[image: image7.wmf]CPUs Per SMP

1

2

MPP

S

M

P

CLUSTERS

QSW

SuperCluster

4

8

nodes

2

4

8

DRA Proposition

QSW SuperCluster Architecture Overview

21
Scope of Document

2
Foreword
3
2.1
Quadrics Supercomputers World Ltd.
3
2.2
The Re-emergence of Supercomputers couched in Parallelism
4
3
QSW SuperCluster Technology
6
3.1
Overview
6
3.2
Leverage from the Commodity Market
7
3.3
Single System Image
10
3.3.1
Run-Time Environment
10
3.3.2
System Administration
11
3.3.3
Parallel File System
11
3.3.4
Application Development and Support
12
3.4
High Availability
13
4
Hardware Environment
14
4.1
Processing Elements (or Nodes)
14
42.2
The Communications Network - QsNet
15
2.2.1
The Network Interface - QNA
15
2.2.2
The Network Switch - QNS
17
3
Parallel Operating Environment
19
3.1
Operating System
19
3.1.1
Kernel support for message passing
19
3.1.2
Security and Protection
20
3.1.3
O/S Support for Parallelism
21
3.1.4
System Administration
24
3.2
Application Development
30
3.2.1
Message Passing Interface - MPI
30
3.2.2
High Performance Fortran - HPF
31
3.2.3
The QNA API library
31
4
Technology Road Map
34
4.1
Product Evolution
35
4.2
Summary
36
1
Scope of Document

This document presents a generic view of the QSW SuperCluster architecture together with some of the key design criteria, its motivation and market opportunities. References to specific models of QSW product are for illustration only.

Full descriptions of the different products are included in specific Product Data Sheets related to the features and benefits of the node architecture.

These are:

a) The QM-1 Product Data Sheet

b) The Centurion Product Data Sheet

For the purposes of this document, much of the content is written for the High Performance Technical Computing market. Documentation addressing the exploitation of this architecture within the commercial sector is also available (currently in preparation.)
2 Foreword

2.1 Quadrics Supercomputers World Ltd.

Quadrics Supercomputers World Ltd. - QSW was established in 1996. It incorporates the capabilities, the technologies and the skills of two major European players in the field of supercomputers. Alenia Spazio SpA, a member of the Finmeccanica group in Italy, holds the majority ownership. QSW is a UK company, with offices in Bristol - UK, and Rome and Pisa - Italy.

The Mission Statement of QSW is to design, develop, produce, market, sell, support, maintain, enhance, embed and apply supercomputer systems. Its major customers to date are National and International research institutions, large industrial organizations and universities in Europe and in the US.

QSW holds a unique position as being the HPC arm of a multi-national industrially based company, namely FINMECCANICA. The exploitation of HPC as an established Information Technology within industry is anticipated to increase substantially over the next decade with the opening-up of new application vistas and market opportunities and QSW with Finmeccanica intend to be at the vanguard of this revolution.

In order to strengthen these objectives further, QSW have formed a strategic partnership with a major multi-national computer vendor, namely Compaq-Digital Equipment Corporation. This partnership was initiated in 1997 in direct response to a customer request for the supply of the technology required to target Multi TFLOP architectures in the most cost-effective and practicable manner possible. This new architecture will address some of major aspects of ultra-high performance computing and will form the basis of a number of product-lines from QSW.

In particular, the form of the relationship is to enable both current and moreover next generation Alpha RISC and Digital 64-Bit UNIX technology (currently available from the desktop to high-range SMP systems) to scale to Multi TFLOP capability in support of the most demanding applications and reliable production computing environments. In this new agreement, QSW offer the latest commodity computing elements with an enabling scaleable interconnect and software base specifically designed by QSW. These two components form the basis of the system that will offer supercomputing levels of performance at the most cost-effective rates (for QSW this product is named Centurion).

Furthermore, in this relationship, QSW will be in the position to supply computing technology that best fits the requirements of a disparate user and application base, from the workstation through mid-range server to systems exceeding TFLOP performance within a common CPU architecture and integrated supercomputer environment. This will be achieved by exploiting extant programming models and application base used in the HPC field, by maximizing the compatibility between current systems and protecting the investment in software, peripheral capability and service operation.

In contrast to current systems however, the uniqueness of the QSW system as based on commodity components, offers an exploitation plan that will migrate this into a future technology base.

The use of Alpha based systems contributes to the QSW SuperCluster architecture and is primarily motivated by QSW for the High Performance Technical Market. The complementary system offered by QSW is based on the UltraSparc architecture and is focussed on the High Performance Commercial Market (mention FAT NODE). The generic nature of the architecture will enable QSW to develop further technologies based on a continual cost effectiveness driver for HPC.

(Some lines for embedding and integrated systems)

QSW can achieve this by concentrating on ultra-HPC per se and not on the general-purpose desk-top to server market. Supercomputing provides a primary focus for the company: It encompasses not just technology but the adequate provision of service, application, facilities management and project management skills. In these capacities QSW draws on its in-house skills, its parent companies and external partnerships to provide the depth of knowledge required in these complex environments.

2.2 The Re-emergence of Supercomputers couched in Parallelism

To deliver, and moreover to continue to sustain, the levels of computational performance required by the most demanding research, industrial, military and commercial applications within a cost-effective manner requires a unique, and as yet incipient, combination of technologies. Such Supercomputers have always been at the vanguard of HPC and provide many of the impetuses relevant to the general purpose computing industry as a whole. To address this high technology area, QSW have created a generic SuperCluster system architecture that offers the combination of commodity components with a technology that extends the benefits of the general market into the Ultra-HPC class. QSW focuses on the core enabling technologies to achieve scalability within a production environment, while exploiting the widespread availability of third-party hardware and software bases. This strategy encompasses growth and maintenance of state-of-the-art, while sustaining high performance at the leading edge, thus maximizing the return on investment of a particular computer system.

It is now a commonly held belief that the realization of massive levels of performance can only be achieved by exploiting these independent routes of commodity plus integration. While the traditional Supercomputing technology based on the paradigm of either vector processing or bespoke parallel systems diminishes under the shear weight of economies of scale of the commodity market, the technology required to provide the necessary parallelism is paramount.

In practical terms, given the typical growth in CPU technology, which is expected to reach 4-8 GOPS (giga operations per second) over the next 5 years, the goal of multi-TOPS (tera operation per second) require many thousands of these processing elements to co-operate. In order to achieve these levels of performance, the key technologies are the elements to interconnect and integrate CPU resources and not so much the CPU themselves.

Such massive levels of scalability are not achievable from the general-purpose architectures that seek to capitalize from an altogether different and general-purpose market. These systems offer architecturally bound coupling of processors up to a level of 100’s today, however they do provide a substantial building block for other technologies capable of amalgamating these into even larger systems: System Interconnect Technology hitherto the realm of the MPP. QSW, Quadrics Supercomputers World Ltd., recognized world-wide by system vendors and users, has this technology and will be deploying these systems from the end of 98.

This strategy of leverage from the commodity market and the drivers that are dramatically reducing the cost of Information Technology is currently being exercised by QSW in relationships with some of the world’s largest suppliers of microprocessor and high performance mid-range system technology. This will provide QSW with the means to target increasingly larger problem spaces in Science and Engineering targeting future 10 and 100 Tflop capable machines in 2000 and 2002.

While the combination of these technologies will drive the QSW SuperCluster technology into the most demanding environments, QSW will transfer the software and interconnect components into enabling sub-TFLOP machines both more practicable and affordable. Erstwhile PC microprocessor technology in the next two years will reset the price/performance boundaries of not only desk-top computing but for the first time significantly penetrate the server and HPC market as well. This move will radically affect the traditional HPC supplier market as more exploitation of out-sourced technology is used, commensurate more onus is placed on value-added software and service specialization. QSW’s independent parallel enabling environment as well as its growing expertize in services will be primed and ready to take advantage of this revolution.

3 QSW SuperCluster Technology

3.1 Overview

One of the goals which shaped the design is to deliver unchallenged price/performance for a wide variety of system configurations in a way which is sustainable over the lifetime of a computer installation by providing the mechanism for seamless change to evolving technologies. This is primarily achieved by integrating standard, commodity processor architectures with a high-performance, inter-processor communications system and where exigent the modification of these commodity components to provide scalability.
Scalability of such a system is crucial to its operational effectiveness. On systems which scale poorly, increasing utilisation or expansion of system resources result in relatively small performance gains as a consequence of some limiting factor in the system architecture. This may be associated with memory bandwidth, filesystem I/O, external network access or inter-processor communications. It is only necessary for one of these sub-systems to scale poorly to limit the scalability of the system as a whole. The critical importance of the scalability of all aspects of the system was recognized at the very start of the design process and has been optimized further through this next generation of interconnect.

The hardware components of the system consist of high-performance, commodity Processing Elements (or nodes) based on a standard SMP microprocessor architecture connected together by means of the QSW high-speed communications network (QsNet). This communications network uses PCI-based network adaptors connected via a multi-stage switch fabric to provide a globally addressable memory model across the whole machine. Specific models within the architecture can comprise of a number of SMP nodes of varying size - currently up to 4 CPUs and scaling to larger systems in the future - that provide for optimum strategies for scaleable compute and data intensive applications. Systems can scale from 2 nodes to many hundreds providing massive computational and/or data-set capability.

System wide services are provided by an enhanced version of the native operating system instanced on each node. These modifications represent parallel extensions to the generic environment that support a parallel file system, global resource and system management, process scheduling and inter-processor communication and provide an evolving Single System Image by which user and system administrator exploit the machine. As a superset of the underlying O/S, the entire Third Party software base encompassing many thousands of commercial, engineering and scientific applications, system middleware tools, application development environments and network and peripheral drivers remain accessible to individual nodes without modification.

At the operational level, the system is designed to support multiple, independent job streams typically made up of a mix of application codes. The machine can be used equally effectively to run a large number of independent sequential or modestly parallel jobs (referred to as capacity or throughput mode) or a smaller number of highly parallel jobs (capability or time-to-solution mode). As most installations will include a service requirement to support both these modes of use, the system allows resources to be structured both statically and dynamically as a number of logical machines such that levels of service can be best optimized to a particular operational requirement.

This partitioning structure also provides a controlled environment for interactive use in the support of application development. This includes a comprehensive set of programming tools supporting sequential, message-passing-parallel and data-parallel programming models. These include an integrated set of compilers, parallel debugger, performance visualization tool, code restructuring tools and scientific libraries. In addition, a broad-range of generic software development tools is also available.

The performance of the system is evolving rapidly, driven by the inexorable demands of the commodity microprocessor market and a year-by-year development program of the communications network. Information on the overall performance of particular product lines can be found in the accompanying data sheets.

3.2 Leverage from the Commodity Market

The selection of commodity components is the key strategy that leverages product development. By using hardware and software components developed and supported by the industry’s leading suppliers, QSW can bring state-of-the-art product lines to market with minimum time lag. This allows the company to focus on the unique (and currently proprietary) technology required for scalability, at the same time taking advantage of the rapid CPU advances in performance.

In the computing market today, SMP systems are the prevalent form of both server and desk-top technology. Primarily based on UNIX at large processor counts in the server world, but with an increasing presence in the NT world as well, the SMP system is available typically in different configurations ranging from 1-64 processors with scaling beyond this involving clustering into more loosely-coupled environments. QSW’s strategy is to track the effectiveness of SMP technology in providing a Cluster coupling environment that delivers supercomputing levels of performance based on these same building blocks – the so-called SuperCluster, as depicted in Fig. 1.

[image: image8.wmf]64 bit PCI Interface

Cmd Port

MMU

tlb

Cache

8 Kbytes

RISC

processor

ucode engine

DMA + I/P +

Cmds

O/P Buffer

I/P Buffer

200MHz

100MHz

66MHz

64 MB SDRAM

Fig. 1: Achieving massive scalability from today’s architectures

The effectiveness of a system relates to its ability to achieve a significant percentage of the total amount of a computational power available in the most efficient manner – its price/performance ratio. The very nature of current RISC microprocessor technology and the sophisticated memory hierarchy they deploy places significant burden on the complexity and hence cost of the memory sub-system..

As the number of CPU’s increase in a symmetric multi-processor such factors exacerbate these engineering trade-off. This is depicted in Fig. 2 showing the relative cost in parallel architectures depending on the bi-sectional memory bandwidth available to multiple CPUs.

[image: image1.wmf]Price

Bi-Sectional Bandwidth

Farms

MPP

SMP

Int

er-

Pr

oc

es

so

r

Co

up

lin

g

Figure 2: The real cost of providing bandwidth to multiple CPUs

For a given SMP configuration, the QSW SuperCluster aggregates these individual systems into nodes of a two-tiered distributed/shared memory parallel system. Depending on the node configuration (viz. number of CPUS, memory, I/O capacity) actual product lines are instantiated. For example, nodes could be based on a highly competitive desktop technology with limited SMP capability matching the contemporary MPP system, albeit not limited to their static architectural nature. SMPs based on a more scaleable technology, as for instance those required in the compute and data intensive high performance mid-range market, can provide I/O intensive nodes within a MPP architecture. Also, for applications that have a propensity for exploiting a two-tiered parallelism, from both shared and distributed memory, the means to achieve very high performance can be obtained. As such, the system can challenge both the current MPP systems, and at the lower end of the market, the cost effectiveness of the high-end SMP system, while also providing the mechanism for extraordinary HPC capability.

This competitiveness and flexibility places heavy design constraints on the communication infrastructure. The unique character of the communications sub-system deployed by QSW is one of the primary factors distinguishing the QSW SuperCluster from other high performance systems in the market. This provides the mechanism to exploit a wide HPC market.

Leverage from the commodity market implies the exploitation of standards wherever possible. For the communications network, standardization to the degree of allowing high bandwidth low latency communication is as yet incipient, although QSW is contributing to the process of realizing this potential. However, conformance to a certain degree of standardization can and has been achieved. In particular the interface from a node to the network is generic and based on PCI. This provides the flexibility to address node architectures of different microprocessor base, although today, in practice, a particular product would comprise of a single microprocessor family only.
Hardware standardization is of course one part of the overall picture. In much the same way, software standardization to elicit the same degree of functionality and performance for parallel architectures typically provides only the elements for the general purpose market and not the basic criteria for supercomputing.. QSW’s philosophy is again to add value and exploit this richness and diversity in operating systems and application languages to provide the necessary parallel-operating environment. Currently, given the O/S nature of the node building block, this is based on UNIX for which well-understood and documented extensions have been generally implemented to cater for distributed memory and encompass resource management and process scheduling. In order to maintain a product philosophy that provides for optimum price/performance across both the most demanding erstwhile Supercomputer market as well as in the mid-range of HPC, QSW are currently developing the necessary standards based technologies to provide this.

3.3 Single System Image (perhaps the title have to be modified)

The interconnect components of a SuperCluster, form one aspect of the QSW technology. One of the major benefits of the SMP system is its ability to amalgamate CPU’s into a parallel system and preserve a single identity – in fact one of the tenets of a symmetric multi-processing system. As such, resource management and process scheduling are held entirely under the auspices of single-instanced O/S, a fact which greatly eases the administrative aspects of the system. At the user level as well, the SMP offers a coherent (notwithstanding the cache hierarchy) uniform memory access model for which compilers can often exploit implicit parallelism. Thus both user and administrator enjoy a strong single system image (SSI).

For other systems, as for example MPP, NUMA, NORMA, etc…, this image is blurred by the fact that either memory access is “more non-uniform” and/or multiple instances of the SMP SSI are required
. In the absence of such parallel operating systems, in order to re-establish the system identity for these architectures, layered software is required above the level of the O/S. For the QSW system, such software referred to as the SuperCluster Parallel Operating Environment is provided. This environment can be functionally classified along the following lines: the Run-time Environment and Services, System Administration, File System and Application Development.

3.3.1 Run-Time Environment

In order to exercise the full properties of QsNet changes are made to the base operating system to exploit the parallel nature of the system. These changes focus on:

· Enabling high bandwidth/low latency inter node communication via the internal network.

· Providing system level scheduling and control capability of multiple processes distributed across nodes.

The Operating System resides on every node within the system. These multiple instances provide the necessary operating functions for scheduling processes and managing resources on a per node basis. The enhancements performed at the user level in no way compromise the functionality of the O/S, yet affords QsNet a mechanism to allow access to the memory of every processor in the machine by means of a two-part virtual memory addressing scheme comprising a processor address and a memory address. The hardware protects processes from memory accesses initiated by other, unrelated processes but does not prevent a process from accessing the memory of processes sharing the same context; typically these will be components of a single parallel application. All access to the underlying communications hardware avoids unnecessary copying of data and without the involvement of the operating system kernel.

All inter-processor communications within QsNet are built on this foundation. These range from familiar datagram transmission mechanisms (IP and UDP) to message-passing libraries available to application developers (e.g. MPI). Furthermore, a low level communications library is provided - the QNA API that provides further atomic QsNet operations as well as the ability to allow user-level access to specific hardware features.

3.3.2 System Administration (RMS or QSW-RMS)

The software component responsible for constructing a coherent view of the SuperCluster is the Resource Management System (RMS). This suite of tools act as a window onto the system and are used by both system administrator and user.
The RMS is used to map the resources into configurations that best match the requirements of different working groups using the machine. These configurations can be changed by the system administrators to mirror changes in those requirements as resources are added or moved, or as the machine switches operational mode. The optimal division of resources between services (e.g. interactive shells and the non-interactive execution of batch jobs) will typically change on a daily or weekly cycle and is accomplished by means of simple changes to the partition structure. The resource manager allows such changes to be made interactively or to be scheduled under automatic control.

In order to support a unified approach across all potential workstation and PC platforms the descriptions of machine elements and their attributes and value are held in an SQL (give the entire name) database and accessed through a Java/C++ application. Machine characteristics can be selected using the search capabilities of the database to extract only the entities required for an operation, minimising wasted data transfers between remote management applications and local machines when RMS is used in a distributed network environment and allowing finer focus on the task at hand.

3.3.3 Parallel File System (PFS)

The characteristics of communications network are such that questions of locality between application processes and the services they require (e.g. file I/O) may be largely ignored. This makes possible an extremely flexible approach to system configuration in which shared services can be implemented on dedicated partitions or can co-exist with other services or applications. The first approach enhances reliability and performance whilst the second takes advantage of the multitasking capabilities of the operating system to improve efficiency and resource utilisation.

The I/O requirements of a particular system are satisfied by the addition of I/O elements and associated disks. Scaleable I/O performance is achieved with the addition of devices and because the data network limits the bottlenecks in the routing of data between processors.

External network connectivity scales in the same way. Ethernet, X.25, FDDI and HiPPI interfaces can be added to as many nodes as are necessary to support the load. The level of peripheral capability and network access is one that can be tailored to the particular service use and can be increased or decreased accordingly over time.

One obvious example of this service is the Parallel File System (PFS). This provides a single logical file system that is striped across many disks while presenting itself as a regular UNIX file system. By using an optimal implementation of NFS over the communications network, high performance single client data transfers are achievable. Aggregate PFS bandwidth (several clients accessing the filesystem simultaneously) is determined by the degree of parallelism (number of disks) used to build the filesystem and is effectively unrestricted. (Could you give more particular)
3.3.4 Application Development and Support

For the user level, the situation with respect to programming models is complicated. The programming model established for the SMP system does not necessarily transfer to non-uniform memory architectures efficiently and vice versa. To implement a SSI at this level, QsNet is designed to be invisible to applications both from a software and topological perspective. Its function is to implement standard inter-processor communication models with maximal efficiency providing as much as possible a user-level single system image based on a two-tiered parallelism, of both intra- and inter- node.

The basis of each node within the system is a stand-alone SMP system. The changes made by QSW to the underlying O/S do not prevent the system from running applications that target that architecture at the node level. For parallel applications that make use of message passing protocols, these require re-linking with the appropriate object libraries to exploit distributed and/or shared memory. Mixtures of both SMP style programming (eg. OpenMP) and MPI are also supported as described in Section 5

For that branch of applications that exploit standard based protocols (eg. XA, IP, UDP) support is provided for these by the appropriate drivers for the QSW internal interconnect. Thus for some commercial applications support can be provided directly without modification.

The QSW strategy for application development tools is again to employ best practise wherever possible by the exploitation of the third party market for such software. A fact reinforced by the generic nature of the node and the current standards for parallel programming models and environments. Where appropriate and in order to exploit architectural features of the system, QSW either co-develop or in certain cases augment the third party products. (Give one or two example)

Software tools for application development, as described later on, include compilers, a parallel debugger, a utility for visualising the run-time behaviour of parallel programs, code restructuring tools and a series of user callable scientific libraries.

3.4 High Availability

Reliability also plays an important role in the cost trade-offs of scaleable systems. The provision of the highest levels of system reliability, serviceability and availability is paramount in the design and implementation of the system. Reliability, of course, can be improved by making the occurrence of failure less likely. The strategy of QSW in using widely available high volume components from a highly competitive market, which dictates stringent business critical solutions, determines that the level of engineering supplied is of the highest standard. From this basic tenet at node level, the availability of the whole system is based on one of modularity. This means that the appropriate level of redundancy can be provided to meet the level of service of a particular production capability.

Resilience is based on guaranteeing availability in the presence of component failure. A redundancy strategy extends throughout the system, from individual memory systems to whole processor modules and network layers, significantly reducing the likelihood of system failure. In the event of failure, specific fail-over strategies implemented within the enhanced O/S environment ensure that total loss of service is obviated and that a graceful degradation in availability ensues. The system can then be returned to full production capacity by either the appropriate service or by means of automatic procedures within the Parallel Operating Environment.

Nodes are housed in rack-mounted chassis with redundant power supplies and disk configurations. In the event of failure of a node, from either a hard or soft failure, the service will remain active at reduced capacity and remedial action can be taken to quarantine the fault and thereby be serviced. For applications running sequentially or in parallel, restart can continue from the last initiated checkpoint when sufficient resources are available and depending on the priority associated with the job. All this information required for the maintenance of the system is held in a SQL database and under the control of the Resource Management System (RMS).

The auspices of the RMS extend to monitoring the health of the entire system and peripheral devices and provide the mechanism to limit the damage that may occur in systems. Environmental parameters, file-system usage, system parameters can all be monitored with the appropriate thresholds to prevent extreme circumstances that may effect the service. For disk failures, hardware and software RAID techniques are employed on both standard and the PFS to ensure constant access to data.

4 Hardware Environment

4.1 Processing Elements (or Nodes)

As described above, the strategy of QSW is to track the cost-effective deployment of SMP technology. Notwithstanding the changes required to the underlying O/S, the processing node of the architecture can be described in a canonical form.

Each Processing Element incorporates the following sub-systems (Fig. 3):

· One or more CPU(s).

· One or more Quadrics Network Adaptor(s) (QNA)

· A Memory Sub-system.

· One or more non-QNA dedicated PCI Buses (providing support for, HiPPI, SCSI etc.).

· Ethernet.

[image: image2.wmf]QsNet

Adapter(s)

QsNet

Switch(

es)

BUS or X-Bar

PCI

BRIDGE(s)

PCI

BRIDGE

LAN

C

P

U

1

MULTI-BANKED

MEMORY

Storage

Standard SMP Architecture

QSW Network Subsystem

C

P

U

..n

Figure 3: QSW Node Architecture

All sub-systems of the node are scaleable. Memory, CPUs, QsNet, peripheral and networking capability can be upgraded to the limit of the particular SMP node capacity. Further upgradeability can be achieved by replacing the node to the next level SMP system. The first implementation of a processing node will be based on ostensibly desk-top technology, with a processor count ranging in the form of 1-4 processors.

4.2 The Communications Network - QsNet

Effective co-operation between nodes is the most important factor influencing the overall sustained performance of the system. More specifically, this requires both high bandwidth and low latency from the communications network. A significant proportion of the design effort expended on the communications network arose from recognition of the importance of minimising latency.

The network is constructed using two components:

· A Network Communications Processor (called QNA – QsNet Adaptor) allows each node in the system to transfer data over the network using remote, direct virtual memory reads and writes.

· The Network switch (called QNS) is a 4-way cross-bar switch used to construct a multi-stage network of links connecting all nodes.

As the CPU power of the node increases, more communication bandwidth is derived by the addition of network adaptors and further switch planes. These independent switch planes are referred to as layers. Typically larger SMP systems by their very nature provide for this increase in peripheral connectivity. Future releases of QsNet will address increases in both the bandwidth and the reduction in the latency of individual QNA, and offer extra functionality in the support of emerging standards in high performance clustering.

4.2.1 The Network Interface - QNA

The primary design consideration of the QNA is to minimize message latency while maintaining security between unrelated activities. This design has been evolved to provide increased functionality and performance to MPI and in the support of kernel messaging.
The basic primitives of the QNA are supported by:

· Remote read and remote write : the direct transfer of data from a user virtual address space on one processor to the user virtual address space of a cooperating process on another processor. This does not cause or require synchronisation between the processes.

· Protocol handler: The QNA contains a small user programmable processor (the ``thread'' processor) which can directly generate network operations, and execute small pieces of code to perform protocol handling without interrupting the main processor.

· Synchronisation operations: The QNA provides operations on events (which are simply double words in store). These can be set or tested locally or remotely, and can cause scheduling of processes on the thread processor, or interrupts to the main processor.

The major functional elements of the QNA are shown in the figure below:

[image: image9.wmf]Switch

Plane

Fig. 4: Functional Components of the PCI QsNet Network Adaptor

Input packet handling logic. The input packet handler takes the incoming packet stream from the network, error checks it, and performs the required operation. The commonest input packet form is a write, but reads, and various synchronisation operations are possible.

Output packet buffers. The output packet buffers, are responsible to generate checksums for the outgoing packets, and for re-transmitting in the case of errors.

Address translation hardware. The address translation hardware maps network addresses into local physical addresses for incoming packets.

Bus interface unit. The bus interface unit is responsible for both redirecting network read and write operations, and for interpreting certain addresses as user generated commands.

User programmable DMA engine. For long transfers a DMA engine exists providing a shareable time-sliced resource. The DMA engine is programmable from user space, to avoid the overhead of a system call on the start up latency.

SDRAM memory system for implementing message buffers, translation tables, and program and working space for the protocol processor.

The first implementation of the QNA has been produced for a 64-bit PCI variant. Performance data for the QNA can be found in the data-sheet addendum accompanying this document.

Further improvements to the QNA are planned over the next 4 years to meet the demands of increasing CPU speed, node capacity and emerging O/S standards. Further information on these can be obtained from QSW directly.

4.2.2 The Network Switch - QNS

The system uses a logarithmic network constructed from 16-way crosspoint switches with each switch chip rolling up the functionality of eight of the unidirectional two way switches with provision for two virtual channels to minimize contention. Bandwidth is constant at each stage of the network, and there are as many links out (for expansion) as there are processors. Larger networks are constructed by taking four (sub-) networks and connecting them with a higher stage of switches. A 64 node network is illustrated in Fig. 5. 64 processors are connected to stage 1, 64 links connect stage 1 to stage 2, and similarly stage 2 to stage 3, 64 links are available at the top for expansion.

The multi-stage network used in the machine can also be considered as a fat tree. In fat trees, packets do not always have to go to the top (of the tree); packets are routed back down at the first node possible. This means that for problems that have locality of reference in communications, bandwidth requirements at the top levels of the tree can be substantially reduced. Although QsNet permits this local packet routing, the bandwidth is not reduced in the higher levels. This preserves the scalable properties of the network.

The properties of the network topology have several advantages when applied to large-scale parallel systems. These are:

· Order N growth in bisection bandwidth, with growth in CPUs.

· Rich interconnect topology minimizes the effect of process placement.

· Multiple routes between nodes provide fault tolerance

· Broadcast possible.

The scaling characteristics of the network are shown below:

Processor Elements (nodes)
Switching Layers
Network Switches (n/4*l)
Latency Factor

4
1
1
1

16
2
8
3

64
3
48
5

256
4
256
7

Table 1: Scaling Characteristics of QsNet

[image: image3.wmf]Nodes

Three Stage Network

Top

64

links

Figure 5: SuperCluster Data Network: Each node has dedicated communications processor(s) that links to other communications processors via an independent QNS network. One such network is shown in this diagram.

5 Parallel Operating Environment

5.1 Operating System

The Operating System resides on every node within the system. These multiple instances provide the necessary operating functions for scheduling processes and managing resources on a per node basis. In order to extend these functions into the realm of a two-tiered shared/distributed memory parallel system, specific changes are made to the O/S to integrate the functionality and performance of QsNet and the provision of parallel resource management, scheduling and run-time services. These enhancements effectively render the individual node computers (O/S, memory and i/o sub-systems) into a single image for both administrator and user alike. The enhancements performed in no way compromise the ability of each node to maintain the full access to Third Party peripheral and networking device driver technology and full access to the Third Party software base. Current systems are derived from the standard UNIX Operating System (up to now SUN Solaris 2.6 and Digital Unix) for that architecture and the rest of the discussion from here will concentrate on this environment. As has been already stated the architecture is viewed as an abstraction of QsNet plus computational nodes. It is planned in the future to migrate this to technologies other than UNIX (E.g. Windows NT).

5.1.1 Kernel support for message passing

The mainstay of QsNet is to provide a high-bandwidth, low-latency, environment for applications that are based on a message passing paradigm and for compilation systems that target a single global address space. The key element in the provision of these characteristics is to provide a mechanism to off-load communication away from the main computation resource without the requirement to copy but still guaranteeing full protection and security within a shared resource.

Since the system supports a multi-instanced O/S model on each node offering not least the ability for SMP nodes to be time-shared between users, all of the operations supported by the communications sub-system must be protected. This is to ensure that operations performed by one user cannot corrupt or otherwise interfere with those performed by another user and also that the user cannot exploit the capabilities of the communications system to access data to which they do not have the requisite permissions. The implication of these security criteria is that the kernel must check the user’s access to QsNet. However imposing the cost of a transition to kernel space for each message passing operation causes a large additional latency on the operation. Since latency reduction is essential if high performance is to be maintained (which often send many small messages), there is an apparent conflict between the requirements for both security and performance.

To avoid this, the QNA is integrated into the kernel of the operating system by performing specific changes to the virtual memory system to enable the QNA device full access to a user process’ address space. This allows the kernel to maintain the coherency of page tables, which are used by the QNA, with those which are used by the main CPU. This provides the mechanism to allow multiple contexts to access the communications processor while maintaining full security and protection. As the QNA maps the necessary tables directly, there is no need to perform wasteful copies that will fundamentally limit the performance of the hardware. In addition an interrupt handler is also required to handle circumstances which are not resolvable by the QNA alone, such as sending data which has been paged out of the user's address space. In this case the QNA will trap when it attempts to access the page, and interrupt the main processor to cause it to page in the desired page (just as if the user code running on the main CPU had accessed the page). When the page is resident, the main processor will restart the faulting operation. In the mean time, the QNA is still usable by other user threads and the kernel.

Two device drivers are provided to exercise the capabilities of the QNA:

1. A specific device driver provides the capabilities to exercise the device to the full.

2. A DLPI driver is also provided to enable kernel messaging to occur over QsNet. In this manner high TCP/IP bandwidth can be achieved within this layer. The TCP protocol stack binds the latency of this mechanism.

For the former a user library called the QNA API, provides access to the hardware primitives. This library is used to build higher-level communication libraries, e.g. MPI and SHMEM.

In the latter, QsNet allows its use at the base of a streams protocol stack, thus providing the kernel and user processes with communication through the data network as though it were a normal ethernet interconnection. In this way remote file systems can be mounted via NFS, and IP packets directed to any node in the machine. (Of course when used in this way by user code few of the latency benefits of QsNet are visible, since a system call is made and data copied just as it would be for a standard network device).

5.1.2 Security and Protection

To avoid any requirement for kernel intervention to manipulate the data cache on the main processor, the QNA is cache coherent with the main CPU sub-system.

The combination of cache coherence and operation in user address space remove any requirement to enter the kernel to ensure security when transferring data through the network. However if the QNA were a classical Unix device, then its device control registers would not be shareable, and would only be accessible to the kernel, necessitating a kernel trap simply to access the device registers to cause operations to commence. To remove this last requirement for a kernel trap, the hardware provides separate sets of device registers for each user process, which can be mapped directly into the user virtual address space. The QNA can then determine which user is making a request by checking through which set of registers the request was made. In this way the QNA need not be concerned with the kernel's scheduling decisions.

Just as it is necessary to remove kernel intervention in the path to send a message, so it is also necessary to remove it on the receive path executed when a message arrives at a node. In a classical implementation the arrival of data to a network interface causes a device interrupt to the main processor which then enters kernel code to handle the incoming message. When using the QNA the data can be transferred directly into the user address space by the DMA engine, without requiring any intervention by the main processor. The synchronisation can then be flagged by setting an event in the address space of the target. This can either later be tested for by the main processor, can cause an interrupt, or can cause a process to be scheduled on the thread processor, which can then perform appropriate protocol handling operations.

5.1.3 O/S Support for Parallelism

5.1.3.1 Process Scheduling

Collections of processors within the system are referred to as partitions, which represent logical machines within a single physical resource. For each partition access to that set of resources is managed by a partition manager which provides the necessary scheduling support for those CPU resources. A program is executed across resources within this partition by means of a single command. Each program within a SPMD (Single Program Multiple Datastream) program model is instantiated as a standard context across multiple processors within and/or across nodes. These processes then negotiate with the process scheduler and the resource management system to obtain a QNA context for parallel execution. Once granted execution proceeds. Programming models that do not support SPMD, but rather are based on a host-node combination invoke the prun command themselves.

A parallel application is a collection of one or more segments. Each segment consists of a set of processes replicated over a set of network-contiguous processors. All processes in a segment execute the same program. All processes in all segments of a parallel application start up together. This assigns every process a unique virtual process number in a contiguous range starting from 0, and makes every process's address space accessible to its peers through the network. A set of processes with contiguous virtual process numbers and contained within the same segment may be addressed by a single broadcast virtual process number. Broadcast virtual process numbers allow an application to exploit hardware broadcast. System calls are handled locally by default. For example, every process of a parallel application can access the file system independently with standard library and system calls. A subset of system calls can be redirected to a nominated server to concentrate system calls relating to the standard input, output and error on a single process.

A set of processes within a parallel program can also belong to a group - a global object. Groups are used to define arbitrary subsets of the processes of a parallel application including non-contiguous and irregular sets. Groups number their members in a contiguous range starting from 0. A user-supplied group membership function maps group member number to virtual process number. This implicitly determines the set of processes in the group. Groups support barriers, broadcasts, reduction and global exchange.

5.1.3.2 System Checkpointing

An integral aspect of the High Availability of the system is to provide the necessary environment for the ability to recover critical jobs under the circumstances of component failure. This requires the ability to restart previous check-pointed images of a parallel nature. Furthermore given the fact that resources can be partitioned, checkpointing provides an optimum way of controlling jobs of differing priority.

The QSW System Checkpointing service as part of the RMS, provides resilience and job control within a multi-partitioned environment. These facilities generate snapshots of specific processes, process groups and sessions which can then be used to restart, recreate and 'copy' any executing 'image'. Checkpoint snapshots may be initiated by the user, system manager or created in response to an unrecoverable error signal, and contain sufficient process information to restart any process state. The checkpointing process generates a snapshot core that is executable; saving all process state information such as program text plus data, heap and stack in use at the time. The snapshots record any shared library data and include sufficient information to recreate the process such as signal settings, open files, process ids, processor state and parallel program IPC state. A site specific roll-back policy can be implemented within a job-scheduling environment to recover jobs from previous interruption.

5.1.3.3 File Systems

The I/O requirements of the system are satisfied by the addition of I/O elements and associated tape and disk storage and external network capacity. Scaleable performance is achieved both by the addition of these devices and the fact that the data network does not introduce bottlenecks in the routing of data between processors.

Three types of filesystem are supported. These are:

· Local
For temporary I/O local to a node

· Global
For generally accessible files.

· Parallel
For high capacity and bandwidth.

NFS is used to make filesystems globally visible throughout the system. An optimized version of NFS uses QsNet to move data between NFS clients and servers. In addition NFS is used to mount external filesystems making them globally accessible.

Parallel File System

The parallel filesystem (PFS) extends the capability of the base file-system and is striped over many data storage devices. It provides a mechanism for creating very large filesystems (greater than any individual UFS filesystem could support) and for providing high bandwidth concurrent accesses to data that is held within the filesystem. The data storage devices used by the PFS are the UFS, which is distributed using the optimized NFS. This is shown in Fig. 6 overleaf.

PFS provides support for an arbitrary number of I/O controllers whilst providing a single global view of the filesystem, from any of the system clients. It supports sophisticated striping and mirroring which can be used in conjunction with software and hardware RAID technology to deliver high resilience not only at the peripheral level but also at device controller level as well. The striping mechanism is fully user configurable supporting user defined block sizing and number of disks and controllers to be striped over.

PFS client code embedded in the virtual file system layer of the O/S provides and controls access to the multiple single file stores. Client/server interaction is based on the standard optimized NFS implementation that is made possible by the ultra lightweight protocols and fault tolerant nature of QsNet. The PFS is presented to applications as a standard file system. Aggregate PFS bandwidth (several clients accessing the filesystem simultaneously) is determined by the degree of parallelism (number of disks) used to build the filesystem and is effectively unrestricted.

[image: image10.wmf]Switc

h

Plane

Fig. 6: QSW SuperCluster Parallel Filesystem

Memory Resident

A local node file-system also provides benefits within a distributed memory system. tmpfs is a memory based filesystem which uses kernel resources relating to the VM system and page cache as a filesystem. File data remains in core until memory demands are sufficient to cause pages associated with tmpfs to be reused at which time they are copied out to local swap. This is shown below in Fig. 7.

[image: image11.png]Fig. 7: QSW SuperCluster Local File Systems

Networking and Peripheral Capability

Scaleable external performance is achieved by the addition of the requisite functional elements, with internal network scalability providing the key to their integration within the system as a whole. Each node within the system provides the capability to support external networking, either based on traditional methods such as Ethernet or modern day schemes like ATM, etc. The partitioning structure available within the system enables resources to be dedicated to this particular requirement, ensuring that adequate response and bandwidth is provided to external resources. The open nature ensures that QSW has access to all the requisite technologies in terms of off-line and near-line storage. As such QSW can offer the means to support legacy storage systems as well as being well placed to support evolving technology for fast data retrieval and archive and the associated management software to enable users to link this capability with native filesystems.

5.1.4 System Administration

5.1.4.1 Resource Management (RMS)

The software component responsible for constructing a coherent view of the whole system is the Resource Management System (RMS). To users, the system manifests itself as number of functionally distinct services, each corresponding to a subset of nodes known as a partition. The permission to use a specific service is controlled by means of an access list containing the names of authorised users and groups of users.

The overall partition structure is known as a configuration. Any number of different configurations can be defined and saved in the system database. Only one configuration is active at any one time. The activation of different configurations over a daily or weekly cycle can be scheduled automatically. The system administrator is responsible for establishing and maintaining this high-level structure.

The RMS allows the system administrator to set up these configurations, create and delete partitions and assign processors to partitions. It also provides full information about the current status of all jobs. The attributes available include job name, id, user, status (running or queued), and target partition.

Interaction with the RMS is achieved by means of a graphical user interface (GUI) which maintains a number of visually consistent, high-level views of the machine. Each view represents a different aspect of machine configuration or operation, and is manipulated by point-and-click interactions on graphical representations of machine elements. The views are used to navigate access to more detailed information, carry out low-level administrative tasks, develop and edit configurations off-line and to monitor the behaviour of individual partitions. Below are the main views and the machine elements they represent and control:

Configuration view:
Status of all nodes, status of active configuration, configuration development including partition creation and editing.

Network view:
Network representation showing all nodes, switches and connecting links and their status.

Physical view:
Shows nodes and modules as they appear to a person standing in front of the machine.

File system view:
Representation of file systems and NFS mount structure.

Performance view:
User CPU time, system CPU time, real-time system performance, memory allocation, paging, swapping etc. both for individual nodes and aggregated across partitions.

Table 2 Resource Management System Configuration Views

[image: image12.wmf]2002/3

2001/2

CPUs

64

256

1K

4K

8K

UNIX

SERVER(s)

UNIX DESKTOP

(Current Product)

PC-Derived

Node Price/Performance

1998/9

1999/0

2000/1

<

4

<

4

<16

<32

The increase in platform diversity of networked systems increases the importance of interoperability between its sub-systems. The RMS GUI is implemented in Java as it provides a machine independent network layer with an embedded security policy. This ensures that the GUI can run on any machine architecture and operating system mix that supports a WWW browser (see Fig. 8). The group of Java applets that make up the GUI will run in any web-browser and provide a familiar look-and-feel to the control and management system. The security policy embedded into the Java operating environment enables safe network-wide access to the RMS, making remote administration across Wide Area Networks possible. All access is logged and remote network access can be disabled if required to achieve maximum security.

Fig. 8: Resource Management System GUI

The RMS interfaces are probably best (in detail?) described in the context of the entire management application. The diagram below identifies the main components of the application with connections showing the direction of data flow. Here local is the place where the core resources reside, these include the multi-processor machine being controlled and its services. Local refers to the customers’ site. Remote locations are where the control and management applications run. The remote processes may well run on the same machine as the local groups in which case the Wide Area Network (WAN) connections degenerate to Local Area Network (LAN) or loop-back connections.

[image: image4.png]
Fig. 9: Resource Management System GUI

Many of the processes in both the local and remote process groups are those found in most Java based applications. The Remote Process Group forms the user interface to the control and management system. This may often run on the same machine as the Local Process Group responsible for affecting machine state but more often it will be separated by a network, either LAN or as illustrated above, WAN.

The remote process groups consists of a Java enabled Web browser such as Netscape or Microsoft Internet Explorer. The browser provides a context for the applets to execute by supplying runtime libraries for window management, graphical output and input event gathering from the keyboard and mouse.

A management server consisting of a live hypertext document provides guidance through the various machine control operations and marshals responses. The executing applets form a management client at the remote location that is responsible for the representation of machine elements, manages user interaction and submits queries for information or requests for actions.

The data repository is the store for all static machine state such as hardware descriptions, machine configuration, and installed software base. Applets and scripts read information from the repository but cannot write to it directly. The applets can communicate directly with the management executables for update of transient state such as link state or processor load. These states do not pass through and are not stored in the repository. Usually the user wants to see the results from this type of state query as soon as possible so the applet communicates directly, and blocks until it can stream the requested data back to the remote management client.

State which rarely changes such as memory sizes or processor types is validated and cached locally by a remote data repository cache to minimize data transfers between remote site and local management application. Instantaneous information such as processor load or network state is always updated from the remote machine state.

Changes in machine state are performed by the applets writing to an object transaction log. The transaction log is completely passive, applets submit requests for state changes to it without knowledge of the actual command or sequence of operations required to perform the state change, the operations happen as a side effect of writing to the log. This provides a clean interface between the management interface and the processes it controls. It provides a high level of security as the applets conform strictly to the Java security model and do not run processes directly on the local resources. The transaction log provides an audit trail that can be used for diagnostic purposes and is fault tolerant.

The log is monitored by the management executables. These processes are responsible for performing state changes over the compute resources. They retrieve objects for which they are responsible from the log, mark the change as pending, affect state and write results back to the data repository. Log entries that time-out are cleaned periodically and notices or alarms posted. The management executables need not reside in the same place as the repository or the transaction log, they only need file access to them and so can be distributed throughout the compute resource.

An interactive command interpreter can replace the applets when a graphical interface is not possible or practical but mechanisms for changing state are the same. This also enables third party tools that are able to perform SQL database queries to create views of the data held in the repository.

RMS maintains an accurate representation of the state of all sub-systems, monitoring events and extracting performance metrics. This representation includes the status of every node in the machine, status of currently active partitions, the number of correctable and uncorrectable memory errors, network statistics, and general machine health including module operating temperature and power supply condition. This information is gathered dynamically and displayed in both graphic and text form.

5.1.4.2 Operation

An important aspect of RMS functionality concerns high-level configuration management. Administrative functions can be classified as those that relate intimately to unique characteristics of the architecture and those that address generic open systems requirements. The former functions are included in the standard QSW parallel operating environment, while the latter, for the most part, can be provided by approved, third-party software packages. These packages cover aspects of system management which, though equally critical to operational effectiveness, are more generic in nature and require site-wide co-ordination. Examples are backup and restore, security, job-scheduling and accounting. These functions can be provided by a number of widely used open systems management utilities.

Controlling Mechanisms

Configuration management provides a Supercomputing operation with the ability to administrate the workload of the machine. The QSW SuperCluster supports three classes of scheduling; conventional UNIX process scheduling with load balancing over nodes; priority driven gang scheduling; or parallel applications with dedicated access to resources.

For example a server might operate with partitions of three types during working hours, one for interactive development; a second for parallel application development and a number of partitions for production running of batch streams. Outside of working hours the resource weighting for these partitions would change dynamically to reflect diminshing interactive usage and to provide support for the most capable applications. This is shown depicted in the Fig 9 (and figure 10?).
Prompt execution of high-priority jobs requires that lower-priority jobs contending for the same resources can be suspended until the resources are released. In cases where the lower-priority tasks exploit the same underlying partition structure, they are automatically swapped out such that execution is resumed on completion of the high-priority task. Where the work-flow requires a change to the partition structure (e.g. 24-hour cycle) execution can be suspended at a system-initiated checkpoint whereby the complete state of each suspended application is saved to disk. In neither case is it necessary to abort work in progress.

[image: image5.wmf]System File

Service

User File

Service

Login/Network

Service

Application Service

Large Parallel Jobs

Sequential Jobs

Large Parallel Jobs

Small Parallel

Jobs

Dev

elo

pm

ent

Env

iro

nm

ent

e

System File

Service

User File Service

Fully Capable Application

Figure 10: Schematic Diurnal configurations for the QSW SuperCluster Interactive and Batch Environments

The construction of applications, from editing through to linking, can be undertaken either on a standard based workstation or by logging in to the system itself. In the former case the appropriate libraries can be made accessible to users who have the same node architecture at the desktop. In the latter case the user is connected to an interactive shell running on one of the processors within a login partition. The decision as to how many processors to assign to the login partition is a matter for the system administrator and will depend on the likely number of interactive users and the priority given to supporting them as opposed to other services running on the system. This amount however can be changed according to diurnal or weekly variations. From either access method jobs are submitted from a WWW interface to an appropriate batch environment. Again such an environment can be provided by optimized third party packages.

Accounting and Reporting
As described above the state of the system is maintained by an SQL database. All information relevant to user activity causes a write to this database. This can either be generated as a result of a login or by the means of real-time account daemons recording of activity relating to node or parallel interactive or job submission. The information held in the database can be used at any time to provide real-time activity of a user account to a WWW browser. Similarly the information can be used to provide reporting information in a timely manner. The use of a standard SQL database allows all the information over an accounting period to be exported to any database that supports SQL, allowing the service provider to generate reports in a convenient manner.

Specifically, the resource manager accounting demon (acctd) provides session-level accounting information for all active jobs. The resources used by an application are summed over all component processes and billed to the controlling process. The following statistics are collected:

Statistic
Unit
Description

User time
Seconds
Time spent executing user code

System time
Seconds
Time spent executing kernel code on behalf of a user

User idle time
Seconds
Time spent in the idle loop on processors allocated to component processes.

Physical memory
Mbytes
Maximum memory used

Virtual memory
Mbytes
Virtual memory used

Memory integral
Mbytes-seconds
Memory used by processes, summed over all processes and time.

Page faults
-
Number of page faults generated

Swaps
-
Number of times a process is swapped.

I/O
Bytes
Characters read and written by all processes

CPUs
-
Processing nodes allocated to the job

Table 3 Parameters Available

The following additional information is supplied with each job record:

· Job type - kernel, idle, ftpd, telnetd, interactive, batch.

· User, job and partition ids.

· Job status - begin, running, idle, end.

·
Priority (smallest nice value for processes in the job).

Records are generated every time a job starts, exceeds resources, is uncharacteristically idle or ends. The data can be collected and managed by a higher-level resource accounting system. If an operation has a specific requirement for supporting their current report and account procedures such environments can be integrated into the RMS through a well-defined SQL API.

5.2 Application Development

Current programming models for distributed memory architectures predominantly use the Message Passing Interface or High Performance Fortran language for application development and support. Both of these programming practises exploit the standard compilers available for that architecture that typically provide automatic parallelizing compilers for shared memory and run-time thread support. For the system optimized libraries are provided in the support of both HPF and MPI support. For debugging QSW have chosen the TotalView from Dolphin ToolWorks for debugging and analysis. In order to support multi-user capability across partitions within the system the standard debugging environment is integrated with the QSW Parallel Operating Environment.

5.2.1 Message Passing Interface - MPI

MPI is the standard API for message passing in parallel applications, originally published by the MPI Forum in 1994. QSW MPI is a high-performance version of MPICH from the Argonne National Laboratory, that has been extensively optimized for QSW nodes and QsNet. Extended support for MPI-2 is currently under development.

This optimization provides low latency, high bandwidth communication between processes anywhere in the system. Communication between MPI processes on the system (whether inter- or intra-node) occurs transparently.

With the planned increase in processor count per node, the choice of a full MPI implementation may not provide the optimum strategy for applications. In certain cases the user may wish to aggregate some of the computation into a larger unit and exploit intra-node based parallelism. To this end QSW is working closely with suppliers to provide integration of programming models, including for example multi-paradigm support of OpenMP + MPI. Support for programming models is described in the following diagrams.

[image: image6.wmf]MPI

MPI

MPI

MPI

MPI

MPI

MPI

MPI

MPI

+OpenM

P

MPI

MPI

MPI

MPI Processes

0 –> (

n*m –1)

SMP

Node 0

SMP

Node 1

SMP

Node 2

SMP

Node N

MPI Processes

0 –> (n–1)

OpenMP

Process

Figure 11: For the case of n SMP nodes comprising m CPUs each, the following paradigms will be supported for message passing in the extrema. In the first diagram, no distinction is made between MPI processes occupying a two-tiered parallel memory space. In the second diagram the shared memory component of the two-tiered space is occupied by a process supporting a shared memory programming model (eg OpenMP)

5.2.2 High Performance Fortran - HPF

For MPI as explained above, specific enhancements have been made to the QNA to support this message passing model thereby ensuring that the extra latencies and reductions in bandwidth that may be incurred within a high-level message-passing environment are ameliorated. For HPF, the wide variations in support of particular language constructs and the choice of intermediate languages and the target communication layer complicate the support of these. For this reason, QSW support the majority of well-known commercial offerings, through their generic Fortran 77/90 + MPI representation, as well as a native implementations where appropriate remote memory access capabilities of the system, including get and put, together with atomic operations allow.

5.2.3 The QNA API library

This library provides a set of building blocks with which the message passing libraries can be constructed. The QNA API library provides functions to support the following concepts which can be used in the support of increased application optimization:

Global store manipulation
These functions allow the management of data structures which reside at the same virtual address in each cooperating process.

DMA operations
These functions allow the user direct access to the remote read and remote write primitives of the QNA, without needing to understand the details of the relevant control blocks.

Management of process groups
These functions allow the management of subsets of processes which will cooperate with each other in collective communication operations.

Collective communications
These functions provide operations which perform collective communications on groups, such as broadcast, reduction operations, and global exchange.

Table n. ??: ……………..

Global store allocation

Since the basic communication operation supported by the QsNet is a remote read or remote write, it is essential to know the virtual address at which remote data resides. It is therefore convenient to be able to allocate data structures which reside at the same virtual address in each user process. In a strongly SPMD program, the user's static data structures will be ipso facto at the same addresses (since each node is executing the same image). This property can be exploited by compilers which generate code that they know will execute like this. However a messaging library can be used to communicate between processes which are instances of different executable images, and cannot therefore rely on their static data structures being at the same address in each process. The QNA API library therefore provides functions for allocating data structures at identical virtual addresses in each process of a group. To support sub-groups partitioning functions are provided to build nested heaps.

DMA operations

These functions allow direct access to the remote read and remote write primitives of the QNA. The remote read function allows the user to read an arbitrary sized contiguous chunk of data from a remote processor. The remote write function writes a contiguous chunk of local data into a remote address space, and optionally sets an event on the target processor. This allows the recipient to synchronise with the arrival of the data. However single DMA operations provide only one of the two synchronisations required for safe message passing. The recipient can be made aware that data has arrived in the buffer, however there is no synchronisation event to tell the sender that the buffer can be overwritten. (In effect the DMA is equivalent to the ``Ready Receiver'' transmit mode implemented in some message passing systems, in which it is erroneous to perform a send before the receiver is ready to receive the data, but this condition is not checked). Therefore a single DMA on its own cannot replace a fully synchronised message passing operation.

However the normal mode of use of remote DMA operations is in a strongly synchronous model, where each processor performs some set of entirely unsynchronised remote accesses, performs some calculations and then executes a global synchronisation operation, before moving on to the next phase of the calculation. In this case no inter-processor synchronisation at all need be performed at the point of the DMA operation.

The library provides functions to initiate DMA operations, and then to poll or wait for their completion. In this way communications can be overlapped with computation and their latency hidden behind calculations.

Collective operations

The functions provided here allow for the creation of subsets of the whole set of processors, and operations on whole groups. Care has been taken to ensure that the group creation functions are scaleable to large numbers of processors, so no enumeration of group members is required. The operations on groups include: Group Synchronization, Reduction and Prefix operations, Broadcast and Global Exchange (Gather and Scatter).

Environment
Contents
Optimizations Performed

Compilation Environments:
C++, C, F77 and F90
Optimizing RISC and SMP capable compilers (including OpenMP)

Data Parallel:
High Performance Fortran
Support for specific remote memory operations where appropriate.

Message Passing Environments:
MPI and MPI-2 (subset)
Native implementations

Remote Memory Operation Environments:
SHMEM + QNA API
Cray Compatibility Layer on top of QNA API

Parallel Debugger and Performance Analyzers:
TotalView/Timescan and VAMPIR
Optimized for RMS.

Code Analysis and Restructuring Tools:
FORGExplorer, FORESYS
Support for specific remote memory operations.

Intra-node Math Libraries:
BLAS, LAPACK, EISPACK, NAG, IMSL.
Support for POSIX threads.

Inter-node Math Libraries:
BLACS, SCALAPACK,. DNFL, NAG.
Support for MPI and remote memory operations.

Table 4 Summary Application Development Environments

6 Technology Road Map

One of the problems with large parallel systems in the past, and still present today, is that they have stagnated. They have been based almost entirely on a proprietary technology that has not lent itself to take advantage of the prolific rate at which the commodity market develops and deploys new technologies. This applies to all aspects of the system from CPU, memory, peripheral and interconnect technology.

The end result of this has been that:

a) The cost effectiveness of the overall system diminishes and users migrate from the Supercomputing service to local resources in order to capitalize on short-term gains obtained from the general purpose market.

b) For those applications which still require capabilities from a large resource (which may be in terms of total memory capability, etc), architectural or machine specific code practises are deployed creating significant inertia to switch.

For the many applications that require supercomputing resources in order to meet fundamental research, industrial or commercial goals, the net result of these circumstances has been to create an inhibition on the part of these organizations to take long term views of their computational requirements and not explore fully the potential ROI.

For QSW, the goal is to redress this dichotomy. In particular, supercomputing systems must maintain cost effectiveness for a broad range of applications ranging from the most capable to those that can only take advantage of limited capability. In this manner financial resources can then be deployed appropriately over the lifetime of the system to reflect the competing forces of both sets of users.

The combination of ostensibly choosing a strategy based on maximizing the exploitation of commodity components with a technology that can evolve with the cost-benefits of the former is the key to this. For a given instantiation of QSW product based on a particular node architecture and QsNet capability, customers can forward plan future investments through technology refreshes of the resource to meet the demands of a wide user base and maximize operational effectiveness.

In particular, the first systems developed by QSW were be available starting from the first half of 1998 and were based primarily on the integration of extant products. The system is based on 4-way or 2-way CPU workstation systems and the QSW, PCI-based interconnect as described in the Product Sheets attached. This system has a well-defined evolution in CPU speed and QsNet that will be the touchstone of future generations of QSW products.

These systems provide considerable benefits to customers wishing to deploy massively parallel processing resources. In particular the technology:

· Offers substantial price/performance improvements as based on highly cost driven commodity technology at the node level.

· Offers an open architecture that can exploit increases in memory, CPU and disk technology.

· Provides optimized performance for the support of standard programming models used in previous MPP systems.

· Provides a mechanism for a sustainable Service.

6.1 Product Evolution

The evolution of the system intends to address two specific market environments while maintaining a generic architectural stand-point.

1) Increasing node capability and the primarily performance driven market:

The architecture will track the advances in the high performance mid-range market, characterized by SMP systems with increasing node capability (both in terms of CPU speed and number within a microprocessor family) and combining this with a commensurate increase in the integration and hence performance of QsNet. This system will evolve into an environment for the support of the most demanding application requiring multi-TFLOP performance criteria.

2) Decreasing node cost and the primarily price/performance driven market:

The architecture will continue to track the volume market at its optimum price/performance ratio to provide the most cost-effective solutions to broad HPC requirements by continuing the concordance of QsNet with appropriate clustering standards.

These product developments are described in the figure below.

[image: image13.wmf]Switch

Plane

Fig. 12: QSW Super-Cluster Technology Product Roadmap (number in stars refer to CPUs per node, arrows refer to product evolution)

6.2 Summary

QSW, in a short space of time has been able to capitalize on its proven technological and industrial heritage and is now set to make a major impact on the supercomputing landscape.

By a technology strategy that exploits the volume market, and a development program that adheres and promotes clustering standards, QSW has been able to couch a SuperCluster architecture which can track independently the general purpose market and deliver the most capable Supercomputing systems in a cost-effective manner.

In partnership with some of the leading IT suppliers and leading edge research institutions world-wide, QSW can now offer leading edge technology and user-driven path forward to the next generation that will be able to sustain the QSW Supercomputer product portfolio. This provides a firm foundation for the company and the continued success of its mission.

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� A fact, it should be noted, that greatly increases the resilience of such systems.

Rome Office:

Bristol Office:

Via Marcellina, 11

One Bridewell Street

00131 Roma

Bristol BS1 2AA

Italy

United Kingdom

Tel: +39.6.41238613

Tel: +44.117.9075375

Fax: +39.6.4191694

Fax: +44.117.9075395
Error! Bookmark not defined. QSW Ltd. 1998

[image: image14.wmf]Switc

h

Plane

[image: image15.png][image: image16.png][image: image17.wmf]64 bit PCI Interface

Cmd Port

MMU

tlb

Cache

8 Kbytes

RISC

processor

ucode engine

DMA + I/P +

Cmds

O/P Buffer

I/P Buffer

200MHz

100MHz

66MHz

64 MB SDRAM

[image: image18.wmf]2002/3

2001/2

CPUs

64

256

1K

4K

8K

UNIX

SERVER(s)

UNIX DESKTOP

(Current Product)

PC-Derived

Node Price/Performance

1998/9

1999/0

2000/1

<

4

<

4

<16

<32

[image: image19.wmf]CPUs Per SMP

1

2

MPP

S

M

P

CLUSTERS

QSW

SuperCluster

4

8

nodes

2

4

8

_957010590.doc

64 MB SDRAM

66MHz

100MHz

200MHz

I/P Buffer

O/P Buffer

ucode engine

DMA + I/P + Cmds

RISC

processor

Cache

8 Kbytes

MMU

tlb

Cmd Port

64 bit PCI Interface

_961584959.doc

Inter-Processor Coupling

SMP

MPP

Farms

Bi-Sectional Bandwidth

Price

_962518576.doc
[image: image1.bmp]

System File

Service

User File

Service

Login/Network

Service

Application Service

Large Parallel Jobs

Sequential Jobs

Large Parallel Jobs

Small Parallel

Jobs

Development

Environmente

System File

Service

User File Service

Fully Capable Application

_957163064.doc

[image: image1.bmp]

Fully Capable Application

User File Service

System File Service

Development Environmente

Small Parallel Jobs

Large Parallel Jobs

Sequential Jobs

Large Parallel Jobs

Application Service

Login/Network Service

User File Service

System File Service

_966667144.doc

QSW Network Subsystem

Standard SMP Architecture

Storage

MULTI-BANKED

MEMORY

CPU

..n

CPU 1

LAN

PCI BRIDGE

PCI BRIDGE(s)

BUS or X-Bar

QsNet Switch(es)

QsNet Adapter(s)

_961585188.doc

QSW SuperCluster

CLUSTERS

SMP

MPP

4

8

nodes

2

1

2

4

8

CPUs Per SMP

_961422556.doc

MPI Processes

0 –> (n–1)

MPI Processes

0 –> (n*m –1)

MPI

MPI

MPI

MPI +OpenMP

OpenMP Process

MPI

MPI

MPI

MPI

MPI

MPI

MPI

MPI

SMP Node 0

SMP Node 1

SMP Node 2

SMP Node N

_961584128.doc
[image: image1.bmp]

CPUs

Node Price/Performance

64

256

1K

4K

8K

UNIX SERVER(s)

UNIX DESKTOP (Current Product)

PC-Derived

<16

1998/9

1999/0

2000/1

2001/2

2002/3

<4

<4

<32

_950446351.doc

Switch Plane

_950618643.doc

Switch Plane

_950707038.doc
[image: image1.png]

_931708682

