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Abstract
Powerful desktop multiprocessor systems based on the
Intel Architecture (iA) offer a formidable alternative to
traditional scientific/engineering workstations for
commercial application developers at an attractive cost-
performance ratio. However, the lack of adequate
compiler and runtime library support for multithreading
and parallel processing on Windows NT* makes it
difficult or impossible to fully exploit the performance
advantage of these multiprocessor systems.  In this paper
we describe the design, development, and initial
performance results of the Illinois-Intel Multithreading
Library (IML), which aims at providing an efficient and
powerful (in terms of types of parallelism it supports) API
for multithreaded application developers. IML implements
a parallel execution environment, which creates,
enqueues, dequeues, binds, and schedules user-level
threads on Windows NT* threads and fibers. One of the
unique and novel features of IML is its support for both
loop-level (data) parallelism and task-level (functional)
parallelism, as well as nested parallel threads.  Although
loop-level parallelism is most useful in scientific and
engineering applications, functional parallelism is often
the norm in multimedia, Internet, and Java* applications.
IML upgrades the multithreading support available on the
iA-based Windows NT* platforms to levels comparable or
superior to those found on high-end parallel systems and
supercomputers. Multithreading a number of diverse
benchmarks (ranging from POV-Ray to SPECfp95 and the
BLAS routines) using IML resulted in significant
speedups on a 4-way SMP Pentium® Pro processor based
system.

Future releases of IML will support several loop
scheduling schemes as well as controlled thread migration
for the purpose of dynamic load balancing. The
programmer or the compiler would thus be able to
customize scheduling on a per loop basis taking into
consideration performance-sensitive characteristics such
as branches inside loops and data locality.  The Intel
C/C++ and FORTRAN compilers and the Parafrase-2
experimental parallelizing compiler are being enhanced in
order to automatically generate the IML API, thereby
facilitating the development of multithreaded application
codes that fully exploit the performance potential of iA-
based multiprocessor servers and desktops.

Introduction
Parallel processing is rapidly becoming mainstream
technology influencing architecture and software design
from the home PC market (in the form of instruction-level
parallelism (ILP), Intel MMX� technology, and multiple
processors on PC boards) to the business field where
Symmetric Multi-Processing (SMP) servers have become
increasingly popular. While Intel compilers provide
intrinsics to generate Intel MMX  instructions so that
independent software vendors (ISVs) can easily
incorporate this technology into their products, there has
been little support for programmers to make use of iA-
based SMP systems for parallel processing. In fact,
multiprocessing may be the most significant enabling
factor for moving large-scale engineering and business
applications to iA-platforms for the first time, thereby
opening new opportunities in the discriminating high-end
market.
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The Illinois-Intel Multithreading Library (IML) upgrades
the multiprocessing support on iA-based Windows NT* to
levels comparable to or higher than the multiprocessing
libraries provided for high-end multiprocessor servers and
scalable parallel processor systems.

IML, unlike other previous or current runtime systems,
supports functional parallelism [2][3][4] where task
execution conditions are expressed by a directed acyclic
graph (DAG), in addition to the more conventional loop
parallelism and the single-level cobegin/coend functional
parallelism. IML is also capable of exploiting arbitrarily
nested parallelism, which has not been available in any of
the commercial multiprocessing libraries, including high-
end multiprocessors from Sun Microsystems and SGI, as
well as supercomputer systems from Cray, Fujitsu, NEC,
and IBM. SPMD-style nested parallelism is an optional
feature of the OpenMP standard [6].

IML has been used at the Center for Supercomputing
Research and Development (CSRD) and Intel for in-house
software development. Application programs written in
FORTRAN, C, and C++ for numerical computing,
database, and 3D graphics have been successfully ported
to the IML library.  The Parafrase-2 automatic
parallelizing compiler [7] developed at the University of
Illinois has been modified in order to generate calls to
IML automatically, thus exploiting loop and functional
parallelism exposed by the compiler. The IML binaries
and the documentation are now available to the public
through  the IML home page on the web [5]. The Intel
compilers are being modified to automatically parallelize
programs and generate calls to the IML library.

The rest of the paper describes the design and the
implementation of IML and the results from our initial
performance study. Our measurements indicate that the
performance of IML matches or exceeds highly-tuned
commercial libraries for existing multiprocessors for many
common single-level DOALL loops while adding support
for more general parallelism.  Conventional libraries
provide multithreading support for simple, singly-nested
parallel loops, which allows these libraries to be simpler
in design and to incur lower overhead costs. IML
implements a queue-based multithreading environment,
which supports general loop and functional parallelism
and allows arbitrary nesting of parallel loops and
unstructured parallel constructs such as nested
cobegin/coend.

Design

Basic Design Alternatives: Single Parallel-Task
Descriptor vs. Pool of Parallel Tasks
Existing commercial and experimental multiprocessing
libraries allow only one parallel loop to be executed at a

time. If a second parallel loop is encountered during the
execution of a parallel loop (as is the case with nested
parallel loops), the second loop is treated as sequential.
The same can be said for nested cobegin/coend constructs,
also referred to as functional parallelism. Such an
execution environment can be supported by a single task
descriptor specifying the loop body and the number of
iterations. However, supporting the execution of multiple
parallel loops (which may be nested or disjointed in
arbitrary control flow patterns) or functional parallelism
(where precedence requirements are specified by a DAG)
necessitates a pool of ready parallel tasks from which
assignments to user threads are made (Figure 1). In IML, a
collection of task queues1 is used to implement such a
pool of parallel tasks. User-level threads such as one or
more iterations of a parallel loop or a function call are
then bound to ready-to-execute tasks and are scheduled
for execution. In Figure 1, threads execute the task
scheduling loop fetch-execute-enqueue until the program
terminates.

Ready Tasks
forever{

fetch
execute
enqueue

}

CPU0 CPU1 CPU2 CPU3

Thread0 Thread1 Thread2 Thread3

Figure 1: Pool of parallel tasks

Queue-Based System Design Alternatives:
Centralized Queue, Distributed Queue, or
Global-Local Queue
A pool of parallel tasks can be implemented by a single
shared queue. Two major drawbacks of this approach are
contention and locality. In order to exploit maximum
parallelism, thread parallelism should be exploited at the
finest possible granularity that amortizes the overhead of
task management and scheduling. However, small task
sizes lead to more scheduling events, consequently
increasing the contention on a shared queue. Moreover, in
cache-coherent systems, this is likely to lead to poor cache
hit rates as a result of multiple processors updating a
single queue structure. Alternatively, multiple queues can

                                                          
1 Throughout the paper, the term queue is used in a broad sense, a
list that is subject to insertions and deletions.
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be distributed among threads, for example, one queue for
each thread. In this configuration, if a thread cannot find
more work on its local queue, it can access remote queues,
which facilitates load balancing. When workload is well
distributed among tasks, contention is minimized which,
in turn, promotes cache locality of the task queues. An
extreme drawback to this approach can arise when an idle
thread accesses a large number of  remote queues before
finding a task to execute2. The shortcoming of the two
approaches discussed above can be eliminated by
introducing a global queue, in addition to local queues.
IML employs a distributed queue configuration because
the primary target architecture consists of a small number
of processors. Future releases may provide generalized
support for large-scale parallel or distributed computing
systems.

Implementation Basic API Functions
Application programmers can write parallel programs with
the following functions. Support for the OpenMP standard
[6] is currently being implemented.

� iml_DOALL()  enqueues a parallel loop task. This
function returns when the loop task is completed. The
parameters of this function specify the pointer to the
function representing the loop body, the number of
iterations, the policy for loop scheduling,3 the
minimum chunk size, the number of parameters to the
loop body, and the actual parameters to the loop
body.

� iml_COBEGIN()  enqueues a set of functionally
parallel tasks. This function returns when all the tasks
are completed. The parameters of this function
specify the number of tasks, the pointers to the
functions representing the tasks, the number of
parameters to the tasks, and the actual parameters to
the tasks.

� iml_EnQ()  enqueues a task that is not a parallel
loop. This function returns immediately after
enqueueing the task, and thus does not wait for the
completion of the task. The parameters of this
function specify the pointer to the function
representing a task, the number of parameters to the
task, and the actual parameters to the task.  This
interface allows programmers to implement arbitrary
functional parallelism.

� iml_DecAndFetch()  performs user-level
synchronization. This function atomically decrements

                                                          
2 Effective scheduling algorithms and thread migration schemes
minimize the occurrence of such extremes.
3 IML implements various scheduling algorithms from which the
programmer can select on a loop-by-loop basis.

the counter and returns the value after the decrement.
Combined with iml_DOALL() , this can be used to
implement a DOACROSS (partially parallel) loop.
Combined with iml_EnQ() , this can be used during
the scheduling of DAG-parallel tasks. This function
takes the pointer to a counter as its argument.

 Extended API Functions
 Extended API functions are provided for experienced
application programmers. The extended API can also be
used by a compiler for automatic generation of calls to
IML (such is the case with Parafrase-2 and Intel
parallelizing compilers). Simple examples of the basic and
the extended API functions are given in the Appendix.

� iml_ReInitMultiThread() changes the num-
ber of active threads used by IML.

� iml_GetThreadID()  returns the thread ID of the
current thread.

 The full performance potential of the above API can only
be exploited with appropriate support from the OS kernel.
In particular, an application can add/release threads as it
goes through different phases of its execution in a way
that accurately reflects the parallelism in the underlying
computation. This results in better utilization of
processors and memory and translates not only to lower
execution times, but also to improved average workload
turnaround time in a multi-user environment. OS support
at the level of allocating and reclaiming resources from
user processes would be necessary in order to exploit this
capability of IML.4 However, this is not the case with
Windows NT* at present.

 Windows NT*: Threads and Fibers
 A thread is a unit of computation scheduled by the
operating system to run on a processor. A fiber is a unit of
computation that runs on a thread and is scheduled by a
user[10].  Some of the important characteristics of fibers
are as follows:

� Fiber switching is measured to take 50-60 cycles on a
200 MHz Intel Pentium� Pro processor. On the other
hand, the cost of suspending a thread is orders of
magnitude greater.

� There is an order of magnitude difference in the cost
of creation and deletion between fibers and threads.

� Similar to threads, fibers provide a user-level context
that includes a program counter, registers, and a
stack.

                                                          

 4 Hybrid  implementations are possible but cumbersome and may
conflict with software compatibility.
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� Scheduling of fibers is controlled by the user, while
scheduling of threads is controlled by the operating
system.

� The relationship of fibers to threads is analogous to
that of threads to processors.  An active fiber is bound
to a thread, just as an active thread is bound to a
processor.  A thread can have at most one active
fiber; similarly, a processor can have only one active
thread.  Inactive (or unbound) threads and fibers do
not receive any computational resources.

 Figure 2 illustrates the relationship between threads and
fibers. Without fibers, a context switch, even within a
process, is performed by the operating system. In Figure
2(a), bold lines represent the bindings between threads

and processors. A context switch corresponds to a
reconnection of a bold line from one thread to another
thread. This operation has two drawbacks. It is expensive
and not controllable by the user. These drawbacks can be
overcome with the introduction of fibers. Fibers detach
execution contexts from threads, allowing their scheduling
to be explicitly controlled by the user. Multiple threads
are still needed to maintain multiple active fibers. In
Figure 2(b), regular lines represent the bindings between
fibers and threads. A user-level context switch
corresponds to a reconnection of a regular line from one
fiber to another fiber, while a kernel-level context switch
is still represented by a reconnection of a bold line. Since
fibers are lightweight, easy to manage, and can be
explicitly scheduled by the user, they are used in the
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 Figure 2: Relationship between threads and fibers
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implementation of IML.

 Threads or Tasks
 In IML, tasks are represented by task descriptor blocks
(TDB).  A TDB contains a function pointer, a list of
arguments to that function, and for parallel loops, a
starting index, a dispatch counter, a minimum chunk size,
a loop scheduling policy, and a pointer to a loop
descriptor block (LDB).  A LDB contains a completion
counter and a pointer to the parent context of the loop.
Each task is represented by a single TDB except for a
parallel loop, which can be divided into one or more
TDBs that share a single LDB.

 Figure 3(a) is an example of a parallel loop, whose body is
represented by the function add_vectors_body ().
Figure 3(b) illustrates the relationships between the TDBs
and the LDB for this parallel loop. The number of
iterations n is assumed to have the value 1000. In this
example, the parallel loop is divided into four TDBs of
250 iterations each (the initial value of the dispatch
counter).  The completion counter in the LDB is
initialized to 1000, the number of iterations in the parallel
loop. The parent context in the LDB is set to the address
of the fiber executing the function call iml_DOALL() .
The TDBs are enqueued into the task queues, where they
wait to be scheduled for execution. Finally, the fiber
executing iml_DOALL()  yields to another fiber to
participate in task execution.

 

 Distributed Shared Queue (DSQ) and Load
Balancing
 In order to avoid contention on a centralized queue, IML

uses multiple task queues distributed across multiple
threads. Each thread owns a (local) queue, and can also
access (remote) queues owned by other threads in order to
achieve balanced load distribution. For systems with many
processors, a hierarchical DSQ implementation may be
preferable to a flat implementation. However, since the
current target of IML is a four-way SMP  Pentium Pro
processor based system, IML employs a flat DSQ
implementation. The current scheduler accesses remote
queues in a round-robin fashion after the local queue
becomes empty. This scheduling policy enhances cache
locality of local queue accesses when threads continue to
schedule tasks from their local queues.

 Dynamic load balancing is achieved when threads with
empty local queues acquire tasks from remote queues. If a
remote task is a non-loop task, the thread dequeues the
task and executes it. If the task is a parallel loop, the
thread splits the task in half [8], places one of the tasks in
its local queue, and begins executing it. (This policy is
chosen to maintain locality while reducing the cost of load
balancing. User-specified minimum chunk size is honored
in any loop-scheduling events.) Figure 4 illustrates the
configuration of the DSQ. Threads and their local queues
are connected by the bold lines. The regular lines
represent the connections between threads and remote
queues. IML allows users and external libraries to create
multiple threads, and for each of these threads (multiple
instances of Thread 0 in IML) to take advantage of IML.
This enables rapid porting of existing threaded
applications to IML.

 Each task queue in IML is implemented as a stack to
facilitate support for nested parallelism. When a thread
encounters the first (outermost) level of parallelism, the
newly created tasks are pushed onto the appropriate

 

 

void add_vectors(double *a, double *b, int n){
  int chunk = 16;
  int params = 2;
  iml_DOALL(&add_vectors_body, &n,
            &static_schedule, &chunk,
            &params, a, b);
  return;
}

void add_vectors_body(int *start, int *iters,
                      double *a, double *b) {
  int i;
  for(i = *start; i < (*start + *iters); i++){
    a[i] = a[i] + b[i];
  }
}

(a) A Parallel Loop

&add_vectors_body
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b

1000     � completion counter
&parent_context

&add_vectors_body
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a
b

&add_vectors_body
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&add_vectors_body
0         � start index
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(b) TDB and LDB for (a)

 Figure 3: A parallel loop, task descriptor blocks, and a loop descriptor block
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stacks. Inner parallel tasks are pushed onto the local
queue, hence increasing locality of task queue operations,
as well as locality between inner parallel tasks.

 

 

T0 T1 T2 T3

Q0 Q1 Q2 Q3

Q0-Q3: Task Queues
T0-T3 : Threads

 Figure 4: DSQ and threads

 

 For example, in the case of doubly-nested parallel loops,
the outer loop is distributed across multiple threads, while
each inner loop is enqueued to the local task queue. Each
thread continues executing iterations of the inner and
outer loops from its local queue, until all the tasks in the
local queue are completed. At this point, threads acquire
tasks from remote queues making it possible for them to
participate in the execution of inner parallel loops from

other threads. By enqueueing all the inner loop iterations
to the local queue, locality among these iterations is
exploited.

 Lock-Free Stack
 The task queue stack is implemented without software
locks [9] by using the iA instruction lock CMPXCHG8B,
which performs an atomic compare and exchange
operation. Figure 5(a) and (b) illustrate enqueue and
dequeue operations of the pointer P2, respectively. In the
enqueue operation (Figure 5(a)), the lock CMPXCHG8B
instruction compares the pair “Empty-Top” (brown)
against the stack top (green), and if the comparison
succeeds, the stack top is replaced by the pair “Top-P2”
(blue). When the comparison fails, the operation must be
repeated with the new stack top. In the dequeue operation
(Figure 5(b)), the top of the stack, which is the value to be
dequeued, is used to construct the pair “Top-P2.” The
lock CMPXCHG8B instruction compares the pair “Top-
P2” and the stack top, and replaces the stack top with
“Empty-Top” if the comparison succeeds.

 Unfortunately, the lock-free implementation allows only
one access point to a task queue. Therefore, a thread
obtains a remote task from the top of a remote task queue,
even though outermost parallel tasks are found at the
bottom of the task queue.

 Process Stack Management
 Exploitation of parallelism requires multiple execution
contexts to be active simultaneously.  In IML, each of
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these contexts corresponds to an active Windows NT*
fiber.  The collection of stacks from active and suspended
fibers resembles a cactus stack. Figure 6 illustrates the
structure of the execution contexts for a parallel loop
nested inside a COBEGIN section.  The difference
between this structure and a true cactus stack is that all the
variables in parent contexts that are needed by child
contexts are passed via parameters, instead of being
accessed by a static linkage pointer.

 In IML, when a new level of parallelism is invoked, the
parent context is immediately suspended, and child
contexts are initiated from a pre-allocated and recycled
fiber pool.  Upon completion of the parallel section, one
of the active children contexts resumes the parent context
[1].

 Compiler-Generated Parallel Code
 Parallel programming, compared to sequential

programming, is a difficult and error prone process.
Methods to automate or semi-automate this process are of
great value to programmers. Automatic tools, such as
automatic parallelizing compilers, are the ultimate tools
that programmers can use to parallelize programs. Ideally,
these compilers relieve the programmer of all the concerns
of parallelization. However, two decades of research in
parallel optimization has shown that optimal
parallelization is often not achieved solely through
automatic methods. In fact, semi-automatic parallelization
techniques allow the user to guide the pre-processor or
compiler in parallelizing the code. Fully and semi-
automatic parallelizing methods are discussed in the
following paragraphs.

 Before discussing the two methods of parallelizing code,
however, we first need to discuss how to transform code
in order to interface with the IML. The transformation for
parallel loops is described here, but a similar
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transformation is needed for parallel tasks. For each
parallel loop, a new function is created that contains the
loop body and the necessary support code. The shared and
private variables of the loop are determined.  Private
variables (i.e., those with no cross-iteration dependencies)
are redefined as local variables in the new function.  The
loop iteration variable is also declared as a local variable.
All other variables are classified as shared and are
declared as formal parameters of the new function. At the
original site of the parallel loop, the body of the loop is
replaced by a call to the IML entry point, iml_DOALL .
All the information needed to execute the loop in parallel
is passed to this entry point. This consists of the number
of iterations, a pointer to the newly created function, the
list of shared variables, the loop scheduling type, and the
minimum chunk size. Some needed support code is also
inserted around the call site.

 Fully Automatic Parallelization
 As mentioned above, the most convenient, but not
necessarily the optimum, way to construct parallel
programs is to utilize fully automatic tools such as
parallelizing pre-processors or compilers that handle both
the discovery of parallelism and the translation of parallel
constructs. Two compilation systems, based on IML, were
developed to facilitate fully automatic parallelism.

 The Parafrase-2 parallelizing compiler, developed at the
University of Illinois, was enhanced to output a
transformed source code file with calls to the IML. The
solid line path in the left side of Figure 7 shows this
completely automatic path, which relinquishes the
programmer from any parallelization effort. Parafrase-2
inserts all the necessary source code to manage the
detected parallelism.

 At Intel Microcomputer Research Labs (MRL), a parallel
optimization module was added to the Intel compilers.
This module accepts as input a standard intermediate
representation of the source code produced by the front
ends. Control and data flow analysis is performed on the
intermediate form, and data dependence analysis is done
on its loop constructs to discover loops with no loop
carried dependencies (i.e., DOALL loops). These loops
are then marked for a translator to convert them to the
form required by the IML interface. This path is shown in
solid lines in the right side of Figure 7.
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 Figure 7: Parallel code generation

 Semi-Automatic Parallelization
 As stated earlier, fully automatic parallelization has  its
limitations. Fortunately, these limitations can be overcome
by providing supplemental information about the program
to the compiler or pre-processor, including information
that cannot be determined at compile time. This
information, which can be represented in many forms,
such as directives, external assertion files, or interactive
questioning by the compiler during compilation, is critical
in the generation of efficient code.

 Two semi-automatic methods have been implemented,
corresponding to the diagonal path and the rightmost path
(dashed lines) of Figure 7.  Both methods encode parallel
information in an assertion file, which the Intel C/C++ and
FORTRAN compilers have been extended to access.

 To automate the assertion file generation process,
Parafrase-2 has been extended to generate an assertion file
(along with a source code file). This process is fully
automatic when Parafrase-2 generates efficient parallel
code. However, when the code generated by Parafrase-2
does not perform adequately, the information in the
assertion file can be augmented by the programmer to
increase the performance of the parallel executable.

 Another method is to encode parallelism in the source
code via OpenMP directives explicitly. The augmented
source code is then passed through a directive
preprocessor, which generates an assertion file from the
directives.  The assertion file and the source code are then
given to the modified Intel compilers to generate the
parallel executable.
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 These semi-automatic methods detach the identification
and the exploitation of parallelism. Parafrase-2 or the
programmer identifies the parallelism in the program,
while the modified Intel compilers transform the program
to exploit this parallelism. Compared to the scheme where
IML calls are inserted by Parafrase-2,  the configurations
using the assertion file increase the accuracy of the
analysis performed by the modified Intel compilers.

 Performance
 Several experiments were performed to measure and
evaluate the benefits of IML.  These experiments were
performed on a system with the following configuration:

� Intel System: Four 200MHz Pentium Pro  processors,
each with 256KB L2 cache; 4 way interleaved
memory 512MB (60ns Fast Page Mode), Matrox
MGA Millenium graphics card with 4MB VRAM

� Microsoft Windows NT* Server version 4.0

� Intel C/C++/FORTRAN Compiler version 2.4 (for
compilation of IML and application programs)

� Microsoft Macro Assembler version 6.11d (for
compilation of IML)

� Illinois-Intel Multithreading Library version 1.1

Intel System Memory Subsystem Performance
Before proceeding with the experiments that present the
results with IML, a simple experiment was conducted to
determine the impact of the memory subsystem
performance on the results.

The effect of main memory bandwidth was evaluated
using the code segment in Figure 8. When the array
block  fits into the L2 cache, almost perfect cache
locality is achieved, resulting in very few main memory

accesses.  On the other hand, a large number of cache
misses on the L2 cache were observed for larger sizes of
the array block .

Figure 9(a) illustrates the performance degradation of this
code when multiple copies of this program are executed
simultaneously. By running multiple independent
processes of the same program, the experiment creates
increased requirements on the bandwidth to main memory.
For small sizes of array block , four copies of the
program are executed without any performance
degradation.  When the size of array block  is larger than
the L2 cache (and thus each process now initiates more
main memory accesses than the case of small array sizes),
a performance degradation of approximately 220% is
observed for four copies. This behavior is not limited to
the test case.  For example, three SPECfp95 benchmarks,
MGRID, SWIM, and TOMCATV show 22%, 97%, and
174% slowdown, respectively, when four copies are
concurrently executed (Figure 9(b)). The performance
degradation observed in Figure 9 is attributable to the
bandwidth between secondary cache and main memory.
Therefore, it can be improved by performing cache
locality optimizations.  In the following experiments, no
manual cache locality optimizations were performed.

 

 

double a=0, block[N];
for(j=0;j<M;j++){
  for(i=0;i<N;i++){
    a += block[i];
  }
}

 Figure 8: Code segment for memory subsystem test
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BLAS3
BLAS3 is a library package for matrix-vector operations.
Several complex BLAS3 library functions from a
preliminary version of the Intel Math Kernel Library
(MKL) were ported to IML.  MKL uses a conventional
multiprocessing library, which exploits only a single level
of parallelism.  The computational kernels of these
functions are written in FORTRAN and iA assembly with
cache locality optimizations.

The speedup curve of one of these library functions,
CGEMM, is presented in Figure 10 and can be seen to
scale linearly.  As the problem size increases, a moderate
increase in the speedup is observed.  The figure also
illustrates that there is no significant difference in
performance between IML and MKL.  Unlike MKL which
is a non-queue-based, singly nested, loop-only library and
hence highly tuned, IML is a queue-based, runtime system
that supports any mix of arbitrarily nested loop and
functional threads, and hence is better suited for a larger
class of application codes.  Thus, one would expect that
the additional functionality and general-purpose nature of
IML would increase the overhead cost. Due to efficient
implementation, this is not the case as is clear from Figure
10, and IML incurs thread management overhead
comparable to fine-tuned libraries that support single loop
only parallelism.
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Figure 10: CGEMM speedup

SPECfp95
Three of the SPEC95 floating-point benchmarks, MGRID,
SWIM, and TOMCATV were parallelized by the
Parafrase-2 compiler. The benchmarks are numeric
intensive and highly parallel.  The solid lines of Figure 11
show the speedup curves for these benchmarks as
measured on the actual system. Automatic parallelization
with the Intel compiler produced similar results. As
expected, the poor scaling is the result of the limited
memory bandwidth. Extrapolating from these benchmark
results and the performance of the memory subsystem for
each benchmark from Figure 9(b), projected speedups,
shown as the dotted lines in Figure 11, are obtained.
These speedup curves correspond to a hypothetical system
with sufficient main memory bandwidth.
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Figure 11: SPEC95 Speedup (actual & projected)

POV-Ray for Windows*
POV-Ray is a ray-tracing software package available to
the public. This application is highly parallel since every
pixel can be processed independently. In this experiment,
however, only the parallelism between horizontal scan
lines was exploited. The performance of the initial port is
shown in Figure 12(a).
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POV-Ray Performance (improved )
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Figure 12: POV-Ray for Windows* performance

Execution times are represented by the bar graph. The
colors blue, red, and white correspond to user, system, and
idle time of the parallelized POV-Ray, respectively. The
solid line represents the speedup over the original source
distribution. The system and idle times, depicted in the bar
graph, are due to the mutual exclusion inside malloc
() . The dashed line represents the projected speedup,
computed only from the user time.

To eliminate this system level overhead, a second port
enclosed the malloc ()  function calls with user-level
mutual exclusions, resulting in the performance shown in
Figure 12(b). The system level overhead was eliminated,
and linear speedup was obtained. Although the second
port performs better than the initial port, it still suffers
from serialization in the malloc()  routine. A truly
parallel implementation of malloc()  would allow for
even greater performance gains.

Conclusions
In this paper we have described IML, the Illinois-Intel
Multithreading Library designed to support various types
of parallelism efficiently.  IML extends substantially the
degree of available support for multithreading (found in
other experimental or commercial systems) by providing
the capability to express nested loop and cobegin/coend
parallelism. Users can benefit from IML in terms of a
reduction in development time by expressing parallelism
in the IML API. To further assist the application
developer, the Parafrase-2 compiler at the University of
Illinois and the Intel FORTRAN Compiler have been
modified to analyze programs to detect parallelism
(automatically and with directives) and to generate calls to
IML.  Performance of automatically generated parallel
code for SPECfp95 applications with IML is the same as
hand-coded parallel programs.

*All trademarks are the property of their respective
owners.
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Appendix: Examples for IML API
This appendix gives the examples for IML API functions.
The code segments presented in this paper are simplified
for explanatory purposes. Further details on the usage of
IML can be found in the IML Home Page [5].

Basic API Functions
In this section, the usage of basic API functions is
demonstrated using the original code shown in Fig. A-1.
In this example, all three loops (i, j, and k) are parallel,
and the two outermost loops (j and k) can be executed
simultaneously.

double A[M][N], B(N), c;
for(j=0;j<M;j++){
  for(i=0;i<N;i++){
    A[i][j] = i * j;
  }
}
for(k=0;k<N;k++){
  B[k] = k;
}
c = foo(A, B, N, M);

Figure A-1: Code Segment for Fig. A-2 to A-5.
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Converting the j- and k-loops to DOALL results in the
code shown in Fig. A-2. The k-loop is executed after the j-

loop is completed.

  double A[M][N], B(N), c;

  iml_DOALL(&jloop, &M,
            &static_schedule,
            &chunk, &params,
            A, N);
  iml_DOALL(&kloop, &N,
            &simple_schedule,
            &chunk, &params, B);
  c = foo(A, B, N, M);

void jloop(int *start,
           int *iters,
           double *A, int *N){
  for(j=*start;
      j<*start+*iters;j++){
    for(i=0;i<N;i++){
      A[i][j] = i * j;
    }
  }
}
void kloop(int *start,
           int *iters,
           double *B){
  for(k=*start;
      k<*start+*iters;k++){
      B[k] = k;
    }
  }
}

Figure A-2: Using iml_DOALL()  for Outer Loops

The i-loop can also be converted to DOALL as in Fig. A-
3. Unlike conventional libraries that would internally
execute the i-loop described in this fashion as a sequential
loop, IML can actually execute it in parallel.

  double A[M][N], B(N), c;

  iml_DOALL(&jloop, &M,
            &static_schedule,
            &chunk, &params, A, N);
  iml_DOALL(&kloop, &N,
            &simple_schedule,
            &chunk, &params, B);
  c = foo(A, B, N, M);

void jloop(int *start,  int *iters,
           double *A, int N){
  for(j=*start;
      j<*start+*iters;j++){
    iml_DOALL(&iloop, &N,
              &self_schedule, A, j);
  }
}
void kloop(int *start, int *iters,
           double *B){
  for(k=*start;
      k<*start+*iters;k++){
    B[k] = k;
  }
}
void iloop(int *start, int *iters,
           double *A, int j){
  for(i=*start;
      i<*start+*iters;i++){
    A[i][j] = i * j;
  }
}

Figure A-3: Using iml_DOALL()  for all loops

Furthermore, the j- and k-loops can be executed
simultaneously, using iml_COBEGIN()  (Fig. A-4) or
iml_EnQ()  (Fig. A-5).
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Extended API Functions
The usage of the extended API functions is demonstrated
using the original code shown in Fig. A-6. The reduction
operation can be performed in parallel, where each thread
reduces to its own variable, and global reduction across
the result of the thread-wise reduction is performed
afterwards (Fig A-7). If a sequential section of the
program persists for a period of time, the programmer or
the compiler can use iml_ReInitMultiThread()  to
reduce the number of active threads (Fig. A-8).

  double A[M][N], B(N), c;

  iml_COBEGIN(&tasks, &jloop_0,
              &kloop_0,
              &params, A, B, N, M);
  c = foo(A, B, N, M);

void jloop_0(double *A, double *B,
             int N, int M){
  iml_DOALL(&jloop, &M,
            &static_schedule,
            &chunk, &params, A, N);
}
void kloop_0(double *A, double *B,
             int N, int M){
  iml_DOALL(&kloop, &N,
            &simple_schedule,
            &chunk, &params, B);
}
void jloop(int *start, int *iters,
           double *A, int N){
  for(j=*start;
      j<*start+*iters;j++){
    iml_DOALL(&iloop, &N,
              &self-schedule, A, j);

  }
}
void kloop(int *start, int *iters,
           double *B){
  for(k=*start;
      k<*start+*iters;k++){
    B[k] = k;
  }
}
void iloop(int *start, int *iters,
           double *A, int j){
  for(i=*start;
      i<*start+*iters;i++){
    A[i][j] = i * j;
  }
}

Figure A-4: Using iml_COBEGIN()
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double a, B(N);
for(i=0;i<N;i++){
  a += B{i];
}

Figure A-6: Code Segment for Fig. A-7 and A-8

  double A[M][N], B(N), c;

  iml_EnQ(&jloop_0, A, B,
          N, M, &cnt, &c);
  iml_EnQ(&kloop_0, A, B,
          N, M, &cnt, &c);

void jloop_0(double *A, double *B,
             int N, int M,
             int *cnt, double *c){
  iml_DOALL(&jloop, &M,
            &static_schedule,
            &chunk, &params, A, N);
  if (iml_DecAndFetch(cnt)==0){
    iml_EnQ(&foo_0, A, B, N, M, c);
  }
}
void kloop_0(double *A, double *B,
             int N, int M,
             int *cnt, double *c){
  iml_DOALL(&kloop, &N,
            &simple_schedule,
            &chunk, &params, B);
  if (iml_DecAndFetch(cnt)==0){
    iml_enQ(&foo_0, A, B, N, M, c);
  }
}
void foo_0(double *A, double *B,
           int N, int M, double *c){
    *c = foo(A, B, N, M);
}
void jloop(int *start, int *iters,
           double *A, int N){
  for(j=*start;
      j<*start+*iters;j++){
    iml_DOALL(&iloop, &N,
              &self-schedule, A, j);

  }
}
void kloop(int *start, int *iters,
           double *B){
  for(k=*start;
      k<*start+*iters;k++){
    B[k] = k;
  }
}
void iloop(int *start, int *iters,
           double *A, int j){
  for(i=*start;
      i<*start+*iters;i++){
    A[i][j] = i * j;
  }
}

Figure A-5: Using iml_EnQ()

  double a, A(NCPU), B(N);

  iml_DOALL(&iloop, &N,
            &static_scheduling,
            &chunk, &params,
            A, B);
  for(i=0;i<NCPU;i++){
    a += A[i];
  }

void iloop(int *start, int *iters,
           double *A, double *B){
  ID = iml_GetThreadID();
  for(i=*start;
      i<*start+*iters;i++){
    A[ID] += B{i];
  }
}

Figure A-7: Using iml_GetThreadID() .

  double a, A(NCPU), B(N);

  iml_DOALL(&iloop, &N
            &static_scheduling,
            &chunk, &params,
            A, B);
  iml_ReInitMultiThread(1);
  // suspend all other threads
  for(i=0;i<NCPU;i++){
    a += A[i];
  }

void iloop(int *start, int *iters,
           double *A, double *B){
  ID = iml_GetThreadID();
  for(i=*start;
      i<*start+*iters;i++){
    A[ID] += B{i];
  }
}

Figure A-8: Using iml_ReInitMultiThread() .


