
1

Scalable Platform Services on the Intel TFLOPS
Supercomputer

Bradley Mitchell, Server Software Technology, Beaverton, OR, Intel Corporation

Index words: DMI, management, scalability

Abstract
This paper describes Scalable Platform Services (SPS)—a
collection of software providing the manageability
solution for Intel’s latest parallel processing
supercomputer.

Compared to previous generations of supercomputer
management environments, such as that of the Intel
Paragon Supercomputer, the SPS makes significant
strides in feature offerings and overall usability. The SPS
consists of distributed, low-level hardware monitoring,
and control functions networked to a centralized
management station which are in turn exported to
administrators through command-line and graphic user
interfaces. This software system demonstrates successful
application of off-the-shelf standard components, chiefly
the Desktop Management Interface (DMI) supported by
Intel and the Desktop Management Task Force.

Together with specialized management hardware, the
SPS offers a platform management architecture designed
for scalability, availability, usability, and high
performance.

Introduction
Supercomputers installed at customer sites require good
manageability characteristics. In general, high demand
exists for machine cycles, and frequent system downtime
proves very costly. For the Intel TFLOPS supercomputer
in particular, the sheer quantity of densely packaged
hardware makes the task of identifying and repairing
failed components difficult. (For an overview of the Intel
TFLOPS supercomputer, please refer to the paper entitled
An Overview of the Intel TFLOPS Supercomputer also in
this Q1’98 issue of the Intel Technology Journal.)

The manufacturing and system integration of
supercomputers also demands fairly comprehensive
management support. Assembling the Intel TFLOPS
supercomputer involved rigorous hardware configuration

and testing activities that could not be completed on
schedule without sufficient automation. Facilities for
hardware resource sharing became crucial. Even boot
and shutdown procedures for the TFLOPS operating
systems needed abstraction.

SPS, a distributed software system, addresses both
manufacturing and field requirements as outlined above.
The SPS architecture focuses on the unique
characteristics of the TFLOPS platform yet succeeds in
leveraging off-the-shelf software products to meet its
delivery time constraints and quality objectives.

One can compare managing the Intel TFLOPS
supercomputer with the task of managing a collection of
several thousand distributed PC desktops. (This analogy
will be revisited later in the paper.) Although both
environments contain roughly the same number of
“nodes,” the Intel TFLOPS supercomputer poses a
number of additional challenges from a manageability
perspective. These arise from the machine’s scale, use of
custom hardware components, usage model, and so on.

A significant goal for management environments
according to Intel’s Wired for Management (WfM)
initiative is to reduce the administration cost associated
with an installed hardware base. In the PC desktop
realm, reducing this cost involves a combination of
hardware support, software support, and standards
efforts. Although WfM does not address the
supercomputer realm explicitly, the principles of WfM
remain applicable. By utilizing built-in hardware
support, leveraging industry standards such as the
Desktop Management Interface, and by providing new
examples of management software components, the SPS
for TFLOPS serves as a fine example of WfM principles
in action.

TFLOPS Platform Management
The SPS focuses on aspects of system management that
relate closely to the unique hardware architecture of the

Intel Technology Journal

2

Intel TFLOPS supercomputer. In particular, the
TFLOPS machine includes a Monitoring and Recovery
Subsystem consisting of hundreds of boards dedicated to
hardware instrumentation and low-level control
functions. Private Ethernet, as well as a mesh of serial
line connections, network these boards together. A
considerable fraction of the SPS software exists to
provide communication and co-ordination services for
utilizing this “platform within the platform.”

Scalable Platform Services
The SPS provides the following features to a TFLOPS
supercomputer system administrator:

Scripted booting/shutdown. Individually-executing
scripts co-ordinate the booting or shutdown of the two
distinct operating systems available on the machine.

Fault management. A software agent detects hardware
faults as they occur, isolating affected components from
the running system when possible, reporting fault
information, and initiating automatic recovery operations

in some scenarios. This same agent receives notifications
of software faults from the running operating systems and
takes appropriate corrective actions.

Configuration management. A software agent maintains
up-to-date hardware inventory data, supplying this data
to clients on demand. This same agent accepts client
requests to partition the available hardware resources into
independent sub-machines.

Repair services. Individually-executing scripts support
board repair, power control, firmware upgrade, and
hardware reset operations.

Field diagnostics. Scripts encapsulate diagnostic test
scenarios covering many platform hardware components.

Operating system console access. A gateway service
provides access to operating system node consoles from
remote clients.

Architecture
Based on a centralized Desktop Management Interface

Operator or
Service person

. . .

. . .

. . .

Patch
Support
Board
(PSB)

NodeB
ackplane

Node

Node

Node

Node

Node

Node

Node

inte
rcon

nect

JT
A

G
/C

o
ntrol

P
riv

at
e

E
th

er
ne

t

Management Station
(Windows/NT Server 3.51)

Management Console
(GUI and command-line)

DMI 1.X Service Layer

Component Instrumentation Proxies
(CIPs)

CabinetCabinetCabinet

SPS Transport Services

Cardcage

Console
(remote GUI)

SPS Management Applications

. . .

B
ackplane

Figure 1: SPS Architecture

Intel Technology Journal

3

(DMI) database, the SPS includes a co-operative set of
local management applications (MAs) as well as remote
component instrumentation. Five MAs exist
corresponding at a high level to the management features
supported: Booting, Configuration, Diagnostics, Fault,
and Repair. Unlike many DMI MAs that have a
dedicated human interface, the SPS GUI integrates all
five MAs into a single coherent presentation. The DMI
database and MAs install onto the dedicated
“management station” that serves as a central point of
administration for the platform

The platform hardware includes Patch Support Boards
(PSBs) that oversee each group of eight computational
nodes in much the same way the Intel Server Monitor
Module oversees a single server system. A fully-
populated TFLOPS machine includes roughly 300 PSBs.
Each PSB includes an i386 processor and runs the
Wind River Systems VxWorks* real-time operating
system. Software agents implemented above the OS,
coupled with hardware instrumentation capability built
into each PSB, provide a full range of monitoring and
control functions for the nodes, backplanes, and other
platform components.

Via a transport layer on each end, DMI component
instrumentation proxies on the management station
communicate with PSB agents to collect instrumentation
data for and deliver management requests from a central
location. On the station, five such proxies exist broadly
corresponding to the types of hardware present in the
machine: Node, Backplane, PSB, Clock, and Cabinet.

An administrator interacts with the SPS through a
graphic user interface (GUI) and related command-line
interfaces. The GUI implements direct manipulation
interfaces for specifying hardware components,
individually or in groups, as the target of management
operations. It launches management scripts that
encapsulate specific booting, diagnostic, or repair
operations. Its network map includes an event-driven
interface that color-codes individual hardware
components based on their real-time state. Finally, it
displays in real-time the OS event log entries made by the
management applications.

Figure 1 illustrates the SPS software architecture in
relation to the hardware platform. Subsequent sections
describe the software layers in more detail.

Patch Support Board Software
The PSB software consists of the VxWorks kernel and a
set of runtime-loaded SPS modules.

The base VxWorks distribution from Wind River
required several source extensions and modifications for

operation on a PSB. For example, the SPS team re-wrote
its network initialization module—delaying the network
initialization process within the OS until platform
configuration discovery within SPS modules completes.
Additionally, the team added support for reading the on-
board EEPROM needed to access, among other things,
the PSBs MAC address.

Each SPS object module implements an agent or,
alternatively, a library of services shared among agents.
Each agent provides management services either for one
type of Field Replaceable Unit (FRU)1 or for one type of
communication interface (serial or packet). Libraries
implemented include a JTAG2 scan library providing a
standards-based interface to instrumented hardware
devices.

In general, the PSB agents support both monitoring and
control functions. They receive hardware interrupts and
collect instrumentation data on behalf of the management
station. As needed, the agents transmit information to
the station over the private Ethernet network. The agents
also accept requests such as those for power or reset
control from the management station and execute the
required processing and notification procedures.

Finally, this software implements a communication and
keep-alive scheme among the PSBs, taking advantage of
the serial line network fabric connecting all PSBs. The
management hardware for the Intel TFLOPS
supercomputer thus includes two management networks:
a secondary network assists in managing the hardware
critical to the machine’s computational mission, and a
tertiary network assists in managing the management
hardware itself. Both of these networks exist “out-of-
band” from the machine’s primary node interconnect.

Node Maintenance Port
One of the two standard serial ports (COM2) on the node
board serves a special function as the Node Maintenance
Port (NMP). This port connects to the PSB and is used
in two ways: the message mode supports reliable
datagrams, and the raw mode supports an unstructured,
not necessarily reliable, character stream.

The PSB supports multiplexing of data in the two modes
and also works as a gateway for the NMP communication

1 SPS supports the following FRU types: node boards,
backplanes, clock boards, power supplies, blower units,
and the PSB itself.
2 JTAG refers to the Joint Test Action Group and IEEE
Standard 1149.1 for implementing boundary-scan
functionality in hardware devices.

Intel Technology Journal

4

between its eight nodes and the management station.
The SPS management applications use the NMP message
mode to communicate reliably with the extended node
BIOS and with downloaded, off-line node diagnostics.
The NMP raw mode supports an administration and
debug console to the operating system on the nodes. On
the management station, NMP libraries communicate in
message or raw mode transparently to any node in the
system by hiding the communication to the gateway
service on the appropriate PSB.

Management Station Software
All software components resident on the management
station operate in a 32-bit Windows NT* environment.
Figure 2 illustrates these components, and they are
discussed in the following sections.

PSB Transport Service
The PSB Transport runs as a Windows NT* service on
the management station. It provides transport services
for sending and receiving reliable datagrams between the
station and one or more PSBs, multicast group definition,
PSB enumeration, and notification when PSBs enter or

drop off the network. The inter-process communications
mechanism between the transport and its users
incorporates local RPC. PSB Transport interface
libraries hide the RPC initialization and tear-down
details.

Component Instrumentation Proxies
The SPS utilizes DMI as the primary management
interface. This choice allows the TFLOPS system to use
standards-based management and helps facilitate a single
operational view through a single management interface.

The DMI standard defines a Component Instrumentation
interface that performs the required low-level
management operations. However, the actual low-level
operation takes place on the PSB. To bridge this gap
Component Instrumentation Proxies or CIPs were
implemented.

As mentioned earlier, the five proxies provided are Node,
Backplane, PSB, Clock, and Cabinet. Each CIP runs as
a Windows NT* service that communicates with a
corresponding agent on the PSB to collect
instrumentation data and to deliver management

Console UIConsole UI

OLE InterfacesOLE Interfaces

PSB TransportPSB Transport

NMP
Message

Mode

NMP
Message

Mode

NMP
Raw
Mode

NMP
Raw
ModeBackplane

CI Proxy

Backplane
CI Proxy

Node
CI Proxy

Node
CI Proxy

ICF Clock
CI Proxy

ICF Clock
CI Proxy

PSB
CI Proxy

PSB
CI Proxy

Cabinet
CI Proxy

Cabinet
CI Proxy

DMI 1.X Service LayerDMI 1.X Service Layer

Configuration
Manager

Configuration
Manager

Fault
Manager

Fault
Manager

BasicScript

Scripts

BasicScript

Scripts

BasicScript

Scripts

PSBnet

Node and Debug AccessNode and Debug Access

Fault
Policy

Fault
Policy

Boot
Manager

Diagnostics
Manager

Repair
Manager

SPS Message SystemSPS Message System

Figure 2: Management Station Software Components

Intel Technology Journal

5

requests. The two primary interfaces for a CIP are with
the PSB Transport and the DMI Service Layer.

DMI Service Layer
The SPS utilizes version 1.X of the Desktop Management
Interface (DMI). DMI includes a specification written
and maintained by the Desktop Management Task Force
(DMTF), an industry consortium chartered with the
development, support, and maintenance of management
standards for PC systems and products. As part of this
specification, the DMI service layer provides a standards-
based interface between the SPS management agents and
component instrumentation responsible for low-level
management tasks. It is this interface boundary that SPS
takes advantage of to provide the illusion of a single
unified system through a single DMI database.

A DMI database generated for the Intel TFLOPS
supercomputer contains more than 3,600 component
entries. This results in more than 21,500 individual DMI
groups and more than 99,000 DMI attributes. Prior to
the SPS project, Intel’s existing DMI service layer
implementation could scale to only 254 component
entries. However, Intel made the necessary
enhancements to accommodate this SPS scaling
requirement.

In addition to scaling the number of components
supported, Intel’s DMI implementation required an
enormous reduction in the time required to generate a
large component database. The Intel team reduced this
time from two calendar days initially to less than fifteen
minutes.

Management Applications
The five SPS management applications are Boot,
Configuration, Diagnostic, Fault and Repair. Each MA
runs as a Windows NT* service on the management
station.

The Boot, Diagnostic, and Repair Managers advertise a
list of available control operations. Each entry in this list
corresponds to an executable script. The team
implemented these scripts with the BasicScript*
environment from Summit* Software, so chosen because
the LANDesk* Server Manager product also uses it.

When invoked, each script executes in a separate thread
on the management station under control of the
BasicScript run-time environment. Multiple scripts may
execute concurrently. To allow scripts to access the DMI
service layer, the SPS team developed a simple OLE3

3 OLE refers to Microsoft’s Object Linking and
Embedding technology.

interface library to DMI. (The team prepared a similar
OLE library for interface to the NMP.) Most scripts
interact with an operator as described in the next section.

The Configuration Manager exists primarily as a server-
side agent to the client user interfaces. It uses the SPS
message system to converse with instances of the SPS
GUI and command-line utilities. It initializes the PSB
private network.

The Fault Manager monitors events reported by the PSBs
and processes all fault events. It includes a custom
inference engine that synthesizes and correlates fault
indications from across the platform and initiates
automatic corrective action where possible. The Fault
Manager includes a lex /yacc fault grammar.

SPS Message System
The SPS team implemented a simple network transport
supporting reliable datagram communications between
SPS Managers and (potentially) remote clients. Its main
purpose is to support the SPS GUI running on a machine
other than the management station.

The Message System uses secure RPC interfaces to
support authentication. Additionally, a built-in
authorization scheme restricts operator access to
management functions according to their membership in
Windows NT* security groups.

The Message System provides an API matching that of
the Intel LANDesk* Server Manager Message System
(server-side) and the Network Transport Server (client-
side). Because SPS originally used the LDSM transport,
matching the LDSM API allowed the SPS team to
replace those components in isolation.

Graphic User Interface and Scripting
Environment
Figure 3 illustrates the SPS graphic user interface. This
interface runs either on the management station or on a
remote Windows NT* console. The GUI utilizes the SPS
message system to interface to the SPS managers. The
GUI implementation relies heavily on the Microsoft
Foundation Class (MFC) library for Win32.

The SPS GUI employs a network map metaphor. The
topmost portion of the main window contains a
thumbnail sketch representing all cabinets in the
machine, rendered in rows and columns just as the actual
hardware is installed on the floor. Beneath this sketch,
the middle portion of the main window displays a zoom-
able view of one or more cabinets within the machine.

As shown in Figure 3, objects on the screen include color
codes to match the current state of the corresponding

Intel Technology Journal

6

piece of hardware. The color red corresponds to a faulted
FRU, green to a healthy FRU, and so on.

An operator launches SPS scripts from the tree included
in a dock-able window at the bottom of the GUI main
window. The GUI also presents a list of existing
partitions in this window. To create partitions, the
operator rubber-bands selected cabinets. Likewise, the
rubber-banding mechanism allows an operator to zoom
the main view in or out.

Figure 3 illustrates a typical configuration for the
TFLOPS machine. While the full system includes four
rows of 19 cabinets each, operators typically de-couple
the rightmost 4x4 cabinets for customer site security
purposes. When de-coupled, the SPS GUI will not render
these cabinets, although it will account for them in its
numbering scheme. When the system transitions to a
non-secure operating mode, operators typically re-cable

the rightmost 4x4 block and correspondingly de-couple
the leftmost 4x4. SPS allows the operators to construct
hardware/software “partitions” of the hardware for this
and other reasons such as unobtrusive diagnostic testing
or hardware resource sharing.

Challenges
The most pervasive challenge faced by the SPS team lies
in integrating the diverse collection of off-the-shelf
software components.

Another significant challenge, one faced in many high-
end platform software development projects, is a lack of
available target hardware. The partitioning feature in the
SPS mitigated this problem to some degree in the
development labs. Yet, the limitation applies particularly
now in the sustaining phase of the project when nearly all
existing hardware has been shipped to the customer.

Intel Technology Journal

7

A variety of scaling challenges was also encountered.
Utilization of the PSB network required careful planning
to avoid performance bottlenecks. The DMI
implementations required modification to support the
large number of installed components. And the design of
the SPS GUI required particular emphasis on ease of
navigation and clear display of fault notifications.

Another serious development challenge grew out of the
need for SPS to support manufacturing test needs.
Lacking any other tool support, the manufacturing team
required access to incomplete versions of SPS for
booting, diagnostic, power control, and other base
features. Combined with each of the other challenges

mentioned above, this forced the development team to
regularly make trade-offs between feature availability,
stability, and progress toward the final product. Nor did
the feature set in the field always match exactly the
functionality needed internally. In this environment of
rapid change, it proved very difficult to re-train users of
the SPS as features were enhanced over time and the
need for special “work-around” procedures was removed.

In a system as large as the Intel TFLOPS supercomputer,
the secondary management problem–managing the
support hardware and software–can become as difficult as
some people’s primary management problem. SPS
attempted to deal with both problems. However, details

Figure 3: SPS Graphic User Interface

Intel Technology Journal

8

such as software/firmware installation and upgrade of
PSBs, or static IP address assignment for the PSB
network, proved non-trivial to debug and overcome in
practice.

Finally, the SPS overcame a few cultural barriers to
acceptance. Traditional supercomputer management
environments consist of UNIX* workstations exclusively,
and for SPS to be appealing to certain classes of users,
UNIX-like command interfaces to particular SPS features
were required. By using the TelnetD telnet(1) server
for Windows NT* from Pragma Systems, Inc., and by
tasking Pragma to tailor the product for better
interoperability with the TFLOPS OS debugger, these
concerns were largely ameliorated.

Results
The SPS played an important role in enabling Intel to
win the one teraflop performance race, to meet its
contractual commitments, and to raise the bar for
supercomputer management software.

In general, the team’s experiences in integrating off-the-
shelf software components were positive and met or
exceeded expectations. In particular, DMI performed
nicely and proved to be the single biggest “win” for the
project. In most cases, including the DMI
implementation, the VxWorks kernel, BasicScript, and
the RATP specification, enhancements were required or
software defects were encountered that required source
modifications. Yet, in every case, these alterations did
not derail the project, in part because the changes were
small and in part because they were anticipated as part of
the development effort.

In only one case, that of the LANDesk Server Manager,
did the team replace components of the product in mid-
stream. This was due not to any particular technical
shortcoming of LDSM, but rather to the fact that the
feature offset between it and SPS was too great.
Specifically, where LDSM targets heterogeneous
workgroups that include servers, SPS targets one instance
of one unique type of Intel-architecture based server.

As in many software development projects, the team
found room for improvement. In general, more tool
support could have been provided for managing SPS
itself, including installation, upgrade, and fault recovery
features. Features may have been phased into the product
in an order better suited to the manufacturing bring-up
effort. The customer environment, and the in-house
manufacturing environment for that matter, was not so
well understood by the SPS development team, causing a
few client features to be implemented that proved
unnecessary in practice. Finally, the SPS architecture

could not accommodate management of the TFLOPS I/O
subsystem nor could it completely account for
management of the hardware cabling.

Discussion
While there are similarities between managing the
TFLOPS system and managing a network of distributed
PC desktops, they are certainly not the same. One aspect
of the TFLOPS supercomputer that simplifies the
management task comparatively is its fixed size and
network topology.

Another simplifying factor is its homogeneity: most
nodes share identical hardware, firmware, and system
software. Unlike distributed PCs, these nodes do not
have individual owners who may install arbitrary
software packages or otherwise customize the local
environment. Only one or a few different parallel
applications run across all the machine’s nodes at a given
time.

Whereas PC network administrators may come from a
wide variety of backgrounds and receive varying levels of
training, TFLOPS administrators are literally hand-
picked and acquire an in-depth knowledge of the
machine. This even further simplifies the management
burden.

On the other hand, some aspects of system administration
become more difficult in the TFLOPS domain. The
tightly-integrated, custom hardware design of the Intel
TFLOPS supercomputer naturally tends toward more
frequent system outages. The system software deployed
is not so mainstream as that typically used on large-scale
PC networks, leading to even less system stability.
TFLOPS nodes lack their own monitors, keyboards, or
mice, limiting visibility into the machine’s operation.
Furthermore, self-administering the management
hardware and management software required effort on a
scale not typically found in commercial networks.

Nonetheless, many aspects of administration remain
clearly similar in both domains. Hardware faults must be
detected and reported to any remote location the
administrator requires. Firmware upgrade, emergency
power-down, and remote reset capabilities are likewise
required. The ability to trouble-shoot any single node is
extremely useful, and the ability to isolate a node from
the overall network is also valuable. Many of the features
exported by the SPS live in this “common ground”
between supercomputer and PC-based server
management.

Intel Technology Journal

9

Conclusion
Compared to previous-generation management
environments for Intel supercomputers, such as those for
the Intel Paragon Supercomputer, SPS makes
significant strides in feature offerings and overall
usability.

The SPS usage model, based on an intimate knowledge of
the server platform’s internal hardware constructing and
networking topology, has appeal in the scientific
supercomputer market where the user base tends toward
an “expert” knowledge of underlying implementation
details of the system. More mainstream management
products, typically built for heterogeneous, distributed
commercial environments, often cannot know these
details or choose to hide them from the users.
Applications such as LANDesk Server Manager employ
browsing metaphors in cases where the SPS environment
requires more direct interfaces.

In most cases, leveraging vendor products such as the
DMI Service Layer afforded clear gains for the project
schedule, stability, and/or available features However,
some off-the-shelf technologies proved a less-than-ideal
fit for the SPS. The process of identifying potential
sources of leverage and making build-or-buy decisions
can have significant downstream effects on the project
schedule and product quality.

It is reasonable to expect that some of the lessons learned
from implementing management support for an ultra
high-end platform can have cross-over benefits to the
more mainstream Intel server product offerings. On one
level, the SPS product should prove interesting to those
developing DMI-based management software products.
On another level, the SPS experience could prove useful
to those interested in software systems that leverage off-
the-shelf third-party components. The code base of SPS,
being too closely tied to the Intel TFLOPS
supercomputer’s unique hardware characteristics, likely
has little direct application in more mainstream
environments. However, perhaps some of the SPS design
principles, such as scalable communication, user
interaction, and configuration management services, can
be successfully applied.

Acknowledgments
The author thanks the following members of the
development team for their support throughout the
project: Ray Anderson, Johannes Bauer, Roy Larsen,
Mouli Narayanan, Don Neuhengen, and Rajesh
Sankaran.

A special mention goes to Linda Ernst who formulated
the original SPS concept and succeeded in convincing
people of its feasibility.

*All trademarks are the property of their respective
owners.

References
[1] DMI Specification., http://www.dmtf.org.

[2] VxWorks and Wind River Product Information,
http://www.wrs.com/html/vxwks52.html.
http://www.wrs.com/html/productindex.html.

[3] Joint Test Action Group IEEE 1149.1 Standard,
http://ada.computer.org/tab/tttc/standard/s1149-
1/home.html.

[4] Reliable Asynchronous Transfer Protocol RFC 916,
http://globecom.net//ietf/rfc/rfc916.shtml.

[5] BasicScript and Summit Software Product
Information,
http://www.summsoft.com/html/products.htm.

[6] LANDesk Server Manager Product Information,
http://www.intel.com/network/server/index.htm.

[7] Pragma Systems and TelnetD Product Information,
http://www.pragmasys.com/TelnetD/

Author’s Biography
Bradley Mitchell received an S.B. in Mathematics with
Computer Science from M.I.T. and an M.C.S. in
Computer Science from the University of Illinois,
Urbana-Champaign. Before joining Intel in 1993, he was
employed by General Dynamics Corporation. Bradley
currently works in Oregon as a Senior Software Engineer
in Server Software Technology. His e-mail address is
bradley_mitchell@ccm.co.intel.com.

