with POWER4+, but
it needs to be considered.

Run time variability can be encountered on the p650
when the L3 caches are run in private mode. The
variability is a consequence of the latency and
bandwidth to local memory being different to remote
memory. Since the allocation of pages to a program is
the responsibility of the operating system, the
program’s ratio of “local” pages to “remote” pages can
vary from run to run. Normally this isn’t an issue,
since program working sets tend to fit within the L2
and L3 caches local to the processor. But, if the
program is memory bandwidth or memory latency
intensive, this can result in CPU time variability.
Figure 5 shows that a program, run twice with exactly
the same data set could get two completely different
mappings of a program array to local and remote
memory. If the program is extremely bandwidth
intensive, the second run with less local page allocation
would take more CPU time to execute than the first run.

p650 Tuning_120402.lwp Page 4 of 8

local memory

remote memory

local memory

remote memory

program
array

program
array

run
#1

run
#2

This run gets 5/8 local memory

This run gets 2/8 local memory

Figure 5 - Memory Allocation

Memory Affinity

With AIX 5L v5.1.0.25 and above, support for memory
affinity is available on POWER4 systems with most
levels of firmware. Memory affinity is a feature of the
AIX 5L operating system which attempts to allocate
memory for programs based on system topology. On
the p650, memory affinity is irrelevant if running in
shared L3 mode. This section briefly touch on AIX
memory affinity support. This feature is documented in
the AIX Performance Management Guide.

As of this writing, memory affinity is not supported
under LPAR. To determine if an AIX 5L instance is
running under LPAR or not, use the uname -L
command. This command returns the partition number
and name when running under LPAR. If not running
under LPAR, the command returns “-1 NULL”.
Memory affinity requires firmware support, which is
included on all p650 systems.

With AIX 5L v5.1, memory affinity is enabled with the
following command:

vmtune -y 1

With AIX 5L v5.2, centralization of performance
tuning commands is accomplished with the vmo
command. To enable memory affinity, enter the
following command:

vmo -r -o memory_affinity=1

After running vmtune or vmo it is necessary to run the
bosboot command. Once the bosboot command is

executed, the system must be rebooted for memory
affinity to take effect. Memory affinity allows AIX to
manage the physical memory of the system in “pools”.
One or more pools may be used to represent the local
memory for a group of POWER4+ chips. The memory
configuration rules of the p650 require that each
processor book have the same amount of physical
memory attached. This results in AIX having equal
sized memory pools. Since AIX loads some kernel data
in fixed locations of memory, there is less memory
available in the pool(s) associated with the first
processor book when the L3 cache is configured in
private mode.

Memory affinity usage is different between AIX 5L v5.1
and v5.2. In AIX 5L v5.1, the enablement of memory
affinity causes each page instantiation to attempt to
map the new page to memory local to where the thread
is currently running. This can be undesirable for some
kinds of applications. For example, if a multi-threaded
application is coded such that a single thread does the
initial touch of all memory and then creates threads for
parallel execution, the memory for all the threads may
be allocated on one processor book.

Under AIX 5L v5.2, flexibility is improved to provide a
measure of user control over memory affinity. When
memory affinity is enabled, the default behavior of AIX
is to allocate pages across all of the pools in a
round-robin fashion. For example, on an eight-way
p650, the allocation of four pages faults in a row by a
thread will result in each of the pages on different
processor books’ memory. The striping of memory is
very desirable in general for obtaining repeatable
processor time consumption for tasks. It has the effect
of randomizing the allocation of memory throughout
the system. Though striping will usually result in
repeatable performance, it will not always result in
optimal performance. For some applications, primarily
simple single-theaded ones, it is best to allocate
memory on the processor book associated with the
processor. This may be accomplished with the use of
the MEMORY_AFFINITY environment variable. To
trigger local memory for threads started in a shell, set
the environment variable as:

MEMORY_AFFINITY=MCM

To some extent, the decision on p650 is a tradeoff
between latency and bandwidth. Striping memory
access across processor books can provide higher
bandwidth for sequentially accessed data. But if data is
more randomly accessed, there is less memory latency
for local affinity. If you don’t have a clear

p650 Tuning_120402.lwp Page 5 of 8

understanding of the application, it may be necessary to
run it both striped and with MCM affinity to determine
which mode provides the balance between absolute
performance and repeatable CPU consumption.

Sensitivity of the Choices

In general there are three classes of workloads in regard
to L3 cache and memory affinity tuning:
� Workloads that exercise memory bandwidth
� Workloads that fit well in cache
� Workloads that fit well in cache without significant

sharing of unmodified data

A good example of a workload that exercises memory
bandwidth is STREAM
(http://www.cs.virginia.edu/stream). This benchmark
is composed of a number of subcomponents which drive
various patterns of memory access. Table 1 shows
single process results generated on an eight processor
p650 1.45 GHz model using the three modes. The data
shows that shared L3 provides the most bandwidth to a
single processor. If using private L3, striping the
processor storage over all of the processor books of the
system allows data prefetch to take advantage of more
bandwidth inherent in accessing more DIMMs in
parallel. But MCM memory affinity provides the least
bandwidth, as all of the accesses go to the same
processor book’s DIMMs.

2,403 MB/sec4,329 MB/sec4,360 MB/sectriad
2,287 MB/sec4,380 MB/sec4,343 MB/secadd
2,025 MB/sec4,120 MB/sec4,726MB/secscale
2,200 MB/sec3,699 MB/sec4,669MB/seccopy

Private L3
MCM
memory
affinity

Private L3
striped
memory
affinityShared L3

Table 1 - Single Process STREAM Measures

In general, the multi-process STREAM results follow
the same trend. Shared L3 and private L3 with striped
memory affinity tend to have very close performance.
Private L3 mode with MCM memory affinity has the
least sustainable bandwidth.

A good example of workloads that fit well in cache is
the SPEC SDM 057.sdet workload. This workload is
composed of a set of shell scripts which mimic users.
Because the shell scripts contain commands of very
short duration, the processes tend to exist in the caches
of the system, and they rarely spill to memory. Because
the workload doesn’t drive much memory bandwidth,
its performance is about the same running in any of the
three modes. Another application, one representing

Web serving, with a bigger footprint than Sdet, runs
approximately four percent better in shared L3 mode.
An internal workload which mimics online transaction
processing (OLTP) is an example of an application with
considerable sharing of unmodified data. This large
application with an enormous instruction and data
footprint is the best example of a workload which
benefits from private L3 mode with MCM-level
memory affinity. It runs approximately ten percent
faster in this mode than in shared L3 mode.

Table 2 shows the L3 mode used for a number of
announced benchmarks on p650. These benchmark
results show the benefit of POWER4 technology in both
commercial and scientific and technical computing
environments.

Shared8SPECjbb2000
Shared8SPECsfs97_R1
Shared8SPECweb99
Private8SPEC OMPM2001
Private8SPECfp_rate2000
Private8SPECint_rate2000
L3 mode# of processorsBenchmark

Table 2 - Benchmark L3 Modes

Pitfalls of Memory Affinity

While memory affinity can be effective in many cases,
there are situations where tradeoffs between affinity and
balanced use of resources must be made. The most
fundamental decision to be made is in weighing the
value of memory affinity versus processor utilization.
When starting a program with memory affinity, the
operating system chooses the processor where the new
program’s initial thread will start running. Once the
thread is running on a processor, it begins to build its
address space by touching pages and experiencing page
faults. The initial thread placement decision is based
on the utilization of processors in the system.
Generally, if there is an idle CPU, it will be the
recipient of the new thread. This methodology will
optimize the system for CPU balance, but not
necessarily for memory balance. It is entirely possible
that the least busy CPU will be associated with memory
which is mostly consumed by previously running
processes. In this case, as the new thread runs and
touches new pages, the physical memory allocated for
those pages will contain a higher percentage of remote
memory. The difficulty of placement is compounded by
the fact that the operating system does not know when
starting a program how much memory it will consume.

p650 Tuning_120402.lwp Page 6 of 8

A related effect occurs as a system runs. While the
placement of new threads might be good, the balance of
threads running in the system will likely change over
time. Figure 6 shows a progression where the initial
thread placement of job#5 was made based on the fact
that all four of the CPU’s in the complex were busy.
But, since CPU1 became idle while job#1 and job#5
were both running on CPU0, we took advantage of the
idle CPU by moving job#5 to CPU1. While this allows
job#5 to make more rapid progress, since it is no longer
competing with job#1 for CPU time, its memory
accesses are now remote. This results in job#5 taking
more CPU time to complete than if it had remained on
CPU0. But, it will complete more rapidly in wall clock
time.

job #1

job #2

job #3

job #4

CPU0

CPU1

CPU2

CPU3

Job #5
starts,placed
on CPU #0

job #5

job #5

When job #2 completes, CPU1 is
running no threads, job#5 moves to it

Job #5 runs on CPU1, but its
pages were allocated on CPU0,
so its storage is non-local

Time

Figure 6 - Process migration

Strict placement of threads is possible with the
bindprocessor command or bindprocessor system call.
Binding to a processor prohibits a thread from being
load balanced onto a different processor. In general,
bindprocessor should be used with care, as it is not a
very flexible mechanism for resource management. For
more information on bindprocessor, see the AIX
documentation.

RSETS

If CPU time variability is a greater concern than
throughput, or the workload environment is managed to
keep the number of active threads consistent with the
number of processors on the system, explicit control
over CPU placement may be beneficial. To that end,
AIX 5L v5.2 provides mechanisms to create resource
sets consistent with system topology. It is possible to
initiate programs attached to resource sets in order to
manage their use of system resources. For more
information, consult the AIX 5L v5.2 documentation.

Recommendations

On either 1.2 GHz or 1.45 GHz models with two
processors, the L3 mode firmware option is ignored.
Additionally, there is no value running with memory
affinity as memory is all local on the single processor
book.

On 1.2 GHz models, only private L3 mode is available.
If running under LPAR, where there is currently no
memory affinity support, some CPU variability will be
noted. If running in SMP mode, variability can be
mitigated to some extent by enabling memory affinity.
Expectations on the effectiveness in memory affinity
solving the problem must be tempered by an
understanding of the limits of the operating system with
respect to the customer environment.

On four and eight processor 1.45 GHz models, the
default shared L3 mode will typically be the best overall
choice, whether running LPAR or SMP. In general, the
tradeoff between performance and repeatable CPU
consumption is best served in this mode. Under LPAR,
it is particularly advantageous, since memory affinity is
currently not supported. Note that six processor models
must run in private L3 mode, so the recommendations
for those are the same as for 1.2 GHz models. For some
applications, throughput improvements can be noted in
SMP mode running with memory affinity and private
L3 mode. The performance gains for these atypical
environments are usually on the order of a few percent,
with the most extreme case improvement on the order
of ten percent.

p650 Tuning_120402.lwp Page 7 of 8

1 pSeries 690 awards include eWeek
magazine’s eXcellence award for best server
hardware (April 2002) and VARBusiness’
Editors’ Choice Award (December 2001).

Copyright IBM
Corporation 2002

IBM Corporation
Marketing Communications
Server Group
Route 100
Somers, New York 10589

Published in the United States of America
12-02
All Rights Reserved

This publication was developed for products
and/or services offered in the United States.
IBM may not offer the products, features, or
services discussed in this publication in other
countries. The information may be subject to
change without notice. Consult your local IBM
business contact for information on the
products, features and services available in
your area.

All statements regarding IBM’s future directions
and intent are subject to change or withdrawal
without notice and represent goals and
objectives only.

IBM, the IBM logo, the e-business logo,
^, AIX, AIX 5L, POWER4, POWER4+,
pSeries are trademarks or registered
trademarks of International Business Machines
Corporation in the United States or other
countries or both.

UNIX is a registered trademark of The Open
Group in the United States and other countries.

Other company, product, and service names
may be trademarks or service marks of others.

IBM hardware products are manufactured from
new parts, or new and used parts. Regardless,
our warranty terms apply.

Photographs show engineering and design
models. Changes may be incorporated in
production models.

Copying or downloading the images contained
in this document is expressly prohibited without
the written consent of IBM.

This equipment is subject to FCC rules. It will
comply with the appropriate FCC rules before
final delivery to the buyer.

Information concerning non-IBM products was
obtained from the suppliers of these products.
Questions on the capabilities of the non-IBM
products should be addressed with the
suppliers.

All performance estimates are provided “AS IS”
and no warranties or guarantees are expressed
or implied by IBM. Buyers should consult other
sources of information, including system
benchmarks, to evaluate the performance of a
system they are considering buying.

The IBM home page on the Internet can be
found at www.ibm.com

The pSeries home page on the Internet can be
found at www.ibm.com/servers/eserver/pseries

p650 Tuning_120402.lwp Page 8 of 8

