[image: image1.wmf]RISC CPU

RISC CPU

PCI I/F

PCI I/F

SDRAM

Mem 3

Elan Link

Mem 0

Mem 1

I/O

devices

Elan 3

Mem 2

Xbar Mem

System

[image: image4.wmf]
[image: image4.wmf]QM-1 Overview

[image: image5.wmf]
QUADRICS QM-1 Overview
Contents

1. QM-1 MPP System
pag. 2

2. QM-1 Interconnect technology
pag. 5

2.1 Communications network
pag. 5

2.2. QM-1 Fault Tolerance
pag. 7

2.3. Scalability
pag. 8

3. QM-1 System Software
pag. 9

3.1 Run-Time Environment
pag. 10

3.2. Run-Time Services
pag. 10

3.3. System Administration and Resource Management – Single System Image
pag. 10

4. QM-1 Application Development Software
pag. 14

4.1 Standard Software Development Tools
pag. 14

4.2. Communication and Message Passing Environments
pag. 15

Appendix 1: QSW Node (UltraEnterprise) Full capabilities
pag. 18

1. QM-1 MPP SYSTEM

The QM-1 is a scaleable parallel processing computer system that is able to support research and production environments in a wide range of the most demanding scientific, technical and commercial operations. With this system, Quadrics Supercomputers World Ltd., offers a unique blend of commodity components with a technology that extends the benefits of Open Systems into the class of Supercomputing. In this respect, QSW have concentrated on the core enabling technologies to capture this scalability (both in terms of performance and the elements required in sustaining a production environment), while leveraging the high market driven third-party hardware and software base. This strategy encompasses growth, performance and protection and maximises the return on investment for a particular computer system.

QM-1 hardware consists essentially of a number of high-performance, Processing Elements (or nodes) connected together by means of a high-speed communications infrastructure. Each PE represents an autonomous unit and is made up of one or more superscalar processors with a dedicated shared memory system, peripheral and external networking capability and a communications processor providing global access to its internal network and to other PEs' memory. This network provides the mechanism whereby the autonomous computational, data access and networking capabilities of each PE can be used in ensemble.

The unique character of the communications sub-system is the primary factor distinguishing the QM-1 from other MPP systems in the market: the communications network is designed to be invisible to applications. Its function is to implement standard inter-processor communication models with maximal efficiency.

Following figure (fig. 1) depicts the architecture of the QM-1 Processing Element: the PE can currently house one to four high performance RISC CPUs, is centred around a cross-bar memory system capable of very high bandwidth (1.6 Gbyte/s), with the addition of two interfaces to PCI buses. In future releases the processor count per node will increase. One such bus (64 bit, 66MHz) is dedicated to the Elan3 chip (designed by QSW), that interfaces to the high speed interconnect network, while the other bus (32 bit, 33Mhz) allows interconnection to commercial peripheral equipment. Total bandwidth available for I/O is 800 Mbyte/s.

[image: image11.png]
Fig. 1: QM-1 node architecture

The processing node is a standard UNIX computer, capable of housing up to four CPUs, up to 2 Gbyte of main memory plus local mass storage. When a node installs multiple CPUs, these are connected in a SMP mode, thus providing a well known architecture for the execution of high performance codes. The CPUs can be replaced in time, in order to upgrade them to newer releases; the first release of the QM-1 is equipped with 250 MHz, 500 MFLOPs UltraSPARC II CPUs. The architecture of the node has been designed in such a way to be "open", with respect to the selected CPU, in such a way that it can be at any time replaced with another component without impact on the interconnect and the other subsystems. Finally, each node offers autonomous I/O and network capabilities (via standard SCSI bus and PCI devices) and provides access to the internal interconnect.

System wide services are provided by an enhanced version of the Solaris operating system that runs on each PE. These modifications represent parallel extensions to the base Solaris environment communication. As a superset of Solaris, the entire SPARC/Solaris software base encompassing many thousands of business, engineering and scientific applications, system middleware tools, application development environments, network and peripheral drivers remain accessible to the QM-1 without modification.

At the application level, the QM-1 system is designed to support multiple, independent job streams typically made up of a mix of application codes: sequential or parallel, computationally or I/O intensive, integer or floating point based. The machine can be used equally effectively to run a large number of independent sequential or modestly-parallel jobs (referred to as capacity mode) or a smaller number of highly-parallel jobs (capability mode). As most computer installations will include a requirement to support both these modes of use, the QM-1 system allows resources to be structured as a number of specialised partitions such that guaranteed levels of service are available to a multiplicity of operational classes.

Application development for the QM-1 systems include a comprehensive set of programming tools, supporting sequential, message-passing-parallel and data-parallel programming models. These include compilers, a parallel debugger, a performance visualisation tool, legacy code restructuring tools and scientific libraries. In addition, a broad range of generic Solaris software development tools are also available.

One of the goals which shaped the QM-1 design is to deliver unchallenged price/performance for a wide variety of system configurations in a way which is sustainable over the lifetime of a computer installation. This is achieved by integrating a standard, commodity processor architecture with a high-performance, proprietary inter-processor communications system.

The selection of commodity components is a key strategy that leverages product development and product cost/performance. By using components developed and supported by the industry’s largest suppliers, QSW can bring state-of-the-art product lines to market with minimum time lag; allowing the company to focus on the unique technology required for scaleable high performance systems.

QSW deploys the SPARC architecture at the heart of each PE. Compliance with the SPARC ABI ensures access to all other conforming applications and tools. Compliance also ensures that any code developed and produced for SPARC workstations will run on any QM-1 system, without modification or recompilation. This level of code portability is conducive to the creation of an efficient network-wide code development environment. The approach guarantees furthermore, that parallel programs developed in conformance with standard programming models will run unmodified on QSW systems incorporating current and forthcoming generations of SPARC processors.

The unique character of the communications sub-system is one of the primary factors distinguishing the QM-1 from other scaleable systems in the market. The communications network has been designed to be invisible to applications: its function is to implement standard inter-processor communication models with maximal efficiency.

The provision of the highest levels of system reliability, serviceability and availability is foremost in the design and implementation of the QM-1. Fault tolerance is based on guaranteeing availability in the presence of component failure. This strategy extends throughout the system, from individual memory systems to whole processor modules and network layers significantly reducing the likelihood of systems failure. In the event of failure, specific fail-over strategies implemented within the enhanced Solaris environment ensure that total loss of service is obviated and that a graceful degradation in availability ensues. The system can then be returned to full production capacity by either the appropriate service or by means of automatic procedures within the Operating System.

Wherever possible QSW supports, adheres to, and contributes to the development of industry standards, to maximise the price/performance benefits available to Open Systems oriented customers.

2. QM-1 Interconnect technology

2.1
Communications network

Effective co-operation between PE.s is the most important factor influencing the overall sustained performance of an MPP system. More specifically, this requires both high bandwidth and low latency from the communications network. Communication latency is an important property of an MPP system, particularly when small messages are being transferred. A significant proportion of the design effort expended on the QM-1 communications network arose from a recognition of the importance of minimising latency.

The QM-1 network is constructed using two components:

· The Communication Processor allows each PE in the system to transfer data over the network using remote, direct virtual memory reads and writes. The communication processor is cache-coherent with the main SPARC processor(s) and has symmetric access to the PE's local memory system.

· The Network switch is a 4x4 cross-bar switch used to construct a multi-stage network of links connecting all PE.s.

Both components were designed using a standard CMOS gate-array process. The following figure depicts the building blocks of the interconnect technology.

[image: image2.wmf]Title: (CS2HA_Datanetwork.art)

Creator: Adobe Illustrator 88(TM) 1.8.3

CreationDate: (25/1/95) (2:09)

Fig. 2: QM-1 Data Network: the building blocks

The multistage network implements a logical “fat-tree” configuration, whereby bandwidth is doubled at each higher branch in the “tree”. Such design delivers, by means of its architecture, enough bandwidth to allow all nodes to communicate simultaneously at the maximum bandwidth permitted by their links. At the same time, latency is by no means affected by each additional stage in the network, thus providing a latency that is nearly independent of network depth. The following figure depicts the logical view of the interconnect network.

[image: image6.wmf]
Fig. 3: The Interconnect architecture

The interconnect can be scaled up to more than 4000 processing nodes. Each node can communicate at 250 Mbytes/s bidirectional. The network operates at a target latency of 2µs. For MPI, target latencies of the order of 7µs are anticipated.

2.2
QM-1 Fault Tolerance

The QM-1 design embodies a number of features to maintain the high levels of availability required in large scale production systems. The general approach is based on the following:

· Avoid single points of failure;

· Detect failures promptly;

· Duplicate critical sub-systems;

· Minimise disruptive effects of corrective action.

Each component module is independently powered and cooled and is capable of independent operation and self-test. This allows individual modules to be removed from service for maintenance or upgrade whilst the rest of the system remains fully operational.

Hardware sub-systems such as memory and communications support automatic error detection and correction. For example, the memory sub-system associated with each PE will correct single-bit and detect double-bit errors; sending any such memory errors to be logged and reported.

The multi-stage switch network is critical to the operation of the system as a whole: it is possible to add whole network so as to duplicated in its entirety supporting continued operation in the event of a serious failure of one layer. In addition switch modules have multiple top switches, and redunded power supplies/fans. The hardware link protocol uses a Cyclic Redundancy Check (CRC) to detect errors. Failed transmissions are not committed to memory but cause data to be resent using an alternative route. The effects of persistent failures within the switch network can be overcome by generating alternative routing tables and is done without the need to interrupt network operations. Finally it is possible to adopt disk arrays (to protect against device failure) connected to multiple nodes (to protect against controller/node faillure).

2.3
Scalability

The scalability of an MPP system is crucial to its operational effectiveness. On systems which scale poorly, increasing utilisation or expansion of system resources result in relatively small performance gains as a consequence of some limiting factor in the system architecture. This may be associated with filesystem I/O, external network access or inter-processor communications. It is only necessary for one of these sub-systems to scale poorly to limit the scalability of the system as a whole.

The critical importance of the scalability of all aspects of an MPP system was recognised at the very start of the QM-1 design process and the resulting architecture realises a high degree of scalability.

The file I/O requirement of a particular QM-1 system is satisfied by the addition of I/O elements and associated disks. Scaleable I/O performance is achieved both by the addition of devices and because the data network does not introduce bottlenecks in the routing of data between processors.

External network connectivity scales in the same way. Ethernet, X.25, FDDI and HiPPI interfaces can be added to as many PE.s as are necessary to support the load.

While scalability within a network has traditionally been difficult to achieve in real systems, the QM-1 communications network has been designed to access data held anywhere in the system. It allows every PE to access memory on any other PE in the machine and maintains a bi-sectional bandwidth that grows with the number of PE.s. The network bandwidth scales linearly while network latency only increases logarithmically with the number of PE.s. In conjunction with the ultra-low latency characteristics of this network this means that inter-process communications on the QM-1 are fully scaleable to a very close approximation.

In the QM-1, scaleable performance is achieved by the addition of the requisite functional elements, with network scalability providing the key to their integration within the system as a whole. This escape from the constraints of locality is arguably one of the most important distinguishing characteristic of the QM-1 architecture.

3.
QM-1 System Software

The decision to base the design of the QM-1 on both a commodity processor architecture (SPARC) and a POSIX conformant operating system (Solaris) has far-reaching implications for the software environment as a whole. QSW has been able to focus the major part of its own software design effort on critical aspects of the run-time system, communications libraries and development tools where the attainment of peak functionality and performance is paramount. Nevertheless a supercomputer system capable of deployment within a broad variety of operational environments must incorporate a far wider variety of software tools and controls than is necessary merely to achieve excellence with respect to particular benchmarks.

The software design strategy at QSW is consequently one which aims to achieve a consistently high level of quality and performance across a comprehensive range of functions by adopting the following approach to software origination:

· Design and develop technically-critical core components. Example: QM-1 resource manager, parallel file system, process checkpointing/restart, gang scheduler

· Undertake ports of widely-used standard software components. Example: MPI

· Negotiate source licences with third parties and extend functionality to encompass unique aspects of the QM-1 architecture. Examples: Solaris kernel, TotalView parallel debugger.

· Develop mutually beneficial partnerships with software vendors to develop specific solutions.

· Actively engage in the development of international standards in anticipation of subsequent product development by third parties.

· Identify industry-standard software components which can supply necessary functionality. This is achieved primarily in partnership with existing customers who are often best qualified to match requirements to products in the open systems marketplace.

In this way the QM-1 software environment can be functionally classified along the following lines:

· Run-time environment.

· Run-time services.

· System administration – Single System Image.

· Application development.

3.1
Run-Time Environment.

The QM-1 communications processor is able to access the memory of every processor in the machine by means of a virtual shared memory mechanism that operates across PEs. The hardware protects processes from memory accesses initiated by other, unrelated processes but does not prevent a process from accessing the memory of processes sharing the same context; typically these will be components of a single parallel application.

All inter-processor communications within the QM-1 are built on this foundation. These range from familiar UNIX mechanisms (TCP/IP and UDP) to message-passing libraries available to application developers (PVM and MPI). The lowest level documented communications library is known as the Elan Widget Library (libew). All other message-passing libraries are layered on top of the latter such that they are granted access to the underlying communications hardware without unnecessary copying of data and without the involvement of the operating system kernel.

3.2
Run-Time Services

The characteristics of the QM-1 communications network are such that questions of locality between application processes and the services they require (e.g. file I/O) may be largely ignored. This makes possible an extremely flexible approach to system configuration in which shared services can be implemented on dedicated partitions or can co-exist with other services or applications. The first approach enhances reliability and performance whilst the second takes advantage of the multitasking capabilities of the operating system to improve efficiency and resource utilisation.

3.3
System Administration and Resource Management – Single System Image

The sections above have emphasised the regularity of the QM-1 architecture. Indeed if one disregards system software above the level of the operating system the machine can be described as a network of SMP processors: the system software creates a high-level system representation on top of such network. The system software component responsible for constructing the big picture of the QM-1 is called the Resource Management System (RMS). An important aspect of its functionality concerns high-level configuration management.

Administrative functions can be classified as those which relate intimately to unique characteristics of the QM-1 architecture and those which address generic open systems requirements. The former functions are included in the standard QSW QM-1 software release, while the latter, for the most part, can be provided by approved, third-party software packages.

To users of the QM-1, the system manifest itself as number of functionally distinct services, each corresponding to a subset of nodes known as a partition. Examples of such services are support for interactive sessions, execution of sequential or parallel batch jobs, access to a relational database or high-bandwidth file system and data visualisation. The permission to use a specific service is controlled by means of an access list containing the names of authorised users and groups of users.

The overall partition structure is known as a configuration. Any number of different configurations can be defined and saved in the system database. Only one configuration is active at any one time. The activation of different configurations over a daily or weekly cycle can be scheduled automatically. The system administrator is responsible for establishing and maintaining this high-level structure. As an example, it is commonplace to define a “day-shift” and a “night-shift” configurations, with the system automatically changing between them at programmed times in the day by means of the checkpointing/restart service, whereby the former is characterised by a large number of small interactive partitions, while the latter tends to be a small set of large partitions dedicated to parallel batch jobs.

Within each partition, it is possible to define a scheduling policy, appropriate for the types of applications that the partition shall serve; in case of partitions dedicated to parallel jobs, it is possible to define a "gang schedule", such as parallel computation takes place across the processing nodes in a synchronised way; in addition, when logging into the system, the request is allocated to the least loaded partition, among the ones to which the user has access (login loadbalance); finally, it is possible to set up batch queues, to split the types of jobs submitted to the system.

The utility rcontrol allows the system administrator to set up these configurations, create and delete partitions and assign processors to partitions. It also provides full information about the current status of all jobs. The attributes available include job name, id, user, status (running or queued), and target partition. For security, support is provided for logging of all system console operations.

[image: image3.wmf]Parallel Processing Resource

System

User Fileserver

Fileserver

SPARC

MEMORY

COMMS

SPARC

MEMORY

COMMS

SPARC

MEMORY

COMMS

Cluster of Sequential Jobs

Large Parallel Job

Fig. 4: Partitions in the QM-1 system

As well as managing configurations, the RMS maintains an accurate representation of the state of all sub-systems. This representation includes the status of every node in the machine, the numbers of correctable and uncorrectable memory errors, network routing statistics and module operating temperature as well as the status of all active partitions.

Interaction with the RMS is achieved by means of a Java-based graphical user interface (GUI) to rcontrol which maintains a number of visually consistent, high-level views of the machine. These are used to navigate access to more detailed information, to carry out low-level administrative tasks, to develop and edit configurations off-line and to monitor the behaviour of individual partitions. (refer to diagram 1. at end of document), thus delivering a Single System Image to the system administrator, independent of the number of partitions, users and jobs currently running.

The Resource Management GUI (Pandora) provides an alternative interface to these system attributes as well as supporting the following specialized displays:

Configuration view:
Status of all nodes, status of active configuration, configuration development.

Network view:
Network representation showing all nodes, switches and connecting links.

Physical view:
Shows nodes and modules as they appear to a person standing in front of the machine.

File system view:
Representation of vfstab files and NFS mount structure.

Performance view:
User CPU time, system CPU time, real-time system performance, memory allocation, paging, swapping etc. both for individual nodes and aggregated across partitions.

Pandora can be used by both the system administrator and the user. There are few differences between the two modes of operation, the main one being that changes to the overall system configuration can only be made by the system administrator. Both administrator and user alike can perform system query and monitoring functions. An information hiding option is available such that users are only shown information about resources they have permission to access.

The optimal division of resources between services (e.g. interactive shells and the non-interactive execution of batch jobs) will typically change over a 24 hour or weekly cycle and is accomplished by means of simple changes to the partition structure. The resource manager allows such changes to be made interactively or to be scheduled under automatic control.

The resource management system provides all the tools necessary to administer specialised aspects of the QM-1 system architecture. Nevertheless they constitute what might be termed a local subset of system management tools. There are other aspects of system management which, though equally critical to operational effectiveness, are more generic in nature and require site-wide co-ordination. Examples are backup and restore, security, job-scheduling and accounting. These functions can be provided by a number of widely used open systems management utilities. It is typical for an organisation to have its own preferred system management environment for a particular site and as such no third party environment is preferred by QSW. In the past and where appropriate, the RMS has been integrated into the customer’s own environment thus minimising the burden on the operation.

4.
QM-1 Application Development Software

Software tools for application development include editors, compilers, a parallel debugger, a utility for visualising the run-time behaviour of parallel programs, code restructuring tools and a series of user callable scientific libraries.

The construction of applications, from editing through to linking, can be undertaken either on a standard (SPARC) workstation or by logging in to the QM-1 itself. In the latter case the user is connected to an interactive shell running on one of the processors within the login partition. The decision as to how many processors to assign to the login partition is a matter for the system administrator and will depend on the likely number of interactive users and the priority given to supporting them as opposed to other services running on the system. This is described in more detail in the next section.

4.1
Standard Software Development Tools

The open systems nature of QM-1 enables QSW to offer a wide selection of code development environments from a multiplicity of vendors. For example, for sequential and parallel applications which use the message-passing model, high quality FORTRAN-77 and ANSI C optimising compilers are available from a number of third party suppliers. For the majority of application development environments QSW maintain this best of breed strategy. A list of the preferred products, at the time of writing, is given in the table below. More detailed information on some of these solutions is also provided in the following sections.

SPARC Developers Toolkit:
SparcworksPro C, C++, f77/90 environment.

High Performance Fortran:
xHPF from Visual Numerics International Ltd.

Message Passing Environments:
Optimized MPI

Parallel Debugger and Performance Analyzers:
TotalView/Timescan from Dolphin Interconnect Systems

Code Analysis Tools:
FORGExplorer from VNI/APR, FORESYS from SIMULOG

Node Math Libraries:
BLAS, LAPACK, EISPACK, LINPACK, NAG, IMSL (from Visual Numerics International Ltd.)

Parallel Math Libraries:
SCALAPACK, 2d/3d FFT. DNFL (from Visual Numerics International Ltd.)

4.2.
Communication and Message Passing Environments

Network Overview

QSW provide a low level interface to the communications hardware. The Elan Widget Library (libew) provides a parallel programming environment for higher level library implementation and applications programmers who wish to optimise performance. The set of parallel programming constructs it provides does not hide, but augments the basic capabilities of the élan/elite communications network. This frees the user from low level hardware considerations, without sacrificing performance to generality or ease of use.

Process Model

A parallel application is a collection of one or more segments. Each segment consists of a set of processes replicated over a set of network-contiguous processors, one process per processor. All processes in a segment execute the same program. All processes in all segments of a parallel application start up together. This assigns every process a unique virtual process number in a contiguous range starting from 0, and makes every process's address space accessible to its peers through the network. A set of processes with contiguous virtual process numbers and contained within the same segment may be addressed by a single broadcast virtual process number. Broadcast virtual process numbers allow an application to exploit hardware broadcast. System calls are handled locally by default. For example, every process of a parallel application can access the file system independently with standard UNIX library and system calls. A subset of system calls can be redirected to a nominated server to concentrate system calls relating to the standard input, output and error on a single process.

Global Memory

The address spaces of the processes of a parallel application constitute a distributed global memory. Non-local memory, addressed by a combination of virtual process number and virtual memory location, can be accessed explicitly by network DMA operations. libew provides a non-blocking interface to these operations. Network DMAs do not require the co-operation of the remote process and they transfer data with the lowest latency. Global objects are data structures which are distributed over a set of processes, but located at the same virtual address within each process. Each component of a global object is called a slice. If the processes owning a global object are contiguous within a single slice, a single broadcast network DMA may be used to replicate source data in one process to all slices of the global object.

Many libew constructs are themselves global objects. They can be created dynamically by their owning processes through synchronised use of the libew global heap management procedures. A global object may be read from or written to the file system as a single entity. Regular distributions of n-dimensional arrays as global objects are supported. They are redistributed as they are read and written to convert from the specific distribution required by the application, to a canonical representation in the file system. This allows sequential applications as well as parallel applications with different process decomposition’s to share the same data.

Message Passing

Unlike network DMA.s, message passing requires the co-operation of both sending and receiving processes. libew supports several types of message passing as appropriate to different programming models and functionality requirements.

Channels provide the simplest and lowest latency message passing. A channel connects a pair of processes. The connection must be established by both processes before it can be used. Communication is unbuffered. Messages are transferred directly from the sending buffer to the receiving buffer, therefore when a transmit completes, it guarantees that a receive has been posted. Message passing is non-blocking and full duplex. Both processes at the ends of a channel may have up to one transmit and one receive outstanding at any time. Multiple channels may be connected between a pair of processes to allow more non-blocking operations and the passing of non-contiguous messages.

A broadcast channel is a global object. It is used to barrier synchronise and replicate the slices of other global objects. It has a non-blocking interface which allows up to one outstanding broadcast at a time. Multiple broadcast channels may be used by a group of processes to allow more outstanding broadcasts. Tagged messages are passed between tagged message passing ports, called tports. They support both buffered and unbuffered message passing, with a non-blocking interface which allows arbitrary numbers of outstanding transmits and receives. Messages may be received selectively, both on the sender and on the tag. Given equivalent selection criteria, messages passed from the same source to the same destination remain ordered.

QSW have exploited this technology to support native implementations of several standard message passing environments: PVM, PARMACS, NX/2 (with global primitives) and MPI.

Groups
A group is a global object. Groups are used to define arbitrary subsets of the processes of a parallel application including non-contiguous and irregular sets. Groups number their members in a contiguous range starting from 0. A user-supplied group membership function maps group member number to virtual process number. This implicitly determines the set of processes in the group. Groups support barriers, broadcasts, reduction and global exchange. Groups exploit hardware broadcast where appropriate. There is no requirement that they operate only on global objects.

Exception Handling
libew treats errors which undermine its operating assumptions (e.g. that an incoming message should be received into a buffer of greater or equal size) as fatal. It attempts no error recovery, however it provides an exception handling interface which allows the user to intervene prior to process termination.

Base Environment

libew provides a collection of parts for building higher level programming models. The libew base environment contains a minimal set of facilities built from these parts which are required by the majority of these models. It simplifies common initialisation procedures and standardises resource usage so that different models can work in the same application without interfering with each other. This allows an application written in one programming model to exploit parallel libraries written with a different model.

Appendix I: QSW Node (UltraEnterprise) Full capabilities

The tables below describe the full capabilities of the QM1 nodes. The actual delivered system specifications are described in the main document.

Processor

Number
From one to four processor modules

Type
250- or 300-MHz UltraSPARC-II modules with onboard E-cache

Cache memory
16-KB I-cache, 16-KB D-cache per processor

1-MB external cache per processor with 250-MHz CPU

2-MB external cache per processor with 300-MHz CPU

Datapath
Two independent, buffered 144-bit UPA buses; 128 bits data, 16 bits ECC; two processors per bus UPA operates at 83.3-MHz with 250-MHz processors and 100-MHz with 300-MHz processors

Main Memory

Capacities
16 DIMM module slots; four banks of four slots

Accepts 32-, 64-, or 128-MB DIMMs (256 MB when available)

128 MB to 4 GB total memory capacity

Memory type
144-pin 5V 60-ns memory modules

Datapath
576 bits wide; 512 bits data, 64 bits ECC

Up to 1.78-GB/sec throughput

Standard Interfaces

Serial
Two EIA-232D or EIA-423 serial ports, DB25 (requires Y-type splitter cable); one 50 to 384 Kbps synchronous, one 50 to 460.8 Kbaud asynchronous

Parallel
2-MB/sec Centronics compatible bidirectional EPP port; DB25

Ethernet
One 10/100-Mb/sec autoselect port; RJ45 or MII

Keyboard and mouse
One standard keyboard/mouse port; mini DIN-8

PCI
Three slots for 32-bit 33-MHz 5V PCI cards

Four slots for 32- or 64-bit 33-MHz 5V PCI cards

Three slots for 32- or 64-bit 33- or 66-MHz 3.3V PCI cards

SCSI
One, three, or five 40-MB/sec UltraSCSI-3 buses for internal disks

One 20-MB/sec Fast/Wide SCSI-2 bus for CD-ROM and tape; 68-pin external connector

Internal Mass Storage

Disk bays
Four, twelve, or twenty hot-swap disk bays

Disk controllers
One, three, or five 40-MB/sec UltraSCSI-3 channels; maximum four drives per channel

Disks
Up to twenty 4.2-GB, 3.5- x 1-in. 7200-rpm hot-swap UltraSCSI-3 drives (max. 84 GB)

External Mass Storage

Host adapters
Supports up to ten single- or dual-channel, single-ended or differential, fast/wide or UltraSCSI PCI host adapters

Tape
Supports up to four SCSI tape devices from onboard SCSI

Supports up to 16 SCSI tape devices, total 8-mm, 4-mm DDS-2, DDS-3, DLT, QIC, SLR

PCI I/O Options

10/100-Mb/sec Ethernet, QuadFastEthernet, Token Ring, FDDI single attach, FDDI dual attach, ATM-155, ATM-622, high-speed serial, eight-line serial, UltraSCSI with 10/100 Mb/sec Ethernet, dual-channel single-ended UltraSCSI, dual-channel differential UltraSCSI

System Software

Operating system
QSW Enhanced Solaris 2.5.1

Languages

Available
C, C++, Cobol, FORTRAN, JavaTM, Pascal

Networking
ONC+TM, NFSTM, TCP/IP, IPX/SPX, SunLinkTM OSI, MHS, DCE, DNI, SNA, X.25, PPP, XTL, Frame Relay

System monitoring
QSW Resource Management System

� EMBED Unknown ���

Rome Office:

Bristol Office:

Via Marcellina, 11

One Bridewell Street

00131 Roma

Bristol BS1 2AA

Italy

United Kingdom

Tel: +39.6.41238613

Tel: +44.117.9075375

Fax: +39.6.4191694

Fax: +44.117.9075395

X0047-00Q225.01
Commercial-in-Confidence
1

Error! Bookmark not defined. QSW Ltd. 1995

[image: image7.wmf][image: image8.png][image: image9.png][image: image10.wmf]_948715317.doc
[image: image1.png]

�

_949151473.unknown

_962602687.unknown

_948892782.doc

PCI I/F

PCI I/F

RISC CPU

RISC CPU

SDRAM

Mem 2

Mem 3

Elan Link

Mem 0

Mem 1

I/O

devices

Xbar Mem

System

Elan 3

_925556747

