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Abstract

From the point of view of an operating system, a computer
is managed and optimized in terms of the application
programming model and the management of system
resources.  For the TFLOPS system, the problem is to
manage and optimize large scale parallelism.

This paper looks at the management in terms of three key
topics:  memory management, communication, and
input/output.  For memory management, we discuss some
of the design decisions made including the appropriate use
of  demand paged virtual memory in the system.  For
communication, we describe the software protocols and
interactions that permit a system of 4500 nodes to
approach the maximum hardware performance. For I/O,
we look at the problem of funneling data from many
computation nodes to a small number of external devices.

Introduction

Providing high performance computing is the overriding
goal of the Department of Energy’s Accelerated Strategic
Computing Initiative (ASCI) program.  Some of the
performance requirements of the system Intel built for the
DOE are as follows:

� a minimum one TeraFLOPS  (TFLOPS) sustained

floating point performance on MPLINPACK (a
parallel benchmark)

� a minimum one Gigabyte (GB)  per second of
sustained disk I/O to a one Terabyte (TB) file
system for a given application

� a reliable file system that can tolerate the failure of
one disk without any loss of data

 This paper looks at the design tradeoffs and decisions
regarding the operating system that were made in order to
meet the above requirements. We examine the
interrelationships between three components of the
operating system:

� memory management

� communication between nodes

� access to the file system

 One component we discuss is the Parallel File System
(PFS) that makes a sustained throughput of one GB/sec
possible. There are performance problems inherent in a
file system that is not local to the compute nodes.  There
also are scalability issues involved with I/O on a system
containing 4500 compute nodes with only 18 nodes
providing file I/O.  We will show the motivation for the
system architecture that gives rise to such issues in the
first place and discuss the solutions.  Inter-node
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communication is critical to I/O performance in a system
where remote nodes handle I/O requests.  The memory
management design, in turn, is critical to communication
performance. Design decisions in all of these areas were
closely interrelated and we will discuss these also.

 Each node in the TFLOPS system can be thought of as an
enhanced, dual-processor PC with additional
communications capability.  A node has two 200MHz
Pentium� Pro microprocessors and 128MB of memory.
It has the capability for symmetric multi-processing
between the two processors.  On the I/O nodes, a 32-bit
PCI bus is added as well as an additional 128MB of
memory.  This allows off-the-shelf PCI cards to be used
for I/O.  The nodes are connected via an 800MB/sec bi-
directional communications network.

 The programming model for this system views an
application as a set of cooperating, autonomous processes.
Many applications run on all the compute nodes for tens
or even hundreds of hours at a time.  Each process in the
application is independent. If a process exits, all other
processes in the application can continue to run.  Explicit
message passing is used to exchange information between
the processes in an application. The UNIX* programming
environment is provided for applications. However,
providing this environment does not require UNIX to
actually run on a compute node.  It just requires that
UNIX library calls be supported by the OS on the
compute nodes. Almost all of the standard UNIX chapter
two and three library calls are available to the
programmer. Additional entry points have been added for
message passing and asynchronous I/O operations.

 The architecture of the system is Multiple Instruction
Multiple Data (MIMD) with distributed memory.  The
machine runs two separate operating systems, each
specialized for the tasks performed by the two sections of
the machine (see Figure 1).  One section of the machine
contains the service and I/O partitions and runs the
TFLOPS Operating System (TOS) [1].  The other section
of the machine contains the compute partition that runs the
Cougar Operating System [2]. Parallel applications run
only under Cougar in the compute partition. The
distinction between the two sections of the system is only
in the software.  The nodes and communications network
in both sections are identical. Each section of the machine
is scalable.  A scalable operating system means the
number of nodes in the machine can be increased without
modifications to the OS.  When nodes are added, the
performance of a scalable system increases approximately
in proportion to the number of additional nodes. This
capability is extremely important to achieving the required
performance in this system and will be discussed in the
memory management section of this paper.
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 Figure 1: Overview of the TFLOPS system
architecture

 The two operating systems must communicate in order for
applications to run.  (In this paper, references to
applications always mean parallel applications running on
the compute nodes unless TOS processes are explicitly
mentioned.)  All communications between TOS and
Cougar are done exclusively via message passing.  While
TOS has several communications’ protocols,  a single
protocol is used for communications between TOS and
Cougar.

 One important interaction between the two operating
systems occurs when an application is invoked.  All
applications are invoked on the service partition, but run
on the compute nodes.  A  TOS process is started by the
user and it causes the application to be loaded on the
desired compute nodes.  This loader process sends
messages to one compute node that fans out the messages
to the other compute nodes.  Once the application is
loaded on all the compute nodes, the application is then
started by the loader process.

 TOS is derived from the Paragon Operating System.  It
provides UNIX services to the users.  All user interaction
occurs within the TOS section of the machine.  TOS is
scalable, yet provides  the users with a “single system
image.” For example, if there are 30 people on the
machine, each person may be running processes on any
one of the 17 TOS nodes in the service partition.
However, to each user it will look like one large
computer. This allows access to all components of the
system, such as disks and networks, no matter which node
in the machine a user is logged into.

 The scalability of the TOS section allows a number of
UNIX processes to run concurrently, increasing job
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throughput and system response for users.  A multi-node
service partition also increases the aggregate
communications bandwidth between the TOS processes
that control the applications and the applications running
on the compute nodes.

 Cougar is derived from the Puma technology developed
by Sandia National Laboratories and the University of
New Mexico. It is a small OS (<1MB) designed to
manage node resources and processes, provide protection,
and facilitate message passing.  One of the design goals
for Cougar was to be small and deterministic.
(Deterministic means the system will produce consistent
execution time for applications from run to run.)
Programmers want a deterministic system in order to
accurately predict the performance of their applications.
This is particularly important for TFLOPS applications
where the binaries can be 6-8MB in size, or even larger,
and run for hundreds of hours. Cougar must also be
scalable, as the final machine requires over 4500 compute
nodes to achieve the desired computational requirements.

 All I/O requests on the compute nodes are handled by the
TOS section of the machine.  Each request causes a
message to be sent to the appropriate TOS process which
then sends a reply, if one is required.  This mechanism is
used for both standard I/O (standard in/out/error) and file
I/O.

 This separation of computation and I/O had a profound
effect on the design of the system.  The remainder of this
paper will discuss some of the problems that were caused
by this separation. As the solutions to these problems
involve both memory management and communications,
we first discuss computational aspects of the system,
concentrating on memory management.  Then we discuss
communications’ problems and solutions, followed by a
detailed discussion of I/O in the TFLOPS system,
including a description of PFS.

 Memory Management on the Compute Nodes

 This section discusses how performance requirements
motivated certain design decisions in compute node
memory management. It shows how the memory
management design is tied to message passing and I/O
performance.

 The compute nodes run the Cougar operating system,
which is optimized for scientific applications with some
specialized requirements.  In general these applications
require the following:

� intensive computation

� massive amounts of data in memory

� fast communication between nodes

� a high performance file system

 A key requirement that influences design decisions is that
application performance must scale in proportion to the
number of nodes.  If the program is too slow or requires
more memory, the user can run it on more nodes.  In
principle, it is possible to add more nodes to the system
itself to increase its performance.  Adding  nodes can
improve the performance in the following ways:

� More processors are available for higher overall
computation speed.

� More memory is available to the application.

� There is higher aggregate memory bandwidth across
all the nodes.

 Of course, adding nodes does not in itself guarantee better
application performance.  The application design must
also be scalable to take advantage of the additional nodes.

 Operating System Design Requirements

 An operating system allocates and controls system
resources for applications.  The compute nodes of the
TFLOPS system do not have I/O devices, so the primary
resources that must be controlled are memory, processor
cycles, and the communications network. The operating
system should not get in the way of the paramount goals
of application performance and scalability.  This dictates
several requirements of the system.

 Although the Cougar operating system is capable of multi-
tasking, we have optimized it for a single process per
node.  Our model in general is space sharing rather than
time sharing.  In other words, multiple users can allocate
disjoint subsets of the 4500 nodes on the system, and run
applications on them concurrently, with a set of nodes
dedicated to each application. This frees us from having
multiple users on any one node and permits some design
decisions that will be explained below.

 With only one process per node, each process has access
to almost all of the physical memory on the node. If users
need more memory, they can get it by allocating more
nodes.

 Design Decisions

 A key requirement of the system is message passing
performance, which is covered in another section of this
paper, but this requirement influences memory
management. The Cougar operating system uses the
hardware memory protection mechanism of the processor
to protect the operating system from users and to protect
user processes from each other.  Cougar gives each
process access to a virtual memory space, which is a set of
addresses that the process can use.  The virtual memory
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space is mapped by the processor to the underlying
physical memory of the computer. By virtual memory, we
do not mean demand paged virtual memory; rather, we
mean a mapping of virtual addresses to physical memory.
The memory for a user process is divided into several
regions, which are contiguous expanses of virtual
memory. Typical regions for a process are its code, data,
heap, and stack.

 The IA-32 architecture provides options for three memory
page sizes: 4KB, 2MB, and 4MB. Cougar uses the 2MB
page size, which permits better message performance than
4KB pages. When moving a large message into or out of
memory, the message can be moved in large blocks
without breaking it up into packets the size of a 4KB
memory page.  That improves the message bandwidth.
For large messages,  the bandwidth is almost asymptotic
to the hardware bandwidth, and thus Cougar attains
approximately twice the bandwidth of TOS (see the next
section on Communication for the numbers).  Using large
pages also slightly improves the computation
performance, as it increases the number of Translation
Lookaside Buffer (TLB) hits.

 Another optimization for message passing is to keep the
user’s regions of memory physically contiguous.
Although separate regions may be far apart in the virtual
memory space, each region is a contiguous expanse of
virtual memory. However, at the hardware level, these
regions consist of pages of memory that are mapped to
individual pages of physical memory. The pages of
physical memory could be scattered. In our
implementation, each contiguous region of virtual memory
is mapped to an underlying contiguous region of physical
memory.

 Although physically contiguous memory regions are less
important to performance than using the large page size,
they still benefit performance.  When the operating system
kernel is going to use a buffer in user space to send or
receive a message, the kernel must validate the memory;
that is, it must make sure the entire buffer is within
memory the user has permission to use. If user memory is
physically contiguous, then the entire buffer can be
validated at once rather than validating each individual
page of the buffer.

 In a multi-tasking system, physically contiguous regions
can cause fragmentation of physical memory.  However,
since we are optimizing for a single process per node,
fragmentation is not a problem. Also, if we needed
demand-paged virtual memory, then we could not use
contiguous physical regions.

 Demand Paging vis-a-vis Message Passing and
I/O Performance

 Since the applications on this system need a massive
amount of memory, the question is often asked as to why
demand paging isn’t used?  This subsection addresses that
question, because the discussion illuminates some issues
that tie in to message passing performance and I/O
performance.

 For massively parallel scientific applications, we
discovered that  demand paging causes several
performance problems. The foremost problem is that
demand paging is too slow because the backing store is
not local to the nodes.  The data must be passed as
messages to a file server on another node. Furthermore,
there are many compute nodes and few file servers (the
so-called many-to-one problem). Under conditions of
heavy paging, the file servers can become backlogged
with requests, and the compute nodes experience long
latencies waiting for a page.

 Depending on your point of view, we have either
described a disadvantage of demand paging or a
shortcoming of the system architecture. Why is the
backing store not local in the first place? We want to
emphasize that there are good reasons for this architecture
and they include

� the need for reliable, redundant I/O devices,

� security of classified data, and

� the cost, heat, and space that would be consumed by
disks on 4500 individual nodes.

 These issues are further discussed in other sections of this
paper.

 Demand paging was originally devised in order to
optimize the throughput on large time-sharing systems.
When a process has a page fault on that type of system,
other processes can be scheduled to keep the processor
busy.  This results in the greatest possible parallelism
between I/O and CPU cycles. On our system, with only
one process per node, typically nothing can happen while
a process waits for a page, so the latency to handle a page
fault is dead time.

 Another  problem is that non-present pages add latency to
message passing.  On a demand-paged system, before
receiving a message, the operating system must make sure
the memory for the message is physically present.  If a
page is not present, an operating system can allocate a
page and map it in.  This requires some processing time
with a small increase in latency. If no free page is
available, then a page must be flushed to the backing store
to make memory available, which increases the latency. If
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an incoming  message does not completely fill a page,
then the page must be fetched from the backing store
before it can be written. This also adds latency. Using
large pages increases the probability that a message will
not completely fill a page.  Cougar assumes that all pages
are always present, so it only has to validate the memory
addresses before receiving a message.

 A more subtle problem is the propagation of latency to
other nodes.  For example, suppose node A is doing
computation, but is stalled waiting for a not-present page
to arrive.  Then suppose Node B needs data in a message
from node A before it can proceed.  The paging latency on
node A propagates to node B.  With a large number of
nodes, this can have a crippling effect on the system.

 Another motivation for using demand paging is that most
applications have a relatively small working set.
Intuitively speaking, this assumes over a short period of
time, most programs use only a small amount of the
memory available to them.  Over a longer period of time
they re-use the same memory. This limits the amount of
demand paging required. Scientific applications do not
conform to this assumption.  Typically, these applications
fill all available memory with large arrays of data  such as
floating point numbers, and they traverse the arrays. This
can result in a large working set.

 Finally, programmers want deterministic performance;
that is, the same behavior from one run to another, so that
they can predict the performance of their programs. This
is best achieved with resident physical memory.

 Communication

 In the TFLOPS system, the two operating systems have
specific requirements for message passing. The main
design goal for Cougar is to provide high performance
message passing while perturbing the running application
as little as possible.  With respect to message passing,
high performance means high bandwidth and low latency.
For TOS, these characteristics  are also desirable, but
there are additional constraints.

 The TFLOPS network connects the individual nodes of
the system. Several features of the network increase the
efficiency of message passing; namely:

� restricted access network (unauthorized agents do not
have access)

� reliable network (messages are always received unless
there are hardware failures)

� two Pentium Pro microprocessors per node

 In most networks, authentication is an important part of
sending and receiving messages. On the TFLOPS

network, security checks are still necessary.  However, the
checks are not as complicated as those required on a
unrestricted network, such as an Ethernet.  This reduces
the amount of work required to send a message, thereby
increasing the efficiency of message passing.  Because the
network is reliable, the operating systems can assume
messages are not lost.  This also decreases the  amount of
work required to send a message, increasing the speed of
message passing.

 The second processor can be used in several different
ways according to application requirements. For example,
if an application is message-passing bound, this processor
can be used as a message-passing engine to reduce the
latency of sending messages.  This quite often improves
application performance. (Other uses of the second
processor are beyond the scope of this paper.)

 The network hardware is also designed to provide very
high performance.  The specifications for the network
include a bi-directional bandwidth of 800MB/sec and  a
latency of 2.5�sec.  The remainder of this section will
discuss some of the specific methods used in the operating
systems that  take advantage of these characteristics and
provide high bandwidth and low latency message passing.
We will also highlight differences between the two
operating systems.

 Maximum Bandwidth

 There are two main factors that influence the bandwidth a
communication protocol can achieve. One is the number
of times data is copied when a message is sent.  The other
is the overhead associated with breaking the data up into
packets.  If a message is greater than a given size, the
network hardware requires the message to be sent as
separate packets.

 Cougar eliminates the need for copying data by leaving
the management of communication buffers up to the user.
On the sender side, the application passes a pointer to the
message to the communications library and guarantees
that it will not modify the message until the message has
been transmitted. This allows the operating system to
directly transfer the message from the application’s
address space to the network.
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 Figure 2:   Transfer of an application message between
compute nodes

 On the receiving side, if the operating system has a pointer
to the user’s buffer before the message arrives, then the
message is said to be pre-posted. Pre-posting a message
allows the operating system to directly transfer a message
from the network to the application’s address space (see
Figure 2). If a message is not pre-posted, the operating
system must deposit the incoming message into a system
buffer when it arrives from the network.  Then, when the
application requests the message, the message must be
copied from this system buffer into the application’s
address space.  The Pentium Pro chip set can copy data
from memory to memory at a rate of about 80MB/sec.
This is an upper bound on message bandwidth if messages
are not pre-posted. However, using pre-posted messages,
Cougar can attain a bandwidth of 380MB/sec.,  almost a
factor of 5 times faster than if the data is copied.

 In contrast, under TOS, a more complex message passing
protocol is supported. With this protocol, a message
buffer may be modified after it has been passed to the
library.   Also, the receiver of a message does not pre-post
receive buffers. In order to avoid making copies of
communication data, we have made extensive use of
memory management facilities. On the sender side,
transmitted data is marked as copy-on-write in user
address space.  Transmission of the data is delayed until
the corresponding receive operation is posted on the
receiver side. As long as the data is not modified by the
sender, it is not copied into a separate send buffer.  If the
sending process never writes to this memory, then the data
is transmitted without making any copies. This protocol

provides an excellent means of flow control in many-to-
one communication scenarios, as almost no memory is
needed on the receiver side until the message is actually
consumed.

 It is important to note that while the use of memory
management facilities in TOS allows data transmission
with zero copies, it places a fixed cost on each page of
data transmitted.  This cost is associated with the
protection of the data on the sender side and re-mapping
of it on the receiver side. Cougar does not have this
overhead. The use of physically contiguous, virtual
address space in Cougar also allows the use of large
packet sizes, up to the hardware limit of 1 MB. This
lowers communications overhead because most messages
can be sent in one packet. Even for large messages, the
total number of  packets is kept to a minimum.  In
contrast, TOS is limited to a packet size smaller or equal
to the virtual page size of 8KB. (TOS uses an 8KB virtual
page size instead of the 2MB pages that Cougar uses.)
This restriction on packet size is imposed because TOS
can not guarantee two virtual pages are physically
adjacent to each other.

 The bandwidth achieved with the TOS message passing
protocol is about 190MB/sec for message sizes of 256KB
and larger.  For Cougar, the bandwidth for the same size
message is 380MB/sec.

 Minimum Latency

 The latency a communication protocol can  achieve for
small messages is determined by the amount of code
executed when a message is sent between two nodes. This
means lightweight protocols ensure the best use of a very
low latency network.

 Cougar uses a lightweight protocol for message passing. It
allows a process on one node to open up a portion of its
address space to a process on another node. The operating
system on the sending and receiving nodes can then
transfer data directly from user address space on the
sending node, via the network, to the desired memory
location on the receiving node. Once this opening into the
user’s address space is established, many separate
messages can be sent without any further overhead.

 In contrast, the message passing protocol on the TOS side
supports very rich semantics, with type conversions for
every element of a message. This severely limits the
minimum latency that can be achieved.  The protocols to
provide this capability are much more complicated than
those used in Cougar, requiring more code to be executed.

 Another factor that can increase message latency is the
flow control mechanism used to guarantee the delivery of
messages. Cougar has no flow control at the OS level.
Instead, it is left up to the application to make sure
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adequate buffers are available for message reception. The
responsibility for flow control can be left to the
application because the protocol is designed to run on a
reliable network. The application only has to deal with
buffer management, not the unexpected loss of messages.

 On the TOS side,  the OS provides flow control which
guarantees that no data will be lost regardless of the
amount and timing of messages. When a message is sent
between TOS nodes, initially, only a small informational
message is sent to the receiver. The receiver is thus
notified a message is available.  The data can then be
requested from the sender when the receiver is ready for
the message. This is known as a pull model of flow
control. To reduce the overhead for very small messages
(up to about 120 bytes), the message data can be sent
along with the notification message. This data is then
buffered on the receiver side as long as buffer space is
available. If no space is available, a more complex model
is used.

 The latency of the TOS message passing protocol is about
90�sec for small messages and about 130�sec for larger
messages where the pull model of flow control is used.
For Cougar the latency for the minimum size message is
16�sec.

 The tradeoff  here is that programs running on Cougar can
achieve latency improvements over TOS by a factor of 5
to 8.  However, the programmer must analyze the
message-passing patterns of the application and provide
flow control at the application level and also provide
sufficient buffer space to handle all incoming messages
that are not pre-posted. The programmers writing the
ASCI codes are willing  to pay this price for performance.

 Scalable I/O for Thousands of Nodes

 The TFLOPS system is required to sustain a transfer rate
of one GB/sec between a set of compute nodes and the file
system.  This challenge involved solving problems in
several interrelated areas. The TFLOPS hardware has a set
of devices and I/O buses that is capable of both
transferring data at an aggregate rate of one GB/sec and
meeting the reliability and security requirements of the
system. In order to meet the performance requirement, the
file system software must be able to exploit the full
bandwidth of the hardware.  This is done by TFLOPS
Parallel File System (PFS) and the I/O service processes.

 PFS stripes user data files across the TFLOPS disk
devices, which allows the transfer of data between the
compute nodes and the I/O nodes to occur in parallel.  For
a large enough I/O request, each I/O node can sustain the
maximum possible bandwidth of its storage device.

 To handle the I/O requests from many compute nodes in
parallel and balance the load, a set of I/O service
processes is required.  However, to minimize copying, the
user data moves directly between user space on the
compute nodes and the operating system space on the I/O
nodes, bypassing the I/O service process. A flow control
mechanism is required to fan the communication in from
many compute nodes to a few I/O nodes without loss of
data or loss of performance. The following section
describes the architecture of the I/O subsystem.

 I/O Architecture

 There were two main approaches considered for providing
I/O services to the many compute nodes in the TFLOPS
system. One was to attach a disk to each compute node.
The other was to concentrate the file system on a small set
of specialized nodes that process I/O requests.  For a
number of reasons we chose the latter option, using
Redundant Array of Independent Disks (RAIDs) for
secondary storage.  The more important reasons for our
decision were as follows:

� Reliability

 The system must survive any single disk drive failure. A
design with a disk per node would add complexity to
both the system hardware and software. A RAID is
designed to handle the failure of a single disk drive.
A RAID stores parity information that allows it to
reconstruct user data in the event of a single drive
failure.  (This operation is described in Appendix A:
Single Drive Failure Recovery.)

� Security

 The customer decided to configure the TFLOPS system
into three sections:  a classified section, containing
compute, service, and I/O nodes; a non-classified
section that also contains compute, service, and I/O
nodes; and a “floating” compute section that contains
only compute nodes.  The floating compute section is
attached to either the classified section or to the non-
classified section.

 For security reasons, once a disk drive is connected to the
classified section, it must be “scrubbed” in a precisely
defined manner before it can be removed from the
classified system.  By physically decoupling disk
hardware from the compute nodes, reconfiguring the
system is greatly simplified.  Disks do not move
between the classified and the non-classified sections.

� Hardware design issues

 A disk per node would increase the per-node power
requirements, complicating the system’s design and
cooling requirements.
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� Leveraging  existing hardware

 The TFLOPS communications network is designed to
move data at 800MB/sec.  This transfer rate is much
higher than the I/O rate to a single disk or RAID
device.  Utilizing this high speed network hardware
simplified the design of the I/O system.

 The RAID hardware is described in Appendix B: RAID
Subsystem.

 TFLOPS File system

 The TFLOPS File System is composed of two parts: the
UNIX File System (UFS) and the Parallel File System
(PFS). PFS is built on one or more UNIX file systems. A
PFS file is striped over multiple UFS files in a round-
robin fashion. Each of these files is referred to as a stripe
file (see Figure 3).
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 Figure 3:   PFS stripe file mapping

 The PFS component of the TFLOPS File System provides
application programs with the following critical
functionality:

� High speed transfer rate

 There is no such thing as a disk device capable of
transferring data at 1 GB/sec.  PFS issues I/O
operations to each UFS stripe file in parallel. This
allows the aggregate PFS transfer rate to equal the
sum of the I/O bandwidths to the individual UFS
stripe files.

� Large File Size

A PFS file may span all available space in each of the
stripe file systems.  It is therefore possible for a single
PFS file to be over a terabyte in size.

 The TFLOPS system is comprised of over 4500 compute
nodes that have no physical connection to an I/O device
other than the high speed communications network. All

application I/O is performed via Remote Procedure Calls
(RPC)  from the compute node to a small number of
service nodes. The inherent many-to-one communication
problems are handled by I/O service processes coupled
with inter-node flow control mechanisms.

 The notion of specialized nodes for specific functions
permeates the TFLOPS design. Applications run solely in
the compute node partition. Standard UNIX programs and
the application loader process all execute in the service
node partition under the control of TOS. The RAIDs in
the system are attached to the I/O nodes. All CPU cycles
on the I/O nodes are dedicated to I/O; no other processes
run there.

 An application is presented a UNIX I/O programming
interface through a set of runtime libraries. This interface
was enhanced with asynchronous (i.e., non-blocking) read
and write operations. The ability to overlap computation
and I/O can dramatically improve the per node
computational performance.

 When an application starts, each compute node is assigned
to an I/O service process. Each I/O service process
provides service to potentially many compute nodes�by
default 256 compute nodes per I/O service process. All
communications between an application process and the
I/O service process are conducted via  RPC’s over the
high-speed communications network. The I/O service
process translates the RPC into a TOS file system request
(see Figure 4).

 

Compute
Node Service

Node

Compute
Node

I/O
Node

Control
Flow

TOS
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Cougar

 Figure 4:   I/O service process control flow

 PFS Write/Read Operations

 When an application process writes a block of data to a
PFS file, an RPC containing the address of the buffer and
the length of the data is sent its I/O service process.  The
data itself is not sent with the RPC, only the control
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information is sent.  The I/O service process determines
which I/O nodes contain the portion of the file being
written and sends RPCs to each of those nodes.  These I/O
nodes transfer the data directly from compute node
memory to the stripe files. Data from the application
buffer fans out across all affected I/O nodes in parallel
thus achieving a high aggregate data transfer rate (see
Figure 5).
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 Figure 5:  I/O service process control and data flow

 When an application process reads a block of data from a
PFS file, the processing and parallelism are similar to a
write operation. I/O nodes fan in the file data directly from
the stripe files to the application buffer.

I/O Flow Control

 The I/O service processes receive I/O operation requests
from the set of compute nodes mapped to them. TFLOPS
file system requests are generated on behalf of the
requesting compute nodes.  To achieve maximum parallel
performance, asynchronous read and write file system
operations were implemented. These operations allow the
application and the I/O service process to issue an I/O
request and then continue processing. An I/O service
process I/O request may affect multiple I/O nodes
depending on the stripe factor of the PFS file.

 Each I/O node receives and processes PFS stripe file
requests from an I/O service process. The stripe file
requests contain only control information. The actual
application data transfers directly from the application
buffer to RAID device buffers at the I/O node, thus
eliminating expensive data copies.

 A single I/O node supports concurrent data transfers to
multiple compute nodes while disallowing concurrent
transfers to the same compute node. However, different

I/O nodes are capable of concurrently transferring data
from the same compute node.

 When an I/O node transfers application data from a
compute node, TOS is responsible for the flow control.
The ability of the I/O service process to issue
asynchronous read and write requests necessitated the
addition of flow control code which limits the number of
asynchronous I/O requests issued. Without flow control,
I/O node bandwidth and stability degrade due to memory
starvation caused by the buffering of I/O requests. Given
the small number of I/O nodes and inter-node transfer
policies, the I/O node flow control issues reduce to a set
of manageable problems that do not stand in the way of
achieving maximum I/O bandwidth.

 I/O Results

 The TFLOPS system was shipped with 18 RAID units on
the classified section and 18 RAID units on the non-
classified section.  Each RAID can store approximately 64
GB of file system data, hence the total storage capacity of
the TFLOPS system is approximately 2.25 TB, or about
1.125 TB per section.

 There are a number of factors that affect the aggregate I/O
transfer rate.  Some of the more important factors are as
follows:

� the number of compute nodes executing the user’s
application

� do all compute nodes access the same file, or does
each compute node access a different file

� the number of I/O service nodes

� the size of the I/O request

� the PFS stripe unit size

� the PFS stripe factor

 The requirement of sustaining an I/O bandwidth of one
GB/sec, for both read and write operations, was
demonstrated at the factory after most of the compute
node hardware was already installed at Sandia.  The test
system was configured with 18 RAIDs, 12 I/O service
processes, and 432 compute nodes. The TFLOPS file
system was configured as 18 separate PFS file systems,
with each PFS striped across a RAID’s two logical disk
devices.  All the compute nodes were simultaneously
performing asynchronous I/O to their own file using a
request size of 8 MB.

 After all of the TFLOPS hardware was installed at the
customer site, the I/O performance tests were replicated
using the same hardware configuration describe above.
Soon after this demonstration, the customer decided to
change the configuration of the system so only nine
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RAIDs were used for PFS. Consequently, in the following
discussion of I/O performance we do not have data for
using all 18 RAIDs for PFS.

 Figure 6 shows the read and write performance when nine
RAIDs were configured into one PFS file system, with the
PFS stripe factor varying between 2 and 18.  In this test:

� The number of compute nodes was set to 16 times the
stripe factor (i.e., the ratio between the number of
compute nodes and the PFS stripe factor was fixed at
16:1).

� The number of I/O service processes was fixed at 8.

� The request size was fixed at 2 MB.

� The PFS stripe factor and stripe unit size were both
fixed at 1 MB.

� The process on each compute node accessed its own
file.

 The figure shows that adding additional RAIDs to PFS
results in near linear increase in read and write bandwidth.
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Figure 6:  PFS throughput scalability

 Figure 7 shows the read and write performance from 3584
compute nodes as a function of the I/O request size.  The
TFLOPS file system is configured as nine PFS file
systems, each striped two ways across a single RAID.  In
this test:

� The RAIDs were configured as nine separate PFS file
systems.

� The number of I/O service processes was set to 32.

� The PFS stripe factor and stripe unit size were set to
1 MB.

� Each compute node process was accessing its own
file.

 The figure shows that an application running on a large
number of compute nodes can achieve an I/O transfer rate
of 0.5 GB/sec on nine RAIDs.
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 Figure 7:  PFS read and write bandwidth

 The TFLOPS file system has met both of its primary
requirements: it provides storage space for at least one TB
and it can sustain an aggregate transfer rate of one
GB/sec.  The file system also scales with the number of
RAIDs attached to the system.

 Conclusion

 The Intel TFLOPS Supercomputer has accomplished its
performance requirements of one TFLOPS sustained
floating point performance and one GB/sec sustained I/O
to the file system.  It also met the system reliability and
security requirements. This paper discussed some of the
design tradeoffs in terms of memory management,
communication, and file I/O. The decisions are inter-
related.

 This computer is running today at Sandia National
Laboratories and doing production work on ASCI
applications. No one in the world has yet matched the
performance of one TFLOPS, nor of one GB/sec of
sustained I/O.  A few months after system delivery,
scientists at Sandia commented that the system had
already done more work than their previous system had
done in the last three years. They have run physics
simulations with larger problem sizes and finer resolutions
than have ever been run before.  In the development of the
TFLOPS system, we have demonstrated Intel architecture
processors are capable of spanning the range from
desktops to teraflops.
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 Appendix A: Single Drive Failure Recovery

 With  a potential TB of data at stake, a single drive failure
could be catastrophic.  The Symbios RM20 RAID
subsystem’s design gracefully handles single drive failure.
When a drive fails, the RM20 controller detects it and
takes the following steps:

� It marks the drive as failed and sets both audio and
visual alarms.

� It activates one of the Global Hot Spares and begins
reconstructing the data of the failed drive from the
parity data stripped across the remaining data drives.
(Note that reconstructing is time-sliced with normal
disk requests so the RAID remains in service. The
time-slice algorithm is a dynamically tunable
parameter.)

� When an operator replaces the failed drive, the RM20
detects the replacement, reconstructs the new drive,
and returns the Hot Spare to availability.

A software daemon running on TOS polls the RM20s
periodically reporting any failures to both the console and
system logs.

Appendix B: RAID Subsystem

The Symbios RM20 has two bays of ten drives each and
two controllers.  The controllers can be set active/active
(each controller controlling one group of drives) or
active/passive (one controller controlling all drives and
the other controller configured as a spare).  The disk
drives are Seagate 4GB Barracudas with a 3.5” form-
factor. All the drives share a common internal SCSI bus
regardless of  their LUN assignment to allow for global
hot sparing.

We configured the RM20 with dual active controllers, two
LUNs of 9 drives each (the equivalent of eight for data
and one for parity) and two global hot spare drives.  The
RAID controllers present each LUN as a single, logical
disk device to the host. The RM20’s two controllers are
each connected to a Symbios 875 PCI SCSI host adapter.

On the host side, there are two PCI buses on an I/O node,
each bus supporting a single 875 adapter card. A node
configured for I/O has one RM20 attached, representing
two logical disk devices.

I/O Node

 PCI-875

 PCI-875

Symbios RM20 RAID

Differential SCSI

Figure 8:  Symbois RAID connection to TFLOPS
system

The obvious configuration of each rank of drives assigned
to one LUN did not yield the performance we required to
reach a gigabyte a second. We worked closely with
Symbios for several months to tune and optimize the
RM20 to obtain the maximum, raw bandwidth. The final
configuration has drives from both ranks assigned to each
LUN�something of a sawtooth pattern. This helped
balance the contention for the internal bus shared between
the two LUNs. The RM20 also has dozens of inter-related
tunable parameters that by trial and error we were able to
fine tune to reach our performance goals.
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