
 1

 2

Table of Contents

ABOUT INTEL® FORTRAN COMPILER .. 11

Welcome to Intel® Fortran Compiler .. 11

Major Components of the Intel® Fortran Compiler Product..11

What’s New in This Release .. 11

Compiler for Two Architectures...11

Features and Benefits.. 12

Product Web Site and Support... 12

System Requirements.. 12

Minimum Hardware Requirements..13

Operating System Requirements ..13
Browser ..13

FLEXlm* Electronic Licensing .. 13

License Server Setup ...13

About This Document .. 13

How to Use This Document ..14
Notation Conventions ...14

Related Publications...15
Publications on Compiler Optimizations...15

Disclaimer.. 16

COMPILER OPTIONS QUICK REFERENCE GUIDES 18

Overview.. 18

Conventions used in the Options Quick Guide Tables...18

Compiler Options Quick Reference Alphabetical.. 18

Functional Group Listings .. 25

Overview ..25

Customizing Compilation Process Options..26
Setting Fortran Compilation Environment ..26

Alternate Tools and Locations...26

Preprocessing..27

Compiling and Linking ..27

Controlling Compilation Output ...28

Debugging ...28

Libraries Management..29

Diagnostics and Messages ...29

 3

Runtime Diagnostics (IA-32 Compiler only) ...29

Compiler Information Messages..29

Comment and Warning Messages ..30

Error Messages..30

Language Conformance Options ..30
Data Type ..30

Source Program...31

Setting Arguments and Variables..31

Common Block...32

Application Performance Optimization Options..32
Setting Optimization Level ..32

Floating-point Arithmetic Precision ..32

Processor Dispatch Support (IA-32 only)...33

Interprocedural Optimizations ...33

Profile-guided Optimizations ...34

High-level Language Optimizations...34

Vectorization (IA-32 only)..35

Windows* to Linux* Options Cross-reference... 36

INVOKING INTEL® FORTRAN COMPILER ... 49

Compiler Command Line Syntax.. 49

Command Line with make.. 51

Running Itanium(TM)-based Applications Compiled on IA-32-based Systems........... 51

Default Behavior of the Compiler ... 51

Default Libraries and Tools ...52
Assembler ..52

Linker ...52

Input Files .. 52

Compilation Phases... 53

Application Development Cycle.. 53

CUSTOMIZING COMPILATION ENVIRONMENT... 54

Environment Variables... 55

FCE Options .. 55

Configuration Files... 55

Response Files.. 56

Include Files... 57

Fortran Compilation Environment (FCE) .. 57

FCE Overview ..58
Object Files and Dictionary Files...57

Program Unit Catalog List Files...57
Specifying the Name and Path of the PUCLF ..58

 4

Guidelines for the PUCLF...58

An Example of Development Organization..59

The FCE Manager Utility...59
The Binder..62

Activating the Binder...62

Advantages of Using the Binder..63

Dependent and Independent Compilation ...63
Fortran Programs with or without Modules ..63

Small-Scale Projects ..63

Larger-Scale Projects...64

Fortran Programs Without Modules...64

Stale Program Units..64

CUSTOMIZING COMPILATION PROCESS.. 66

Overview.. 68

Specifying Alternate Tools and Locations .. 66

Specifying an Alternate Component (-Qlocation,tool,path)...66
Passing Options to Other Tools (-Qoption,tool,opts)..66

Preprocessing.. 67

Overview ..69
Preprocessor Options...67

Preprocessing Fortran Files..68
Enabling Preprocessing with Compiler Options..68

Preprocessing Only: -E, -EP, -F, and -P..68

Searching for Include Files..69
Specifying and Removing Include Directory Search: -I, -X..69

Specifying an Include Directory, -I...69

Removing Include Directories, -X..69

Defining Macros, -D, -U and -A ...70

Predefined Macros ...70

Compilation and Linking... 71

Overview ..73
Compiler Input and Output Options Summary ...71
Compilation Options ...72

Limiting Register Usage (Itanium(TM)-based Applications Only) ..73

Saving Compiler Version and Options Information, -sox...73

Monitoring Compiler-generated Code..73
Specifying Structure Tag Alignments, -Zp..73

Allocation of Zero-initialized Variables, -nobss_init...73

Avoiding Incorrect Decoding of Certain 0f Instructions (IA-32 only)...74

Specifying the Output File with -o, -S ..74
Specifying File Name..74

Specifying Directory Name ...74

Listing Options..75
Using the Assembler to Produce Object Code...75

 5

Assembly File Code Example ...75
Linking..77

Options to Link to Tools and Libraries ...77

Controlling Linking and its Output..77

Suppressing Linking ...77

Debugging ... 78

Debugging Options Summary ...78

Preparing for Debugging, -g..78
Debugging and Assembling ..78

Support for Symbolic Debugging...79
Parsing for Syntax Only ..79
Compiling Source Lines with Debugging Statements, -DD ..79

FORTRAN LANGUAGE CONFORMANCE OPTIONS...................................... 80

Fortran Language Conformance Options Overview ... 82

Data Type .. 80

Source Program... 80

Escape Characters ...81

Setting Arguments and Variables... 82

Common Block .. 83

Dynamic Common Option...83

Allocating Memory to Dynamic Common Blocks..83
Why Use a Dynamic Common ..83
Rules of Using Dynamic Common Option ...84

OPTIMIZATIONS ... 85

Optimization Levels.. 85

Optimization-level Options ..85

Restricting Optimizations ..86

Floating-point Arithmetic Optimizations.. 86

Floating-point Arithmetic Precision..86
-mp Option...86

-mp1 Option ...86

-prec_div Option (IA-32 Only) ...86

-pc{32|64|80} Option (IA-32 Only) ...86

Rounding Control, -rcd, -fp_port (IA-32 Only)...87

Maintaining Floating-point Arithmetic Precision, -mp ...87

Processor Dispatch Extensions Support (IA-32 Only) .. 88

Targeting a Processor and Extensions Support Overview ...88

Targeting a Processor, -tpp{n} ..88
Optimizing for a Specific Processor Without Excluding Others ...88

Exclusive Specialized Code with -x{i|M|K|W}...89
-x Summary ...89

 6

Specialized Code with -ax{i|M|K|W} ..89
-ax Summary..90

Checking for Performance Gain..90
Combining Processor Target and Dispatch Options ..90

Example of -x and -ax Combinations...91

Interprocedural Optimizations .. 91

Multifile IPO..92
Multifile IPO Overview ..92

Compilation with Real Object Files, -ipo_obj..92

Creating a Multifile IPO Executable...93

Creating a Multifile IPO Executable Using a Project Makefile ...93

Analyzing the Effects of Multifile IPO, -ipo_c, -ipo_S..94

Inline Expansion of Functions ...94
Inline Expansion of Library Functions..94

Controlling Inline Expansion of User Functions..95

Criteria for Inline Function Expansion..95

IPO with -Qoption ...96
Using -ip witn -Qoption ...98

Using -Qoption Specifiers ...96

Profile-guided Optimizations .. 97

Overview ..97
Profile-guided Optimizations Methodology ..97

PGO Phases..97

PGO Environment Variables ...99

Basic Profile-Guided Optimization Options..100
Using Profile-Guided Optimization: An Example..100

Guidelines for Using Advanced PGO ..101
Function Order List Usage Guidelines...102

Function Order List Example...102

Utilities for Profile-Guided Optimization...102
The profmerge Utility ..102

The proforder Utility..103

Comparison of Function Order Lists and IPO Code Layout ..103

Dump Profile Data Utility...103

High-level Language Optimizations (HLO) ... 104

HLO Overview..104
Loop Transformations...104
Scalar Replacement (IA-32 Only)..104

Loop Unrolling with -unroll[n]...105
Benefits and Limitations of Loop Unrolling...105

Prefetching ...105

Parallelization .. 106

Parallelization with -openmp ...106
Command Line Options..106

OpenMP* Standard Option ...106

 7

OpenMP Fortran Directives and Clauses...106

OpenMP Environment Variables ...107

OpenMP* Runtime Library Routines ...107
Intel Extensions to OpenMP* ..107

Environment Variables..107

Thread-level MALLOC()...107

Examples of OpenMP* Usage...108
A Simple Difference Operator ...108

Two Difference Operators...108

Vectorization (IA-32 Only) .. 109

Vectorization Overview ...109

Vectorizer Options ..109
Loop Structure Coding Background ..110
Vectorization Key Programming Guidelines ..110

Guidelines..110

Preparing Your Code for Vectorization ..111

Data Dependence...111

Data Dependence Analysis...111
Loop Constructs ...112
Loop Exit Conditions...112

Types of Loop Vectorized ...113
Stripmining and Cleanup...114

Statements in the Loop Body..114
Floating-point Array Operations ..114

Integer Array Operations ..114

Other Integer Operations ..115

Other Datatypes ...115

No Function Calls...115

Vectorizable Data References...115

Vectorization Examples ..115
Argument Aliasing: A Vector Copy ..115

Data Alignment...116

Alignment Strategy ...117

Loop Interchange and Subscripts: Matrix Multiply..117

LIBRARIES .. 119

Managing Libraries .. 119

Using Multi-thread and Single-thread Libraries .. 119

Multi-thread Libraries, -mt ...119

Single-thread Libraries, -ml ...120

Using the POSIX and Portability Libraries.. 120

Intel® Shared Libraries .. 120

Advantages of This Approach ...120

-i_dynamic option ...121

 8

Math Libraries.. 121

Math Libraries Overview ...121

Using Math Libraries with IA-32 Systems ..121
Library libm_chk.a ..121

Optimized Math Library Primitives...122

Programming with Math Library Primitives...122

Enable Floating-point Division Check ..124

IEEE Floating-point Exceptions...123
Denormal ...123

Divide-by-Zero Exception..123

Overflow Exception ..123

Underflow Exception...124

Inexact Exception...124

Invalid Operation Exception ..124

DIAGNOSTICS AND MESSAGES .. 126

Overview.. 126

Runtime Diagnostics (IA-32 Compiler Only)... 126

Runtime Diagnostics Overview ...126

Optional Runtime Checks ...126
Pointers, -CA..127

Allocatable Arrays ..127

Assumed-Shape Arrays..127

Array Subscripts, Character Substrings, -CB...128
Unassigned Variables, -CU...128

Notes on Variables ...128

Actual to Dummy Argument Correspondence, -CV..128

Selecting a Postmortem Report, -d[n]..129
Invoking a Postmortem Report..130

Postmortem Report Conventions ..130

The Postmortem Report ...131

Messages and Obtaining Information... 131

Compiler Information Messages..131

Diagnostic Messages..132
Command-line Diagnostics ...132

Language Diagnostics ..132

Warning Messages...132
Suppressing or Enabling Warning Messages...133

Comment Messages...133
Error Messages ..133

Suppressing or Enabling Error Messages..134

Fatal Errors ..134

 9

MIXING C AND FORTRAN.. 135

Overview.. 137

Naming Conventions ..135

Passing Arguments between Fortran and C Procedures.. 135

Using Fortran Common Blocks from C... 135

Fortran and C Scalar Arguments.. 136

Fortran and C Language Declarations...136

Passing Scalar Arguments by Value .. 137

Array Arguments.. 138

Array Data Type ...138
Example of Array Arguments in Fortran and C ..139

Character Types .. 139

Null-Terminated CHARACTER Constants ... 140

Complex Types.. 140

Return Values.. 141

Return Value Data Type ...141

Returning Character Data Types.. 141

Returning Complex Type Data... 142

Procedure Names.. 143

Pointers ... 143

Pointer Representation in Intel Fortran Compiler...143

Calling C Pointer-type Function from Fortran ... 143

Implicit Interface... 144

Fortran Implicit Argument Passing by Address ..144

Explicit Interface .. 145

Fortran Explicit Argument Passing by Address..145

Intrinsic Functions.. 145

REFERENCE INFORMATION ... 146

OpenMP* Reference Information ... 146

List of OpenMP* Standard Directives and Clauses..146
OpenMP* Directives ...146

OpenMP Clauses ...147

List of OpenMP* Runtime Library Routines ...147

Compiler Limits .. 149

Additional Intrinsic Functions ... 149

Additional Intrinsic Functions Overview...149

Synonyms ..149

 10

DCMPLX Function..150

LOC Function...150

Argument And Result KIND Parameters ...150
Intel Fortran KIND Parameters..150

INTEGER KIND values...151

REAL KIND values ...151

COMPLEX KIND values ...151

LOGICAL KIND values ...151

CHARACTER KIND value...151

%REF and %VAL Intrinsic Functions ..151
List of Additional Intrinsic Functions ..152

Intel Fortran Compiler Key Files... 155

Key Files Summary for IA-32 Compiler ...155
/bin Files ..156

/lib Files ...156

Key Files Summary for Itanium(TM) Compiler...156
/bin Files ..156

/lib Files ...157

Lists of Error Messages ... 157

Error Message Lists Overview ..157

Runtime Errors (IA-32 Only)..157
Allocation Errors ...159

Input/Output Errors ...159
Other Errors Reported by I/O statements ..164

Intrinsic Procedure Errors ...165
List of Intrinsic Errors..165

Mathematical Errors..166
Exception Messages...167

 11

About Intel® Fortran Compiler

Welcome to Intel® Fortran Compiler
The Intel® Fortran Compiler compiles code targeted for the IA-32 Intel® architecture and Intel®
Itanium(TM) architecture. The Intel Fortran Compiler has a variety of options that enable you to
use the compiler features for higher performance of your application.

Major Components of the Intel® Fortran Compiler
Product
Intel® Fortran Compiler product includes the following components for the development
environment:

y� Intel® Fortran Compiler for IA-32 Applications
y� Intel® Fortran Compiler for Itanium(TM)-based Applications
y� Intel® Fortran Itanium(TM) Compiler for Itanium(TM)-based Applications

The Intel Fortran Compiler for Itanium-based applications includes Intel® Itanium(TM) Assembler
and Intel Itanium(TM) Linker.

What’s New in This Release
Compiler for Two Architectures
This document combines information about Intel® Fortran Compiler for IA-32-based applications
and Itanium-based applications. IA-32-based applications correspond to the applications run on
any processor of the Intel® Pentium® processor family generations. Itanium-based applications
correspond to the applications run on the Intel® Itanium(TM) processor.
The following variations of the compiler are provided for you to use according to your host
system's processor architecture and targeted architectures.

y� Intel® Fortran Compiler for 32-bit Applications is designed for IA-32 systems, and its
command is ifc. The IA-32 compilations run on any IA-32 Intel processor and produce
applications that run on IA-32 systems. This compiler can be optimized specifically for
one or more Intel IA-32 processors, from Intel® Pentium® to Pentium 4 to Celeron(TM)
processors.

y� Intel® Fortran Compiler for Itanium(TM)-based Applications, or cross compiler, runs on
IA-32 systems but produces Itanium(TM)-based applications. You can run the executable
programs, generated on the IA-32-based systems, only on the Itanium-based systems.

y� Intel® Fortran Itanium(TM) Compiler for Itanium(TM)-based Applications, or native
compiler, is designed for Itanium architecture systems, and its command is efc. This
compiler runs on Itanium-based systems and produces Itanium-based applications.
Itanium-based compilations can only operate on Itanium-based systems.

IA-32 and Itanium Compilers
OpenMP* Support. The Intel® Fortran Compiler supports OpenMP API version 1.1 and performs
code transformation for shared memory parallel programming. The OpenMP support and auto-
parallelization are accomplished with the -openmp option.

 12

IA-32 Compiler
The -tpp7 or -axW compiler options generate Streaming SIMD Extensions 2 designed to
execute on a Pentium® 4 processor system.

Itanium Architecture Overview
The Itanium architecture provides explicit parallelism, predication, speculation and other features
to bring up performance to even higher results. The architecture is highly scalable to fulfill high
performance server and workstation requirements.

Features and Benefits
The Intel® Fortran Compiler enables your software to perform the best on Intel architecture-
based computers. Using new compiler optimizations, such as the whole-program optimization
and profile-guided optimization, prefetch instruction and support for Streaming SIMD Extensions
(SSE) and Streaming SIMD Extensions 2 (SSE2), the Intel Fortran Compiler provides high
performance.

Feature Benefit
High Performance Achieve a significant performance gain by using optimizations
Support for Streaming SIMD
Extensions

Advantage of new Intel microarchitecture

Automatic vectorizer Advantage of parallelism in your code achieved automatically
OpenMP Support Shared memory parallel programming
Floating-point optimizations Improved floating-point performance
Data prefetching Improved performance due to the accelerated data delivery
Interprocedural optimizations Larger application modules perform better
Whole program optimization Improved performance between modules in larger applications
Profile-guided optimization Improved performance based on profiling the frequently used

procedure
Processor dispatch Taking advantage of the latest Intel architecture features while

maintaining object code compatibility with previous generations of
Intel® Pentium® Processors

Product Web Site and Support
For the latest information about Intel Fortran Compiler, visit the Intel Fortran documentation web
site where you will find links to:

y� Fortran compiler home page
y� Fortran compiler performance-related topics
y� Marketing information
y� Related topics on the http://developer.intel.com web site

For internet-based support and resources visit http://developer.intel.com/go/compilers.
For specific details on the Itanium architecture, visit the web site at
http://developer.intel.com/design/ia-64/index.htm.

System Requirements
The Intel® Fortran Compiler can be run on personal computers that are based on Intel®
architecture processors. To compile programs with this compiler, you need to meet the processor
and operating system requirements.

 13

Minimum Hardware Requirements
IA-32 Compiler and Cross Compiler

y� A system based on a Pentium®, Pentium® Pro, Pentium® with MMX™ technology,
Pentium® II, Pentium® III or Pentium® 4 processor.

y� 128 MB RAM
y� 100 MB of disk space

Recommended: A system with Pentium® III or Pentium 4 processor and 256 MB of RAM

Itanium(TM) Compiler
y� Itanium-processor-based system. The Itanium(TM)-based systems are shipped with all of

the hardware necessary to support this Itanium compiler.
y� 512 MB RAM (1GB RAM recommended)

Operating System Requirements
IA-32 architecture:
 RedHat Linux* 6.2 or 7.1
Itanium(TM) architecture:
Turbolinux* operating system for Intel Itanium-based systems or RedHat Linux* 7.1

To run Itanium(TM)-based applications you must have an Intel® Itanium(TM) architecture system
running the Itanium(TM)-based operating system from TurboLinux. Itanium(TM)-based systems
are shipped with all of the hardware necessary to support this product.

It is the responsibility of application developers to ensure that the operating system and processor
on which the application is to run support the machine instructions contained in the application.
For use/call-sequence of the libraries, see the library documentation provided in your operating
system. For GNU libraries for Fortran, refer to http://www.gnu.org/directory/gcc.html in case they
are not installed with your operating system.

Browser
For both architectures, the browser Netscape, version 4.74 or higher is required.

FLEXlm* Electronic Licensing
The Intel® Fortran Compiler uses GlobeTrotter*'s FLEXlm* electronic licensing technology. If you
are using a floating (concurrent) or node-locked-counted license model (license count > 0 in the
license file) then the license server must be setup correctly and started before the Intel Fortran
Compiler can be used. License server utilities/files are located in the /flexlm/ directory in your
installation path. Included files are as follows:

y� lmgrd (the license server daemon)
y� lmutil (utility to determine machine information, lmhostid)
y� EndUserManual.htm (FLEXlm End User Manual)

License Server Setup
Note

 The steps below assume the simple case where the license server exists on the same
machine as the Intel Fortran Compiler software. For more complicated installations, please
contact your system administrator. If you are currently using GlobeTrotter*'s FLEXlm*
electronic licensing technology to monitor licenses, please contact your system

 14

administrator to install the new license file in the proper location and to restart the license
manager daemon. For detailed instructions on setting up and starting the license server,
please refer to the FLEXlm End User Manual located in the /flexlm/ directory of your
installation path.

1. Install the license manager daemon (lmgrd) and intelpto on the license server.
2. Run lmgrd with this command:
 prompt>lmgrd -c license_file_path -l debug_log_path
 where license_file_path is the full path to the license file and debug_log_path is the full path to
the debug log file.
3. Setup the license server daemon to run at system startup.
If you have any problems running the compiler, please make sure the file l_for_50.lic is located in
the /licenses/ directory in your installation path. There must be a local copy of the license file on
every machine that uses the application. The default directory is /opt/intel.

How to Use This Document
This User's Guide explains how you can use the Intel® Fortran Compiler. It provides information
on how to get started with the Intel Fortran Compiler, how this compiler operates and what
capabilities it offers for high performance. You will learn how to use the standard and advanced
compiler optimizations to gain maximum performance of your application.
This documentation assumes that you are familiar with the Fortran Standard programming
language and with the Intel® processor architecture. You should also be familiar with the host
computer's operating system.

 Note:
This document explains how information and instructions apply differently to each
targeted architecture. If there is no specific indication to either architecture, the
description is applicable for both architectures.

Notation Conventions
This documentation uses the following conventions:
This type style An element of syntax, a reserved word, a keyword, a file name, or a code

example. The text appears in lowercase unless uppercase is required.
This type style Indicates the exact characters you type as input.
This type style Command line arguments and option arguments you enter.
This type style Indicates an argument on a command line or an option's argument in the

text.
[options] Indicates that the items enclosed in brackets are optional.
{value|value} A value separated by a vertical bar (|) indicates a version of an option.
... (ellipses) Ellipses in the code examples indicate that part of the code is not shown.
This type style Indicates an Intel Fortran Language extension code example.
This type style Indicates an Intel Fortran Language extension discussion. Throughout the

manual, extensions to the ANSI standard Fortran language appear in this
color to help you easily identify when your code uses a non-standard
language extension.

This type style Hypertext

 15

Related Publications
The following documents provide additional information relevant to the Intel Fortran Compiler:

y� Fortran 95 Handbook, Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T.
Smith, and Jerrold L. Wagener. The MIT Press, 1997. Provides a comprehensive guide
to the standard version of the Fortran 95 Language.

y� Fortran 90/95 Explained, Michael Metcalf and John Reid. Oxford University Press, 1996.
Provides a concise description of the Fortran 95 language.

Information about the target architecture is available from Intel and from most technical
bookstores. Most Intel documents are available from the Intel Corporation web site at
www.intel.com. Some helpful titles are:

y� Intel® Fortran Libraries Reference, doc. number 687929
y� Intel® Fortran Programmer's Reference, doc. number 687928
y� VTune® Performance Analyzer online help
y� Intel Architecture Software Developer's Manual
 Vol. 1: Basic Architecture, Intel Corporation, doc. number 243190
 Vol. 2: Instruction Set Reference Manual, Intel Corporation, doc. number 243191
 Vol. 3: System Programming, Intel Corporation, doc. number 243192
y� Intel® Itanium(TM) Architecture Application Developer's Architecture Guide
y� Intel® Itanium(TM) Architecture Software Developer's Manual
 Vol. 1: Application Architecture, Intel Corporation, doc. number 245317
 Vol. 2: System Architecture, Intel Corporation, doc. number 245318
 Vol. 3: Instruction Set Reference, Intel Corporation, doc. number 245319
 Vol. 4: Itanium Processor Programmer’s Guide, Intel Corporation, doc. number 245319
y� Intel® Itanium(TM) Architecture Software Conventions & Runtime Architecture Guide
y� Intel® Itanium(TM) Architecture Assembly Language Reference Guide
y� Intel® Itanium(TM) Assembler User's Guide
y� Pentium® Processor Family Developer's Manual
y� Intel® Processor Identification with the CPUID Instruction, Intel Corporation, doc. number

241618
For developer’s manuals on Intel processors, refer to the Intel’s Literature Center.

Publications on Compiler Optimizations
The following sources are useful in helping you understand basic optimization and vectorization
terminology and technology:

y� Intel® Architecture Optimization Reference Manual
y� High Performance Computing (2nd edition), Kevin Dowd (O’Reilly and Associates, 1998),

ISBN 156592312X
y� Dependence Analysis, Utpal Banerjee (A Book Series on Loop Transformations for

Restructuring Compilers). Kluwer Academic Publishers. 1997.
y� The Structure of Computers and Computation: Volume I, David J. Kuck. John Wiley and

Sons, New York, 1978.
y� Loop Transformations for Restructuring Compilers: The Foundations, Utpal Banerjee (A

Book Series on Loop Transformations for Restructuring Compilers). Kluwer Academic
Publishers. 1993.

y� Loop Parallelization, Utpal Banerjee (A Book Series on Loop Transformations for
Restructuring Compilers). Kluwer Academic Publishers. 1994.

y� High Performance Compilers for Parallel Computers, Michael J. Wolfe. Addison-Wesley,

 16

Redwood City. 1996.
y� Supercompilers for Parallel and Vector Computers, H. Zima. ACM Press, New York,

1990.
y� Efficient Exploitation of Parallelism on Pentium® III and Pentium® 4 Processor-Based

Systems, Aart Bik, Milind Girkar, Paul Grey, and Xinmin Tian.

Disclaimer
This Intel® Fortran Compiler User's Guide as well as the software described in it is furnished
under license and may only be used or copied in accordance with the terms of the license. The
information in this document is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation
assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document.
Except as permitted by such license, no part of this document may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means without the express written consent
of Intel Corporation.
Information in this document is provided in connection with Intel products. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.
Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or
use of Intel products including liability or warranties relating to fitness for a particular purpose,
merchantability, or infringement of any patent, copyright or other intellectual property right. Intel
products are not intended for use in medical, life saving, or life sustaining applications.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them.
The Intel Fortran Compiler may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are
available on request.
Intel may make changes to specifications and product descriptions at any time, without notice.

Intel, Pentium, Pentium Pro, Itanium, and MMX are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.
* Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 1996 - 2001.

Copyright © 1996 Hewlett-Packard Company.
Copyright © 1996 Edinburgh Portable Compilers, Ltd.
Reproduction, adaptation, or translation without prior written permission is prohibited, except as
allowed under the copyright laws. All rights reserved.
Restricted Rights Legend. Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in sub-paragraph (c)(I)(ii) of the Rights in Technical Data and Computer
Software clause in DFARS 252-227-7013,
Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A
Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-
19(c0(1,2).
Copyright © 1983-96 Hewlett-Packard Company.
Copyright © 1980, 1984, 1986 Novell, Inc.

 17

Material in this document based on the book, Fortran Top 90\xdf 90 Key Features of Fortran 90,
by Adams, Brainerd, Martin and Smith is produced with the permission of the publisher, Unicomp,
Inc.
Copyright © 1979, 1980, 1983, 1985-1993 The Regents of the University of California. This
software and documentation is based in part on materials licensed from The Regents of the
University of California. We acknowledge the role of the Computer Systems Research Group and
Electrical Engineering and Computer Sciences Department of the University of California at
Berkeley and the other named Contributors in their development.

 18

Compiler Options Quick
Reference Guides

Overview
This section provides three sets of tables comprising Intel® Fortran Compiler Options Quick
Reference Guides:

y� Alphabetical Listing, alphabetic tabular reference of all compiler and compilation as well
as linker and linking control, and all other options implemented by the Intel Fortran
Compiler available for both IA-32 and Intel® Itanium(TM) compilers as well as those
available exclusively for each architecture.

y� Summary tables for IA-32 and Itanium compiler features with the options that enable
them

y� Compiler Options for Windows* and Linux* Cross-reference

Conventions used in the Options Quick Guide
Tables
[-] indicates that if option includes "-", the option is disabled.

For example, -cerrs- disables printing errors in a terse
format

[n] indicates that the value in [] can be omitted or have various
values; for example, in -d[n] option, n can be omitted or
have values of 0, 1, 2 and >2.

Values in {} with
vertical bars

are used for option's version; for example, option -i{2|4|8}
has these versions: -i2, -i4, -i8.

{n} indicates that option must include one of the fixed values
for n; for example, in option -Zp{n}, n can be equal to 1,
2, 4, 8, 16.

Words in this
style following an
option

indicate option's required argument(s). Arguments are
separated by comma if more than one are required. For
example, the option -Qoption,tool,opts looks in
the command line like this:
 prompt>ifc –Qoption,link,-w myprog.f

Compiler Options Quick Reference
Alphabetical
The following table describes options that you can use for compilations you target to either IA-32-
or Itanium-based applications or both. See Conventions Used in the Options Quick Guide Tables.

y� Options specific to IA-32 architecture (IA-32 only)
y� Options specific to the Itanium(TM) architecture (Itanium-based systems only)
y� Options available for both IA-32 and Itanium architecture

 19

Option Description Default Reference

-0f_check
 IA-32 only

Enables a software patch for Pentium processor 0f
erratum.

OFF Monitoring
Compilation

-1 Executes any DO loop at least once. Same as -onetrip.

OFF

-72, -80, -132 Specifies 72, 80 or 132 column lines for fixed form
source only. The compiler might issue a warning for
non-numeric text beyond 72 for the -72 option.

-72

Source Program
Options

-A- Removes all predefined macros. Issues a warning if
OpenMP does not work correctly.

OFF Defining Macros

-align[-] Analyzes and reorders memory layout for variables and
arrays. (Same as -Zp{n}.)

ON Setting Arguments

-ansi[-] Enables (default) or disables assumption of the
program’s ANSI conformance.

ON Source Program
Options

-auto Causes all variables to be allocated on the stack, rather
than in local static storage. Does not affect variables that
appear in an EQUIVALENCE or SAVE statement, or
those that are in COMMON. Makes all local variables
AUTOMATIC.

OFF Setting Arguments

-autodouble Sets the default size of real numbers to 8 bytes; same
as -r8.

OFF Data Type Options

-auto_scalar Makes scalar local variables AUTOMATIC. ON Setting Arguments
-ax{i|M|K|W}

IA-32 only

Generates code that is optimized for a specific
processor, but that will execute on any IA-32 processor.
Compiler generates multiple versions of some routines,
and chooses the best version for the host processor at
runtime indicated by processor-specific codes i
(Pentium® Pro), M (Pentium with MMX(TM) technology),
K (Pentium III), and W (Pentium 4).

OFF Specialized Code
with
 -ax{i|M|K|W}

-bd,progname Enables the Intel® Fortran Compiler binder to generate
a list of objects to build a PROGNAME.

OFF FCE Options

-c Stops the compilation process after an object file (.obj)
has been generated.

OFF Compilation Control

-C90 Links with an alternative I/O library (libCEPCF90.a) that
supports mixed input and output with C on the standard
streams.

OFF Linking to Tools

-C
 IA-32 only

Equivalent to: (-CA, -CB, -CS, -CU, -CV) extensive
runtime diagnostics options.

OFF

-CA
 IA-32 only

Generates runtime code, which checks pointers and
allocatable array references for nil. Should be used in
conjunction with -d[n].

OFF

-CB
IA-32 only

Generates runtime code to check that array subscript
and substring references are within declared bounds.
Should be used in conjunction with -d[n].

OFF

-CS
IA-32 only

Generates runtime code that checks for consistent
shape of intrinsic procedure. Should be used in
conjunction with -d[n].

OFF

-CU
IA-32 only

Generates runtime code that causes a runtime error if
variables are used without being initialized. Should be
used in conjunction with -d[n].

OFF

Runtime
Diagnostics

 20

-CV
IA-32 only

On entry to a subprogram, tests the correspondence
between the actual arguments passed and the dummy
arguments expected. Both calling and called code must
be compiled with -CV for the checks to be effective.
Should be used in conjunction with -d[n].

OFF

-cerrs[-] Enables/disables errors and warning messages to be
printed in a terse format for diagnostic messages.

OFF Warning Messages

-cl,file Specifies a program unit catalog list file in which to
search for referenced modules.

OFF FCE Options

-cm Suppresses all comment messages. OFF Comments
-common_args Assumes “by reference” subprogram arguments may

alias one another.
OFF Setting Arguments

-cpp[n] Same as -fpp[n]. OFF
-DD Compiles debugging statements indicated by the letter D

in column 1 of the source code.
OFF

-DX Compiles debugging statements indicated by the letters
X in column 1 of the source code.

OFF

-DY Compiles debugging statements indicated by the letters
Y in column 1 of the source code.

OFF

Debugging
Statements

-d[n]
IA-32 only

Sets diagnostics level as follows:
 -d0 - displays procname line
 -d1 - displays local scalar variables
 -d2 - local and common scalars
 -d>2 - display first n elements of local and COMMON
arrays, and all scalars.

OFF Runtime
Diagnostics

-Dname[={#|text}] Defines a macro name and associates it with the
specified value.

OFF Defining Macros

-doubletemps Ensures that all intermediate results of floating-point
expressions are maintained in at least double precision.

OFF Floating-point
Precision

-dps, -nodps Enable (default) or disable DEC* parameter statement
recognition.

-dps Source Program
Options

-dryrun Show driver tool commands but do not execute tools. Information
Messages

-E Preprocesses the source files and writes the results to
_stdout. If the file name ends with capital “F”, the option
is treated as -fpp[n].

OFF Preprocessing Only

-e90, -e95 Enables/disables issuing of errors rather than warnings
for features that are non-standard Fortran 95.

OFF Error Messages

-EP Preprocesses the source files and writes the results to
stdout omitting the #line directives.

OFF Preprocessing Only

-extend_source Enables extended (132-character) source lines. Same
as -132.

OFF Source Program
Options

-F Preprocesses the source files and writes the results to
file.

OFF Preprocessing Only

-fdiv_check
IA-32 only

Enables a software patch for the floating-point division
flaw for Pentium processor FDIV erratum.

OFF Math Libraries

-FI Specifies that the source code is in fixed format. This is
the default for source files with the file extensions .for, .f,
or .ftn.

OFF Source Program
Options

-fp Enables the use of the ebp register in optimizations. OFF Support for

 21

IA-32 only When -fp is used, the ebp register is used as the frame
pointer.

Symbolic Debugger

-fpp[n] Runs the Fortran preprocessor (fpp) on all Fortran
source files (.f, .ftn, .for, and .f90 files) prior to
compilation.
 n=0: disable CVF and #directives n=1: enable CVF
conditional compilation and # directives (default)
 n=2: enable only # directives,
 n=3: enable only CVF conditional compilation
directives.

-fpp1 Preprocessing

-fp_port
IA-32 only

Rounds floating-point results at assignments and casts.
Some speed impact.

OFF Floating-point
Arithmetic
Precision

-FR Specifies that the source code is in Fortran 95 free
format. This is the default for source files with the .f90
file extensions.

OFF Source Program
Options

-fr32
 Itanium(TM)-based
systems only

Disable the use of high floating-point registers. OFF Data Type Options

-g Generates symbolic debugging information and line
numbers in the object code for use by source-level
debuggers.

OFF Symbolic
Debugging

-G0 Prints source listing to stdout (typically your terminal
screen) with the contents of expanded INCLUDE files.

OFF

-G1 Prints a source listing to stdout, without contents of
expanded INCLUDE files.

OFF

Listing Options

-help Prints help message.

OFF Information
Messages

-i{2|4|8} Defines the default KIND for integer variables and
constants in 2, 4, and 8 bytes.

-i4 Data Type Options

-ic Runs independent Fortran compilation without
accessing and updating Fortran compilation
environment (FCE).

OFF FCE Options

-Idir Specifies an additional directory to search for include
files whose names do not begin with a slash (/).

OFF Include Directory

-i_dynamic Enables to link Intel-provided libraries dynamically. OFF Static and Dynamic
Libs

-implicitnone Enables the IMPLICIT NONE. OFF Setting Arguments
-inline_debug_
 info

Keep the source position of inlined code instead of
assigning the call-site source position to inlined code.

OFF Controlling Inlining

-ip Enables single-file interprocedural optimizations. OFF Single-file IPO
-ip_no_inlining Disables full or partial inlining that would result from the -

ip interprocedural optimizations. Requires -ip or -ipo.
ON Controlling Inlining

-ip_no_pinlining
 IA-32 only

Disables partial inlining. Requires -ip or -ipo. OFF Controlling Inlining

-ipo Enables interprocedural optimization across files.
Compile all objects over entire program with multifile
interprocedural optimizations.

OFF Multi-file IPO

-ipo_c Optimizes across files and produces a multi-file object
file. This option performs optimizations as
 -ipo, but stops prior to the final link stage, leaving an

OFF Effects of Multiple
IPO

 22

optimized object file.
-ipo_obj Forces the generation of real object files. Requires -ipo. IA-32:

OFF
Itanium
Compiler:
ON

Compilation with
Real Object Files

-ipo_S Optimizes across files and produces a multi-file
assembly file. This option performs optimizations as -
ipo, but stops prior to the final link stage, leaving an
optimized assembly file.

OFF Effects of Multiple
IPO

-Kpic, -KPIC Generates position-independent code. OFF Source Program
Options

-Ldir Instructs linker to search dir for libraries. OFF
-lname Links with a library indicated in name. OFF

Linking to Tools

-lowercase Changes routine names to all lowercase characters. ON Source Program
Options

-ml Compiles and links with non-thread-safe Fortran
libraries.

ON Single-thread
Libraries

-mp Enables more accurate floating-point precision as well
as conformance to the IEEE 754 standards for floating-
point arithmetic. Optimization is reduced accordingly.
Behavior for NaN comparisons does not conform.

OFF Maintaining
Floating-point
Precision

-mp1 Improves floating-point precision. Some speed impact,
but less than -mp.

OFF Floating-point
Precision

-mt Compiles and links with with thread-safe Fortran
libraries.

OFF Multi-thread
Libraries

-nbs Treats backslash (\) as a normal graphic character, not
an escape character.

OFF Source Program
Options

-nobss_init Disables placement of zero-initialized variables in BSS
(using DATA section)

OFF Setting Arguments

-nolib_inline Disables inline expansion of intrinsic functions. ON Inline Expansion
-nologo Suppresses compiler version information. ON Information

Messages
-nus Disables appending an underscore to external

subroutine names.
OFF

-nusfile Disables appending an underscore to subroutine names
listed in file.

OFF

Source Program
Options

-O, -O1, -O2 Optimize for speed, but disable some optimizations that
increase code size for a small speed benefit. Default.

ON

-O0 Disables optimizations. OFF
-O3 Enables -O2 option with more aggressive optimization,

for example, loop transformation. Optimizes for
maximum speed, but may not improve performance for
some programs.

OFF

Optimization-level
Options

-ofile Indicates the executable file name in file or directory; for
example, -omyfile, -omydir\.
 Combined with -S, indicates assembly file or directory
for multiple assembly files.
 Combined with -c, indicates object file name or directory
for multiple object files.

OFF Compilation Output
Files

 23

-onetrip Executes any DO loop at least once. (Identical to the -1
option.).

OFF Source Program
Options

-openmp Enables the parallelizer to generate multi-threaded code
based on the OpenMP directives. This option implies
that -mt and -fpp are ON.

OFF

-openmp_
 report{0|1|2}

Controls the OpenMP parallelizer’s diagnostic levels. -openmp
 _report1

Parallelization with
-openmp

-P Preprocesses the fpp files and writes the results to files
named according to the compiler’s default file-naming
conventions.

OFF Preprocessing Only

-pad, -nopad Enables/disables changing variable and array memory
layout.

-nopad Source Program
Options

-pad_source Enforces the acknowledgment of blanks at the end of a
line.

OFF Source Program
Options

-pc32
 -pc64
 -pc80
 IA-32 only

Enables floating-point significand precision control as
follows:
 -pc32 to 24-bit significand
 -pc64 to 53-bit significand, and
 -pc80 to 64-bit significand

-pc64 Floating-point
Arithmetic

-posixlib Enables linking to the POSIX library (libPOSF90.a) in
the compilation.

OFF Posix Library

-prec_div
 IA-32 only

Improves precision of floating-point divides. Some speed
impact.

OFF Floating-point
Arithmetic

-prefetch[-]
 IA-32 only

Enables or disables prefetch insertion (requires -O3). ON Prefetching

-prof_dirdir Specifies the directory to hold profile information in the
profiling output files, *.dyn and *dpi.

OFF Advanced PGO

-prof_gen Instruments the program for profiling: to get the
execution count of each basic block.

OFF Basic PGO

-prof_filefile Specifies file name for profiling summary file. OFF Advanced PGO
-prof_use Enables the use of profiling dynamic feedback

information during optimization.
OFF Basic PGO

-q Suppresses compiler output to standard error, __stderr. OFF Error Messages
-
Qdyncom"blk1,blk2,..
."

Enables dynamic allocation of given COMMON blocks at
run time.

OFF Dynamic COMMON
Option

-Qinstalldir Sets dir as a root directory for compiler installation. OFF FCE Options
-Qlocation,tool,path Sets path as the location of the tool specified by tool. OFF Alternate Locations
-Qloccom
 "blk1,blk2,..."

Enables local allocation of given COMMON blocks at
run time.

OFF Dynamic
COMMON Option

-Qoption,tool,opts Passes the options, opts, to the tool specified by tool. OFF Alternate Tools
-qp, -p Compile and link for function profiling with UNIX prof

tool.
OFF Linking

-r8, -r16 Sets the default size of real numbers to 8 or 16 bytes; -
r8 is the same as –autodouble.

OFF Data Type Options

-rcd
 IA-32 only

Enables fast float-to-int conversions. OFF Floating-point
Arithmetic

-S Produces an assembly output. OFF Compilation Output
(Assembler)

-save Saves all variables (static allocation). Opposite of -auto. ON Setting Arguments

 24

-scalar_rep[-]
 IA-32 only

Enables or disables scalar replacement performed
during loop transformations (requires -O3).

OFF High-level
Language
Optimizations

-sox[-]
 IA-32 only

Enables (default) or disables saving of compiler options
and version in the executable.
 Itanium compiler: accepted for compatibility only.

IA-32: ON Saving Compiler
Version

-shared Instructs the compiler to build a Dynamic Shared Object
(DSO) instead of an executable.

 Shared Libraries

-syntax Enables syntax check only. Same as -y. OFF Syntax Check
-Tffile Compiles file as a Fortran source. OFF Controling

Compilation
-tpp{5|6|7}
IA-32 only

-tpp5 optimizes for the Intel Pentium processor.
 -tpp6 optimizes for the Intel Pentium Pro, Pentium II,
and Pentium III processors.
 -tpp7 optimizes for the Intel Pentium 4 processor;
requires the RedHat version 6.2 and support of
Streaming SIMD Extensions 2.

-tpp6 Targeting a
processor

-u Sets IMPLICIT NONE by default. ON Setting Arguments
-Uname Removes a defined macro specified by name;

equivalent to an #undef preprocessing directive.
OFF Defining Macros

-unroll[n] -Use n to set maximum number of times to unroll a loop.
 -Omit n to let the compiler decide whether to perform
unrolling or not.
 -Use n = 0 to disable unroller.
 The Itanium compiler currently uses only n = 0; all other
values are NOPs.

ON Loop Unrolling

-uppercase Changes routine names to all uppercase characters. OFF Source Program
Options

-us Appends (default) an underscore to external subroutine
names.

ON Source Program
Options

-use_asm
 IA-32 only

Produces objects through the assembler. OFF

-use_msasm
IA-32 only

Supports Microsoft* style assembly language insertion
using MASM style syntax, and if requested, outputs
assembly in MASM format.

OFF

Using Assembler

-V Displays compiler version information. OFF Information
Messages

-v Show driver tool commands and execute tools.
-Vaxlib Enables linking to portability library (libPEPCF90.a) in

the compilation.
OFF Portability Library

-vec[-]
 IA-32 only

Enables (default)/disables the vectorizer. ON

 25

-vec
 _report{0|1|2|3|4|5}
IA-32 only

Controls amount of vectorizer diagnostic information as
follows:
 n = 0: no information
 n = 1: indicate vectorized /non-vectorizerd integer loops
 n = 2: indicate vectorized /non-vectorized integer loops
 n = 3: indicate vectorized /non-vectorized integer loops
and prohibit data dependence information
 n = 4: indicate non-vectorized loops
 n = 5: indicate non-vectorized loops and prohibit data
dependence information

-vec
 _report1

Vectorizer

-vms Enables support for extensions to Fortran that were
introduced by Digital VMS and Compaq Fortran
compilers.

OFF Source Program
Options

-w Suppresses all warning messages. OFF
-w90, -w95 Suppresses warning messages about non-standard

Fortran features used.
ON

-w0 Disables display of warnings. OFF
-w1 Displays warnings. ON
-WB Issues a warning about out-of-bounds array references

at compile time.
OFF

Warning Messages

-wp_ipo A whole program assertion flag for multi-file optimization
with the assumption that all user variables and user
functions seen in the compiled sources are referenced
only within those sources. The user must guarantee that
this assumption is safe.

OFF Multi-file IPO

-x{i|M|K|W}
IA-32 only

Generates processor-specific code corresponding to
one of codes: i, M, K, and W while also generating
generic IA-32 code. This differs from -ax{n} in that this
targets a specific processor. With this option, the
resulting program may not run on processors older than
the target specified.

OFF Exclusive
Specialized Code
with
 -x{i|M|K|W}

-X Removes standard directories from the include file
search.

OFF Removing
Standard
Directories

-y Enables syntax check only. OFF Syntax Check
-zero Implicitly initializes to zero all data that is uninitialized.

Used in conjunction with -save.
OFF

-Zp{1|2|4|8|16} Specifies alignment constraint for structures on 1-, 2-, 4-
, 8- or 16-byte boundary.

IA-32:
 -Zp4
 Itanium
Compiler: -
Zp8

Monitoring
Compiler-
generated Code

Functional Group Listings

Overview
Options entered on the command line change the compiler’s default behavior, enable or disable
compiler functionalities, and can improve the performance of your application. This section

 26

presents tables of compiler options groupped by Intel® Fortran Compiler functionality within these
categories:

y� Customizing Compilation Process Option Groups
y� Language Conformance Option Groups
y� Application Performance Optimizations

Note: Key to the tables
 In each table:
 The functions are listed in alphabetical order
 The IA-32 or Itanium(TM) architectures are indicated as follows:
 - not mentioned = used by both architectures;
 - indicated in a row = used in the following rows exclusively by indicated architecture.

Each option group is described in detailed form in the sections of this documentation. Some
options can be viewed as belonging to more than one group; for example, option -c that tells
compiler to stop at creating an object file, can be viewed as monitoring either compilation or
linking. In such cases, the options are mentioned in more than one group.

Customizing Compilation Process
Options

Setting Fortran Compilation Environment
Option Description
-bd,progname

Invokes the binder to generate the list of objects required to
construct a complete program, given the name of the main
program unit within the file. The list is passed to the linker,
ld(1).

-cl,file

Specifies a program unit catalog list to be searched for
modules referenced in the program in USE statements

-ic

Indicates an independent compilation, that is, the FCE of the
Intel Fortran Compiler is not accessed or updated. A MODULE
or USE statement in the source will cause the compiler to
generate an error.

-Qinstalldir

Sets root directory of compiler installation, indicated in dir to
contain all compiler install files and subdirectories.

Alternate Tools and Locations
Option Description
-Qlocation,tool,path

Enables you to specify a path as the location of the
specified tool (such as the assembler, linker,
preprocessor, and compiler). See Specifying
Alternate Tools and Locations.

-Qoption,tool,opts

Passes the options specified by opts to a tool, where
opts is a comma-separated list of options. See
Passing Options to Other Tools.

 27

Preprocessing
Option Description
-A[-] Removes all predefined macros.
-cpp[n] Same as -fpp[n].
-Dname[={#|text}]

Defines the macro name and associates it with the
specified value. The default (-Dname) defines a macro
with value =1.

-E

Directs the preprocessor to expand your source module
and write the result to standard output.

-EP Same as -E but does not include #line directives in the
output.

-F Preprocesses to an indicated file. Directs the preprocessor
to expand your source module and store the result in a file
in the current directory.

-fpp[n] Uses the fpp preprocessor on Fortran source files.
 n=0: disable CVF and #directives
 n=1: enable CVF conditional compilation and # directives
(default)
 n=2: enable only # directives,
 n=3: enable only CVF conditional compilation directives.

-Idir Adds directory dir to the include file search path.
-P Directs the preprocessor to expand your source module

and store the result in a file in the current directory.
-Uname Eliminates any definition name currently in effect.
-X Removes standard directories from the include file search

path.

Compiling and Linking
Option Description
-c Compile to object only (.o), do not link.
-C90 Link with alternate I/O library for mixed output with the C

language.
-fp Disables using ebp as general purpose register (no

frame pointer).
-Kpic, -KPIC Generate position-independent code.
-Ldir Instructs linker to search dir for libraries.
-lname Link with a library indicated in name. For example, -lm

indicates to link with the math library.
-ml Compile and link with non-thread-safe Fortran libraries.
-mt Compile and link with thread-safe Fortran libraries.
-nobss_init Disable placement of zero-initialized variables in BSS

(using Data).
-p, -qp Compile and link for function profiling with UNIX prof

tool.
-posixlib Enable linking with POSIX library.
-S

Produce assembly file named file.asm with optional
code or source annotations. Do not link.

 28

-sox[-] Enable (default) or disable saving of compiler options
and version in the executable.

-Tffile Compile file as Fortran source.
-Vaxlib Enable linking with portability library.
-Zp{n}
 IA-32: -Zp4
 Itanium
Compiler:
 -Zp8

Specifies alignment constraint for structures on n-byte
boundary (n = 1, 2, 4, 8, 16). The -Zp16 option
enables you to align Fortran structures such as
common blocks. Default: A-32: -Zp4, Itanium
Compiler: -Zp8

IA-32 applications
-0f_check Avoid incorrect decoding of some 0f instructions; enable

the patch for the Pentium® 0f erratum
-fdiv_check Enable a software patch for the Pentium® processor

FDIV erratum.
-use_asm Produces objects through the assembler.
-use_msasm Support Microsoft style assembly language insertion

using MASM format style and syntax and if requested,
output assembly in MASM format.

Controlling Compilation Output
Option Description
-G0 Writes a listing of the source file to standard output, including

any error or warning messages. The errors and warnings are
also output to standard error, stderr.

-G1 Prints a listing of the source file to the standard output without
INCLUDE files expanded.

-ofile Produce the executable file name or directory specified in file ;
for example, -omyfile, -omydir\.
 Combined with -S, indicates assembly file or directory for
multiple assembly files.
 Combined with -c, indicates object file name or directory for
multiple object files.

Debugging
Option Description
-DD

Compiles debug statements indicated by a D or a d
in column 1; if this option is not set these lines are
treated as comments

-DX

Compiles debug statements indicated by a X (not an
x) in column 1; if this option is not set these lines are
treated as comments.

-DY

Compiles debug statements indicated by a Y (not a
y) in column 1; if this option is not set these lines are
treated as comments.

-inline_debug_info Keeps the source position of inline code instead of
assigning the call-site source position to inlined code.

-g Produces symbolic debug information in the object
file.

-y, -syntax Both perform syntax check only.

 29

Libraries Management
Option Description
-C90 Link with alternate I/O library for mixed output with the C

language.
-i_dynamic Enables to link Intel-provided libraries dynamically.
-Ldir Instructs linker to search dir for libraries.
-lname Links with the library indicated in name.
-ml Compile and link with non-thread-safe Fortran libraries.
-mt Compile and link with thread-safe Fortran libraries.
-posixlib Link with POSIX library.
-shared Instructs the compiler to build a Dynamic Shared Object

(DSO) instead of an executable.

-Vaxlib Link with portability library.

Diagnostics and Messages

Runtime Diagnostics (IA-32 Compiler only)
Option Description
-C Equivalent to: (-CA, -CB, -CS, -CU, -CV) extensive runtime diagnostics

options.
-CA Use in conjunction with -d[n]. Checks for nil pointers/allocatable array

references at runtime.
-CB

Use in conjunction with -d[n]. Generates runtime code to check that array
subscript and substring references are within declared bounds.

-CS

Use in conjunction with -d[n]. Generates runtime code that checks for
consistent shape of intrinsic procedure.

-CU

Use in conjunction with -d[n]. Generates runtime code that causes a
runtime error if variables are used without being initialized.

-CV

Use in conjunction with -d[n]. On entry to a subprogram, tests the
correspondence between the actual arguments passed and the dummy
arguments expected. Both calling and called code must be compiled with
-CV for the checks to be effective.

-d[n] Set the level of diagnostic messages.

Compiler Information Messages
Option Description
-nologo

Disables the display of the compiler version (or sign-on) message:
compiler ID, version, copyright years.

-help

You can print a list and brief description of the most useful
compiler driver options by specifying the -help option on the
command line.

-Vstring Displays compiler version information.
-v Shows driver tool commands and executes tools.
-dryrun Shows driver tool commands, but does not execute tools.

 30

Comment and Warning Messages
Option Description
-cm Suppresses all comment messages.
-cerrs[-] Enables/disables (default) a terse format for diagnostic messages,

for example: "file", line no : error message
-w Suppresses all warning messages.
-w0 Suppresses all warning messages generated by preprocessing and

compilation. Error messages are still be displayed.
-w1 Display warning messages. The compiler uses this option as the

default.
-w90, -w95

Suppresses warning messages about non-standard Fortran
features used.

-WB

On a bound check violation, issues a warning instead of an error.
(accommodates old FORTRAN code, in which array bounds of
dummy arguments were frequently declared as 1.)

Error Messages
Option Description
-e90, e95

Enables issuing of errors rather than warnings for features that are
non-standard Fortran.

-q

Suppresses compiler output to standard error, _stderr. When -q is
specified with -bd, then only fatal error messages are output to
_stderr.

Language Conformance Options

Data Type
Option Description
-autodouble Sets the default size of real numbers to 8 bytes; same as -r8.
-i2

Specifies that all quantities of integer type and unspecified kind
occupy two bytes. All quantities of logical type and unspecified kind
will also occupy two bytes. All logical constants and all small
integer constants occupy two bytes.

-i4

All integer and logical types of unspecified kind will occupy four
bytes.

-i8

All integer and logical types of unspecified kind will occupy eight
bytes.

-r8

Treats all floating-point variables, constants, functions and
intrinsics as double precision, and all complex quantities as double
complex. Same as the -autodouble.

-r16

Changes the default size of real numbers to 16 bytes. For
Itanium™-based applications, this option is accepted for
compatibility only.

 31

Source Program
Option Description
-1 Same as -onetrip.
-132 Enables fixed form source lines to contain up to 132 characters.
-ansi[-] Enables (default) or disables assumption of the program’s ANSI

conformance.
 Provides cross-platform compatibility

-dps , -nodps
 Default: -dps

Enables (default) or disables DEC* parameter statement
recognition.

-extend_source Enables extended (132-character) source lines. Same as -132.
-FI

Specifies that all the source code is in fixed format; this is the
default except for files ending with the suffix .f, .ftn, .for.

-FR

Specifies that all the source code is in Fortran 90-95 free
format; this is the default for files ending with the suffix .f90.

-lowercase Default. Changes routine names to all lowercase characters.
-nbs

Treats backslash (\) as a normal graphic character, not an
escape character. This may be necessary when transferring
programs from non-UNIX environments, for example from VAX-
VMS. For the effects of the escape character, see the Escape
Characters.

-nus[file]

Do not append an underscore to subroutine names listed in file.
Useful when linking with C routines.

-onetrip

Compiles DO loops at least once if reached (by default, Fortran
95 DO loops are not performed at all if the upper limit is smaller
than the lower limit). Same as -1.

-pad_source

Enforces the acknowledgment of blanks at the end of a line.

-uppercase

Maps routine names to all uppercase characters.

Note
 Do not use this option in combination with -Vaxlib or -posixlib.

-vms

Enables support for extensions to Fortran that were introduced
by Digital VMS Fortran compilers. The extensions are as
follows:

y� The compiler enables shortened, apostrophe-separated
syntax for parameters in I-O statements.

y� The compiler assumes that the value specified for
RECL in an OPEN statement is given in words rather
than bytes. This option also implies -dps (on by default).

Setting Arguments and Variables
Option Description
-align[-]

Analyze and reorder memory layout for variables and arrays.

-auto

Makes all local variables AUTOMATIC. Causes all variables to
be allocated on the stack, rather than in local static storage.

-auto_scalar Causes scalar variables of rank 0, except for variables of the
COMPLEX or CHARACTER types, to be allocated on the stack,
rather than in local static storage.

 32

 Enables the compiler to make better choices concerning
variables that should be kept in registers during program
execution. On by default.

-common_args

Assumes "by reference" subprogram arguments may have
aliases of one another.

-implicitnone

Enables the default IMPLICIT NONE.

-save

Forces the allocation of all variables in static storage. If a routine
is invoked more than once, this option forces the local variables
to retain their values from the first invocation terminated.
Opposite of -auto.

-u Enables the default IMPLICIT NONE. Same as -implicitnone.
-zero

Initializes all data to zero. It is most commonly used in
conjunction with -save.

Common Block
Option Description
-Qdyncom"blk1,
blk2, ..."

Dynamically allocates COMMON blocks at run time.

-Qloccom"blk1,
blk2, ..."

Enables local allocation of given COMMON blocks at
run time.

Application Performance
Optimizations Options

Setting Optimization Level
Option Description
-O, -O1, -
O2

Optimize for speed, but disable some optimizations that increase
code size for a small speed benefit. Default.

 Note: The mostly used option is -O2, -O, -O1 are used for
compatibility.

-O3

Enables -O2 option with more aggressive optimization and sets
high-level optimizations, including loop transformation, OpenMP,
and prefetching. High-level optimizations use the properties of
source code constructs such as loops and arrays in applications
written in high-level programming languages.

 Optimizes for maximum speed, but may not improve performance
for some programs.

-O0 Disables optimizations -O1 and-or -O2.

Floating-point Arithmetic Precision
Option Description
-mp

Restricts some optimizations to maintain declared precision and
to ensure that floating-point arithmetic conforms more closely to

 33

the ANSI and IEEE 754 standards.
-mp1 Improves floating-point precision. Some speed impact, but less

than -mp.
IA-32 applications

-pc{32|64|80}
Default: -pc64

Enables floating-point significand precision control as follows:
 -pc32 to 24-bit significand
 -pc64 to 53-bit significand (Default)
 -pc80 to 64-bit significand

-prec_div Imroves the floating point division-to-multiplication optimization;
may impact speed.

-rcd Enables fast float-to-int conversion.
-fp_port Rounds floating-point results at assignments and casts. Some

speed impact.

Processor Dispatch Support (IA-32 only)
Option Description
-tpp5

Optimizes for the Intel Pentium® processor.
 Enables best performance for Pentium® processor

-tpp6

Optimizes for the Intel Pentium Pro, Pentium II, and Pentium III
processors.
 Enables best performance for the above processors.

-tpp7

Optimizes for the Pentium 4 processor. Requires the RedHat
version 6.2 and support of Streaming SIMD Extensions 2.
 Enables best performance for Pentium 4 processor

-ax{i|M|K|W}

Generates, on a single binary, code specialized to the extensions
specified by the codes:
 i Pentium Pro, Pentium II processors
 M Pentium with MMX technology processor
 K Pentium III processor (Streaming SIMD Extensions)
 W Pentium 4 processor
 In addition, -ax generates IA-32 generic code. The generic code
is usually slower.
 Sets opportunities to generate versions of functions that use
instructions supported on the specified processors for the best
performance.

-x{i|M|K|W}

Generate specialized code to run exclusively on the processors
supporting the extensions indicated by the codes:
 i Pentium Pro, Pentium II processors
 M Pentium with MMX technology processor
 K Pentium III processor
 W Pentium 4 processor
 Sets opportunities to generate versions of functions that use
instructions supported on the specified processors for the best
performance.

Interprocedural Optimizations
Option Description
-ip

Enables single-file interprocedural optimizations.
 Enhances inline function expansion

-ip_no_inlining Disables full or partial inlining that would result from the -ip

 34

 interprocedural optimizations. Requires -ip or -ipo.
-ipo

Enables interprocedural optimization across files. Compile all
objects over entire program with multifile interprocedural
optimizations.
 Enhances multifile optimization; multifile inline function
expansion, interprocedural constant and function
characteristics propagation, monitoring module-level static
variables; dead code elimination

-ipo_c

Optimizes across files and produces a multi-file object file.
This option performs the same optimizations as -ipo, but
stops prior to the final link stage, leaving an optimized object
file.

-ipo_obj Forces the generation of real object files. Requires -ipo.
-ipo_S

Optimizes across files and produces a multi-file assembly file.
This option performs the same optimizations as -ipo, but
stops prior to the final link stage, leaving an optimized
assembly file.

-inline_debug_info Preserve the source position of inlined code instead of
assigning the call-site source position to inlined code.

-nolib_inline Disables inline expansion of intrinsic functions.
-wp_ipo

A whole program assertion flag for IPO enabling assumption
that all user variables and functions are referenced only within
user sources. The user must guarantee that this assumption
is safe.

IA-32 applications only
-ip_no_pinlining Disables partial inlining. Requires -ip or -ipo.

Profile-guided Optimizations
Option Description
-prof_dirdir

Specifies the directory to hold profile information in the
profiling output files, *.dyn and *.dpi.

-prof_filefile Specifies file name for profiling summary file.
-prof_gen

Instruments the program for profiling: to get the execution
count of each basic block.

-prof_use

Enables the use of profiling dynamic feedback information
during optimization. Profiles the most frequently executed
areas and increases effectiveness of IPO.

High-level Language Optimizations
Option Description
-openmp Enables the parallelizer to generate multi-threaded code

based on the OpenMP directives.
 Enables parallel execution on both uni- and multiprocessor
systems. Requires -MT and -fpp.

-openmp_
 report{0|1|2}
 Default:
 -openmp_report1

Controls the OpenMP parallelizer’s diagnostic levels:
 0 - no information
 1 - loops, regions, and sections parallelized (default)
 2 - same as 1 plus master construct, single construct, etc.

-unroll[n] n: set maximum number of times to unroll a loop
 n omitted: compiler decides whether to perform unrolling or

 35

not.
 n = 0: disables unroller.
 Eliminates some code; hides latencies; can increase code
size.
 For Itanium-based applications, -unroll[o] is used only for
compatibility.

IA-32 applications only
-scalar_rep[-]

Enables (default) or disables scalar replacement performed
during loop transformations (requires -O3).
 Eliminates all loads and stores of that variable
 Increases register pressure

-prefetch[-]

Enables or disables prefetch insertion (requires -O3).
 Reduces the wait time; optimum use is determined
empirically.

Vectorization (IA-32 only)
Option Description
-ax{i|M|K|W}

Generates, on a single binary, code specialized to the extensions
specified by the codes:
 i Pentium Pro, Pentium II processors
 M Pentium with MMX technology processor
 K Pentium III processor
 W Pentium 4 processor
 In addition, -ax generates IA-32 generic code. The generic code
is usually slower.
 Sets opportunities to generate versions of functions that use
instructions supported on the specified processors for the best
performance.

 Note: -axi is not a vectorizer option.
-x{i|M|K|W}

Generate specialized code to run exclusively on the processors
supporting the extensions indicated by the codes:
 i Pentium Pro, Pentium II processors
 M Pentium with MMX technology processor
 K Pentium III processor
 W Pentium 4 processor
 Sets opportunities to generate versions of functions that use
instructions supported on the specified processors for the best
performance.

 Note: -xi is not a vectorizer option.
-vec_report
 {0|1|2|3|4|5}

Default:
 -vec_report1

Controls the diagnostic messages from the vectorizer as follows:
 n = 0: no information
 n = 1: indicates vectorized /non-vectorizerd integer loops
 n = 2: indicates vectorized /non-vectorized integer loops
 n = 3: indicates vectorized /non-vectorized integer loops and
prohibit data dependence information
 n = 4: indicates non-vectorized loops
 n = 5: indicates non-vectorized loops and prohibit data
dependence information

-vec[-] Enables (default)/disables the vectorizer.

 36

Windows* to Linux* Options Cross-
reference
This section provides cross-reference table of the Intel® Fortran Compiler options used on the
Widows* and Linux* operating systems. The options described can be used for compilations
targeted to either IA-32- or Itanium-based applications or both. See Conventions Used in the
Options Quick Guide Tables.

y� Options specific to IA-32 architecture
y� Options specific to the Itanium(TM) architecture
y� Options available for both IA-32 and Itanium architecture

Note
 The table is based on the alphabetical order of compiler options for Linux.

Note
 The value in the Default column is used for both Windows and Linux operating systems
unless indicated otherwise.

Windows Option Linux Option Description Default
/QI0f[-]
 IA-32 only

-OF_check
IA-32 only

Enables a software
patch for Pentium
processor 0f erratum.

OFF

/1 -1 Executes any DO loop
at least once.

 OFF

/4L{72|80|132} -72, -80, -132 Specifies 72, 80 or 132
column lines for fixed
form source only. The
compiler might issue a
warning for non-
numeric text beyond 72
for the
 -72 option.

Windows:
 /4L72
 Linux:
 -72

/u -A- Removes all predefined
macros. Issues a
warning if OpenMP
does not work correctly.

OFF

/align[-] -align[-] Analyzes and reorders
memory layout for
variables and arrays.
(Same as -Zp{n}.)

ON

/Qansi[-]
 IA-32 only

-ansi[-] Enables (default) or
disables assumption of
the programs ANSI
conformance.

ON

/4{Y|N}a -auto Causes all variables to
be allocated on the
stack, rather than in
local static storage.
Does not affect
variables that appear in
an EQUIVALENCE or
SAVE statement, or

Windows:
 /4Na
 Linux:
 OFF

 37

those that are in
COMMON. Makes all
local variables
AUTOMATIC.

/Qautodouble -autodouble Sets the default size of
real numbers to 8
bytes; same as -r8.

OFF

/Qauto_scalar -auto_scalar Makes scalar local
variables AUTOMATIC.

ON

/Qax{i|M|K|W}
IA-32 only

-ax{i|M|K|W}
IA-32 only

Generates code that is
optimized for a specific
processor, but that will
execute on any IA-32
processor. Compiler
generates multiple
versions of some
routines, and chooses
the best version for the
host processor at
runtime. supporting the
extensions indicated by
processor-specific
codes i (Pentium®
Pro), M (Pentium with
MMX(TM) technology),
K (Pentium III), and W
(Pentium 4).

OFF

/Qbdprogname -bdname Enables the Intel®
Fortran Compiler binder
to generate a list of
objects to build a
PROGNAME.

OFF

/c -c Stops the compilation
process after an object
file (.obj) has been
generated.

OFF

/C
 IA-32 only

-C
 IA-32 only

Enable extensive
runtime error checking.
Equivalent to: -CA, -
CB, -CS, -CU, -CV or -
4Yb runtime
diagnostics options.

OFF

/CA
 IA-32 only

-CA
 IA-32 only

Generates code check
at runtime to ensure
that referenced
pointers and
allocatable arrays are
not nil. Should be used
in conjunction with -
d[n].

OFF

/CB
 IA-32 only

-CB
 IA-32 only

Generates code to
check that array
subscript and substring
references are within

OFF

 38

declared bounds.
Should be used in
conjunction with -d[n].

/CS
 IA-32 only

-CS
 IA-32 only

Generates code to
check the shapes of
array arguments to
intrinsic procedures.
Should be used in
conjunction with -d[n].

OFF

/CU
 IA-32 only

-CU
 IA-32 only

Generates code that
causes a runtime error
if variables are used
without being
initialized. Should be
used in conjunction
with -d[n].

OFF

/CV
 IA-32 only

-CV
 IA-32 only

On entry to a
subprogram, tests the
correspondence
between the actual
arguments passed and
the dummy arguments
expected. Both calling
and called code must
be compiled with -CV
for the checks to be
effective. Should be
used in conjunction
with
 -d[n].

OFF

/C90 -C90 Links with an
alternative I/O library
(libCEPCF90.a) that
supports mixed input
and output with C on
the standard streams.

OFF

/cerrs[-] -cerrs[-] Enables/disables errors
and warning messages
to be printed in a terse
format.

Windows: ON
 Linux: OFF

/Qclfile -clfile Specifies a program
unit catalog list file in
which to search for
referenced modules.

OFF

/cm -cm Suppresses all
comment messages.

OFF

/Qcommon_args -common_args Assumes by reference
subprogram arguments
may have aliases of
one another.

OFF

/Qcpp[n] -cpp[n] Same as -fpp. OFF
/Qd_lines -DD Compiles debugging

statements indicated by
OFF

 39

the letter D in column 1
of the source code.

/Qdx_lines -DX Compiles debugging
statements indicated by
the letters X in column
1 of the source code.

OFF

/Qdy_lines -DY Compiles debugging
statements indicated by
the letters Y in column
1 of the source code.

OFF

/d[n]
IA-32 only

-d[n]
IA-32 only

Sets diagnostics level
as follows:
 -d0 - displays
procname line
 -d1 - displays local
scalar variables
 -d2 - local and
common scalars
 -d>2 - display first n
elements of local and
COMMON arrays, and
all scalars.

OFF

/Dname[={#|text}] -Dname={#|text}] Defines a macro name
and associates it with
the specified value.

OFF

/Qdoubletemps -doubletemps Ensures that all
intermediate results of
floating-point
expressions are
maintained in at least
double precision.

OFF

/Qdps[-] -dps, -nodps Enable (default) or
disable DEC*
parameter statement
recognition.

Windows: ON
 Linux: -dps

None -dryrun Show driver tool
commands but do not
execute tools.

OFF

/E -E Preprocesses the
source files and writes
the results to _stdout. If
the file name ends with
capital F, the option is
treated as fpp.

OFF

/4{Y|N}s -e90, -e95 Enables/disables
issuing of errors rather
than warnings for
features that are non-
standard Fortran.

OFF

/EP -EP Preprocesses the
source files and writes
the results to stdout
omitting the #line

OFF

 40

directives.
/Qextend_source -extend_

 source
Enables extended
(132-character) source
lines. Same as -132.

OFF

/P -F Preprocesses the
source files and writes
the results to file.

OFF

/FI -FI Specifies that the
source code is in fixed
format. This is the
default for source files
with the file extensions
.for, .f, or .ftn.

OFF

/QIfdiv[-]
IA-32 only

-fdiv_check[-]
IA-32 only

Enables/disables a
software patch for the
floating-point division
flaw for Pentium
processor FDIV
erratum.

OFF

/Oy[-]
IA-32 only

-fp[-]
IA-32 only

Enables/disables the
use of the ebp register
in optimizations. When
fp is used, the ebp
register is used as the
frame pointer.

OFF

/Qfp_port -fp_port
IA-32 only

Rounds floating-point
results at assignments
and casts. Some speed
impact.

OFF

/Qfpp{n} -fpp{n} Runs the Fortran
preprocessor (fpp) on
all Fortran source files
(.f, .ftn, .for, and .f90
files) prior to
compilation.
 n=0 disable CVF and #
directives, equivalent to
no fpp.
 n=1 enable CVF
conditional compilation
and # directives
(default)
 n=2 enable only #
directives
 n=3 enable only CVF
conditional directives

n=1

/FR -FR Specifies that the
source code is in
Fortran 95 free format.
This is the default for
source files with the
.f90 file extensions.

OFF

-QIA64_fr64 -fr64 Disable the use of high OFF

 41

 Itanium-based systems

 Itanium-based systems floating-point registers.

/ZI, /Z7 -g Generates symbolic
debugging information
and line numbers in the
object code for use by
source-level
debuggers.

OFF

/G0 -G0 Prints source listing to
stdout (typically your
terminal screen) with
the contents of
expanded INCLUDE
files.

OFF

/G1 -G1 Prints a source listing
to stdout, without
contents of expanded
INCLUDE files.

OFF

/help -help Prints help message. OFF
/4I{2|4|8} -i{2 | 4 | 8} Defines the default

KIND for integer
variables and constants
in 2, 4, and 8 bytes.

Windows: /4I4
 Linux: -i4

/ic -ic Runs independent
Fortran compilation
without accessing and
updating Fortran
compilation
environment (FCE).

OFF

None -i_dynamic Enables to link Intel-
provided libraries
dynamically.

OFF

/Idir -Idir Specifies an additional
directory to search for
include files whose
names do not begin
with a slash (/).

OFFS

/4{Y|N}d -implicitnone Enables/disables the
IMPLICIT NONE.

OFF

/Qinline_debug_
 info

-inline_debug
 _info

Keep the source
position of inline code
instead of assigning the
call-site source position
to inlined code.

OFF

/Qip -ip Enables single-file
interprocedural
optimizations within a
file.

OFF

/Qip_no_inlining -ip_no_
 inlining

Disables full or partial
inlining that would
result from the -ip
interprocedural
optimizations. Requires

ON

 42

-ip or -ipo.
/Qip_no_pinlining
IA-32 only

-ip_no_
 pinlining
 IA-32 only

Disables partial inlining.
Requires -ip or -ipo.

OFF

/Qipo -ipo Enables
interprocedural
optimization across
files. Compile all
objects over entire
program with multifile
interprocedural
optimizations.

OFF

/Qipo_c -ipo_c Optimizes across files
and produces a multi-
file object file. This
option performs
optimizations as -ipo,
but stops prior to the
final link stage, leaving
an optimized object file.

OFF

/Qipo_obj -ipo_obj Forces the generation
of real object files.
Requires -ipo.

IA-32: OFF
 Itanium Compiler: ON

/Qipo_S -ipo_S Optimizes across files
and produces a multi-
file assembly file. This
option performs
optimizations as ipo,
but stops prior to the
final link stage, leaving
an optimized assembly
file.

OFF

None -Kpic, -KPIC Generates position-
independent code.

OFF

None -Ldir Instructs linker to
search dir for libraries.

OFF

None -lname Links with the library
indicated in name.

/Qlowercase -lowercase Changes routine
names to lowercase
characters which are
uppercase by default.

Windows: OFF
 Linux: ON

/Fmfilename None Instructs the linker to
produce a map file.

OFF

/ML -ml Compiles and links with
the non-thread safe
Fortran libraries.

ON

/Op[-] -mp Enables/disables more
accurate floating-point
precision as well as
conformance to the
IEEE 754 standards for
floating-point

OFF

 43

arithmetic. Optimization
is reduced accordingly.
Behavior for NaN
comparisons does not
conform.

/Qprec -mp1 Improves floating-point
precision. Some speed
impact, but less than
 -mp.

OFF

/MT -mt Compiles and links with
static multi-thread
version of the Fortran
runtime library. Thread-
safe Fortran libraries.

OFF

/nbs -nbs Treats backslash (\) as
a normal graphic
character, not an
escape character.

OFF

/Qnobss_init -nobss_init Disables placement of
zero-initialized
variables in BSS (using
DATA section)

OFF

/Oi- -nolib_inline Disables inline
expansion of intrinsic
functions.

ON

/nologo -nologo Suppresses compiler
version information.

OFF

None -nus Disables appending an
underscore to external
subroutine names.

OFF

/us None Append an underscore
to external subroutine
names

OFF

/Od -O0 Disables optimizations. OFF
/O2 -O, -O1, -O2 Optimize for speed, but

disable some
optimizations that
increase code size for
a small speed benefit.
Default.

ON

/O3 -O3 Enables -O2 option
with more aggressive
optimization, for
example, loop
transformation.
Optimizes for maximum
speed, but may not
improve performance
for some programs.

OFF

/Fofilename

-ofile Name the object file or
directory for multiple
files.

OFF

/Fafilename None Name assembly file or

 44

directory for multiple
files.

/Fefilename None Name executable file or
directory.

/Qonetrip -onetrip Executes any DO loop
at least once. (Identical
to the -1 option.).

OFF

/Qopenmp -openmp Enables the parallelizer
to generate multi-
threaded code based
on the OpenMP
directives. This option
implies that -mt and -
fpp are ON.

OFF

/Qopenmp_report
{0|1|2}

-openmp_report Controls the OpenMP
parallelizers diagnostic
levels.

Windows:
 /Qopenmp_
 report1
 Linux:
 -openmp
 _report1

/P -P Preprocesses the fpp
files and writes the
results to files named
according to the
compilers default file-
naming conventions.

OFF

/Qpad[-] -pad Enables/disables
changing variable and
array memory layout.

OFF

/Qpad_source -pad_source Enforces the
acknowledgment of
blanks at the end of a
line.

OFF

/Qpc{32|64|80}

IA-32 only

-pc32
 -pc64
 -pc80
IA-32 only

Enables floating-point
significand precision
control as follows:
 -pc32 to 24-bit
significand
 -pc64 to 53-bit
significand
 -pc80 to 64-bit
significand

Windows:
 /Qpc64
 Linux: -pc64

/4{Y|N}posixlib -posixlib Enables/disables
(Windows) linking to
the POSIX library
(libPOSF90.a) in the
compilation.

Windows:
 /4Nposixlib
 Linux: OFF

/Qprec_div
IA-32 only

-prec_div
IA-32 only

Improve precision of
floating-point divides.
Some speed impact.

OFF

/Qprefetch[-]
 IA-32 only

-prefetch[-]
 IA-32 only

Enables or disables
prefetch insertion
(requires -O3).

OFF

 45

/Qprof_dirdir -prof_dirdir Specifies the directory
to hold profile
information in the
profiling output files,
*.dyn and *dpi.

OFF

/Qprof_gen -prof_gen Instruments the
program for profiling: to
get the execution count
of each basic block.

OFF

/Qprof_filefile -prof_filefile Specifies file name for
profiling summary file.

OFF

/Qprof_use -prof_use Enables the use of
profiling dynamic
feedback information
during optimization.

OFF

/q -q Suppresses compiler
output to standard
error, __stderr.

OFF

/Qdyncom com1[,com2] -Qdyncom
com1[,com2]

Enables dynamic
allocation of given
COMMON blocks at
run time.

OFF

None -Qinstalldir Sets dir as a root
directory for compiler
installation.

OFF

/Qlocationtool,path -Qlocationtool,
 path

Specifies an alternate
version of a tool
located at path.

OFF

/Qloccomcom1[,
 com2,...comn]

-Qloccomcom1[,
 com2,...comn]

Enables local allocation
of given COMMON
blocks at run time.

OFF

/Qoptiontool,opts -Qoptiontool,
 opts

Passes the options,
opts, to the tool
specified by tool.

OFF

None. -qp, -p Compile and link for
function profiling with
UNIX prof tool.

OFF

/4R{8|16} -r8, -r16 Sets the default size of
real numbers to 8 or 16
bytes; -r8 is the same
as -autodouble.

OFF

/Qrcd
 IA-32 only

-rcd
 IA-32 only

Enables/disables fast
float-to-int conversion.

OFF

/S -S Produces an assembly
output file with optional
code.

OFF

/Qsave -save Saves all variables
(static allocation).
Opposite of -auto.

ON

/Qscalar_rep[-]
IA-32 only

-scalar_rep[-]
IA-32 only

Enables or disables
scalar replacement
performed during loop

OFF

 46

transformations
(requires -O3).

/Qsox[-] -sox[-] Enables (default) or
disables saving of
compiler options and
version in the
executable.
 Itanium compiler:
accepted for
compatibility only.

IA-32: ON
 Itanium compiler: OFF

None -syntax Enables syntax check
only. Same as -y.

OFF

/Tffile -Tffile Compile file as Fortran
source.

OFF

/G{5|6|7}
IA-32 only

-tpp{5|6|7}
IA-32 only

-tpp5 optimizes for the
Intel Pentium
processor.
 -tpp6 optimizes for the
Intel Pentium Pro,
Pentium II, and
Pentium III processors.
 -tpp7 optimizes for the
Intel Pentium 4
processor; requires the
RedHat version 6.2 and
support of Streaming
SIMD Extensions 2.

Windows: /G6
 Linux: -tpp6

/4{Y|N}d -u Sets IMPLICIT NONE
by default.

Windows: /4Yd
 Linux: ON

/Uname -Uname Removes a defined
macro; equivalent to an
#undef preprocessing
directive.

OFF

/Qunroll[n] -unroll[n] - Use n to set
maximum number of
times to unroll a loop.
 - Omit n to let the
compiler decide
whether to perform
unrolling or not.
 - Use n = 0 to disable
unroller.
 The Itanium compiler
currently uses only n =
0; all other values are
NOPs.

ON

/Quppercase -uppercase Changes routine
names to all uppercase
characters.

Windows: ON
 Linux: OFF

None -use_asm
 IA-32 only

Generates an
assembly file and tells
the assembler to
generate the object file.

OFF

 47

None -use_msasm
 IA-32 only

Support Microsoft style
assembly language
insertion using MASM
style syntax and if
requested, output
assembly in MASM
format.

OFF

/Vtext -V Displays compiler
version information.

OFF

None -v Show driver tool
commands and
execute tools.

OFF

/4{Y|N}portlib -Vaxlib Enables/disables
linking to portlib library
(libPEPCF90.a) in the
compilation.

OFF

/Qvec[-]
 IA-32 only

-vec[-]
 IA-32 only

Enables/disables
vectorizer.

ON

/Qvec_report{n}
IA-32 only

-vec_report{n}
IA-32 only

Controls amount of
vectorizer diagnostic
information as follows:
 n = 0: no information
 n = 1: indicate
vectorizer integer loops
 n = 2: same as n = 1
plus non-vectorizer
integer loops
 n = 3: same as n = 1
plus dependence
information.
 n = 4: indicate non-
vectorized loops
 n = 5: indicate non-
vectorized loops and
prohibiting data
dependence
information.

n = 1

/Qvms -vms Enables support for I/O
and DEC extensions to
Fortran that were
introduced by Digital
VMS and Compaq
Fortran compilers.

OFF

/w -w Suppresses all warning
messages.

OFF

/w90 -w90, -w95 Suppresses warning
messages about non-
standard Fortran
features used.

ON

/W0 -w0 Disables display of
warnings.

OFF

/W1 -w1 Displays warnings. ON
/WB -WB Issues a warning about OFF

 48

out-of-bounds array
references at compile
time.

/Qwp_ipo -wp_ipo A whole program
assertion flag for multi-
file optimization with
the assumption that all
user variables and user
functions seen in the
compiled sources are
referenced only within
those sources. The
user must guarantee
that this assumption is
safe.

OFF

/Qx{i|M|K|W}
IA-32 only

-x{i|M|K|W}
IA-32 only

Generates processor-
specific code
corresponding to one of
codes: i, M, K, and W
while also generating
generic IA-32 code.
This differs from
 -ax{n} in that this
targets a specific
processor. With this
option, the resulting
program may not run
on processors older
than the target
specified.
 i = Pentium Pro &
Pentium II processor
information
 M = MMX" instructions
 K = streaming SIMD
extensions W =
Pentium® 4 new
instructions

OFF

/X -X Removes standard
directories from the
include file search.

OFF

None -y Enables syntax check
only.

OFF

/Qzero -zero Implicitly initializes to
zero all data that is
uninitialized otherwise.
Used in conjunction
with -save.

OFF

/Zp{1|2|4|8|16} -Zp{1|2|4|8|16} Specifies alignment
constraint for structures
on 1-, 2-, 4-, 8- or 16-
byte boundary.

Windows: OFF
 Linux:
 IA-32: -Zp4
 Itanium Compiler: -Zp8

 49

Invoking Intel® Fortran
Compiler
The Intel® Fortran Compiler has the following three variations:

y� Intel® Fortran Compiler for 32-bit Applications is designed for IA-32 systems, and its
command is ifc. The IA-32 compilations run on any IA-32 Intel processor and produce
applications that run on IA-32 systems. This compiler can be optimized specifically for
one or more Intel IA-32 processors, from Intel® Pentium® to Pentium 4 to Celeron(TM)
processors.

y� Intel® Fortran Compiler for Itanium(TM)-based Applications, or cross compiler, runs on
IA-32 systems but produces Itanium(TM)-based applications. You can run the executable
programs, generated on the IA-32-based systems, only on the Itanium-based systems.

y� Intel® Fortran Itanium(TM) Compiler for Itanium(TM)-based Applications, or native
compiler, is designed for Itanium architecture systems, and its command is efc. This
compiler runs on Itanium-based systems and produces Itanium-based applications.
Itanium-based compilations can only operate on Itanium-based systems.

You can invoke compiler from:
y� compiler command line
y� makefile command line

Note
To invoke any of the Intel Fortran Compiler variations, you need to do it from the
designated Intel Compiler Command Prompt window.

Note
The Itanium-based applications will not run on an IA-32 system even if they have been
developed and compiled with the Itanium cross compiler. See Running Itanium-based
Applications Compiled on IA-32 Systems.

Invoking from the Command Line
To invoke the Intel® Fortran Compiler from the command line requires these steps:

1. Set the environment variables

2. Issue the compiler command, ifc or efc

Setting the Environment Variables
Set the environment variables to specify locations for the various components. The Intel Fortran
Compiler installation includes shell scripts that you can use to set environment variables. From
the command line, execute the shell script that corresponds to your installation. With the default
compiler installation, these scripts are located at:

IA-32 systems:
/opt/intel/compiler50/ia32/bin/ifcvars.sh

Itanium(TM)-based systems:
/opt/intel/compiler50/ia64/bin/efcvars.sh

 50

Running the Shell Scripts

To run the ifcvars.sh script on IA-32, enter the following on the command line:

prompt>. /opt/intel/compiler50/ia32/bin/ifcvars.sh

If you want the ifcvars.sh to run automatically when you start Linux*, edit your
.bash_profile file and add the following line to the end of your file:

set up environment for Intel compiler ifc
. /opt/intel/compiler50/ia32/bin/ifcvars.sh

The procedure is similar for running the efcvars.sh shell script on Itanium-based systems.

Command Line Syntax
The command for invoking the compiler depends on what processor architecture you are
targeting the compiled file to run on, IA-32 or Itanium(TM)-based applications. The following
describes how to invoke the compiler from the command line for each targeted architecture.

y� Targeted for IA-32 architecture:
prompt>ifc [options] file1.f [file2.f . . .]
[linker_options]

y� Targeted for Itanium architecture:
prompt>efc [options] file1.f [file2.f]
[linker_options]

 Note
Throughout this manual, where applicable, command line syntax is given for both IA-32-
and Itanium-based compilations as seen above.

options Indicates one or more command-line options. The compiler recognizes

one or more letters preceded by a hyphen (-) as an option.
Some options take arguments in the form of filenames, strings, letters,
or numbers. Except where otherwise noted, you can enter a space
between the option and its argument(s) or you can combine them.

file1, file2 . . . Indicates one or more files to be processed by the compilation system.
You can specify more than one file. Use a space as a delimiter for
multiple files. See Compiler Input Files.

linker_options -Ldir - instruct linker to search dir for libraries
-lm - link with math library

 Note
 Specified options on the command line apply to all files. For example, in the following
command line, the -c and -w options apply to both files x.f and y.f:

prompt>ifc -c x.f -w y.f

prompt>efc -c x.f -w y.f

 51

Command Line with make
To specify a number of files with various paths and to save this information for multiple
compilations, you can use makefiles. To use a makefile to compile your input files using the
Intel® Fortran Compiler, make sure that /usr/bin and /usr/local/bin are on your
path.
If you use the C shell, you can edit your .cshrc file and add

setenv PATH /usr/bin:/usr/local/bin:<your path>

Then you can compile as

make -f <Your makefile>

where -f is the make command option to specify a particular makefile.
For some versions of make, a default Fortran compiler macro F77 is available. If you want to use
it, you should provide the following settings in the startup file for your command shell:

y� Targeted for IA-32 system: F77 ifc
y� Targeted for Itanium(TM)-based system: F77 efc

Running Itanium(TM)-based Applications
Compiled on IA-32-based Systems
If you did not install the Itanium(TM) compiler on the Itanium-based system and wish to run the
Itanium-based applications compiled with the Intel Fortran Cross Compiler, you must copy
specific required Itanium-based DLLs from your IA-32 development system to the Itanium-based
system. To do that, follow these steps from the command prompt on the Itanium-based system:

1. Get the Intel Fortran for Itanium-based apps Command Prompt window.
2. Map a drive to the IA-32 system partition where you installed the Intel C++ cross

compiler. For example, k: //myia32system/e$ \user:administrator
.

3. Run k:/opt/Intel/compiler50/ia64/bin/dll_copy.bat script.
This will copy all files you need to run your Itanium-based applications compiled on an IA-
32-based system.

Note
If you installed the Intel Fortran Itanium(TM) compiler on the Itanium-based system, the
above procedure is not necessary.

Default Behavior of the Compiler
By default, the compiler generates executable file(s) of the input file(s) and performs the following
actions:

y� Searches for all files, including library files, in the current directory
y� Searches for any library files in directories specified by the LIB variable, if they are not

found in the current directory.
y� Passes options designated for linking as well as user-defined libraries to the linker
y� Displays error and warning messages
y� Supports the extended ANSI standard for the Fortran language.
y� Performs default optimization using the default -O2 option, as described in Optimization-

level Options.

 52

y� For IA-32 applications, the compiler uses use -tpp6 option to optimize the code for the
Pentium Pro®, Pentium® II, and Pentium III processors.

For unspecified options, the compiler uses default settings or takes no action. If the compiler
cannot process a command-line option, that option is passed to the linker.

Default Libraries and Tools
For the libraries provided with Intel® Fortran Compiler, see IA-32 compiler libraries list and
Itanium compiler libraries list.
The default tools are summarized in the table below.
Tool Default Provided with Intel

Fortran Compiler
IA-32 Assembler Linux Assembler, as No

Itanium(TM) Assembler Intel® Itanium(TM)
Assembler

Yes

Linker No
You can specify alternate to default tools and locations for preprocessing, compilation, assembly,
and linking.

Assembler
By default, the compiler generates an object file directly without calling the assembler. However, if
you need to use specific assembly input files and then link them with the rest of your project, you
can use an assembler for these files.
IA-32 Applications
For 32-bit applications, Linux supplies its own assembler, as. For Itanium-based applications, to
compile to assembly files and then use an assembler to produce executables, use the Itanium
assembler, ias.
Itanium-based Applications
If you need to assemble specific input files and link them to the rest of your project object files,
produce object files using Intel® Itanium(TM) assembler with ias command. For example, if you
want to link some specific input file to the Fortran project object file, do the following:
1. Issue command using -S option to generate assembly code file, file.s.

prompt>efc -S -c file.f

2. To assemble the file.s file, call Itanium(TM) assembler with this command:

prompt>ias -c -coff file.s

The above command generates an object file which you can link with the Fortan object file of the
whole project.

Linker
The compiler calls the system linker, ld(1), to produce an executable file from object files. The
linker searches the environment variable LD_LIBRARY_PATH to find available libraries.

Input Files
The Intel® Fortran Compiler interprets the type of each input file by the filename extension; for
example, .a, .f, .for, .o, and so on.
Filename Interpretation Action

 53

filename.a object library Passed to ld.

filename.f Fortran source Compiled by Intel® Fortran Compiler,
assumes fixed-form source.

filename.ftn Fortran source Compiled by Intel Fortran Compiler; assumes
fixed form source.

filename.for Fortran source Compiled by Intel Fortran Compiler; assumes
fixed form source.

filename.fpp Fortran fixed-form
source

Preprocessed by the Intel Fortran
preprocessor fpp; then compiled by the Intel
Fortran Compiler.

filename.f90 Fortran 90/95
source

Compiled by Intel Fortran Compiler; free-form
source.

filename.F Fortran fixed-form
source

Passed to preprocessor (fpp) and then
compiled by the Intel Fortran compiler

filename.s
IA-32 assembly file Passed to the assembler.

filename.s
Itanium(TM)
assembly file

Passed to the Intel Itanium assembler.

filename.o Compiled object
module

Passed to ld(1).

You can use the compiler configuration file ifc.cfg for IA-32 or efc.cfg for Itanium-based
applications to specify default directories for input libraries and for work files. To specify additional
directories for input files, temporary files, libraries, and for the assembler and the linker, use
compiler options that specify output file and directory names.

Compilation Phases
To produce the executable file filename, the compiler performs by default the compile and
link phases. When invoked, the compiler driver determines which compilation phases to perform
based on the extension to the source filename and on the compilation options specified in the
command line.
The table that follows lists the compilation phases and the software that controls each phase.

Phases Software IA-32 or Itanium™
Architecture

Preprocess (Optional) fpp Both
Compile f90com Both
Assemble ias Itanium architecture
Link ld Both
The compiler passes object files and any unrecognized filename to the linker. The linker then
determines whether the file is an object file (.o) or a library (.a). The compiler driver handles all
types of input files correctly, thus it can be used to invoke any phase of compilation.

Application Development Cycle
The relationship of the compiler to system-specific programming support tools is presented in the
Application Development Cycle diagram.
The compiler processes Fortran language source and generates object modules. You decide the
input and output by setting options when you run the compiler. The figure shows how the
compiler fits into application development environment.

 54

Application Development Cycle

Customizing Compilation
Environment
To customize the environment used during compilation, you can specify the variables, options,
and files as follows:

y� Environment variables to specify paths where the compiler searches for special files such
as libraries and "include" files

y� FCE options to use FCE tools; for details on FCE structure, see Fortran Compilation
Environment (FCE).

y� Configuration files to use the options with each compilation
y� Response files to use the options and files for individual projects
y� Include Files to use for your application

 55

Environment Variables
Use the LIB and PATH environment variables that enable the compiler to search for libraries or
INCLUDE files. You can establish these variables in the startup file for your command shell. You
can use the env command to determine what environment variables you already have set.
The following variables are relevant to your compilation environment.
LIB Specifies the directory path for the math libraries.
PATH Specifies the directory path for the compiler executable

files.
INCLUDE Specifies the directory path for the include files.
TMP Specifies the directory in which to store temporary files. If

the directory specified by TMP does not exist, the
compiler places the temporary files in the current
directory.

FCE Options
The following table shows the Fortran Compilation Environment (FCE) options and what you can
do with them.
-bd,progname Invokes the binder to generate the list of objects required to construct a

complete program, given the name of the main program unit within the file.
The list is passed to the linker, ld(1).

-cl,file Specifies a program unit catalog list to be searched for modules referenced
in the program in USE statements

-ic Indicates an independent compilation, that is, the FCE of the Intel Fortran
Compiler is not accessed or updated. A MODULE or USE statement in the
source will cause the compiler to generate an error.

-Qinstalldir Sets root directory of compiler installation. The directory indicated in dir
will contain all compiler install files and subdirectories.

Configuration Files
To decrease the time when entering command line options and ensure consistency of often-used
command-line entries, use the configuration files. You can insert any valid command-line options
into the configuration file. The compiler processes options in the configuration file in the order
they appear followed by the command-line options that you specify when you invoke the
compiler.

Note
Be aware that options placed in the configuration file will be included each time you run the
compiler. If you have varying option requirements for different projects, see Response
Files.

These files can be added to the directory where Intel® Fortran Compiler is installed.
Examples that follow illustrate sample .cfg files. The pound (#) character indicates that the rest
of the line is a comment.
IA-32 applications: ifc.cfg
You can put any valid command-line option into this file.

 56

Sample ifc.cfg file for IA-32 applications
 ##
 ## Define preprocessor macro MY_PROJECT.
 -Dmy_project
 ##
 ## Set extended-length source lines.
 -132
 ##
 ## Set maximum floating-point significand
precision.
 -pc80
 ##
 ## Use the static, multithreaded C run-
time library.
 -mt

Itanium(TM)-based applications: efc.cfg
Sample efc.cfg file for Itanium(TM)-based applications
 ##
 ## Define preprocessor macro MY_PROJECT.
 -Dmy_project
 ##
 ## Enable extended-length source lines.
 -132
 ##
 ## Use the static, multithreaded C run-
time library.
 -mt

Response Files
Use response files to specify options used during particular compilations for particular projects,
and to save this information in individual files. Response files are invoked as an option on the
command line. Options specified in a response file are inserted in the command line at the point
where the response file is invoked.
Response files are used to decrease the time spent entering command-line options, and to
ensure consistency by automating command-line entries. Use individual response files to
maintain options for specific projects; in this way you avoid editing the configuration file when
changing projects.
You can place any number of options or filenames on a line in the response file. Several
response files can be referenced in the same command line.
The syntax for using response files is as follows :
IA-32 applications:
prompt>ifc @response_filename
prompt>ifc @response_filename1 @response_filename2
Itanium(TM)-based applications:
prompt>efc @response_filename
prompt>efc @response_filename1 @response_filename2

Note
An "at" sign (@) must precede the name of the response file on the command line.

 57

Include Files
Include files are brought into the program with the #include preprocessor directive or the
INCLUDE statement. The standard include files are defined in the directories specified in the
INCLUDE environment variable. In addition, you can define a specific location of include files
with the compiler options, -Idir and -X. See Searching for Include Files in Preprocessing.

Fortran Compilation Environment
(FCE)
You can customize the compilation process of your Fortran programs with the Fortran
Compilation Environment (FCE) included with the Intel® Fortran Compiler. FCE provides a
methodology of handling compilation according to the size and structure of your program. In
addition, the FCE provides a methodology for code reusability and other automated features. The
modular approach also facilitates several levels of use, from short programs to complex and
large-scale projects.
This section describes the essential components of the Intel® Fortran Compilation Environment
(FCE) of the Intel Fortran Compiler:

y� Object files
y� Dictionary files
y� Program Unit Catalog Files and Program Unit Catalog List Files
y� The FCE Manager Utility
y� Binder

The Binder program scans the FCE to create a list of objects required to build the program.
In addition, this section describes the essential structure of Fortran program units and how to
compile them: Fortran programs with and without modules and stale program units.

Object Files and Dictionary Files
The Intel Fortran compiler generates one of two file types from your source:
File Description

Object File (file.o) Compiled from your source by the compiler; the linker
uses these files to produce the executable file;
generated if the source contains executable code, or if
it is a BLOCK DATA subprogram.

Dictionary File (file.d) Generated by the compiler if the source contains one
or more modules; provides an encoded dictionary of
public objects; includes encoding for inter-module
object usage.

Program Unit Catalog List Files
Program Unit Catalogs are created by the compiler to store the FCE for the executable. Each
execution of the Intel® Fortran Compiler command generates critical FCE information, primarily
the module information for Fortran95 programs, and places it in the program unit catalog file
(PUCF) work.pc in the current compilation directory. This file contains long-lived information and
should not be deleted unless it is planned to recompile the entire application from scratch. The

 58

compiler adds the PUCF filename to the list contained in a program unit catalog list file (PUCLF).
The default PUCLF file in the installation /bin directory is:
/opt/intel/compiler50/ia32/bin/ifc.pcl or
/opt/intel/compiler50/ia64/bin/efc.pcl. At installation, you will see the
following entries in this file:
IA-32 compiler:
work.pc is the PUCF in the user’s current directory
<installation directory>/bin/ifc.pcl is the PUCF for the portability library
Itanium(TM) compiler:
work.pc is the PUCF in the user’s current directory
<installation directory>/bin/efc.pcl is the PUCF for the portability library

Specifying the Name and Path of the PUCLF
The default PUCLF is shared by all users of the compiler installation. Therefore, you may prefer
to specify a different name for the PUCLF file with -cl. For example, to compile file.f in the
current directory, type the following:
IA-32 compiler:
ifc -cl,myfile.pcl file.f
Itanium compiler:
efc -cl,myfile.pcl file.f
This will add to or create a PUCLF myfile.pcl in the current directory. You may add entries
for additional PUCF files with a text editor, or by specifying this PUCLF (including the path) in the
-cl parameter of a subsequent compilation.
The order of program unit catalogs within a program unit catalog list file determines the order in
which the compiler searches for catalogs during compilation. You can share FCEs among
modules with non-concurrent compilations. For example, if two catalogs contain the module
referenced in the USE statement, the compiler selects the first version referenced. However,
within a single catalog, the names of program units must be unique. Violating this restriction can
cause some of your programs to be built incorrectly.
You can specify the file path for external modules in a program unit catalog list file. You can
create or modify this file with any text editor to give access to the modules referenced in the USE
statements.

Guidelines for the PUCLF
Observe these guidelines when creating or editing a program unit catalog list file:

y� In the first line, specify the file name of the work catalog.
y� In succeeding lines, you can specify the full path names of other program unit catalogs in

which to search.
By default the compiler creates a catalog list file named work.pcl with the following entry in it:
work.pc. The default PUCLF name can be changed with the -cl option parameter either on
the command line or in the configuration file (ifc.cfg or efc.cfg).
To use modules compiled in other directories, you can explicitly create your own program unit
catalog list file and use whatever file name you want; for example, mywork.pcl.
Your catalog list file mywork.pcl might contain the following:
work.pc
 /home/johndoe/myproject/work.pc
 /home/janedoe/yourproject/work.pc

Note:
 Make sure to never use blanks in the directory names.

 59

An Example of Development
Organization
Consider a project involving a number of developers, each requiring the capability to build a test
version of the software. The project consists of a mix of "common" program units and other
program units trusted to work correctly and used by individual programmers. A suitable
organization might be as follows:
• Trusted "common" program units are compiled in a number of directories:

 c:/usr/trusted1, c:/usr/trusted2, ... , c:/usr/trustedn.
• Each user specifies a directory in which program units are compiled. Each directory contains

a program unit catalog list file with the contents as follows:
myownwork.pc
 /home/johndoe/trusted1/trusted.pc
 /home/johndoe/trusted2/trusted.pc
 :
 :
 /home/johndoe/trustedn/trusted.pc
where myownwork.pc is a developer’s personal work catalog, and the trusted common
program units are referenced by the trusted.pc program unit catalogs in their respective
directories.
Since each developer has a private work catalog, concurrent compilations cannot interfere with
each other. Further, shared concurrent compiler access to the trusted "common" program units is
easier.

The FCE Manager Utility
The FCE Manager (FCEM) is a utility that enables you to interrogate and update program unit
catalogs belonging to an FCE. It is activated by the command ifccem (IA-32 compiler) or
efccem (Itanium(TM) compiler) and by default prompts for commands from the keyboard.
However it may also be operated in script files as follows:
IA-32 compiler:
ifccem <<!
commands
 !
Itanium compiler:
efccem <<!
commands
 !
To obtain information on the set of commands available, use the command h (help). If h (help) is
followed by the name of a command, it provides a detailed explanation of that command. The
command q (quit) terminates execution of the FCEM.

Note
 When you are developing your Itanium-based application, and the application contains
MODULEs, you must be careful to compile all of your code on the same host, regardless of
the target platform. For example, if you are developing applications for an Itanium-based
platform on an IA-32 host, you must compile all of your code on the IA-32 host. You cannot
use a work.pc (program catalog) file generated on one platform when compiling on another
platform. Also, you must use the FCE tool for the host where you compiled your code,
rather than the FCE tool for the other platform.

 60

The table that follows lists FCE manager commands with brief descriptions.

FCE Manager Commands

Command Description Syntax

cl Clear a program unit catalog. cl <puc>
 Example:

 cl test.pc
 Removes all program units from program unit catalog
test.pc.

co List compilation order co pu puclist
 Examples:

 co LIST test.pc
 Lists a valid compilation order for program units
belonging to the program LIST, and sought in program
unit catalog test.pc.
co MAIN.PROGRAM <puclist>
 Lists a valid compilation order for program units
belonging to MAIN.PROGRAM, and sought in the
program unit catalogs whose names are given by
puclist.

cp Copy program units cp from_puc
to_puc pulist

 Examples:
 cp test.pc test2.pc
 Copies all program units from test.pc to
test2.pc.
cp test.pc test2.pc A B
 Copies program units A and B from program unit catalog
test.pc to program unit catalog test2.pc.

cr Create a program unit catalog cr puc
 Example:

 cr test.pc
 Creates the new program unit catalog test.pc.

fi Find a program unit fi pu puclist
 Examples:

 fi EX test.pc test2.pc
 Finds program unit EX in program unit catalogs
test.pc and test2.pc.
fi TEST <puclist>
Finds program unit TEST in the program unit catalogs in
file puclist.

fu Find users of a program unit fu pu puclist
 Examples:

 fu MOD test.pc test2.pc
 Finds users of module MOD in progr.unit catalogs
test.pc and test2.pc.
fu MOD2 <puclist>
 Finds users of MOD2 in the program unit catalogs
specified in file puclist.

h Provide help information h [command]

 61

 Examples:
 h
 Lists all the available FCEM commands.
h rm
 Lists help information about the command rm.

ls List program units ls [options] puc
[pulist]

 Examples:
 ls test.pc
 Produces a brief listing of program units in program unit
catalog test.pc.
ls /al test.pc
 Produces a full listing of program units in test.pc in
alphabetic order.
ls /l /t test.pc B Z C A
 Produces a full listing of program units B, Z, C and A
in program unit catalog test.pc, in order of creation
date/time.

mo Modify recorded object file names mo name puc
[boldest]

 Examples:
 mo mylib.a test.pc
Modifies all recorded object file names of program units in
the program unit catalog test.pc to indicate their presence
in the object library mylib.a.
mo newobj.o work.pc obj.o
 In the program unit catalog work.pc, modifies those
program units which have a recorded object file name of
obj.o to have the recorded object file name
newobj.o.
mo mylib.a test.pc obj1.o
oldlib[obj2.o]
 In the program unit catalog test.pc, modifies those
program units which have a recorded object file name of
obj1.o or oldlib[obj2.o] so that the recorded
object file name indicates its presence in library
mylib.a.

q Terminates execution of ifccem. q
 Example:

 q

rm Remove program units puc pulist

 Examples:
 rm test.pc A
 Removes program unit A from program unit catalog
test.pc.
rm test2.pc A B C
 Removes program units A, B, and C from program unit
catalog test2.pc.

 62

The Binder
The binder is a program activated by the compiler option -bd, which scans an FCE to generate
the list of objects required to build the program. It then presents the list to ld(1) for linking. The
figure below shows how the binder relates to the rest of the FCE.

Intel Fortran Compilation Environment with the Binder

Activating the Binder
The format of the option -bd is the following:
-bd,mainprogramname
where mainprogramname is the name specified in the PROGRAM statement of the main
program, or is MAIN.PROGRAM if no PROGRAM statement is present.
A command line invoking ifc (IA-32 compiler) or efc (Itanium(TM) compiler) to compile

 63

Fortran source can also include a -bd option to invoke the binder; in this case, the results of the
compilation are available to the binder.
The binder assumes that all objects belonging to the program are in the FCE defined by the
program unit catalog list file specified by option -cl or by work.pc if the option -cl is not
specified. Any other objects, for example non-Fortran objects, that are required in the linking
stage, must be specified explicitly through the compiler.

Advantages of Using the Binder
The binder provides three principal advantages:

y� It automatically defines the objects to be included in a large scale project.
y� It detects and flags stale modules, as described in the preceding section.
y� It searches program unit catalogs in the order specified in the program unit catalog list

file, so enabling the user to distinguish between identically named program units in
different catalogs.

The use of the binder is not mandatory. Objects may be specified explicitly on the compiler
command invocation line if desired.

Dependent and Independent
Compilation
You can independently compile units that comprise a Fortran program. These units include the
following:

y� main program
y� external subroutines
y� external functions
y� block data subprograms

Prior to Fortran 90, compilation of a program unit did not require data from the compilation of
another unit. Consequently, the order of compilation of units did not affect the output.
For Fortran 95 programs, this is not always the case. The addition of modules to the language
introduces a compilation dependence. A module can reference other program units with the USE
statement. In contrast to independent units, dependent units require data from another module
that must be compiled first. Thus, the dependence introduces an order that you must follow to
compile program units.
You can compile the dependent and independent units in the same source module or in separate
source files. However, the dependent file must compile after the file on which it depends.

Fortran Programs with or without
Modules
There are two ways of working with multi-module programs depending on the scale of your
project.

Small-Scale Projects
In a small-scale project, the source files are in a single directory, so module management is not
an issue. A simple way to compile and use modules is to incorporate a module before a program
unit that references it with USE. In this case, sources may be compiled and linked in the same
way as FORTRAN 77 sources; for example if file1.f contains one or more modules and

 64

file2.f contains one or more program units that call these modules with the USE directive.
The sources may be compiled and linked by the commands:
IA-32 applications:
ifc file1.f file2.f
or
ifc -c file1.f (where -c option stops the compilation after an .o file has been
created)
ifc file1.o file2.f
Itanium(TM)-based applications:
efc file1.f file2.f
or
efc -c file1.f (where -c option stops the compilation after an .o file has been created)

efc file1.o file2.f

Larger-Scale Projects
In a larger-scale software project, module management becomes a significant issue. The Intel
Fortran Compiler incorporates the following features to ease this task:
variable grouping of program units in program unit catalogs

y� variable module search path
y� detection of stale program units
y� utilities to find, copy, delete and display program unit catalog entries
y� program binder to construct an inventory of objects for linking

By default, ifc (IA-32 compiler) or efc (Itanium compiler) compiles each program unit for multi-
module usage in the FCE. If you wish to specify independent compilation, use the -ic option:
IA-32 compiler:

ifc -ic file.f
Itanium compiler:

ifc -ic file.f

Fortran Programs Without Modules
If you do not use modules in your programs, you can still benefit from the FCE through the use of
its binder. The binder provides features to automate your compilation tasks and expedite your
application development. These features are part of the FCE structure.

Stale Program Units
When a program unit, M1, uses a module, M2, the compilation of M1 is up-to-date if it occurred
after the latest compilation of M2. Otherwise, module M1 is stale and may require recompilation.
Stale program units often occur in large-scale development. They are detected and flagged both
by the compiler and by the binder. A typical scenario involves at least three sources,
file1.f, file2.f and file3.f, and a compilation sequence as shown in the following
example.
Example of Compilation Sequence without a Stale Program
Flag

file1.f
 module mod1
 :

 65

 end module mod1
 file2.f
 module mod2
 :
 use mod1
 :
 end module mod2
 file3.f
 program p
 :
 use mod2
 :
 end program p
The table that follows shows the compilation sequence for IA-32 applications without and with
issuing the stale program flag. The same sequence is used for Itanium-based applications with
the efc driver instead of ifc. The left column reflects a small-scale project with the program
files compiled in proper order. The right column reflects possibly a larger-scale program
compilation. Program P had been compiled with the binder option, -bd, right after file1.f
had been edited and recompiled, while file2.f (which uses mod1 from file1.f) had not
been recompiled. In such a case, the binder flags the module mod2 as stale and issues a
message. The programmer then has to recompile mod2.

Stale Program Flag
No Stale Program Flag Stale Program Flag Issued

edit file1.f etc ifc -c file1.f
ifc -c file1.f ifc -c file2.f
ifc -c file2.f ifc -c file3.f
ifc file3.f edit file1.f
 ifc -c file1.f
 ifc -bd, P 3

 66

Customizing Compilation
Process
This section describes options that customize compilation processpreprocessing, compiling, and
linking. In addition, it discusses various compilation output and debug options.
You can find information on the libraries used by compiler to which you can link, compiler
diagnostics, and mixing C and Fortran in the respective sections.

Specifying Alternate Tools and
Locations
The Intel® Fortran Compiler lets you specify alternate to default tools and locations for
preprocessing, compilation, assembly, and linking. Further, you can invoke options specific to
your alternate tools on the command line. This functionality is provided by -Qlocation and
-Qoption.

Specifying an Alternate Component
 (-Qlocation,tool,path)
-Qlocation enables to specify the pathname locations of supporting tools such as the
assembler, linker, preprocessor, and compiler. This option's syntax is:
-Qlocation,tool,path
tool Designates one or more of these tools:

fpp Intel Fortran preprocessor
f Fortran compiler (f90com)
asm IA-32 assembler
ias Itanium assembler
link Linker (ld(1))

path The location of the component.

Example:
prompt>ifc -Qlocation,fpp,/usr/preproc myprog.f

Passing Options to Other Tools
(-Qoption,tool,opts)
-Qoption passes an option specified by opts to a tool, where opts is a comma-separated
list of options. The syntax for this option is:
-Qoption,tool,opts
tool Designates one or more of these tools:

fpp Intel Fortran preprocessor
f Fortran compiler (f90com)
link Linker (ld(1))

opts Indicates one or more valid argument
strings for the designated program.

 67

If the argument contains a space or tab character, you must enclose the entire argument in
quotation characters (" "). You must separate multiple arguments with commas.
The following example directs the linker to create a memory map when the compiler produces the
executable file from the source for respective targeted compilations.
IA-32 applications:
prompt>ifc -Qoption,link,-map,prog1.map prog1.f
Itanium(TM)-based applications:
prompt>ifc -Qoption,link,-map,prog1.map prog1.f

Preprocessing
This section describes the options you can use to direct the operations of the preprocessor.
Preprocessing performs such tasks as macro substitution, conditional compilation, and file
inclusion. The compiler preprocesses files as an optional first phase of the compilation.
The Intel® Fortran Compiler provides the fpp binary to enable preprocessing. If you want to use
another preprocessor, you must invoke it before you invoke the compiler. Source files that use a
.fpp or .F file extension are automatically preprocessed.

Caution
 Using a preprocessor that does not support Fortran can damage your Fortran code,
especially with FORMAT statements. For example, FORMAT (\\I4) changes the
meaning of the program because the backslash "\" indicates end-of-record.

Preprocessor Options
Use the options in this section to control preprocessing from the command line. If you specify
neither option, the preprocessed source files are not saved but are passed directly to the
compiler. Table that follows provides a summary of the available preprocessing options.
Option Description

-A[-] Removes all predefined macros.

-
Dname={#|text}]

Defines the macro name and associates it with the
specified value. The default (-Dname) defines a macro
with value =1.

-E Directs the preprocessor to expand your source module
and write the result to standard output.

-EP Same as -E but does not include #line directives in
the output.

-F Preprocess to an indicated file.

-fpp[n] Uses the fpp preprocessor on Fortran source files.
 n=0: disable CVF and #directives n =1: enable CVF
conditional compilation and # directives (default)
 n =2: enable only # directives,
 n =3: enable only CVF conditional compilation
directives.

-P Directs the preprocessor to expand your source module
and store the result in a file in the current directory.

-Uname Eliminates any definition currently in effect for the
specified macro.

-Idir Adds directory to the include file search path.

-X Removes standard directories from the include file
search path.

 68

Preprocessing Fortran Files
You do not usually preprocess Fortran source programs. If, however, you choose to preprocess
your source programs, you must use the preprocessor fpp, or the preprocessing capability of a
Fortran compiler. It is recommended to use fpp, which is the preprocessor supplied with the
Intel® Fortran Compiler.
The compiler driver automatically invokes the preprocessor, depending on the source filename
suffix and the option specified. For example, to preprocess a source file that contains standard
Fortran preprocessor directives, then pass the preprocessed file to the compiler and linker, enter
the following command:
IA-32 applications:
prompt>ifc source.fpp
Itanium(TM)-based applications:
prompt>efc source.fpp

 Note
Using the preprocessor can make debugging difficult. To get around this, you can save the
preprocessed file (-P), and compile it separately, so that the proper file information is
recorded for the debugger.

Enabling Preprocessing with Compiler Options
You can enable Preprocessor for any Fortran file by specifying the -fpp option. With -fpp, the
compiler automatically invokes the fpp preprocessor to preprocess files with the .f, .for or
.f90 suffix.

Note
 Another option that automatically invokes the preprocessor is -openmp.

Preprocessing Only: -E, -EP, -F, and
-P
Use either the -E, -P, or the -F option to preprocess your .fpp source files without
compiling them.
When you specify the -E option, the Intel® Fortran Compiler's preprocessor expands your
source module and writes the result to standard output. The preprocessed source contains
#line directives, which the compiler uses to determine the source file and line number during
its next pass. For example, to preprocess two source files and write them to stdout, enter the
following command:
IA-32 applications:
prompt>ifc -E prog1.fpp prog2.fpp
Itanium(TM)-based applications:
prompt>efc -E prog1.fpp prog2.fpp
When you specify the -P option, the preprocessor expands your source module and stores the
result in a file in the current directory. By default, the preprocessor uses the name of each source
file with the .f extension, and there is no way to change the default name. For example, the
following command creates two files named prog1.f and prog2.f, which you can use as
input to another compilation:

 69

IA-32 applications:
prompt>ifc -P prog1.fpp prog2.fpp
Itanium-based applications:
prompt>efc -P prog1.fpp prog2.fpp
The -EP option can be used in combination with -E or -P. It directs the preprocessor to not
include #line directives in the output. Specifying -EP alone is the same as specifying -E and
-EP.

 Caution
 When you use the -P option, any existing files with the same name and extension are not
overwritten and the system returns the error message invalid preprocessor output file.

Searching for Include Files
Include files are brought into the program with the #include preprocessor directive or the
INCLUDE statement. To locate such included files, the compiler searches by default for the
standard include files in the directories specified in the INCLUDE environment variable. In
addition, you can specify the compiler options, -I and -X.

Specifying and Removing Include Directory
Search: -I, -X
You can use the -I option to indicate the location of include files. To prevent the compiler from
searching the default path specified by the INCLUDE environment variable, use -X option.
You can specify these options in the configuration files, ifc.cfg for IA-32 or efc.cfg for
Itanium-based applications or in command line.

Specifying an Include Directory, -I
Included files are brought into the program with a #include preprocessor directive or a
Fortran INCLUDE statement. Use the -Idir option to specify an alternative directory to
search for include files.
Files included by the Fortran INCLUDE statement are normally referenced in the same directory
as the file being compiled. The -I option may be used more than once to extend the search for
an INCLUDE file into other directories.
Directories are searched for include files in this order:

y� directory of the source file that contains the include
y� directories specified by the -I option
y� current working directory
y� directories specified with the INCLUDE environment variable

 Removing Include Directories, -X
Use the -X option to prevent the compiler from searching the default path specified by the
INCLUDE environment variable.
You can use the -X option with the -I option to prevent the compiler from searching the default
path for include files and direct it to use an alternate path. For example, to direct the compiler to
search the path /alt/include instead of the default path, do the following:
IA-32 applications:
prompt>ifc -X -I/alt/include newmain.f

 70

Itanium(TM)-based applications:
prompt>efc -X -I/alt/include newmain.f

Defining Macros, -D, -U and -A
You can use the -D option to define the assertion and macro names to be used during
preprocessing. The -U option directs the preprocessor to suppress an automatic definition of a
macro.
Use the -D option to define a macro. This option performs the same function as the #define
preprocessor directive. The format of this option is -Dname[=value({#|text})] where

name The name of the macro to define.

value[={#|text}] Indicates a value to be substituted for
name.

If you do not enter a value, name is set to 1. The value should be in quotation marks if it
contains non-alphanumerics.
Preprocessing replaces every occurrence of name with the specified value. For example, to
define a macro called SIZE with the value 100 use the following command:
IA-32 applications:
prompt>ifc -DSIZE=100 prog1.f
Itanium(TM)-based applications:
prompt>efc -DSIZE=100 prog1.f
Preprocessing replaces all occurrences of SIZE with the specified value before passing the
preprocessed source code to the compiler. Suppose the program contains the declaration:
REAL VECTOR(SIZE)
In the code sent to the compiler, the value 100 replaces SIZE in this declaration, and in every
other occurrence of the name SIZE.
Use the -Uname option to suppress any macro definition currently in effect for the specified
name. The -U option performs the same function as an #undef preprocessor directive.
To remove all of the predefined macros, use the -A option. Note that the -A- option issues a
warning if OpenMP function does not work correctly.

Predefined Macros
The predefined macros available for the Intel® Fortran Compiler are described in the table below.
The Default column describes whether the macro is enabled (ON) or disabled (OFF) by default.
The Disable column lists the option which disables the macro.

Macro Name Default Disable Description - When Used
IA-32 and Itanium compilers

_MT OFF _u Defined if you specify -MD or -MT

_M_IX86=n

ON,n=600

_u

Defined based on the processor option
you specify:
n =500 if you specify -tpp5
n =600 if you specify –tpp6
n =700 if you specify –tpp7

IA-32

__linux__ ON _u Defined for Linux applications

 71

__IFC ON no Identifies the Intel Fortran Compiler
Itanium compiler
_M_IA64
_linux

ON _u Defined for Itanium-based Linux
applications

__EFC ON no Identifies the Intel Fortran Compiler

Compilation and Linking
This section describes all the Intel® Fortran Compiler options that determine the compilation and
linking process and their output. By default, the compiler converts source code directly to an
executable file. Appropriate options enable you to control the process and obtain desired output
file produced by the compiler.

Having control of the compilation process means, for example, that you can create a file at any of
the compilation phases such as assembly, object, or executable with -P or -c options. Or you
can name the output file or designate a set of options that are passed to the linker with the -S,
-o options. If you specify a phase-limiting option, the compiler produces a separate output file
representing the output of the last phase that completes for each primary input file.
You can use the command line options discussed as tools to display and check for certain
aspects of the compiler's behavior. You can use these options to see which options and files are
passed by the compiler driver to the component executables f90com and ld(1).
The options in this section provide you with the following capabilities:

y� monitor the compilation to a phase or to a stage within a phase
y� name the output files or directories

Compiler Input and Output Options
Summary
If no errors occur during processing, you can use the output files from a particular phase as input
to a later compiler invocation. The table below describes the options to control the output.
Last Phase
Completed

Option Compiler Input Compiler Output

compile only -c source Compile to object only (.o), do not
link.

-S
 -o,name
 -o,name

source,
assembly, or
object files

Assigns a name of your choice to
an output file

compilation,
linking, or
assembly

-S[cs]

source

Does not stop compilation after
assembly is produced. It controls
output into an .s
 assembly file with code or source
annotations containing extra
information compared with using
 -S.

syntax
checking

 -y source files
preprocessed
files

diagnostic list

 72

linking

(default)

source files
 preprocessed
files
 assembly files
 object files
 libraries

executable file, map file

preprocessing -P, -E, or
 -Ep

source files preprocessed files, see
Preprocessing

The executable object file is produced when you do not specify any phase-limiting option. You
can also request a linker map file. The filename of the first source or object file specified, but
absence of the suffix, is the default for the executable object file from the linker.

Compilation Options
You can monitor and modify the compilation process with the following options:

IA-32 and Itanium(TM)-based applications

-c Compile to object only (.o), do not link.

-Kpic, -KPIC Generate position-independent code.

-nobss_init Disables placement of zero-initialized variables in BSS
(using Data).

-p Compile and link for function profiling with UNIX prof tool.

-S Produce assembly file named file.asm with optional
code or source annotations.

-sox[-] Enable (default) or disable saving of compiler options and
version in the executable.

-Tffile Compile file as Fortran source.

-Zp{n} Specifies alignment constraint for structures on n-byte
boundary (n = 1, 2, 4, 8, 16).
The -Zp16 option enables you to align Fortran structures
such as common blocks. For Fortran structures, see
STRUCTURE statement in Chapter 10 of Intel® Fortran
Programmer's Language Reference Manual.

IA-32 applications only

-0f_check Avoiding incorrect decoding of some 0f instructions.

-fdiv_check Enable or disable the patch for the Pentium® processor
FDIV erratum.

-fp Disables using ebp as general purpose register (no frame
pointer).

-use_asm Generates an assembly file and tells the assembler to
generate the object file.

-use_msasm Support Microsoft style assembly language insertion using
MASM format style and syntax and if requested, output
assembly in MASM format.
Itanium-based applications only

-fr32 Disable the use of high floating-point registers.

 73

Limiting Register Usage (Itanium(TM)-based
Applications Only)
Use -fr32 to disable usage of only the lower 32 floating point registers. The following syntax
disables usage of only the lower 32 floating-point registers:
prompt>efc -fr32 a.f

 Note
 With Itanium Fortran Compiler, you cannot use 32-bit pointers.

Saving Compiler Version and Options
Information, -sox
You save the compiler version and options information in the executable with -sox. The -sox
option is enabled by default, which forces the compiler to embed in each object file a string that
contains information on the compiler version and compilation options for each source file that has
been compiled.
When you link the object files into an executable file, the linker places each of the information
strings into the header of the executable. It is then possible to use a tool, such as a strings utility,
to determine what options were used to build the executable file.
The size of the executable on disk is increased slightly by the inclusion of these information
strings. If this is a concern, you can specify –sox- to disable this feature.
Note that for Itanium(TM)-based applications, the -sox option is accepted for compatibility, but it
does not have any effect.

Monitoring Compiler-generated Code
The options described below provide monitoring the outcome of Intel compiler-generated code
without interfering with the way your program runs.

Specifying Structure Tag Alignments, -Zp

Use the -Zp{n} option to determine the alignment constraint for structure declarations, on n-
byte boundary (n = 1, 2, 4, 8, 16). Generally, smaller constraints result in smaller data sections
while larger constraints support faster execution.

For example, to specify 2 bytes as the alignment constraint for all structures and unions in the file
prog1.cpp, use the following command:
IA-32 systems: prompt>ifc -Zp2 prog1.f
 The default for IA-32 systems is -Zp4.

Itanium(TM)-based systems: prompt>efc -Zp2 prog1.f
The default for Itanium-based systems is -Zp8.
The -Zp16 option enables you to align Fortran structures such as common blocks. For Fortran
structures, see STRUCTURE statement in Chapter 10 of Intel® Fortran Programmer's Language
Reference Manual.

Allocation of Zero-initialized Variables,
-nobss_init
By default, variables explicitly initialized with zeros are placed in the BSS section. But using the
 -nobss_init option, you can place any variables that are explicitly initialized with zeros in
the DATA section if required.

 74

Avoiding Incorrect Decoding of Certain 0f
Instructions (IA-32 only)
Some instructions have 2-byte opcodes in which the first byte contains 0f. In rare cases, the
Pentium® processor can decode these instructions incorrectly. Specify the -0f_check option
to avoid the incorrect decoding of these instructions.

Specifying the Output File with -o, -S
When compiling and linking a set of source files, you can use the -o or -S option to give the
resulting file a name other than that of the first source or object file on the command line.

-Sfilename Produce assembly file or directory for multiple assembly

files; for example, -Smyprog, -Smydir\.

-ofilename Produce object file or directory for multiple object files
specified in filename.

-ofilename Produce executable file or directory for multiple executable
files specified in filename.

If you are processing a single file, you can use the -ofilename option to specify an alternate
name for an object file (.o), an assembly file (.s) or an executable file. You can also use these
options to override the default filename extensions: .o and .s.

Specifying File Name
IA-32 applications:
prompt>ifc -c -ofile.o x.f90
Itanium(TM)-based applications:
prompt>efc -c -ofile.o x.f90
-o assigns the name file.o to an output object file rather than the default (x.o)
-c directs the compiler to suppress linking.
In the next example, the command produces an executable file named outfile as a result of
compiling and linking two source files.
IA-32 applications:
prompt>ifc -ooutfile file.f90 file2.f90
Itanium-based applications:
prompt>efc -ooutfile file.f90 file2.f90

Specifying Directory Name
When compiling one or more files, the argument of the -o and -S options can specify a directory
name. To distinguish from file name, the argument must end in a dash or backslash (-) or (\)
character, and it must specify an existing directory. In this case, the compiler will use the default
convention in naming the executable, assembly, or object files produced, but the files will be
placed in the directory specified by filename.
In the example below, assume that obj_dir is an existing directory. The -o option causes the
compiler to create the object files a.o, b.o, and c.o and place them in the directory
obj_dir.

 75

IA-32 applications:
prompt>ifc -oobj_dir- a.f90 b.f90 c.f90
Itanium-based applications:
prompt>efc -oobj_dir- a.f90 b.f90 c.f90
Do not enter a space between the option and the argument. You can specify different name
arguments for each of the -o and -S options. The compiler does not remove objects that it
produces, even when the compilation proceeds to the link phase.

Listing Options
The following options produce messages to the standard output, which by default is the screen.
-G0 Writes a listing of the source file to standard output, including any

error or warning messages. The errors and warnings are also output
to standard error, _stderr.

-G1 Prints a listing of the source file to the standard output without
INCLUDE files expanded.

Using the Assembler to Produce
Object Code
By default, for IA-32, the compiler generates an object file directly without going through the
assembler. If you need to generate assembly code from specific input source files, call the
assembler version 991008 or higher. .
For example, if you want to link some specific input file to the Fortran project object file, do the
following:
1. Issue command
prompt>ifc -S file1.f
to generate assembly code file, file1.s.
2. To assemble the file1.s file, call assembler (as) with this command:

prompt>as file1.s
The above command generates an file1.o object file which you can link with the Fortran
object file(s) of the whole project.
Specific feature incompatible with assembly file usage is debug information generation using the
-g option.
See Assembly File Code Example.

Assembly File Code Example
The following is an example of a portion of an assembly file code.

IA-32 applications

main:
 .B1.1:
 /1
 / Preds .B1.0
 / AFL
 pushl %ebp /1.0 1 0

 76

 movl %esp, %ebp /1.0 1 0
 subl $3, %esp /1.0 1 0
 andl $-8, %esp /1.0 1 0
 addl $4, %esp /1.0 1 0
 subl $12, %esp /1.0 1 0
 movl 12(%ebp), %edx /1.0 2 0
 leal 8(%ebp), %eax /1.0 4 0
 movl %eax, (%esp) /1.0 4 0
 movl %edx, 4(%esp) /1.0 5 0
 call f90_init /1.0 6 0
 / LOE ebx esi edi
The elements in the above code are as follows:

y� .B1.1: identifies the beginning of the first basic block in the first function of the file. A
basic block is a set of instructions with the property that if the first instruction is executed
then all of the subsequent instructions in the set are also executed.

y� /1 following the basic block label is the block execution count. This count is only printed
when the -prof_use option is used. It indicates the average number of times a block
was executed when the instrumented program was run. See Profile-Guided Optimization
for more information on -prof_use.

y� /Preds is a list of predecessors of the current basic block. Predecessors are blocks
that can transfer control to the current basic block.

y� The numbers (1.0) following the slash (/) at the end of each instruction indicate the
source line number and column corresponding to that assembly language instruction.

y� /LOE indicates a list of registers which are live on exit from the current basic block.
These are registers that contain values to be used by succeeding basic blocks.

Itanium(TM)-based applications:
 .section .text
 // -- Begin main
 .proc main#
 .align 32
 // Block 0: entry Pred: Succ: 3
 // Freq 1.0e+000, Prob 1.00, Ipc 2.67
 .global main#
 .align 32
 main:
 { .mmi
 alloc r34=ar.pfs,2,2,2,0 //0: 1
 add sp=-64,sp //0: 1
 nop.i 0 ;;
 } { .mii
 ld8 r30=[sp] //1: 1
 mov r35=b0 //1: 1 MS
 add r36=$2$1_2pab_p$0# + _2$1_2auto_size - 0x00000030,sp
 //1: 1 MS
 RE
 } { .mmi
 mov r37=r33 ;; //1: 1 MS
 st8 [r36]=r32 //2: 1 B3 DS
 mov r32=gp //2: 1 B3 DS
 // Block 3: Pred: 0 Succ: 1
 // Freq 1.0e+000, Prob 1.00, Ipc 1.00
 } { .mib

 77

 nop.m 0
 nop.i 0
 br.call.sptk.many b0=f90_init# ;; //2: 1 MS

The elements in the above code are as follows:

• ; Prob 1.00 indicates the probability assigned to a jump.

• Each curly brace pair { } indicates an instruction bundle. A bundle is a group of up to three
instructions that may execute simultaneously if there are no stalls or dependencies.

• main is a label that starts the program

• // indicate comments

• [] indicate indirect addressing

For more information, see Intel® Itanium™ Assembler User’s Guide.

Linking
This topic describes the options that enable you to control and customize the linking with tools
and libraries and define the output of the linking process.

 Note
 These options are specified at compile time and have effect at the linking time.

Options to Link to Tools and Libraries
The following options enable you to link to various tools and libraries:

-C90 Link with alternate I-O library for mixed output with the C
language.

-lname Link with a library indicated in name. For example, -lm
indicates to link with the math library.

-Ldir Instructs linker to search dir for libraries.

-posixlib Enable or disable linking with POSIX library.

-Vaxlib Enable or disable linking with portability library.

Controlling Linking and its Output
-Ldir Instruct linker to search for dir libraries.

-ml Compile and link with non-thread-safe Fortran
libraries.

-mt Compile and link with thread-safe Fortran libraries.

See Libraries for more information on using them.

Suppressing Linking
Use the -c option to suppress linking. Entering the following command produces the object files
file.o and file2.o, but does not link these files to produce an executable file.
IA-32 compiler:
prompt>ifc -c file.f file2.f

 78

Itanium(TM) compiler:
prompt>efc -c file.f file2.f

Note
 The preceding command does not link these files to produce an executable file.

Debugging

Debugging Options Summary
This section describes the basic command line options that you can use as tools to debug your
compilation and to display and check compilation errors. The options in this section enable you
to:

• compile only designated lines and debug statements
• produce debug information
• produce customized listing to stdout.

The table that follows lists the debugging options.

-DD Compiles debug statements indicated by a D or a
d in column 1; if this option is not set these lines
are treated as comments

-DX Compiles debug statements indicated by a X (not
an x) in column 1; if this option is not set these
lines are treated as comments.

-DY Compiles debug statements indicated by a Y (not a
y) in column 1; if this option is not set these lines
are treated as comments.

-inline_debug_info Keep the source position of inline code instead of
assigning the call-site source position to inlined
code.

-g Produces symbolic debug information in the object
file.

-y, -syntax Performs syntax check only.

Preparing for Debugging, -g
Use the -g option to direct the compiler to generate code to support symbolic debugging. For
example:
IA-32 applications:
prompt>ifc -g prog1.f
Itanium(TM)-based applications:
prompt>efc -g prog1.f

Debugging and Assembling
The compiler does not support the generation of debugging information in assembly files. If you
specify the -g option with -S, the resulting object file will contain debugging information, but the
assembly file will not. If you specify the -g option and later assemble the resulting assembly file,
the resulting object file will not contain debugging information.

 79

Support for Symbolic Debugging
The compiler lets you generate code to support symbolic debugging while the -O1 or -O2
optimization options are specified on the command line along with -g. However, you can receive
these unexpected results:

y� If you specify the -O1 or -O2 options with the -g option, some of the debugging
information returned may be inaccurate as a side-effect of optimization.

y� If you specify the -O1 or -O2 options, the -fp option will not be disabled. In this case, if
you want to maintain the frame pointer while generating debug information, you must
explicitly specify the -fp- option on the command line to disable -fp.

The table below summarizes the effects of using the -g option with the optimization options.

These options Imply these results

-g debugging information produced, -O0, -fp disabled

-g -O0 debugging information produced, -O0 optimizations
disabled

-g -O2 debugging information produced, -O2 optimizations
enabled

-g -O2 -fp debugging information produced, -O2 optimizations
enabled, -fp disabled

-g -ip limited debugging information produced, -ip option
enabled.

Parsing for Syntax Only
Use the -y or -syntax option to stop processing source files after they have been parsed for
Fortran language errors. This option gives you a way to check quickly whether sources are
syntactically and semantically correct. The compiler creates no output file. In the following
example, the compiler checks a file named prog1.f. Any diagnostics appear on the standard
error output and in a listing, if you have requested one.
IA-32 applications:
prompt>ifc -y prog1.f
Itanium(TM)-based applications:
prompt>efc -y prog1.f

Compiling Source Lines with Debugging
Statements, -DD
Use the -DD option to compile source lines containing user debugging statements. Debugging
statements included in a program are indicated by the letter D in column 1. By default, the
compiler takes no action on these statements. For example, to compile any debugging
statements in program prog1.f, enter the following command:
prompt>ifc -DD prog1.f
The above command causes the debugging statement
D PRINT *, "I= ",I
embedded in the prog1.f to execute and print lines designated for debugging.

 80

Fortran Language Conformance
Options
The Intel® Fortran Compiler implements Fortran language-specific options, which enable you to
set or specify:

y� data types and sizes
y� source program characteristics
y� arguments and variables
y� common blocks

For the size or number of Fortran entities the Intel® Fortran Compiler can process, see Maximum
Size and Number table.

Data Type
The table below outlines the options used for Fortran data type conformance.

-i2 Specifies that all quantities of integer type and unspecified kind
will occupy two bytes. All quantities of logical type and
unspecified kind will also occupy two bytes. All logical
constants and all small integer constants occupy two bytes.

-i4 All integer and logical types of unspecified kind will
occupy four bytes.

-i8 All integer and logical types of unspecified kind will
occupy eight bytes.

-r8 Treats all floating-point variables, constants, functions and intrinsics
as double precision, and all complex quantities as double complex.
This option has the same effect as the -autodouble.

-r16 Changes the default size of real numbers to 16 bytes. For
Itanium(TM)-based applications, this option is accepted for
compatibility only.

-autodouble Sets the default size of real numbers to 8 bytes; same as -r8.

Source Program
-1 Same as -onetrip. See later in this topic.

-132 Enables fixed form source lines to contain up to 132
characters.

-ansi[-] Enables or disables assumption of program's ANSI
conformance. This option is used to make assumptions about
out-of-bound array references and pointer references.

-FI Specifies that all the source code is in fixed format; this is the
default except for files ending with the suffix .f, .ftn,
.for.

-FR Specifies that all the source code is in Fortran 90-95 free
format; this is the default for files ending with the suffix .f90.

 81

-nbs Treats backslash (\) as a normal graphic character, not an escape
character. This may be necessary when transferring programs from non-
UNIX environments, for example from VAX-VMS. See Escape
Characters below.

-dps
 -nodps

Enables (default) or disables DEC* parameter statement recognition.

-extend_source Enables extended (132-character) source lines. Same as -132.

-lowercase Default. Change routine names to all lowercase..

-nus[file] Do not append an underscore to subroutine names listed in file.
Useful when linking with C routines.

-onetrip Executes DO loops at least once if reached (by default Fortran 95 DO
loops are not performed at all if the upper limit is smaller than the lower
limit). Same as -1.This supports old programs from the Fortran–66
standard, when all DO loops executed at least once.

-uppercase Maps external names to uppercase characters.

Note
 Do not use this option in combination with -Vaxlib or -posixlib.

-pad_source Enforces the acknowledgment of blanks at the end of a line.

-vms Enables support for extensions to Fortran introduced by Digital VMS
Fortran compilers. The extensions are as follows:
The compiler enables shortened, apostrophe-separated syntax for
parameters in I/O statements. For example, a statement of the form:
WRITE(4’7) FOO is possible and is equivalent to
WRITE(UNIT=4, REC= 7) FOO.
The compiler assumes that the value specified for RECL in an OPEN
statement is given in words rather than bytes. This option also implies
-dps, though -dps is on by default.

-us, -nus Appends (default) an underscore to external subroutine names. Useful
when linking with C rotuines. -nus disables appending an underscore
to an external subroutine name.

Escape Characters
For compatibility with C usage, the backslash (\) is normally used in Intel® Fortran Compiler as
an escape character. It denotes that the following character in the string has a significance which
is not normally associated with the character. The effect is to ignore the backslash character, and
either substitute an alternative value for the following character or to interpret the character as a
quoted value.
The escape characters recognized, and their effects, are described in the table below. Thus,
’ISN\’T’ is a valid string. The backslash (\) is not counted in the length of the string.
Escape Characters and Their Effect
Escape Character Effect
\n new line

\t horizontal tab

\v vertical tab

\b backspace

\f form feed

\0 null

 82

\’ apostrophe (does not terminate a string)

\" double quote (does not terminate a string)

\\ \ (a single backslash)

\x x, where x is any other character

Setting Arguments and Variables
-align[-] Analyze and reorder memory layout for variables and arrays. For example, it

changes alignment of variables in a COMMON block. Example:
COMMON /BLOCK1/CH,DOUB,CH1,INT
 INTEGER INT
 CHARACTER(LEN=1) CH,CH1
 DOUBLE PRECISION DOUB
 END
When enabled, padding is inserted to assure alignment of DOUBLE
PRECISION and INTEGER on natural alignment boundaries. With
-align-, no padding occurs.

-auto Makes all local variables AUTOMATIC. Causes all variables to be allocated
on the stack, rather than in local static storage. Variables defined in a
procedure are otherwise allocated to the stack only if they appear in an
AUTOMATIC statement, or if the procedure is recursive and the variables do
not have the SAVE or ALLOCATABLE attributes. Does not affect variables
that appear in an EQUIVALENCE or SAVE statement, or those that are in
COMMON. May provide a performance gain for your program, but if your
program depends on variables having the same value as the last time the
routine was invoked, your program may not function properly.

-auto_scalar Causes scalar variables of rank 0, except for variables of the COMPLEX or
CHARACTER types, to be allocated on the stack, rather than in local static
storage. Does not affect variables that appear in an EQUIVALENCE or
SAVE statement, or those that are in COMMON. -auto_scalar may
provide a performance gain for your program, but if your program depends on
variables having the same value as the last time the routine was invoked, your
program may not function properly. Variables that need to retain their values
across subroutine calls should appear in a SAVE statement. This option is
similar to -auto, which causes all local variables to be allocated on the stack.
The difference is that -auto_scalar, allocates only variables of rank 0 on
the stack.
 -auto_scalar enables the compiler to make better choices about which
variables should be kept in registers during program execution. This option is
on by default.

-common_args Assumes "by reference" subprogram arguments may have aliases of one
another.

-implicitnone,
-u

Enables/disables the default IMPLICIT NONE.

-save Forces the allocation of all variables in static storage. If a routine is invoked
more than once, this option forces the local variables to retain their values from
the last invocation terminated. This may cause a performance degradation and
may change the output of your program for floating-point values as it forces
operations to be carried out in memory rather than in registers which in turn
causes more frequent rounding of your results.The default (with -O2 ON)

 83

corresponds to -auto_scalar-. Opposite of -auto.

-zero Initializes all data to zero. Most commonly used in conjunction with -save.

Common Block
The following two options are used for the common blocks:

-Qdyncom"blk1,blk2
..."

Dynamically allocates COMMON blocks at
runtime. See section Dynamic Common
Option that follows.

-Qloccom"blk1,blk2,
..."

Enables local allocation of given COMMON
blocks at run time. See Allocating Memory to
Dynamic COMMON Blocks.

Dynamic Common Option
The -Qdyncom option dynamically allocates COMMON blocks at runtime. This option on the
compiler command line designates a COMMON block to be dynamic, and the space for its data is
allocated at runtime, rather than compile time. On entry to each routine containing a declaration
of the dynamic COMMON block, a check is made of whether space for the COMMON block has
been allocated. If the dynamic COMMON block is not yet allocated, space is allocated at the
check time.
The following example of a command-line specifies the dynamic common option with the names
of the COMMON blocks to be allocated dynamically at runtime:
IA-32 applications:

prompt>ifc -Qdyncom"BLK1,BLK2,BLK3" test.f
Itanium-based applications:

prompt>efc -Qdyncom"BLK1,BLK2,BLK3" test.f

where BLK1, BLK2, and BLK3 are the names of the COMMON blocks to be made dynamic.

Allocating Memory to Dynamic Common Blocks
The runtime library routine, f90_dyncom, performs memory allocation. The compiler calls this
routine at the beginning of each routine in a program that contains a dynamic COMMON block. In
turn, this library routine calls _FTN _ALLOC() to allocate memory. By default, the compiler
passes the size in bytes of the COMMON block as declared in each routine to f90_dyncom,
and then on to _FTN_ALLOC(). If you use the nonstandard extension having the COMMON
block of the same name declared with different sizes in different routines, you may get a runtime
error depending upon the order in which the routines containing the COMMON block declarations
are invoked.
The runtime library contains a default version of _FTN_ALLOC(), which simply allocates the
requested number of bytes and returns.

Why Use a Dynamic Common
One of the primary reasons for using dynamic COMMON is to enable you to control the COMMON
block allocation by supplying your own allocation routine. To use your own allocation routine, you
should link it ahead of the runtime library routine. This routine must be written in the C language
to generate the correct routine name.

 84

The routine prototype is as follows:
void _FTN_ALLOC(void *mem, int *size, char *name);
where
mem is the location of the base pointer of the COMMON block which

must be set by the routine to point to the block memory allocated.
size is the integer number of bytes of memory that the compiler has

determined are necessary to allocate for the COMMON block as it
was declared in the program. You can ignore this value and use
whatever value is necessary for your purpose.

Note
 You must return the size in bytes of the space you allocate. The
library routine that calls _FTN _ALLOC() ensures that all
other occurrences of this common block fit in the space you
allocated. Return the size in bytes of the space you allocate by
modifying the size parameter.

name is the name of the routine to be generated.

Rules of Using Dynamic Common Option
The following are some limitations that you should be aware of when using the dynamic common
option:

y� If you use the technique of implementing your own allocation routine, then you should
specify only one dynamic COMMON block on the command line. Otherwise, you may not
know the name of the COMMON block for which you are allocating storage.

y� An entity in a dynamic COMMON may not be initialized in a DATA statement.
y� Only named COMMON blocks may be designated as dynamic COMMON.
y� An entity in a dynamic COMMON must not be used in an EQUIVALENCE expression with

an entity in a static COMMON or a DATA-initialized variable.

 85

Optimizations

Optimization Levels

Optimization-level Options
Each of the command-line options: -O, -O1, -O2 and -O3 turn on several compiler
capabilities. -O and -O1 are practically the same and mentioned both for compatibility with other
compilers. The following table summarizes the optimizations that the compiler applies when you
invoke -O1 and-or -O2, and -O3 optimizations.
Option Optimization Affected Aspect of Program
-O1, -O2 global register allocation register use

-O1, -O2 instruction scheduling instruction reordering

-O1, -O2 register variable detection register use

-O1, -O2 common subexpression elimination constants and expression
evaluation

-O1, -O2 dead-code elimination instruction sequencing

-O1, -O2 variable renaming register use

-O1, -O2 copy propagation register use

-O1, -O2 constant propagation constants and expression
evaluation

-O1, -O2 strength reduction-induction variable simplification instruction,
 selection-sequencing

-O1, -O2 tail recursion elimination calls, further optimization

-O1, -O2 software pipelining calls, further optimization

-O3 prefetching, scalar replacement,
 loop transformations

memory access, instruction
parallelism, predication,
software pipelining

For IA-32 and Itanium architectures, the options can behave in a different way. To specify the
optimizations for your program, use options depending on the target architecture as follows.

IA-32 and Itanium(TM) compilers

-O2 ON by default. Enables options -Oi and -fp. Confines
optimizations to the procedural level. -O2 turns ON intrinsics
inlining.

-O3 Enables -O2 option with more aggressive optimization, for
example, prefetching, scalar replacement, and loop
transformations. Optimizes for maximum speed, but may not
improve performance for some programs.

IA-32 compiler
-O, -O1 or -O2 Enable options -Oi, and -fp. However, -O1 disables

intrinsics inlining to reduce code size. In most cases, -O2 is
recommended over -O1.

 86

Itanium compiler
-O or -O1 Enable the same optimizations as -O2 except for loop unrolling.

In most cases, -O2 is recommended over -O1.

Restricting Optimizations
The following options restrict or preclude the compiler’s ability to optimize your program:

-O0 Disables optimizations -O1 and-or -O2.

-nolib_inline Disable inline expansion of intrinsic
functions.

For more information on ways to restrict optimization, see Interprocedural Optimizations with -
Qoption.

Floating-point Arithmetic
Optimizations

Floating-point Arithmetic Precision
The options described in this section: -fp_port, -mp, -mp1, -pc32, -pc64,
-pc80, -prec_div -rcd, provide optimizations with varying degrees of precision in
floating-point arithmetic.The option that restricts these optimizations is -O0.

-mp Option
Use -mp to maintain floating-point precision since it limits floating-point optimizations. The Intel®
Fortran Compiler can change floating-point division computations into multiplication by the
reciprocal of the denominator. This change can alter the results of floating point division
computations slightly. See Maintaining Floating-point Arithmetic Precision, -mp for more detail.

-mp1 Option
Use the -mp1 option to improve floating-point precision with less impact to performance than
with the -mp option. The option will ensure the out-of-range check of operands of transcendental
functions and improve accuracy of floating-point compares.

-prec_div Option (IA-32 Only)
Use -prec_div to improve the floating point division-to-multiplication optimization. The Intel®
Fortran Compiler can change floating-point division computations into multiplication by the
reciprocal of the denominator. This change can alter the results of floating point division
computations slightly, but is faster.

-pc{32|64|80} Option (IA-32 Only)
Use the -pc{32|64|80} option to enable floating-point significand precision control. Some
floating-point algorithms, created for specific 32- and Itanium-based systems, are sensitive to the
accuracy of the significand or fractional part of the floating-point value. Use appropriate version of
the option to round the significand to the number of bits as follows:
-pc32: 24 bits (single precision)
-pc64: 53 bits (double precision)
-pc80: 64 bits (extended precision)

 87

The default version is -pc64 for full floating-point precision.
This option enables full optimization. Using this option does not have the negative performance
impact of using the -Op option because only the fractional part of the floating-point value is
affected. The range of the exponent is not affected.

Rounding Control, -rcd, -fp_port (IA-32 Only)
The Intel Fortran Compiler uses the -rcd option to improve the performance of code that
performs floating point-to-integer conversion. The optimization is obtained by controlling the
change of the rounding mode.
The system default floating-point rounding mode is round-to-nearest. This means that values are
rounded during floating- point calculations. However, the Fortran language requires floating-point
values to be truncated when a conversion to an integer is involved. To do this, the compiler must
change the rounding mode to truncation before each floating-point conversion and change it back
afterwards.
The -rcd option disables the change to truncation of the rounding mode in floating-point-to-
integer conversions. This means that all floating-point calculations must use the default round-to-
nearest, including floating-point-to-integer conversions. This option has no effect on floating-point
calculations, but conversions to integer will not conform to Fortran semantics.
You can also use the -fp_port option to round floating-point results at assignments and
casts. This option has some speed impact.

Maintaining Floating-point Arithmetic Precision,
-mp
The -mp option restricts some optimizations to maintain declared precision and to ensure that
floating-point arithmetic conforms more closely to the ANSI and IEEE standards.
For most programs, specifying this option adversely affects performance. If you are not sure
whether your application needs this option, try compiling and running your program both with and
without it to evaluate the effects on performance versus precision.

y� Specifying this option has the following effects on program compilation:
y� User variables declared as floating-point types are not assigned to registers.
y� Floating-point arithmetic comparisons conform to IEEE 754 except for NaN behavior.
y� The exact operations specified in the code are performed. For example, division is never

changed to multiplication by the reciprocal.
y� The compiler performs floating-point operations in the order specified without

reassociation.
y� The compiler does not perform the constant folding on floating-point values. Constant

folding also eliminates any multiplication by 1, division by 1, and addition or subtraction of
0. For example, code that adds 0.0 to a number is executed exactly as written. Compile-
time floating-point arithmetic is not performed to ensure that floating-point exceptions are
also maintained.

For IA-32 systems, whenever an expression is spilled, it is spilled as 80 bits (EXTENDED
PRECISION), not 64 bits (DOUBLE PRECISION). Floating-point operations conform
to IEEE 754. When assignments to type REAL and DOUBLE PRECISION are made,
the precision is rounded from 80 bits (EXTENDED) down to 32 bits (REAL) or 64 bits
(DOUBLE PRECISION). When you do not specify -O0, the extra bits of precision are
not always rounded away before the variable is reused.

y� Even if vectorization is enabled by the -xK option, the compiler does not vectorize
reduction loops (loops computing the dot product) and loops with mixed precision types.

 88

Processor Dispatch Extensions
Support (IA-32 Only)

Targeting a Processor and Extensions Support
Overview
This section describes targeting a processor and processor dispatch options, the feature for IA-32
only. The options -tpp{5|6|7} optimizes for the IA-32 processors, and the options
-x{i|M|K|W} and -ax{i|M|K|W} provide support to generate code that is specific to
processor-instruction extensions.
-tpp{5|6|7} -tpp5 Pentium® processor.

-tpp6 Pentium Pro, Pentium II, and Pentium III
processors. Default.
-tpp7 Pentium 4 processor. Requires the
RedHat version 6.2 and support of Streaming
SIMD Extensions 2.

-x{i|M|K|W} Generates specialized code to run exclusively on
the processors supporting the extensions indicated
by the i, M, K, W codes.

-ax{i|M|K|W} Generates specialized code to run exclusively on
the processors supporting the extensions indicated
by the i, M, K, W codes while also
generating generic IA-32 code.

For example, on Pentium® III processor, if you have mostly integer code and only a small portion
of floating-point code, you may want to compile with -axM rather than -axK because MMX(TM)
technology extensions perform the best with the integer data.
The -ax and -x options are backward compatible with the extensions supported. On Intel®
Pentium® 4 processor, you can gear your code to any of the previous processors specified by K,
M, or i

Targeting a Processor, -tpp{n}
For IA-32-targeted compilations, the Intel® Fortran Compiler lets you choose whether to optimize
the performance of your application for specific processors or to ensure your application can
execute on a range of processors.

Optimizing for a Specific Processor Without Excluding Others

Use the -tpp{n} option to optimize your application's performance for specific processors.
Regardless of which -tpp{n} suboption you choose, your application is optimized to use all
the benefits of that processor with the resulting binary file still capable of running on any of the
processors listed.

 89

To optimize for... Use...
Pentium® processor and Pentium processor with
MMX(TM) technology

-tpp5

Pentium Pro, Pentium II and Pentium III
processors

-tpp6 (default option)

Intel® Pentium® 4 processor -tpp7
For example, the following commands compile and optimize the source program prog.f for the
Pentium Pro processor:
prompt>ifc prog.f
prompt>ifc –tpp6 prog.f

Exclusive Specialized Code with -x{i|M|K|W}
The -x{i|M|K|W} option specifies the minimum set of processor extensions required to exist
on processors on which you execute your program. The resulting code can contain unconditional
use of the specified processor extensions. When you use -x{i|M|K|W} the code generated
by the compiler might not execute correctly on IA-32 processors that lack the specified
extensions.
The following example compiles the program myprog.f, using the i extension. This means the
program will require Pentium Pro, Pentium II processors, and later architectures to execute.
prompt>ifc –O2 –tpp6 –xi prog.f
The resulting program, myprog, might not execute on a Pentium processor, but will execute on
Pentium® Pro, Pentium II, and Pentium III processors.

 Caution
If a program compiled with -x{i|M|K|W} is executed on a processor that lacks the
specified extensions, it can fail with an illegal instruction exception, or display other
unexpected behavior.

-x Summary
To Optimize for... Use this option
Pentium Pro and Pentium II processors, which use the
CMOV and FCMOV, and FCOMI instructions

-xi

Pentium processors with MMX(TM) technology
instructions

-xM

Pentium III processor with the Streaming SIMD
Extensions, implies i and M instructions

-xK

Pentium 4 processor with the Streaming SIMD
Extensions 2, implies i, M, and K instructions

-xW

You can specify more than one code with the -x option. For example, if you specify -xMK, the
compiler will decide whether the resulting executable will benefit better from the MMX technology
(M) or the Streaming SIMD Extensions (K). It is the developer's responsibility to use the option's
version corresponding to the processor generation.

Specialized Code with -ax{i|M|K|W}
With -ax{i|M|K|W} you can instruct the compiler to compile your application so that
processor-specific extensions are included in the compilation but only used if the processor
supports them. When the compiled application is run, it detects the extensions supported by the
processor.

y� If the processor supports the specialized extensions, the extensions are executed.

 90

y� If the processor does not support the specialized code, the extensions are not executed
and a more generic version of the code is executed instead.

Applications compiled with -ax{i|M|K|W} have increased code size, but the performance of
such code is better than standard optimized code, although slightly slower than if compiled with
the -x{i|M|K|W} due to the latter’s smaller overhead of checking for which processor the
application is being run on.

 Note
Applications that you compile to optimize themselves for specific processors in this way will
execute on any Intel 32-bit processor. Such compilations are, however subject to any
exclusive specialized code restrictions you impose during compilation with the -x option.

-ax Summary
To Optimize for... Use this option
Pentium® Pro and Pentium II processors, which
use the CMOV and FCMOV, and FCOMI
instructions

-axi

Pentium processors with MMX(TM) technology
instructions

-axM

Pentium III processor with the Streaming SIMD
Extensions, implies i and M instructions

-axK

Pentium 4 processor with the Streaming SIMD
Extensions 2, implies i, M, and K instructions

-axW

Checking for Performance Gain
The -ax{i|M|K|W} option directs the compiler to find opportunities to generate special
versions of functions that use instructions supported on the specified processors. If the compiler
finds such an opportunity, it first checks whether generating a processor-specific version of a
function results in a performance gain. If this is the case, the compiler generates both a
processor-specific version of a function and a generic version of this function that will run on any
IA-32 architecture processor.
You can specify more than one code with the -ax option. For example, if you specify -axMK, the
compiler will decide whether the resulting executable will benefit better from the MMX technology
(M) or the Streaming SIMD Extensions (K). At runtime, one of the two versions is chosen to
execute depending on the processor the program is currently running on. In this way, the program
can get large performance gains on more advanced processors, while still working properly on
older processors. It is the developer's responsibility to use the option's version corresponding to
the processor generation.
The disadvantages of using -ax{i|M|K|W} are:

y� The size of the binary increases because it contains processor-specific and generic
versions of the code.

y� The runtime checks to determine which code to run slightly affect performance.

Combining Processor Target and Dispatch
Options
The following table shows how to combine processor target and dispatch options to compile
applications with different optimizations and exclusions.

 91

...while optimizing without exclusion for... Optimize

exclusively for... Pentium®
Processor

Pentium
Processor
with
MMX(TM)
technology

Pentium Pro
Processor

Pentium II
Processor

Pentium III
Processor

Pentium 4
Processor

Pentium Processor -tpp5 -tpp5 -tpp6 -tpp6 -tpp6 -tpp7
Pentium Processor
with MMX technology

N-A -tpp5, -
xM

-tpp6 -tpp6,
-xM

-tpp6,
-xM

-tpp7, -
xM

Pentium Pro
Processor

N-A N-A -tpp6,-
xi

-tpp6,-
xi

-tpp6,-
xi

-tpp7,-
xi

Pentium II Processor N-A N-A N-A -tpp6,-
xiM

-tpp6,-
xiM

-tpp7,-
xiM

Pentium III Processor N-A N-A N-A N-A -tpp6,-
xK

-tpp7,-
xK

Pentium 4 Processor N-A N-A N-A N-A N-A -tpp7, -
xW

Example of -x and -ax Combinations
If you wanted your application to

y� always require the MMX technology extensions
y� use Pentium Pro processor extensions when the processor it is run on offers it, and to not

use them when it does not
you could generate such an application with the following command line:
prompt>ifc -02 -tpp6 -xM -xi myprog.f
-xM above restricts the application to running on Pentium processors with MMX technology or
later processors. If you wanted to enable the application to run on earlier generations of Intel 32-
bit processors as well, you would use the following command line:
prompt>ifc -02 -tpp6 -axM myprog.f

Interprocedural Optimizations (IPO)
Use -ip and -ipo to enable interprocedural optimizations (IPO), which enable the compiler to
analyze your code to determine where you can benefit from the optimizations listed in tables that
follow.
IA-32 and Itanium™-based applications
Optimization Affected Aspect of Program
inline function expansion calls, jumps, branches, and loops
interprocedural constant
propagation

arguments, global variables, and return
values

monitoring module-level static
variables

further optimizations, loop invariant code

dead code elimination code size
propagation of function
characteristics

call deletion and call movement

multifile optimization affects the same aspects as -ip, but
across multiple files

 92

 IA-32 applications only
Optimization Affected Aspect of Program
passing arguments in registers calls, register usage
loop-invariant code motion further optimizations, loop invariant code

Inline function expansion is one of the main optimizations performed by the interprocedural
optimizer. For function calls that the compiler believes are frequently executed, the compiler
might decide to replace the instructions of the call with code for the function itself.

With -ip, the compiler performs inline function expansion for calls to procedures defined within
the current source file. However, when you use -ipo to specify multifile IPO, the compiler performs
inline function expansion for calls to procedures defined in separate files.

To disable the IPO optimizations, use the -O0 option.

Multifile IPO

Overview
Multifile IPO obtains potential optimization information from individual program modules of a
multifile program. Using the information, the compiler performs optimizations across modules.
Building a program is divided into two phases: compilation and linkage. Multifile IPO performs
different work depending on whether the compilation, linkage or both are performed.
Compilation Phase--As each source file is compiled, multifile IPO stores an intermediate
representation (IR) of the source code in the object file, which includes summary information used
for optimization.
By default, the compiler produces "mock" object files during the compilation phase of multifile
IPO. Generating mock files instead of real object files reduces the time spent in the multifile IPO
compilation phase. Each mock object file contains the IR for its corresponding source file, but no
real code or data. These mock objects must be linked using the -ipo option and ifc, or using
the xild tool. (See Creating a Multifile IPO Executable Using a Project Makefile.)

Note
 Failure to link "mock" objects with ifc -ipo or xild will result in linkage errors.
There are situations where mock object files cannot be used. See Compilation with Real
Object Files for more information.

Linkage Phase--When you specify -ipo, the compiler is invoked a final time before the linker.
The compiler performs multifile IPO across all object files that have an IR.

Note
 The compiler does not support multifile IPO for static libraries (.a files). See Compilation
with Real Object Files for more information.

-ipo enables the driver and compiler to attempt detecting a whole program automatically. If a
whole program is detected, the interprocedural constant propagation, stack frame alignment, data
layout and padding of common blocks perform more efficiently, while more dead functions get
deleted. This option is safe.
-wp_ipo is a whole program assertion flag that tells the compiler the whole program is present.
It enables multi-file optimization with the whole program assumption that all user variables and
user functions seen in the compiled sources are referenced only within those sources. This is an
unsafe option. The user must guarantee that this assumption is safe.

Compilation with Real Object Files, -ipo_obj
In certain situations you might need to generate real object files with -ipo. To force the compiler
to produce real object files instead of "mock" ones with IPO, you must specify -ipo_obj in

 93

addition to -ipo.
Use of -ipo_obj is necessary under the following conditions:

y� The objects produced by the compilation phase of -ipo will be placed in a static library
without the use of xild or xild -lib. The compiler does not support multifile IPO for
static libraries, so all static libraries are passed to the linker. Linking with a static library
that contains "mock" object files will result in linkage errors because the objects do not
contain real code or data. Specifying -ipo_obj causes the compiler to generate
object files that can be used in static libraries.

y� Alternatively, if you create the static library using xild or xild -lib, then the
resulting static library will work as a normal library.

y� The objects produced by the compilation phase of -ipo might be linked without the
-ipo option and without the use of xild.

y� You want to generate an assembly listing for each source file (using -S) while compiling
with -ipo. If you use -ipo with -S, but without -ipo_obj, the compiler issues a
warning and an empty assembly file is produced for each compiled source file.

Creating a Multifile IPO Executable

The following table explains how to enable multifile IPO for compilations targeted for IA-32 hosts
and for compilations targeted for Itanium(TM)-based systems.

IA-32 systems Itanium(TM)-based systems
Compile your modules with -ipo as follows:
1. prompt>ifc -ipo -c a.f b.f
c.f
Use -c to stop compilation after generating .o files.
Each object file has the IR for the corresponding
source file. With preceding results, you can now
optimize interprocedurally:

2. prompt>ifc -onu_ipo_file -ipo
a.o b.o c.o
The -oname option stores the executable in
nu_ipo_file. Multifile IPO is applied only to
modules that have an IR, otherwise the object file
passes to link stage.
For efficiency, combine steps 1 and 2:
prompt>ifc -ipo -onu_ipo_file
a.f b.f c.f

Compile your modules with -ipo as follows:
1. prompt>efc -ipo -c a.f b.f
c.f
Use -c to stop compilation after generating .o files.
Each object file has the IR for the corresponding
source file. With preceding results, you can now
optimize interprocedurally:

2. prompt>efc -onu_ipo_file -ipo
a.o b.o c.o
The -oname option stores the executable in
nu_ipo_file. Multifile IPO is applied only to
modules that have an IR, otherwise the object file
passes to link stage.
For efficiency, combine steps 1 and 2:
prompt>efc -ipo -onu_ipo_file
a.f b.f c.f

See Using Profile-Guided Optimization: An Example for a description of how to use multifile IPO
with profile information for further optimization.

Creating a Multifile IPO Executable Using a Project Makefile
Most applications use a make file or something similar to call a linker such as ld(1). This is
done automatically when you compile and link with ifc. Therefore, when -ipo must result in a
separate linking step, you must use the linker driver xild instead, as follows:
prompt>xild -ipo <LINK_commandline>
where:
-ipo enables additional IPO diagnostic output

(optional)
<LINK_commandline
>

is your linker command line

 94

Use the xild syntax when you use a makefile instead of step 2 in the example Creating a
Multifile IPO Executable. The following example places the multifile IPO executable in
filename:

prompt>xild -ofilename a.o b.o c.o

Note
The -ipo option can reorder object files and linker arguments on the command line.
Therefore, if your program relies on a precise order of arguments on the command line,
-ipo can affect the behavior of your program.

Analyzing the Effects of Multifile IPO, -ipo_c, -ipo_S
The -ipo_c and -ipo_S options are useful for analyzing the effects of multifile IPO, or when
experimenting with multifile IPO between modules that do not make up a complete program.
Use the -ipo_c option to optimize across files and produce an object file. This option performs
optimizations as described for -ipo, but stops prior to the final link stage, leaving an optimized
object file. The default name for this file is ipo_out.o. You can use the -o option to specify a
different name. For example:
prompt>ifc -tpp6 -ipo_c -ofilename a.f b.f c.f
Use the -ipo_S option to optimize across files and produce an assembly file. This option
performs optimizations as described for -ipo, but stops prior to the final link stage, leaving an
optimized assembly file. The default name for this file is ipo_out.s. You can use the -o
option to specify a different name. For example:
prompt>ifc -tpp6 -ipo_S -ofilename a.f b.f c.f
For more information on in-lining and the minimum in-lining criteria, see Inline Expansion of
Library Functions for the -nolib_inline option.

Inline Expansion of Functions
Inline Expansion of Library Functions
By default, the compiler automatically expands (inlines) a number of standard and math library
functions at the point of the call to that function, which usually results in faster computation.

However, the inlined library functions do not set the errno variable when being expanded
inline. In code that relies upon the setting of the errno variable, you should use the
-nolib_inline option. Also, if one of your functions has the same name as one of the
compiler-supplied library functions, then when this function is called, the compiler assumes that
the call is to the library function and replaces the call with an inlined version of the library function.

So, if the program defines a function with the same name as one of the known library routines,
you must use the -nolib_inline option to ensure that the user-supplied function is used.
 -nolib_inline disables inlining of all intrinsics. Your results can vary slightly using the
preceding optimizations.

 Note
 Automatic inline expansion of library functions is not related to the inline expansion that
the compiler does during interprocedural optimizations. For example, the following
command compiles the program sum.f without expanding the math library functions:
IA-32 applications:
prompt>ifc -ip -nolib_inline sum.f
Itanium(TM)-based applications:
prompt>efc -ip -nolib_inline sum.f

For information on the Intel-provided intrinsic functions, see Additional Intrinsic Functions in the
Reference section.

 95

Controlling Inline Expansion of User Functions

The compiler enables you to control the amount of inline function expansion, with the options
shown in the following summary.

Option Effect
-ip_no_inlining This option is only useful if -ip or -ipo is also

specified. In such case, -ip_no_inlining
disables inlining that would result from the -ip
interprocedural optimizations, but has no effect on
other interprocedural optimizations.

-inline_debug_info Preserve the source position of inlined code
instead of assigning the call-site source position to
inlined code.

IA-32 only:
 -ip_no_pinlining

Disables partial inlining; can be used if -ip or -
ipo is also specified.

Criteria for Inline Function Expansion
For a routine to be considered for inlining, it has to meet certain minimum criteria. There are
criteria to be met by the call-site, the caller, and the callee. The call-site is the site of the call to
the function that might be inlined. The caller is the function that contains the call-site. The callee
is the function being called that might be inlined.
Minimum call-site criteria:

y� The number of actual arguments must match the number of formal arguments of the
callee.

y� The number of return values must match the number of return values of the callee.
y� The data types of the actual and formal arguments must be compatible.
y� No multi-lingual inlining is permitted. Caller and callee must be written in the same source

language.
Minimum criteria for the caller:

y� At most 2000 intermediate statements will be inlined into the caller from all the call-sites
being inlined into the caller. You can change this value by specifying the option
-Qoptionf, -ip_inline_max_total_stats=new value

y� The function must be called if it is declared as static. Otherwise, it will be deleted.
Minimum criteria for the callee:

y� Does not have variable argument list.
y� Is not considered infrequent due to the name. Routines which contain the following

substrings in their names are not inlined: abort, alloca, denied, err,
exit, fail, fatal, fault, halt, init, interrupt,
invalid, quit, rare, stop, timeout, trace, trap, and warn.

y� Is not considered unsafe for other reasons.
Once these criteria are met, the compiler picks the routines whose in-line expansions will provide
the greatest benefit to program performance. This is done using the following default heuristics.
When you use profile-guided optimizations, a number of other heuristics are used (see Profile-
Guided Optimization (PGO) for more information on profile-guided optimization).

y� The default heuristic focuses on call-sites in loops or calls to functions containing loops.
y� When profile information is available, the focus changes to the most frequently executed

call-sites.
y� Also, the default in-line heuristic does not permit the inlining of functions with more than

230 intermediate statements, or the number specified by the option

 96

-Qoptionf,-ip_inline_max_stats. The default inline heuristic will stop
inlining when direct recursion is detected.

y� The default heuristic will always inline very small functions that meet the minimum inline
criteria. By default, functions with 10 or fewer intermediate statements will be inlined.

IPO with -Qoption
You can adjust the Intel® Fortran Compiler's optimization for a particular application by
experimenting with memory and interprocedural optimizations.
Enter the -Qoption option with the applicable keywords to select particular inline expansions
and loop optimizations. The option must be entered with a -ip or -ipo specification, as
follows:
-ip[-Qoption,tool,opts]
where:
tool is any of the components used to specify the various stages

from preprocessing to compilation, which include the linker
and assembler. See Passing Options to Other Tools
(-Qoption,tool,opts) for more details.

opts is any of the applicable optimization specifiers for the
compilation stage defined in tool.

You can also simultaneously refine memory and interprocedural optimizations by placing a
particular specifier for both options in one -Qoption entry. The compiler performs
interprocedural optimizations before performing memory-access optimizations

Using -Qoption Specifiers

If you specify the -ip option without any -Qoption qualification, the compiler expands
functions in line, propagates constant arguments, passes arguments in registers, and monitors
module-level static variables. Use the following -Qoption specifiers to refine these
interprocedural optimizations.

-ip_args_in_regs=FALSE Disables the passing of arguments in registers.
By default, external functions can pass
arguments in registers when called locally.
Normally, only static functions can pass
arguments in registers, provided the address of
the function is not taken and the function does
not use a variable number of arguments.

-ip_inline_max_blocks=n Specifies the number of basic blocks in a
function that can be expanded in line.

-ip_ninl_max_stats=n Sets the valid number of intermediate language
statements for a function that is expanded in
line. The number n is a positive integer. The
number of intermediate language statements
usually exceeds the actual number of source
language statements. The default is set to the
maximum number of 200.

-ip_ninl_max_total_stats=n Sets the maximum increase in the
total_stats. The number of intermediate
language statements for each function that is
expanded in line. The number n is a positive
integer. By default, each function can increase
to a maximum of 5000 statements.

-ip_no_external_ref Indicates that the source file contains the main

 97

program and does not contain functions that are
referenced by external functions. If you do not
specify this option, the compiler retains an
original copy of each expanded in-line function.

The following command activates procedural and interprocedural optimizations on source.f and
sets the maximum increase in the number of intermediate language statements to five for each
function:

prompt>ifc -ip -Qoptionf,-ip_inline_max_stats=5 source.f

Profile-guided Optimizations

Overview
Profile-guided optimizations (PGO) tell the compiler which areas of an application are most
frequently executed. By knowing these areas, the compiler is able to be more selective and
specific in optimizing the application. For example, the use of PGO often enables the compiler to
make better decisions about function inlining, thereby increasing the effectiveness of
interprocedural optimizations.

Profile-guided Optimizations Methodology
PGO works best for code with many frequently executed branches that are difficult to predict at
compile time. An example is the code with intensive error-checking in which the error conditions
are false most of the time. The "cold" error-handling code can be placed such that the branch is
hardly ever mispredicted. Minimizing "cold" code interleaved into the "hot" code improves
instruction cache behavior.

PGO Phases
The PGO methodology requires three phases:
1. Instrumentation compilation and linking with -prof_gen
2. Instrumented execution by running the executable
3. Feedback compilation with -prof_use
The flowcharts below illustrate this process for IA-32 compilation and Itanium(TM)-based
compilation. A key factor in deciding whether you want to use PGO lies in knowing which sections
of your code are the most heavily used. If the data set provided to your program is very consistent
and it elicits a similar behavior on every execution, then PGO can probably help optimize your
program execution. However, different data sets can elicit different algorithms to be called. This
can cause the behavior of your program to vary from one execution to the next.

 98

IA-32 Phases of Basic Profile-Guided Optimization

 99

Phases of Basic Profile-Guided Optimization for Itanium(TM)-based
applications

PGO Environment Variables
The environment variables determine the directory in which to store dynamic information files or
whether to overwrite pgopti.dpi. Refer to your operating system documentation for
instructions on how to specify environment variables and their values.

The PGO environment variables are described in the following table.

 100

Variable Description

PROF_DIR Specifies the directory in which dynamic information files are
created. This variable applies to all three phases of the profiling
process.

PROF_DUMP_INTERVAL Initiates interval profile dumping in an instrumented user
application.

PROF_NO_CLOBBER Alters the feedback compilation phase slightly. By default, during
the feedback compilation phase, the compiler merges the data
from all dynamic information files and creates a new
pgopti.dpi file, even if one already exists. When this
variable is set, the compiler does not overwrite the existing
pgopti.dpi file. Instead, the compiler issues a warning and
you must remove the pgopti.dpi file if you want to use
additional dynamic information files.

Basic Profile-Guided Optimization Options
In cases where your code behavior differs greatly between executions, you have to ensure that
the benefit of the profile information is worth the effort required to maintain up-to-date profiles. In
the basic profile-guided optimization, the following options are used: -prof_gen and
-prof_use.

Option Description

-prof_gen Instructs the compiler to produce instrumented code in
your object files in preparation for instrumented
execution.

Note
The dynamic information files are produced in
phase 2 when you run the executable.

-prof_use Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information
(.dyn) files into a pgopti.dpi file. If you perform
multiple executions of the instrumented program,
-prof_use merges the dynamic information files
again and overwrites the previous pgopti.dpi file.

Note
 For Itanium-based applications, if you intend to use the -prof_use option with
optimizations at the -O3 level, the -O3 option must be on. If you intend to use the
-prof_use option with optimizations at the -O2 level or lower, you can generate the
profile data with the default options.

Using Profile-Guided Optimization: An Example
The following is an example of the basic PGO phases:
1. Instrumentation Compilation and Linking—Use -prof_gen to produce an executable
with instrumented information; for example:

IA-32 applications:
prompt>ifc -prof_gen -c a1.f a2.f a3.f
prompt>ifc a1.o a2.o a3.o

 101

Itanium(TM)-based applications:
prompt>efc -prof_gen -c a1.f a2.f a3.f
prompt>efc a1.o a2.o a3.o

In place of the second command, you could use the linker (ld) directly to produce the
instrumented program. If you do this, make sure you link with the libirc.a library.
2. Instrumented Execution—Run your instrumented program with a representative set of data
to create a dynamic information file.

prompt>a1
 The resulting dynamic information file has a unique name and .dyn suffix every time you run
a1. The instrumented file helps predict how the program runs with a particular set of data. You
can run the program more than once with different input data.
3. Feedback Compilation—Compile and link the source files with -prof_use to use the
dynamic information to optimize your program according to its profile:

IA-32 applications:
prompt>ifc -prof_use -ipo a1.f a2.f a3.f
Itanium-based applications:
prompt>efc -prof_use -ipo a1.f a2.f a3.f

Besides the optimization, the compiler produces a pgopti.dpi file. You typically specify the
default optimizations (-O2) for phase 1, and specify more advanced optimizations (-ip or -
ipo) for phase 3. This example used -O2 in phase 1 and the -ip in phase 3.

Note
 The compiler ignores the -ip or the -ipo options with -prof_gen.

The goal of function splitting is to improve the locality of executed instructions. Function splitting
achieves this goal by splitting the non-executed code from the executed code. The executed code
is emitted for each function, while the non-executed code is grouped together in a separate text
section.

Guidelines for Using Advanced PGO
When you use PGO, consider the following guidelines:

y� Minimize the changes to your program after instrumented execution and before feedback
compilation. During feedback compilation, the compiler ignores dynamic information for
functions modified after that information was generated.

Note
 The compiler issues a warning that the dynamic information does not correspond to a
modified function.

y� Repeat the instrumentation compilation if you make many changes to your source files
after execution and before feedback compilation.

y� Specify the name of the profile summary file using the -prof_filefilename
option

The options controlling advanced PGO optimizations are as follows.

Option Description
-prof_dirdirname Specifies the directory where .dyn files are to be

created. The default is the directory where the
program is compiled. The specified directory must
already exist. You should specify the same
-prof_dir option for both the instrumentation
and feedback compilations. If you move the .dyn
files, you need to specify the new path.

-prof_filefilename Specifies file name for profiling summary file.

 102

Function Order List Usage Guidelines
A function order list is a text that specifies the order in which the linker should link the non-static
functions of your program. This improves the performance of your program by reducing paging
and improving code locality. Profile-guided optimizations support the generator of a function order
list to be used by linker. The compiler determines the order using profile information.
Use the following guidelines to create a function order list.
1. The order list only affects the order of non-static functions.
2. Do not use -prof_genx to compile two files from the same program simultaneously. This
means that you cannot use the -prof_genx option with parallel makefile utilities.

Function Order List Example
Assume you have a Fortran program that consists of files file1.f and file2.f and that
you have created a directory for the profile data files in /usr/profdata. Do the following to
generate and use a function order list.
1. Compile your program by specifying -prof_genx and -prof_dir:

IA-32 applications:
prompt>ifc -oMYPROG -prof_genx -prof_dir/usr/profdata
file1.f file2.f
Itanium(TM)-based applications:
prompt>efc -oMYPROG -prof_genx -prof_dir/usr/profdata 2.

Run the instrumented program on one or more sets of input data.
 prompt>MYPROG

 The program produces a .dyn file each time it is executed.
3. Merge the data from one or more runs of the instrumented program using the profmerge tool
to produce the pgopti.dpi file.

prompt>profmerge -prof_dir/usr/profdata
4. Generate the function order list using the proforder tool. By default, the function order list is
produced in the file proford.txt.

prompt>proforder -prof_dir/usr/profdata -oMYPROG.txt
5. Compile your application with profile feedback by specifying the -prof_use and the
-ORDER option to the linker. Again, use the -prof_dir option to specify the location of the
profile files.

IA-32 applications:
prompt>ifc -oMYPROG -prof_use -prof_dir/usr/profdata
file1.f file2.f -link -ORDER:@MYPROG.txt
Itanium-based applications:
prompt>efc -oMYPROG -prof_use -prof_dir/usr/profdata
file1.f file2.f -link -ORDER:@MYPROG.txt

Utilities for Profile-Guided Optimization
To generate a function order list, the profmerge and proforder utilities are used.

The profmerge Utility
You will need to use the profmerge utility to merge the .dyn files.
This tool merges the dynamic profile information files (.dyn). The compiler executes this tool
automatically during the feedback compilation phase when you specify -prof_use. The
command-line usage for profmerge is as follows:

 103

IA-32 applications:
prompt>profmerge [-nologo] [-prof_dir dir_name]
Itanium(TM)-based applications:
prompt>profmerge -em -p64 [-nologo] [-prof_dir dir_name]
This merges all .dyn files in the current directory or the directory specified by -prof_dir,
and produces the summary file pgopti.dpi.

The proforder Utility
Use proforder to generate a function order list for use with the -ORDER linker option. The
syntax for this tool is as follows:

prompt>proforder [-prof_dirdir_name] [-oorder_file]

dir_name is the directory containing the profile files (.dpi, .dyn, and .spi)

order_file is the optional name of the function order list file. The default name is proford.txt

The proforder utility is used as part of the feedback compilation phase, to improve program
performance.

Comparison of Function Order Lists and IPO Code Layout
The Intel® Fortran Compiler provides two methods of optimizing the layout of functions in the
executable:

y� use of a function order list
y� use of -ipo

Each method has its advantages. A function order list, created with proforder, enables you to
optimize the layout of non-static functions; that is, external and library functions whose names are
exposed to the linker.
The compiler cannot affect the layout order for functions it does not compile, such as library
functions. The function layout optimization is performed automatically when IPO is active.

Effects of the Function Order List
Function Type Code Layout with -ipo Function Ordering with proforder
Extern X X
Library No effect X

Dump Profile Data Utility

As part of the instrumented execution phase of profile-guided optimization, the instrumented
program writes profile data to the dynamic information file (.dyn file). The file is written after
the instrumented program returns normally from main() or calls the standard exit function.
Programs that do not terminate normally, can use the _PGOPTI_Prof_Dump function.
During the instrumentation compilation (-prof_gen) you can add a call to this function to your
program. Here is an example:

INTERFACE
 SUBROUTINE PGOPTI_PROF_DUMP()
 !MS$ATTRIBUTES
C,ALIAS:’PGOPTI_Prof_Dump’::PGOPTI_PROF_DUMP
 END SUBROUTINE
 END INTERFACE
 CALL PGOPTI_PROF_DUMP()

Note
You must remove the call or comment it out prior to the feedback compilation with
-prof_use.

 104

High-level Language Optimizations
(HLO)

Overview
High-level optimizations exploit the properties of source code constructs (for example, loops and
arrays) in the applications developed in high-level programming languages, such as Fortran and
C++. The high-level optimizations include loop interchange, loop fusion, loop unrolling, loop
distribution, unroll-and-jam, blocking, data prefetch, scalar replacement, data layout optimizations
and some others. The option that turns on the high-level optimizations is -O3.

IA-32 and Itanium(TM)-based applications

-O3 Enable -O2 option plus more aggressive optimizations,
for example, loop transformation and prefetching. -O3
optimizes for maximum speed, but may not improve
performance for some programs.

IA-32 applications

-O3 In addition, in conjunction with the vectorization options,
-ax{M|K|W} and -x{M|K|W}, -O3 causes the
compiler to perform more aggressive data dependency
analysis than for -O2. This may result in longer
compilation times.

Loop Transformations
The loop transformation techniques include:

y� loop normalization
y� loop reversal
y� loop interchange and permutation
y� loop skewing
y� loop distribution
y� loop fusion
y� scalar replacement

These techniques also include induction variable elimination, constant propagation, copy
propagation, forward substitution, and dead code elimination. In addition to the loop
transformations listed for both IA-32 and Itanium(TM) architectures above, the Itanium
architecture enables to implement collapsing techniques.

Scalar Replacement (IA-32 Only)
The goal of scalar replacement is to reduce memory references. This is done mainly by replacing
array references with register references.
While the compiler replaces some array references with register references when -O1 or -O2 is
specified, more aggressive replacement is performed when -O3 (-scalar_rep) is specified.
For example, with -O3 the compiler attempts replacement when there are loop-carried
dependences or when data-dependence analysis is required for memory disambiguation.
-scalar_rep[-] Enables (default) or disables scalar replacement

performed during loop transformations (requires -O3).

 105

Loop Unrolling with -unroll[n]
Use -unroll[n] to specify the maximum number of times you want to unroll a loop. The
following example unrolls a loop at most four times:
prompt>ifc -unroll4 a.f
To disable loop unrolling, specify n as 0. The following example disables loop unrolling:

prompt>ifc -unroll0 a.f
Omit n to let the compiler decide whether to perform unrolling or not. Use n = 0 to disable
unroller.
Itanium compiler currently uses only -unroll0 (n = 0); all other values are NOPs.

Benefits and Limitations of Loop Unrolling
The benefits are:

y� Unrolling eliminates branches and some of the code.
y� Unrolling enables you to aggressively schedule (or pipeline) the loop to hide latencies if

you have enough free registers to keep variables live.
y� The Pentium® 4 processor can correctly predict the exit branch for an inner loop that has

16 or fewer iterations, if that number of iterations is predictable and there are no
conditional branches in the loop. Therefore, if the loop body size is not excessive, and the
probable number of iterations is known, unroll inner loops for: - Pentium 4 processor,
until they have a maximum of 16 iterations - Pentium III or Pentium II processors, until
they have a maximum of 4 iterations

The potential costs are:
y� Excessive unrolling, or unrolling of very large loops can lead to increased code size.
y� If the number of iterations of the unrolled loop is 16 or less, the branch predictor should

be able to correctly predict branches in the loop body that alternate direction.
For more information on how to optimize with -unroll[n], refer to Intel® Pentium® 4
Porcessor Optimization Reference Manual.

Prefetching
The goal of prefetch insertion is to reduce cache misses by providing hints to the processor about
when data should be loaded into the cache. The prefetching optimizations implement the
following options:

-prefetch[-] Enable or disable (-prefetch-) prefetch insertion.
This option requires that -O3 be specified. The default
with -O3 is -prefetch.

To facilitate compiler optimization:
y� Minimize use of global variables and pointers.
y� Minimize use of complex control flow.
y� Use the const modifier, avoid register modifier.
y� Choose data types carefully and avoid type casting.

 For more inpoframtion on how to optimize with -prefetch[-], refer to Intel® Pentium® 4
Porcessor Optimization Reference Manual.

 106

Parallelization

Parallelization with -openmp
For shared memory parallel programming, the Intel® Fortran Compiler supports the OpenMP*,
version 1.0 API. The OpenMP Fortran API has recently emerged as a standard for shared
memory parallel programming. This feature relieves the user from having to deal with the low-
level details of iteration partitioning, data sharing, and thread scheduling and synchronization. It
also provides the benefit of the performance available from multiprocessor systems.
The Intel® Fortran Compiler supports OpenMP API version 1.0 and performs code transformation
to automatically generate multi-threaded codes based on the user's OpenMP directive
annotations in the program. For more information on the OpenMP standard, visit the
www.openmp.org web site.
The Intel Extensions to OpenMP topic describes the extensions to the version 1.1 standard that
have been added by Intel in the Intel Fortran Compiler.

Note
 As with many advanced features of compilers, you must be sure to properly understand
the functionality of the auto-parallelization options in order to use them effectively and
avoid unwanted program behavior.

Command Line Options
The Parallelization capability of the Intel Fortran Compiler uses the following options:
Option Description Default
-openmp Enables the parallelizer to generate multi-threaded

code based on the OpenMP directives. The code can
be executed in parallel on both uniprocessor and
multiprocessor systems.

OFF

-openmp
 _report{0|1|2}

Controls the OpenMP parallelizer's diagnostic levels
0, 1, or 2 as follows:
-openmp_report0 = no diagnostic information
is displayed.
-openmp_report1 = display diagnostics
indicating loops, regions, and sections successfully
parallelized (default).
-openmp_report2 = same as
 -openmp_report1 plus diagnostics indicating
master construct, single construct, critical sections,
order construct, atomic directive, etc. successfully
handled.

-openmp_
 report1

OpenMP* Standard Option
For complete information on the OpenMP* standard, visit the www.openmp.org web site. The
Intel Extensions to OpenMP topic describes the extensions to the standard that have been added
by Intel in the Intel® Fortran Compiler.

OpenMP Fortran Directives and Clauses
An OpenMP directive has the form:
omp-sentinel directive [directive clause [directive clause. ..]

 107

An omp-sentinel is either
!$OMP

C$OMP
with no intervening spaces for fixed form source input, or
!$OMP
for free form source input.

OpenMP Environment Variables
Variable Description Default
OMP_SCHEDULE Sets the run-time schedule type and chunk

size.
STATIC

OMP_NUM_THREADS Sets the number of threads to use during
execution.

Number of
processors

OMP_DYNAMIC Enables or disables the dynamic adjustment
of the number of threads.

.FALSE.

OMP_NESTED Enables or disables nested parallelism. .FALSE.
See the lists of OpenMP* Standard Directives and Clauses in the Reference section.

OpenMP* Runtime Library Routines
OpenMP* provides several runtime library routines to assist you in managing your program in
parallel mode. Many of these runtime library routines have corresponding environment variables
that can be set as defaults. The runtime library routines enable you to dynamically change these
factors to assist in controlling your program. In all cases, a call to a runtime library routine
overrides any corresponding environment variable.

See the List of OpenMP* Runtime Library Routines in the Reference section.

Intel Extensions to OpenMP*
This topic describes the extensions to the standard that have been added by Intel in the Intel®
Fortran Compiler. For complete information on the OpenMP* standard, visit the www.openmp.org
website.

Environment Variables
Environment Variable Description

KMP_STACKSIZE Gets and sets the wait time in milliseconds that the
libraries wait after completing the execution of a parallel
region before putting threads to sleep.

KMP_BLOCKTIME Gets and sets the number of bytes to allocate for each
parallel thread to use asits private stack.

KMP_SPIN_COUNT Helps to fine-tune the critical section.

Thread-level MALLOC()
The Intel Fortran Compiler implements an extension to the OpenMP runtime library to enable
threads to allocate memory from a heap local to each thread.
The memory allocated by these routines must also be freed by the FREE routine. While it is legal
for the memory to be allocated by one thread and FREE'd by a different thread, this mode of
operation has a slight performance penalty.

 108

The interface is identical to the MALLOC() interface except the entry points are prefixed with
KMP_, as shown below.
Prototype

INTERFACE
 INTEGER FUNCTION KMP_MALLOC
(KMP_SIZE_t)
 INTEGER KMP_SIZE_t
 END FUNCTION KMP_MALLOC
 END INTERFACE
KMP_SIZE_t is the number of bytes of memory to be allocated

INTERFACE
 SUBROUTINE
KMP_FREE(KMP_ADDRESS)
 INTEGER KMP_ADDRESS
 END SUBROUTINE KMP_FREE
 END INTERFACE
KMP_ADDRESS is the starting address of the memory block to be freed.

Examples of OpenMP* Usage
The following examples show how to use the OpenMP* feature.

A Simple Difference Operator
This example shows a simple parallel loop where each iteration contains different number of
instructions. To get good load balancing, dynamic scheduling is used. The end do has a
nowait because there is an implicit barrier at the end of the parallel region.

 subroutine do_1 (a,b,n)
 real a(n,n), b(n,n)
 c$omp parallel
 c$omp& shared(a,b,n)
 c$omp& private(i,j)
 c$omp do schedule(dynamic,1)
 do i = 2, n
 do j = 1, i
 b(j,i) = (a(j,i) + a(j,i-1)) / 2
 enddo
 enddo
 c$omp end do nowait
 c$omp end parallel
 end

Two Difference Operators
This example shows two parallel regions fused to reduce fork/join overhead. The first end
do has a nowait because all the data used in the second loop is different than all the data
used in the first loop.
 subroutine do_2 (a,b,c,d,m,n)
 real a(n,n), b(n,n), c(m,m), d(m,m)
 c$omp parallel
 c$omp& shared(a,b,c,d,m,n)
 c$omp& private(i,j)
 c$omp do schedule(dynamic,1)

 109

 do i = 2, n
 do j = 1, i
 b(j,i) = (a(j,i) + a(j,i-1)) / 2
 enddo
 enddo
 c$omp end do nowait
 c$omp do schedule(dynamic,1)
 do i = 2, m
 do j = 1, i
 d(j,i) = (c(j,i) + c(j,i-1)) / 2
 enddo
 enddo
 c$omp end do nowait
 c$omp end parallel
 end

Vectorization (IA-32 Only)

Overview
This section provides options description, guidelines, and examples for Intel® Fortran Compiler
vectorization implemented by IA-32 compiler only. The following list summarizes this section
contents.

y� A quick reference of vectorization functionality and options
y� Descriptions of the Fortran language features to control vectorization
y� Discussion and general guidelines on vectorization levels:

- automatic vectorization
- vectorization with user intervention

y� Examples demonstrating typical vectorization issues and resolutions

Vectorizer Options
Vectorization is an IA-32-specific feature and can be summarized by the command line options
described in the following tables. Vectorization depends upon the compiler's ability to
disambiguate memory references. Certain options may enable the compiler to do better
vectorization. These options can enable other optimizations in addition to vectorization. When a
-x{M|K|W} or -ax{M|K|W} is used and -O2 (which is ON by default) is also in effect, the
vectorizer is enabled.
-x{M|K|W} Generate specialized code to run exclusively on the

processors supporting the extensions indicated by
{M|K|W}. See Exclusive Specialized Code with
-x{i|M|K|W} for details.

Note
 -xi is not a vectorizer option.

-ax{M|K|W} Generates, on a single binary, code specialized to
the extensions specified by {M|K|W} but also
generates generic IA-32 code. The generic code is
usually slower. See Specialized Code with
-ax{i|M|K|W} for details.

 110

 Note
 -axi is not a vectorizer option.

-vec_report
 {0|1|2|3|4|5}
Default:
 -vec_report1

Controls the diagnostic messages from the
vectorizer as follows:
 n = 0: no information
 n = 1: indicates vectorized /non-vectorizerd integer
loops
 n = 2: indicates vectorized /non-vectorized integer
loops
 n = 3: indicates vectorized /non-vectorized integer
loops and prohibit data dependence information
 n = 4: indicates non-vectorized loops
 n = 5: indicates non-vectorized loops and prohibit
data dependence information

-vec[-] Enable (default/disable the vectorizer.

Loop Structure Coding Background
The goal of vectorizing compilers is to exploit single-instruction multiple data (SIMD) processing
automatically. However, the realization of this goal has been difficult to achieve. The reason for
the difficulty in achieving vectorization is due to two major factors:

y� Style. The style in which you write source code can inhibit optimization. For example, a
common problem with global pointers is that they often prevent the compiler from being
able to prove two memory references at distinct locations. Consequently, this prevents
certain reordering transformations.

y� Hardware Restrictions. The compiler is limited by restrictions imposed by the underlying
hardware. In the case of Streaming SIMD Extensions, the vector memory operations are
limited to stride-1 accesses with a preference to 16-byte-aligned memory references.
This means that if the compiler abstractly recognizes a loop as vectorizable, it still might
not vectorize it for a distinct target architecture.

Many stylistic issues that prevent the automatic parallelization by vectorization compilers are
found in loop structures. The ambiguity arises from the complexity of the keywords, operators,
data references, and memory operations within the loop bodies.
However, by understanding these limitations and by knowing how to interpret diagnostic
messages, you can modify your program to overcome the known limitations and enable effective
vectorizations. The following sections summarize the capabilities and restrictions of the vectorizer
with respect to loop structures.

Vectorization Key Programming Guidelines
Review these guidelines and restrictions, see code examples in further topics, and check them
against your code to eliminate ambiguities that prevent the compiler from achieving optimal
vectorization.

Guidelines
Guidelines for loop bodies:

y� Use straight-line code (a single basic block)
y� Use vector data only; that is, arrays and invariant expressions on the right hand side of

assignments. Array references can appear on the left hand side of assignments.
y� Use only assignment statements

Avoid the following in loop bodies:
y� Function calls

 111

y� Unvectorizable operations
y� Mixing vectorizable types in the same loop
y� Data-dependent loop exit conditions
y� Loop unrolling (compiler does it)

Preparing Your Code for Vectorization
To make your code vectorizable, you will often need to make some changes to your loops.
However, you should make only the changes needed to enable vectorization and no others. In
particular, you should avoid these common changes:

y� Do not unroll your loops, the compiler does this automatically.
y� Do not decompose one loop with several statements in the body into several single-

statement loops.

Data Dependence
Data dependence relations represent the required ordering constraints on the operations in serial
loops. Because vectorization rearranges the order in which operations are executed, any auto-
vectorizer must have at its disposal some form of data dependence analysis.
An example where data dependencies prohibit vectorization is shown below. In this example,
each element of an array is changed to be function of itself and its two neighbors.
Data-dependent Loop

REAL DATA(N)
 INTEGER I
 DO I=1, N-1
 DATA(I) = DATA(I-1)*0.25 +
DATA(I)*0.5 + DATA(I+1)*0.2
 END DO
The loop in the following example is not vectorizable because the WRITE to the current element
DATA(I) is dependent on the use of the preceding element DATA(I-1), which has already
been written to and changed in the previous iteration. To see this, look at the access patterns of
the array for the first two iterations as shown below.
Data Dependence Vectorization Patterns

I=1: READ DATA (0)
 READ DATA (1)
 READ DATA (2)
 WRITE DATA (1)
I=2: READ DATA(1)
 READ DATA (2)
 READ DATA (3)
 WRITE DATA (2)

In the normal sequential version of this loop, the value of DATA(1) read from during the second
iteration was written to in the first iteration. For vectorization, the iterations must be done in
parallel, without changing the semantics of the original loop.

Data Dependence Analysis
Data dependence analysis involves finding the conditions under which two memory accesses
may overlap. Given two references in a program, the conditions are defined by:

y� whether the referenced variables may be aliases for the same (or overlapping) regions in
memory, and, for array references

y� the relationship between the subscripts
For IA-32, data dependence analyzer for array references is organized as a series of tests, which

 112

progressively increase in power as well as in time and space costs. First, a number of simple
tests are performed in a dimension-by-dimension manner, since independence in any dimension
will exclude any dependence relationship. Multi-dimensional arrays references that may cross
their declared dimension boundaries can be converted to their linearized form before the tests are
applied. Some of the simple tests that can be used are the fast greatest common divisor (GCD)
test and the extended bounds test. The GCD test proves independence if the GCD of the
coefficients of loop indices cannot evenly divide the constant term. The extended bounds test
checks for potential overlap of the extreme values in subscript expressions.
If all simple tests fail to prove independence, we eventually resort to a powerful hierarchical
dependence solver that uses Fourier-Motzkin elimination to solve the data dependence problem
in all dimensions. For more details of data dependence theory and data dependence analysis,
refer to the Publications on Compiler Optimizations.

Loop Constructs
Loops can be formed with the usual DO-ENDDO and DO WHILE, or by using a goto or a
label. However, the loops must have a single entry and a single exit to be vectorized.
Following are the examples of correct and incorrect usages of loop constructs.
Correct Usage

SUBROUTINE FOO (A, B, C)
 DIMENSION A(100),B(100),
C(100)
 INTEGER I
 I = 1
 DO WHILE (I .LE. 100)
 A(I) = B(I) * C(I)
 IF (A(I) .LT. 0.0) A(I) = 0.0
 I = I + 1
 ENDDO
 RETURN
 END

Incorrect Usage

SUBROUTINE FOO (A, B, C)
 DIMENSION A(100),B(100),
C(100)
 INTEGER I
 I = 1
 DO WHILE (I .LE. 100)
 A(I) = B(I) * C(I)
 IF (A(I) .LT. 0.0) GOTO 10
 I = I + 1
 ENDDO
 10 CONTINUE
 RETURN
 END

Loop Exit Conditions
Loop exit conditions determine the number of iterations that a loop executes. For example, fixed
indexes for loops determine the iterations. The loop iterations must be countable; that is, the
number of iterations must be expressed as one of the following:

 113

y� a constant
y� a linear function of an integer variable
y� a loop invariant term

Loops whose exit depends on computation are not countable. Examples below show countable
and non-countable loop constructs.
Correct Usage for Countable Loop, Example 1

SUBROUTINE FOO (A, B, C, N, LB)
 DIMENSION A(N),B(N),C(N)
 INTEGER N, LB, I, COUNT
 ! Number of iterations is "N - LB + 1"
 COUNT = N
 DO WHILE (COUNT .GE. LB)
 A(I) = B(I) * C(I)
 COUNT = COUNT - 1
 I = I + 1
 ENDDO ! LB is not defined within loop
 RETURN
 END

Correct Usage for Countable Loop, Example 2

! Number of iterations is (N-M+2) /2
 SUBROUTINE FOO (A, B, C, M, N, LB)
 DIMENSION A(N),B(N),C(N)
 INTEGER I, L, M, N
 I = 1;
 DO L = M,N,2
 A(I) = B(I) * C(I)
 I = I + 1
 ENDDO
 RETURN
 END

Incorrect Usage for Non-countable Loop

! Number of iterations is
dependent on A(I)
 SUBROUTINE FOO (A, B, C)
 DIMENSION A(100),B(100),C(100)
 INTEGER I
 I = 1
 DO WHILE (A(I) .GT. 0.0)
 A(I) = B(I) * C(I)
 I = I + 1
 ENDDO
 RETURN
 END

Types of Loop Vectorized
For integer loops, the Itanium-based MMX(TM) technology and 128-bit Streaming SIMD
Extensions (SSE) provide SIMD instructions for most arithmetic and logical operators on 32-bit,
16-bit, and 8-bit integer data types.

 114

Note
 Vectorization may proceed if the final precision of integer wrap-around arithmetic will be
preserved. A 32-bit shift-right operator, for instance, is not vectorized if the final stored
value is a 16-bit integer.

Note
 Because the MMX(TM) and SSE instruction sets are not fully orthogonal (byte shifts, for
instance, are not supported), not all integer operations can actually be vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision floating-point
numbers, SSE provides SIMD instructions for the arithmetic operators ’+’, ’-’, ’*’, and ’/’. In
addition, SSE provides SIMD instructions for the binary MIN and MAX and unary SQRT
operators. SIMD versions of several other mathematical operators (like the trigonometric
functions SIN, COS, TAN) are supported in software in a vector mathematical runtime library
that is provided with the Intel® Fortran Compiler.

Stripmining and Cleanup
The compiler automatically strip-mines your loop and generates a cleanup loop.
Stripmining and Cleanup Loops

i = 1
 do while (i<=n)
 a(i) = b(i) + c(i) ! Original loop code
 i = i + 1
 end do
 !The vectorizer generates the following
two loops
 i = 1
 do while (i < (n - mod(n,4)))
 ! Vector strip-mined loop.
 a(i:i + 3) = b(i:i + 3) + c(i:i +3)
 i = i + 4
 end do
 do while (i <= n)
 a(i) = b(i) + c(i) !Scalar clean-up
loop
 i = i + 1
 end do

Statements in the Loop Body
The vectorizable operations are different for floating point and integer data.

Floating-point Array Operations
The statements within the loop body may be REAL operations (typically on arrays). Arithmetic
operations are limited to addition, subtraction, multiplication, division, negation, square root, max,
and min. Note that conversion to/from some types of floats is not permitted. Operation on
DOUBLE PRECISION types is not permitted, unless they are stored as default REAL.

Integer Array Operations
The statements within the loop body may be arithmetic or logical operations (again, typically for
arrays). Arithmetic operations are limited to such operations as addition, subtraction, ABS, MIN,
and MAX. Logical operations include bitwise AND, OR and XOR operators.

 115

Other Integer Operations
You can mix data types only if the conversion can be done without a loss of precision. Some
example operators where you can mix data types are multiplication, shift, or unary operators.

Other Datatypes
No statements other than the preceding floating-point and integer operations are permitted.

No Function Calls
The loop body cannot contain any function calls.

Vectorizable Data References
For any data reference, either as an array element or pointer reference (see definitions below),
take care to ensure that there are no potential dependence or alias constraints preventing
vectorization; intuitively, an expression in one iteration must not depend on the value computed in
a previous iteration and pointer variables must provably point to distinct locations.
Arrays Vectorizable data in a loop may be expressed as uses of array

elements, provided that the array references are unit-stride or
loop-invariant. Non-unit stride references are not vectorized by
default; the vector pragma can be used to override this.

Pointers Vectorizable data can also be expressed using pointers, subject
to the same constraints as uses of array elements: you cannot
vectorize references that are non-unit stride or loop invariant.

Invariants Vectorizable data can also include loop invariant references on
the right hand inside an expression, either as variables or
numeric constants. The loop in the following example will
vectorize.

Vectorizable Loop Invariant Reference

SUBROUTINE FOO (A, B, C, N)
 DIMENSION A(N),B(N),C(N)
 INTEGER N, I, J
 J = 5;
 DO I=1, N
 A(I) = B(I) * 3.14 + C(J)
 ENDDO
 RETURN
 END
If vectorizable REAL data is provably aligned, the compiler will generate aligned instructions.
This is the case for locally declared data. Where data alignment is not known, unaligned
references will be used unless a directive is used to override this. The compiler supports IVDEP
directive which instructs the compiler to ignore assumed vector dependences. Use this directive
when you know that the assumed loop dependences are safe to ignore. For details on the
IVDEP directive, see Appendix A in the Intel® Fortran Programmer's Reference.

Vectorization Examples
This section contains simple examples of some common issues in vector programming.

Argument Aliasing: A Vector Copy
The loop in the example of a vector copy operation does not vectorize because the compiler
cannot prove that DEST(A(I)) and DEST(B(I)) are distinct.

 116

Unvectorizable Copy Due to Unproven
Distinction

SUBROUTINE
VEC_COPY(DEST,A,B,LEN)
 DIMENSION DEST(*)
 INTEGER A(*), B(*)
 INTEGER LEN, I
 DO I=1,LEN
 DEST(A(I)) = DEST(B(I))
 END DO
 RETURN
 END

Data Alignment
A 16-byte or greater data structure or array should be aligned so that the beginning of each
structure or array element is aligned in a way that its base address is a multiple of 16.
The Misaligned Data Crossing 16-Byte Boundary figure shows the effect of a data cache unit
(DCU) split due to misaligned data. The code loads the misaligned data across a 16-byte
boundary, which results in an additional memory access causing a six- to twelve-cycle stall. You
can avoid the stalls if you know that the data is aligned and you specify to assume alignment
Misaligned Data Crossing 16-Byte Boundary

After vectorization, the loop is executed as shown in figure below.
Vector and Scalar Clean-up Iterations

Both the vector iterations A(1:4) = B(1:4); and A(5:8) = B(5:8); can be
implemented with aligned moves if both the elements A(1) and B(1) are 16-byte aligned.

Caution
If you specify the vectorizer with incorrect alignment options, the compiler will generate
unexpected behavior. Specifically, using aligned moves on unaligned data, will result in an
illegal instruction exception!

 117

Alignment Strategy
The compiler has at its disposal several alignment strategies in case the alignment of data
structures is not known at compile-time. A simple example is shown below (several other
strategies are supported as well). If in the loop shown below the alignment of A is unknown, the
compiler will generate a prelude loop that iterates until the array reference, that occurs the most,
hits an aligned address. This makes the alignment properties of A known, and the vector loop is
optimized accordingly. In this case, the vectorizer applies dynamic loop peeling, a specific Intel®
Fortran feature.
Data Alignment Example
Original loop:
SUBROUTINE DOIT(A)
 REAL A(100) ! alignment of argument A is
 ! unknown
 DO I = 1, 100
 A(I) = A(I) + 1.0
 ENDDO
 END SUBROUTINE
Aligning Data
! The vectorizer will apply dynamic loop peeling as
follows:
 SUBROUTINE DOIT(A)
 REAL A(100)
 ! let P be (A%16)where A is address of A(1)
 IF (P .NE. 0) THEN
 P = (16 - P) /4 ! determine runtime peeling
factor
 DO I = 1, P
 A(I) = A(I) + 1.0
 ENDDO
 ENDIF
 ! Now this loop starts at a 16-byte boundary,
 ! and will be vectorized accordingly
 DO I = P + 1, 100
 A(I) = A(I) + 1.0
 ENDDO
 END SUBROUTINE

Loop Interchange and Subscripts: Matrix Multiply
Matrix multiplication is commonly written as shown in the following example.

DO I=1, N
 DO J=1, N
 DO K=1, N
 C(I,J) = C(I,J) +
A(I,K)*B(K,J)
 END DO
 END DO
 END DO
The use of B(K,J), is not a stride-1 reference and therefore will not normally be
vectorizable. If the loops are interchanged, however, all the references will become stride-1
as in the Matrix Multiplication with Stride-1 example that follows.

 118

Note
Interchanging is not always possible because of dependencies, which can lead to different
results.

Matrix Multiplication with Stride-1

DO J=1,N
 DO K=1,N
 DO I=1,N
 C(I,J) = C(I,J) +
A(I,K)*B(K,J)
 ENDDO
 ENDDO
 ENDDO
For additional information, see Publications on Compiler Optimizations.

 119

Libraries

Managing Libraries
You can determine the libraries for your applications by controlling the linker or by using the
options described in this section.
The LD_LIBRARY_PATH environment variable contains a semicolon-separated list of
directories that the linker will search for library (.a) files. If you want the linker to search
additional libraries, you can add their names to the command line, to a response file, or to the
configuration (.cfg) file. In each case, the names of these libraries are passed to the linker
before these libraries:

y� the libraries provided with the Intel® Fortran Compiler (libCEPCF90.so,
libIEPCF90.so, libintrins.so, libF90.so, and libm.so)

y� the default libraries that the driver always specifies (libc.a).
For more information on response and configuration files, see Response Files and Configuration
Files.
To specify a library name on the command line, you must first add the library's path to the
LD_LIBRARY_PATH environment variable. Then, to compile file.f and link it with the
library libmine.a, for example, enter the following command:
IA-32 applications:
prompt>ifc file.f -lmine
Itanium(TM)-based applications:
prompt>efc file.f -lmine
The example above implies that the library resides in your path.
The compiler driver passes files to the linker in the following order:
1. The object file.
2. Any objects or libraries specified on the command line, in a response file, or in a configuration
file.
3. The libm.a, libF90.a, libintrins.a, and libIEPCF90.a libraries.

If you specified the -mt option, the compiler passes the libmMT.a, libF90MT.a,
libIEPCF90MT.a, and the libintrinsMT.a libraries.

4. The libc.a libraries.

Using Multi-thread and Single-thread
Libraries

Multi-thread Libraries, -mt
You can choose to compile and link your programs with shared libraries instead of with
libF90.a and libIEPCF90.a. Use the -mt option to compile and link with the static,
multi-thread runtime library files, libc.so, supplied by Linux , and with the multi-thread
libraries libF90.so, libIEPCF90.so, libm.so (or, if -fdiv_check is specified in
addition to -mt: libmck.so) supplied with the Intel® Fortran Compiler.

 120

The -mt option is also used to instruct the compiler to compile and link with thread-safe Fortran
libraries. The shared versions of the Fortran libraries are also thread-safe. Use of the -openmp
option implies the use of -mt.

Single-thread Libraries, -ml
Use the -ml option to compile and link with the static, single-thread Fortran runtime libraries
libc.a supplied by default and with the single-thread libraries libIEPCF90.a,
libF90.a, libintrins.a, and libm.a.

 Note
You must ensure that the path to the libraries you are using, is set in the
LD_LIBRARY_PATH environment variable.

The -ml option is also used to instruct the compiler to compile and link with non-thread-safe
Fortran libraries.

Using the POSIX and Portability
Libraries
Use the -posixlib option with the compiler to invoke the POSIX bindings library
libPOSF90.a. For a complete list of these functions see Chapter 3, "POSIX Functions" in the
Intel® Fortran Libraries Reference Manual.
Use the -Vaxlib option with the compiler to invoke the VAX* compatibility functions
libPEPCF90.a. This also brings in the Intel’s compatibility functions for SUN* and Microsoft*.
For a complete list of these functions see Chapter 2, "Portability Functions" in the Intel® Fortran
Libraries Reference Manual.

Intel® Shared Libraries
The Intel® Fortran Compiler (both IA-32 and Itanium(TM) compilers) links the libraries statically at
link time and dynamically at the run time, the latter as dynamically-shared objects (DSO). By
default, the libraries are linked as follows:

y� Fortran, math and libcprts.a libraries are linked at link time, that is, statically.
y� libcxa.so is linked dynamically to conform to C++ ABI.
y� GNU and Linux system libraries are linked dynamically.

Advantages of This Approach
This approach

• Enables to maintain the same model for both IA-32 and Itanium compilers.
• Provides a model consistent with the Linux model where system libraries are dynamic

and application libraries are static.
• The users have the option of using dynamic versions of our libraries to reduce the size of

their binaries if desired.
• The users are licensed to distribute Intel-provided libraries.

The libraries libcprts.a and libcxa.so are C++ language support libraries used by
Fortran when Fortran includes code written in C++.

 121

Shared Library Options
The main options used with shared libraries are -i_dynamic and -shared.

The -i_dynamic option can be used to specify that all Intel-provided libraries should be
linked dynamically. The comparison of the following commands illustrates the effects of this
option.
1. prompt>ifc myprog.f
This command produces the following results (default):

y� Fortran, math, libirc.a, and libcprts.a libraries are linked statically (at link time).
y� Dynamic version of libcxa.so is linked at run time.

The statically linked libraries increase the size of the application binary, but do not need to be
installed on the systems where the application runs.
2. prompt>ifc –i_dynamic myprog.f
This command links all of the above libraries dynamically. This has the advantage of reducing the
size of the application binary, but it requires all the dynamic versions installed on the systems
where the application runs.
The -shared option instructs the compiler to build a Dynamic Shared Object (DSO)
instead of an executable. For more details, refer to the ld man page documentation.

Math Libraries

Overview
The optimized math libraries, libm.a and libmmt.a, which are included with the Intel®
Fortran Compiler, contain the standard math library functions. To use one of the optimized math
libraries, you must place libm.a and libmmt.a, and libmmd.a libraries in one of the
directories specified by the LIB environment variable. It is recommended that you place
libm.a and libmmt.a, and libmmd.a in the first directory specified in the
LD_LIBRARY_PATH variable. The libm.a and libmmt.a, and libmmd.a libraries
are always linked with Fortran programs. For example, if you place libm.a in directory
/perform/, set the LD_LIBRARY_PATH variable to specify a list of directories, containing
all other libraries, separated by semicolons.

Using Math Libraries with IA-32 Systems

Library libm_chk.a
About half of the functions in the optimized math libraries are written in assembly language and
optimized for program execution speed on an IA-32 processor. For a list of optimized primitives,
see Optimized Math Library Primitives below.
The library libm_chk.a contains support routines for a floating-point division software patch
for certain steppings of the Pentium® processors. For more information on the libm_chk.a
library, see the Enable Floating-point Division Check, -fdiv_check (IA-32 Only) section. The
libmmt.a or libmmtck.a library is used if the -mt multi-thread option is specified. The
libmmd.a or libmmdck.a library is used if the -md option is specified.
To use your own version of the standard math functions without unresolved external errors, you
must disable the automatic inline expansion by compiling your program with the
 -nolib_inline option, as described in Inline Expansion of Library Functions.

 122

Optimized Math Library Primitives
The optimized math libraries contain a package of functions, called primitives. The Intel Fortran
Compiler calls these functions to implement numerous floating-point intrinsics and exponentiation.
Although both the libm.a and libmmt.a libraries and libmmd.a library contain the same
functions, about half of the functions in the library from Intel are written in assembly language and
optimized for program execution speed on an IA-32 architecture processor.

Note
 The library primitives are not Fortran intrinsics. They are standard library calls used by the
compiler to implement Intel Fortran language features.

Following is a list of math library primitives that have been optimized.
acos cos log10 sinh
asin cosh pow sqrt
atan exp powf tan
atan2 log sin tanh
The math library also provides the following non-optimized primitives.
acosh copysign fmod gamma
asinh erf fmodf remainder
atanh fabs hypot rint
cbrt fabsf j0 y0
ceil floor j1 y1
ceilf floorf jn y2

Programming with Math Library Primitives
Primitives adhere to standard calling conventions, thus you can call them with other high-level
languages as well as with assembly language. For Intel Fortran Compiler programs, specify the
appropriate Fortran intrinsic name for arguments of type REAL and DOUBLE PRECISION.
The compiler calls the appropriate single- or double-precision primitive based on the type of the
argument you specify.
To use these functions, you have to write an INTERFACE block that specifies the ALIAS
name of the function. The routine names in the math library are lower case and use C linkage.
Itanium(TM)-based applications:
When programming in assembly language, you can derive register usage from the high-level
language syntax given. All parameter passing conforms to the Itanium(TM) Assembly Language
Reference Guide.

Enable Floating-point Division Check (IA-32 Only)
The -fdiv_check option enables a software patch for the floating-point division flaw which
exists on some steppings of the Pentium® processor. This patch ensures that the precision of
your floating-point division calculations are correct. This option is enabled by default or if you
specify the -tpp5 option.
When the -fdiv_check option is enabled, the compiler uses libm_chk.a (or
libmmtck.a, if -mt is also specified; and libmmdck.a if -md is also specified), which
are special versions of the library to link your programs. These files are linked automatically. The
libm_chk.a (or libmmtck.a or libmmdck.a) libraries contain the support routines for the
floating-point division software patch and checked versions of the affected math library functions.
The -fdiv_check option disables the software patch for the floating-point division flaw
regardless of whatever other options are specified. When you specify -fdiv_check, the
compiler uses simple hardware instructions for floating-point division and affected intrinsics. If you

 123

specify the -fdiv_check option, the compiler does not need a special version of optimized
math library to link your programs. Similarly, if you choose not to use the optimized math library,
you must specify -fdiv_check. This option is the default if you specify the -tpp6 option.

IEEE Floating-point Exceptions
The compiler recognizes a set of floating-point exceptions required for compatibility with the IEEE
numeric floating-point standard. The following floating-point exceptions are supported during
numeric processing:
Denormal One of the floating-point operands has an absolute

value that is too small to represent with full precision
in the significand.

Zero Divide The dividend is finite and the divisor is zero, but the
correct answer has infinite magnitude.

Overflow The resulting floating-point number is too large to
represent.

Underflow The resulting floating-point number (which is very
close to zero) has an absolute value that is too small
to represent even if a loss of precision is permitted in
the significand (gradual underflow).

Inexact
(Precision)

The resulting number is not represented exactly due
to rounding or gradual underflow.

Invalid operation Covers cases not covered by other exceptions. An
invalid operation produces a quiet NaN (Not-a-
Number).

Denormal
The denormal exception occurs if one or more of the operands is a denormal number. This
exception is never regarded as an error.

Divide-by-Zero Exception
A divide-by-zero exception occurs for a floating-point division operation if the divisor is zero and
the dividend is finite and non-zero. It also occurs for other operations in which the operands are
finite and the correct answer is infinite.
When the divide by zero exception is masked, the result is +/-infinity. The following specific cases
cause a zero-divide exception:

y� LOG(0.0)
y� LOG10(0.0)
y� O.O**x, where x is a negative number

For the value of the flags, refer to the ieee_flags () function in your library manual and
Pentium® Processor Family Developer's Manual, Volumes 1, 2, and 3.

Overflow Exception
An overflow exception occurs if the rounded result of a floating-point operation contains an
exponent larger than the numeric processing unit can represent. A calculation with an infinite
input number is not sufficient to cause an exception.
When the overflow exception is masked, the calculated result is +/-infinity or the +/-largest
representable normal number depending on rounding mode. When the exception is not masked,
a result with an accurate significand and a wrapped exponent is available to an exception
handler.

 124

Underflow Exception
The underflow exception occurs if the rounded result has an exponent that is too small to be
represented using the floating-point format of the result.
If the underflow exception is masked, the result is represented by the smallest normal number, a
denormal number, or zero. When the exception is not masked, a result with an accurate
significand and a wrapped exponent is available to an exception handler

Inexact Exception
The inexact exception occurs if the rounded result of an operation is not equal to the unrounded
result.
It is important that the inexact exception remain masked at all times because many of the numeric
library procedures return with an undefined precision exception flag. If the precision exception is
masked, no special action is performed. When this exception is not masked, the rounded result is
available to an exception handler.

Invalid Operation Exception
An invalid operation indicates that an exceptional condition not covered by one of the other
exceptions has occurred. An invalid operation can be caused by any of the following situations:

y� One or more of the operands is a signaling NaN or is in an unsupported format.
y� One of the following invalid operations has been requested:
(+--)0.0-(+--)0.0, (+--)0.0*(+--)•, or (+--)•-(+--)•.

y� The function INT, NINT, or IRINT is applied to an operand that is too large to fit into
the requested INTEGER*2 or INTEGER*4 data types.

y� A comparison of .LT., .LE., .GT., or .GE. is applied to two operands that are
unordered.

The invalid-operation exception can occur in any of the following functions:
y� SQRT(x), LOG(x), or LOG10(x), where x is less than zero.
y� ASIN(x), or ACOS(x) where |x|>1.

For any of the invalid-operation exceptions, the exception handler is invoked before the top of the
stack changes, so the operands are available to the exception handler.
When invalid-operation exceptions are masked, the result of an invalid operation is a quiet NaN.
Program execution proceeds normally using the quiet NaN result.
Floating-point Result The appearance of a quiet NaN as an operand results in a

quiet NaN. Execution continues without an error. If both
operands are quiet NaNs, the quiet NaN with the larger
significand is used as the result. Thus, each quiet NaN is
propagated through later floating-point calculations until it is
ultimately ignored or referenced by an operation that delivers
non-floating-point results.

Formatted Output On formatted output using a real edit descriptor, the field is
filled with the "?" symbols to indicate the undefined (NaN)
result. The A, Z, or B edit descriptor results in the ASCII,
hexadecimal, or binary interpretation, respectively, of the
internal representation of the NaN. No error is signaled for
output of a NaN.

Logical Result By definition, a NaN has no ordinal rank with respect to any
other operand, even itself. Tests for equality (.EQ.) and
inequality (.NE.) are the only Forrtran relational operations
for which results are defined for unordered operands. In these
cases, program execution continues without error. Any other

 125

logical operation yields an undefined result when applied to
NaNs, causing an invalid-operation error. The masked result
is unpredictable.

Integer Result Since no internal NaN representation exists for the
INTEGER data type, an invalid-operation error is normally
signaled. The masked result is the largest-magnitude negative
integer for INTEGER*4 or INTEGER*2. An
INTEGER*1 result is the value of an INTEGER*2
intermediate result modulo 256.

Intel® Fortran Compiler provides a method to control the rounding mode, exception handling and
other IEEE-related functions of the IA-32 processors using IEEE_FLGS and
IEEE_HANDLER library routines from the portability library. For details, see Chapter 2 in the
Intel® Fortran Libraries Reference Manual.

 126

Diagnostics and Messages

Overview
This section describes the diagnostic messages that the Intel® Fortran Compiler produces.
These messages include various diagnostic messages for remarks, warnings, or errors. The
compiler always displays any error message, along with the erroneous source line, on the
standard error device. The messages also include the runtime diagnostics run for IA-32 compiler
only.
The options that provide checks and diagnostic information must be specified when the program
is compiled, but they perform checks or produce information when the program is run.

Runtime Diagnostics (IA-32 Compiler
Only)

Overview
For IA-32 applications, the Intel® Fortran Compiler provides runtime diagnostic checks to aid
debugging. The compiler provides a set of options that identify certain conditions commonly
attributed to runtime failures.
You must specify the options when the program is compiled. However, they perform checks or
produce information when the program is run. Postmortem reports provide additional diagnostics
according to the detail you specify.
Runtime diagnostics are handled by IA-32 options only. The use of -O0 option turns any of them
off.

Optional Runtime Checks
Runtime checks on the use of pointers, allocatable arrays and assumed-shape arrays are made
with the runtime checks specified by the Intel® Fortran Compiler command line runtime
diagnostic options listed below. The use of any of these options disables optimization.
The optional runtime check options are as follows:
-C Equivalent to: (-CA, -CB, -CS, -CU, -CV)

Note
 The -C option and its equivalents are available for IA-32
systems only.

-CA Should be used in conjunction with -d{n}. Generates runtime
code, which checks pointers and allocatable array references for
nil.

Note
 The run-time checks on the use of pointers, allocatable arrays
and assumed-shape arrays are made if compile-time option
-CA is selected.

-CB Should be used in conjunction with -d[n]. Generates runtime
code to check that array subscript and substring references are

 127

within declared bounds.
-CS Should be used in conjunction with -d[n]. Generates runtime

code that checks for consistent shape of intrinsic procedure.

-CU Should be used in conjunction with -d[n]. Generates runtime
code that causes a runtime error if variables are used without
being initialized.

-CV Should be used in conjunction with -d[n]. On entry to a
subprogram, tests the correspondence between the actual
arguments passed and the dummy arguments expected. Both
calling and called code must be compiled with -CV for the
checks to be effective.

Pointers, -CA
The selection of the -CA compile-time option has the following effect on the runtime checking of
pointers:

y� The association status of a pointer is checked whenever it is referenced. Error 460 as
described in Runtime Errors will be reported at runtime if the pointer is disassociated: that
is, if the pointer is nullified, de-allocated, or it is a pointer assigned to a disassociated
pointer.

y� The compile-time option combination of -CA and -CU also generates code to test
whether a pointer is in the initially undefined state, that is, if it has never been associated
or disassociated or allocated. If a pointer is initially undefined then Error 461 as described
in Runtime Errors will be reported at runtime if an attempt is made to use it. No test is
made for dangling pointers (that is, pointers referencing memory locations which are no
longer valid).

y� The association status of pointers is not tested when the Fortran 95 standard does not
require the pointer to be associated, that is, in the following circumstances:
- in a pointer assignment
- as an argument to the associated intrinsic
- as an argument to the present intrinsic
- in the nullify statement
- as an actual argument associated with a formal argument which has the pointer
attribute

Allocatable Arrays

The selection of the -CA compile-time option causes code to be generated to test the allocation
status of an allocatable array whenever it is referenced, except when it is an argument to the
allocated intrinsic function. Error 459 as described in Runtime Errors will be reported at
runtime if an error is detected.

 Assumed-Shape Arrays

The -CA option causes a validation check to be made, on entry to a procedure, on the definition
status of an assumed-shape array. Error 462 as described in Runtime Errors will be reported at
runtime if the array is disassociated or not allocated.
The compile-time option combination of -CA and -CU will additionally generate code to test
whether, on entry to a procedure, the array is in the initially undefined state. If so, Error 463 as
described in Runtime Errors.

 128

Array Subscripts, Character Substrings, -CB
Specifying the compile-time option -CB causes a check at runtime that array subscript values,
subscript values of elements selected from an array section, and character substring references
are within bounds. Selection of the option causes code to be generated for each array or
character substring reference in the program.
At runtime the code checks that the address computed for a referenced array element is within
the address range delimited by the first element of the array and the last element of the array.
Note that this check does not ensure that each subscript in a reference to an element of a multi-
dimensional array or section is within bounds, only that the address of the element is within the
address range of the array.
For assumed-size arrays, only the address of the first element of the array is used in the check;
the address of the last element is unknown.
When -CB is selected, a check is also made that any character substring references are within
the bounds of the character entity referenced.

Unassigned Variables, -CU
Specifying the compile-time option -CU causes unassigned variable checking to be enabled: that
is, before an expression is evaluated at runtime, a check is normally made that any variables in
the expression have previously been assigned values. If any has not, a runtime error results.
Some variables are not unassigned-checked, even when -CU has been selected:

y� Variables of type character
y� byte, integer(1) and logical(1) variables
y� Variables of derived type, when the complete variable (not individual fields) is used in the

expression
y� Arguments passed to some elemental and transformational intrinsic procedures

Notes on Variables

y� Variables that specify storage with allocate, except those of types noted in the previous
section, will be unassigned-checked when -CU is selected.

y� If the variables in a named COMMON block are to be unassigned-checked, -CU must be
selected, and:

 - The COMMON block must be specified in one and only one BLOCK DATA program unit.
Variables in the COMMON block that are not explicitly initialized will be subject to the
unassigned check.
 - No variable of the COMMON block may be initialized outside the BLOCK DATA program
unit.

y� Variables in blank COMMON will be subject to the unassigned check if -CU is selected
and the blank COMMON appears in the main program unit. In this case, although the
Intel® Fortran Compiler permits blank COMMON to have different sizes in different
program units, only the variables within the extent of blank COMMON indicated in the
main program unit will be subject to the unassigned check.

Actual to Dummy Argument Correspondence, -CV
Specifying the compile-time option -CV causes checks to be carried out at runtime that actual
arguments to subprograms correspond with the dummy arguments expected. Note the following:

y� Both caller and called Fortran code must be compiled with -CV (or -C). No argument
checking will be performed unless this condition is satisfied.

y� The amount of checking performed depends upon whether the procedure call was made
via an implicit interface or an explicit interface. Irrespective of the type of interface used,
however, the following checks verify that:

 129

- the correct number of arguments are passed.
- the type and type kinds of the actual and dummy arguments correspond.
- subroutines have been called as subroutines and that functions have been declared
with the correct type and type kind.
- dummy arrays are associated with either an array or an element of an array and not a
scalar variable or constant.
- the declared length of a dummy character argument is not greater than the declared
length of associated actual argument.
- the declared length of a character scalar function result is the same length as that
declared by the caller.
- the actual and dummy arguments of derived type correspond to the number and types
of the derived type components.
- actual arguments were not passed using the intrinsic procedures %REF and %VAL.

y� If an implicit interface call was made, then yet another check is made whether an
interface block should have been used.

y� If an explicit interface block was used, then further checks are made in addition to those
described (in the second bullet) above, to validate the interface block. These checks
verify that:

 - the OPTIONAL attribute of each dummy argument has been correctly specified by the
caller.
 - the POINTER attribute of each dummy argument has been correctly specified by the
caller.
- the declared length of a dummy pointer of type character is the same as the declared
length of the associated actual pointer of type character.
- the rank of an assumed-shape array or dummy pointer matches the rank of the associated
actual argument.
- the rank of an array-valued function or pointer-valued function has been correctly specified
by the caller.
- the declared length of a character array-valued function or a character pointer-valued
function is the same length as that declared by the caller.

Selecting a Postmortem Report, -d[n]

The command option -d[n] generates the additional information required for a list of the
current values of variables to be output when certain runtime errors occur. The level of output is
progressively controlled by n, as follows:

n=0 (or n omitted) Displays only the procedure name and the number
of the line at which the failure occurred.

n =1 Reports scalar variables local to program active
units.

n =2 Reports local and COMMON scalars.

n >2 Reports the first n elements of local and COMMON
arrays and all scalars.

The appropriate error message will be output on stderr, and (if selected) a postmortem report will
be produced.
Each scalar or array will be displayed on a separate line in a form appropriate to the type of the
variable. Thus, for example, variables of type integer will be output as integer values, and
variables of type complex will be output as complex values.
The postmortem report will not include those program units which are currently active, but which
have not been compiled with the -d[n] option. If no active program unit has been compiled
with the -d[n] option then no postmortem report will be produced.

 130

Note
 Using the -d[n] option for postmortem reports disables optimization.

Invoking a Postmortem Report
A postmortem report may be invoked by any of the following:

y� an error detected as a consequence of using the -CA, -CB, -CS, -CU, -CV or
-C options

y� a call on abort
y� an allocation error
y� an invalid assigned label
y� an input-output error
y� an error reported by a mathematical procedure
y� a signal generated by a program error such as illegal instruction
y� an error reported by an intrinsic procedure

Postmortem Report Conventions
The following conventions are used in postmortem output:

y� A variable var declared in a module mod appears as mod.var.
y� A module procedure proc in module mod appears as mod$proc.
y� The fields of a variable var of derived data type are preceded by a line of the form

var%.

Example
In this example, the command line
prompt>ifc -CB -CU -d4 sample.f
is used to compile the program that follows. When the program is executed, the postmortem
report (follows the program) is output, since the subscript m to array num is out of bounds.

The Program

 1 module arith
 2 integer count
 3 data count /0/
 4
 5 contains
 6
 7 subroutine add(k,p,m)
 8 integer num(3),p
 9
 10 count = count+1
 11 m = k+p
 12 j = num(m)
 13 return
 14 end subroutine
 15
 16 end module arith
 17
 18 program dosums
 19 use arith
 20 type set
 21 integer sum, product
 22 end type set

 131

 23
 24 type(set) ans
 25
 26 call add(9,6,ans%sum)
 27
 28 end program dosums
The Postmortem Report

Run-Time Error 406: Array bounds exceeded
 In Procedure: arith$add
 Diagnostics Entered From Subroutine arith$add Line 12
 j = Not Assigned
 k = 9
 m = 15
 num = Not Assigned, Not Assigned, Not Assigned
 p = 6
 Module arith
 arith.count = 1
 Entered From MAIN PROGRAM Line 26
 ans%
 sum = 15
 product = Not Assigned
 arith.count = 1

Messages and Obtaining Information

Compiler Information Messages
These messages are generated by the following Intel® Fortran Compiler options:
Disabling the sign-on message

-nologo Disables the display of the compiler version (or sign-on) message.
When you sign-on, the compiler displays the following information:
ID: the unique identification number for this compiler.
 x.y.z: the version of the compiler.
 years: the years for which the software is copyrighted.

Printing the list and brief description of the compiler driver options

-help You can print a list and brief description of the most useful
compiler driver options by specifying the -help option to the
compiler. To print this list, use this command:
IA-32 compiler:
 prompt>ifc -help or prompt>ifc -?
Itanium(TM) compiler:
prompt>efc -help or prompt>efc -?

Showing compiler version and driver tool commands

-V Displays compiler version information.

-v Shows driver tool commands and executes tools.

-dryrun Shows driver tool commands, but does not execute tools.

 132

Diagnostic Messages
Diagnostic messages provide syntactic and semantic information about your source text.
Syntactic information can include, for example, syntax errors and use of non-ANSI Fortran.
Semantic information includes, for example, unreachable code.
Diagnostic messages can be any of the following: command-line diagnostics, warning messages,
error messages, or catastrophic error messages.

Command-line Diagnostics
These messages report improper command-line options or arguments. If the command line
contains an unrecognized option, the compiler passes the option to the linker. If the linker still
does not recognize the option, the linker produces the diagnostic message.
Command-line error messages appear on the standard error device in the form:
driver-name: message
where
driver-name The name of the compiler driver.

message Describes the error.

Command-line warning messages appear as follows:
driver-name: warning: message

Language Diagnostics
These messages describe diagnostics that are reported during the processing of the source file.
These diagnostics have the following format:
filename(linenum): type nn: message

filename Indicates the name of the source file currently

being processed. An extension to the filename
indicates the type of the source file, as follows:
.f, f90, .for indicate a Fortran file.

linenum Indicates the source line where the compiler
detects the condition.

type Indicates the severity of the diagnostic message:
warning, error, or Fatal error.

nn The number assigned to the error (or warning)
message.

message Describes the diagnostic.

The following is an example of a warning message:
tantst.f(3): warning 328:"local variable": Local variable
"increment" never used.
The compiler can also display internal error messages on the standard error device. If your
compilation produces any internal errors, contact your Intel representative. Internal error
messages are in the form:
FATAL COMPILER ERROR: message

Warning Messages
These messages report valid but questionable use of the language being compiled. The compiler
displays warnings by default. You can suppress warning messages by using the -W0 option.
Warnings do not stop translation or linking. Warnings do not interfere with any output files. Some
representative warning messages are:
constant truncated - precision too great

 133

non-blank characters beyond column 72 ignored
Hollerith size exceeds that required by the context

Suppressing or Enabling Warning Messages

The warning messages report possible errors and use of non-standard features in the source file.
The following options suppress or enable warning messages.
-cerrs[-] Causes error and warning messages to be generated

in a terse format:
 "file", line no : error message
-cerrs- disables -cerrs.

-w Suppresses all warning messages.

-w0 Suppresses all warning messages generated by
preprocessing and compilation. Error messages are
still be displayed.

-w1 Display warning messages. This is the default.

-w90 Suppresses warning messages about non-standard
Fortran 95 features used.

-WB On a bound check violation, issues a warning instead
of an error. (This is to accommodate old FORTRAN
code, in which array bounds of dummy arguments
were frequently declared as 1.)

For example, the following command compiles newprog.f and displays compiler errors, but not
warnings:
IA-32 compiler:
prompt>ifc -W0 newprog.f
Itanium(TM) compiler:
prompt>efc -W0 newprog.f

Comment Messages
These messages indicate valid but unadvisable use of the language being compiled. The
compiler displays comments by default. You can suppress comment messages with:
-cm Suppresses all comment messages.

Comment messages do not terminate translation or linking, they do not interfere with any output
files either. Some examples of the comment messages are:

• Null CASE construct

• The use of a non-integer DO loop variable or expression

• Terminating a DO loop with a statement other than
CONTINUE or ENDDO

Error Messages
These messages report syntactic or semantic misuse of Fortran. The compiler always displays
error messages. Errors suppress object code for the module containing the error and prevent
linking, but they make it possible for the parsing to continue to scan for any other errors. Some
representative error messages are:

• line exceeds 132 characters

• unbalanced parenthesis
• incomplete string

 134

Suppressing or Enabling Error Messages
The error conditions are reported in the various stages of the compilation and at different levels of
detail as explained below. For various groups of error messages, see Lists of Error Messages.
-s Enables/disables issuing of errors rather than warnings for

features that are non-standard Fortran.
-q Suppresses compiler output to standard error, stderr. When -

q is specified in conjunction with -bd, then only fatal error
messages are output to stderr by the binder tool provided with
the Intel® Fortran Compiler.

-d[n] Generates extra information needed to produce a list of current
variables in a diagnostic report. For more details on -d[n], see
Selecting a Postmortem Report, -d[n].
Diagnostic reports are generated by the following:

y� input-output errors
y� an invalid reference to a pointer or an allocatable array (if

-CA option selected)
y� subscripts out of bounds (if -CB option selected)
y� an invalid array argument to an intrinsic procedure (if -CS

option selected)
y� use of unassigned variables (if -CU option selected)
y� argument mismatch (if -CV option selected)
y� invalid assigned labels
y� a call to the abort routine
y� certain mathematical errors reported by intrinsic

procedures
y� hardware detected errors:

Fatal Errors
These messages indicate environmental problems. Fatal error conditions stop translation,
assembly, and linking. If a fatal error ends compilation, the compiler displays a termination
message on standard error output. Some representative fatal error messages are:

• Disk is full, no space to write object file

• Incorrect number of intrinsic arguments

• Too many segments, object format cannot support this
many segments

 135

Mixing C and Fortran

Overview
This section discusses implementation-specific ways to call C procedures from a Fortran
program.

Naming Conventions
By default, the Fortran compiler converts function and subprogram names to lower case, and
adds a trailing underscore. The C compiler never performs case conversion. A C procedure
called from a Fortran program must, therefore, be named using the appropriate case. For
example, consider the following calls:
CALL PROCNAME() The C procedure must be named

procname_.

x=fnname() The C procedure must be named fnname_.

In the first call, any value returned by procname is ignored. In the second call to a function,
fnname must return a value.

Passing Arguments between Fortran and C
Procedures
By default, Fortran subprograms pass arguments by reference; that is, they pass a pointer to
each actual argument rather than the value of the argument. C programs, however, pass
arguments by value. Consider the following:

y� When a Fortran program calls a C function, the C function’s formal arguments must be
declared as pointers to the appropriate data type.

y� When a C program calls a Fortran subprogram, each actual argument must be specified
explicitly as a pointer.

Using Fortran Common Blocks from C
When C code needs to use a common block declared in Fortran, an underscore (_) must be
appended to its name, see below.
Fortran code
 common /cblock/ a(100) real a
C code
 struct acstruct {
 float a[100];
 };
 extern struct acstruct cblock_;

Example

This example demonstrates defining a COMMON block in Fortran for Linux, and accessing the
values from C.

 136

Fortran code

COMMON /MYCOM/ A, B(100),I,C(10)
 REAL(4) A
 REAL(8) B
 INTEGER(4) I
 COMPLEX(4) C
 A = 1.0
 B = 2.0D0
 I = 4
 C = (1.0,2.0)
 CALL GETVAL()
 END
C code

 typedef struct compl complex;
 struct compl{
 float real;
 float imag;
 };

 extern struct {
 float a;
 double b[100];
 int i;
 complex c[10];
 } mycom_;

 void getval_(){
 printf("a = %f\n",mycom_.a);
 printf("b[0] = %f\n",mycom_.b[0]);
 printf("i = %d\n",mycom_.i);
 printf("c[1].real = %f\n",mycom_.c[1].real);
 }

 penfold% ifc common.o getval.o -o common.exe
 penfold% common.exe
 a = 1.000000
 b[0] = 2.000000
 i = 4
 c[1].real = 1.000000

Fortran and C Scalar Arguments
Table that follows shows a simple correspondence between most types of Fortran and C data.

Fortran and C Language Declarations
Fortran C
integer*1 x char x;
integer*2 x short int x;
integer*4 x long int x;

 137

integer x long int x;
integer*8 x long long x;

 or _int64 x;
logical*1 x char x;
logical*2 x short int x;
logical*4x long int x;
logical x long int x;
logical*8 x long long x;

 or _int64 x;
real*4 x float x;
real*8 x double x;
real x float x;
real*16 No equivalent
double precision x double x;
complex x struct {float real, imag;} x;
complex*8 x struct {float real, imag;} x;
complex*16 x struct {double dreal, dimag;}

x;
double complex x struct {double dreal, dimag;}

x;
complex(KIND=16)x No equivalent
character*6 x char x[6];
Example below illustrates the correspondence shown in the table above: a simple Fortran call
and its corresponding call to a C procedure. In this example the arguments to the C procedure
are declared as pointers.

Example of Passing Scalar Data Types from Fortran to C

Fortran Call
 integer I
 integer*2 J
 real x
 double precision d
 logical l
 call vexp(i, j, x, d, l)
C Called Procedure
 void vexp_ (int *i, short *j, float *x,
double *d, int *l)
 {
 ...program text...
 }

Note

The character data or complex data do not have a simple correspondence to C types.

Passing Scalar Arguments by Value
A Fortran program compiled with the Intel® Fortran Compiler can pass scalar arguments to a C
function by value using the nonstandard built-in function %VAL. The following example shows the
Fortran code for passing a scalar argument to C and the corresponding C code.

 138

Example of Passing Scalar Arguments from Fortran to C

Fortran Call
 integer i
double precision f, result, argbyvalue
result= argbyvalue(%VAL(I),%VAL(F))
END
C Called Function
 double argbyvalue_ (int i,double f)
 {
 ...program text...
 return g;
 }
In this case, the pointers are not used in C. This method is often more convenient, particularly to
call a C function that you cannot modify, but such programs are not always portable.

Note
 Arrays, records, COMPLEX data, and CHARACTER data cannot be passed by value.

Array Arguments
The table below shows the simple correspondence between the type of the Fortran actual
argument and the type of the C procedure argument for arrays of types INTEGER,
INTEGER*2, REAL, DOUBLE PRECISION, and LOGICAL.

Note
 There is no simple correspondence between Fortran automatic, allocatable, adjustable, or
assumed size arrays and C arrays. Each of these types of arrays requires a Fortran array
descriptor, which is implementation-dependent.

Array Data Type
Fortran Type C Type
integer x() int x[];
integer*1 x() signed char x[];
integer*2 x() short x[];
integer*4 x() long int x[];
integer*8 x() long long x[]; or _int64
real*4 x() float x[];
real*8 x() double x[];
real x() float x[];
real*16 x() No equivalent
double precision x() double x[];
logical*1 x() char x[];
logical*2 x() short int x[];
logical*4 x() long int x[];
logical x() int x[];
logical*8 x() long long x[]; or _int64 x[];
complex x() struct {float real, imag;} [x];
complex *8 x() struct {float real, imag;} [x];
complex *16 x() struct {double dreal,dimag;} x;
double complex x() struct { double dreal,dimag; }

[x];
complex(KIND=16) x() No equivalent

 139

Note
 Be aware that array arguments in the C procedure do not need to be declared as pointers.
Arrays are always passed as pointers.

Note
 When passing arrays between Fortran and C, be aware of the following semantic
differences:
y� Fortran organizes arrays in column-major order (the first subscript, or dimension, of a

multiply-dimensioned array varies the fastest); C organizes arrays in row-major order
(the last dimension varies the fastest).

y� Fortran array indices start at 1 by default; C indices start at 0. Unless you declare the
Fortran array with an explicit lower bound, the Fortran element X(1) corresponds to
the C element x[0].

Example below shows the Fortran code for passing an array argument to C and the
corresponding C code.

Example of Array Arguments in Fortran and C

Fortran Code
 dimension i(100), x(150)
 call array(i, 100, x, 150)
Corresponding C Code
 array (i, isize, x, xsize)
 int i[];
 float x[];
 int *isize, *xsize;
 {
 . . .program text. . .
 }

Character Types
If you pass a character argument to a C procedure, the called procedure must be declared
with an extra integer argument at the end of its argument list. This argument is the length of
the character variable.
The C type corresponding to character is char. Example that follows shows Fortran code
for passing a character type called charmac and the corresponding C procedure.

Example of Character Types Passed from Fortran to C

Fortran Code
character*(*) c1
character*5 c2
float x
call charmac(c1, x, c2)
Corresponding C Procedure
 charmac_ (c1, x, c2, n1, n2)
 int n1, n2;
 char *c1,*c2;
 float *x;
 {
 . . .program text. . .
 }
For the corresponding C procedure in the above example, n1 and n2 are the number of

 140

characters in c1 and c2, respectively. The added arguments, n1 and n2, are passed by value,
not by reference. Since the string passed by Fortran is not null-terminated, the C procedure must
use the length passed.

Null-Terminated CHARACTER Constants
As an extension, the Intel Fortran Compiler enables you to specify null-terminated character
constants. You can pass a null-terminated character string to C by making the length of the
character variable or array element one character longer than otherwise necessary, to
provide for the null character. For example:
Fortran Code
 PROGRAM PASSNULL

 interface
 subroutine croutine (input)
 !MS$attributes alias:’-
croutine’::CROUTINE
 character(len=12) input
 end subroutine
 end interface

 character(len=12)HELLOWORLD
 data_HELLOWORLD/’Hello World’C/
 call croutine(HELLOWORLD)
 end
Corresponding C Code
 void croutine(char *input, int len)
 {
 printf("%s\n",input);
 }

Complex Types
To pass a complex or double complex argument to a C procedure, declare the
corresponding argument in the C procedure as either of the two following structures, depending
on whether the actual argument is complex or double complex:
struct { float real, imag; } *complex;
struct { double real, imag; } *dcomplex;
Example below shows Fortran code for passing a complex type called compl and the
corresponding C procedure.

Example of Complex Types Passed from Fortran to C
Fortran Code
double complex dc
complex c
call compl(dc, c)
Corresponding C Procedure
compl (dc, c)
struct { double real, imag; } *dc;
struct { float real, imag; } *c;
{
 . . .program text. . .
}

 141

Return Values
A Fortran subroutine is a C function with a void return type. A C procedure called as a function
must return a value whose type corresponds to the type the Fortran program expects (except for
character, complex, and double-complex data types). The table below shows this
correspondence.

Return Value Data Type

Fortran Type C Type
integer int;
integer*1 signed char;
integer*2 short;
integer*4 long int x;
integer*8 x long long x; or _int64
logical int;
logical*1 char;
logical*2 short;
logical*4x long int x;
logical*8 long long x; or _int64
real float;
real*r x float x;
real*8 x double x;
real*16 No equivalent
double precision double;
Example below shows Fortran code for a return value function called cfunct and the
corresponding C routine.

Example of Returning Values from C to Fortran

Fortran code
 integer iret, cfunct
 iret = cfunct()
Corresponding C Routine
 int cfunct ()
 {
 ...program text...
 return i;
 }

Returning Character Data Types
If a Fortran program expects a function to return data of type character, the Fortran compiler
adds two additional arguments to the beginning of the called procedure’s argument list:

y� The first argument is a pointer to the location where the called procedure should store the
result.

y� The second is the maximum number of characters that must be returned, padded with
white spaces if necessary.

The called routine must copy its result through the address specified in the first argument.
Example that follows shows the Fortran code for a return character function called makechars
and corresponding C routine.

 142

Example of Returning Character Types from C to Fortran

Fortran code
 character*10 chars, makechars
 double precision x, y
 chars = makechars(x, y)
Corresponding C Routine
 void makechars_ (result, length, x, y);
 char *result;
 int length;
 double *x, *y;
 {
 ...program text, producing returnvalue...
 for (i = 0; i < length; i++) {
 result[i] = returnvalue[i];
 }
 }
In the above example, the following restrictions and behaviors apply:

y� The function’s length and result do not appear in the call statement; they are added by
the compiler.

y� The called routine must copy the result string into the location specified by result; it must
not copy more than length characters.

y� If fewer than length characters are returned, the return location should be padded on the
right with blanks; Fortran does not use zeros to terminate strings.

y� The called procedure is type void.
y� You must use lowercase names for C routines or Microsoft* attributes and INTERFACE

blocks to make the calls using uppercase.

Returning Complex Type Data
If a Fortran program expects a procedure to return a complex or double-complex value,
the Fortran compiler adds an additional argument to the beginning of the called procedure
argument list. This additional argument is a pointer to the location where the called procedure
must store its result.
Example below shows the Fortran code for returning a complex data type procedure called wbat
and the corresponding C routine.

Example of Returning Complex Data Types from C to Fortran

Fortran code
 complex bat, wbat
 real x, y
 bat = wbat (x, y)
Corresponding C Routine
 struct _mycomplex { float real, imag };
 typedef struct _mycomplex _single_complex;
 void wbat_ (_single_complex location, float
*x, float *y)
 {
 float realpart;
 float imaginarypart;
 ... program text, producing realpart and
 imaginarypart...
 *location.real = realpart;

 143

 *location.imag = imaginarypart;
 }
In the above example, the following restrictions and behaviors apply:

y� The argument location does not appear in the Fortran call; it is added by the compiler.
y� The C subroutine must copy the result’s real and imaginary parts correctly into location.
y� The called procedure is type void.

If the function returned a double complex value, the type float would be replaced by
the type double in the definition of location in wbat.

Procedure Names
C language procedures or external variables can conflict with Fortran routine names if they use
the same names in lower case with a trailing underscore. For example:
Fortran Code
 subroutine myproc(a,b)
 end

 C Code
 void myproc_(float *a, float *b){
 }
The expressions above are equivalent, but conflicting routine declarations. Linked into the same
executable, they would cause an error at link time.
Many routines in the Fortran runtime library use the naming convention of starting library routine
names with an f_ prefix. When mixing C and Fortran, it is the responsibility of the C program to
avoid names that conflict with the Fortran runtime libraries.
Similarly, Fortran library procedures also include the practice of appending an underscore to
prevent conflicts.

Pointers
In the Intel® Fortran Compiler implementation, pointers are represented in memory in the form
shown in the table that follows.

Pointer Representation in Intel Fortran Compiler

Pointer To: Representation

a numeric scalar one word representing the address of its target
a derived type
scalar

one word representing the address of its target

a character scalar two words, the first word containing the address
of its target and the second containing its
defined length

an array a data structure of variable size that describes
the target array; Intel reserves the right to
modify the form of this structure without notice

Calling C Pointer-type Function from Fortran
In Intel® Fortran, the result of a C pointer-type function is passed by reference as an additional,
hidden argument. The function on the C side needs to emulate this as follows:

 144

Calling C Pointer Function from Fortran

Fortran code
 program test
 interface
 function cpfun()
 integer, pointer:: cpfun
 end function
 end interface
 integer, pointer:: ptr
 ptr => cpfun()
 print*, ptr
 end
C Code
 #include <malloc.h>
 void *cpfun_(int **LP)
 {
 *LP = (int *)malloc(sizeof(int));
 **LP = 1;
 return LP;
 }
The function’s result (int *) is returned as a pointer to a pointer (int **), and the C
function must be of type void (not int*). The hidden argument comes at the end of the
argument list, if there are other arguments, and after the hidden lengths of any character
arguments.
In addition to pointer-type functions, the same mechanism should be used for Fortran functions of
user-defined type, since they are also returned by reference as a hidden argument. The same is
true for functions returning a derived type (structure) or character if the function is
character*(*).

Note
 Calling conventions such as these are implementation-dependent and are not covered by
any language standards. Code that is using them may not be portable.

Implicit Interface
An implicit interface call is a call on a procedure in which the caller has no explicit information on
the form of the arguments expected by the procedure; all calls within a Fortran program are of
this form. All arguments passed through an implicit interface, apart from label arguments, are
passed by address.

Fortran Implicit Argument Passing by Address
Argument Address Passed
scalar the address of the scalar
array the address of the first element of the array
scalar pointer the address of its target
array pointer the address of the first element of its target
procedure the address associated with the external name
Actual arguments of type character are passed as a character descriptor, which consists of
two words, see Character Types.
Label arguments (alternate returns) are handled differently: subroutines which include one or
more alternate returns in the argument list are compiled as integer functions; these functions

 145

return an index into a computed goto; the caller executes these gotos on return. For example:
call validate(x,*10,*20,*30)
is equivalent to
goto (10,20,30), validate(x)

Explicit Interface
Fortran provides various mechanisms by which the declarations of the dummy arguments within
the called procedure can be made available to the caller while it is constructing the actual
argument list. An explicit interface call is one to the following:

y� a module procedure
y� an internal procedure
y� an external procedure for which an interface block is provided

In this form of call the construction of the actual argument list is controlled by the declarations of
the dummy arguments, rather than by the characteristics of the actual arguments. As in an
implicit interface call, all arguments (apart from label arguments) are passed by address, but the
form of the address is controlled by attributes of the associated dummy argument, see the table
below.

Fortran Explicit Argument Passing by Address
Argument Address Passed

scalar the address of the scalar
assumed-shape array the address of an internal data structure which

describes the actual argument
other arrays the address of the first element of the actual

array
scalar pointer the address of the pointer
array pointer the address of an internal data structure which

describes the pointer’s target
procedure the address associated with the external name

As in an implicit interface call, arguments of type character are passed as a character
descriptor, described in Character Types.
Intel reserves the right to alter or modify the form of the internal data used to pass assumed-
shape arrays and pointers to arrays. It is therefore not recommended that interfaces using these
forms of argument are to be compiled with other than Intel® Fortran Compiler.
The call on an explicit interface need not associate an actual argument with a dummy argument if
the dummy argument has the optional attribute. An optional argument that is not
present for a particular call to a routine has a placeholder value passed instead of its address.
The place-holder value for optional arguments is always -1.

Intrinsic Functions
The normal argument passing mechanisms described in the preceding sections may sometimes
not be appropriate when calling a procedure written in C. The Intel® Fortran Compiler also
provides the intrinsic functions %REF and %VAL which may be used to modify the normal
argument passing mechanism. These intrinsics must not be used when calling a procedure
compiled by the Intel Fortran Compiler.

 146

Reference Information

OpenMP* Reference Information

List of OpenMP* Standard Directives and Clauses

OpenMP* Directives
Directive Description

parallel Defines a parallel region.

do,
enddo[nowait]

Identifies an iterative work-sharing construct that specifies a region
in which the iterations of the associated loop should be executed in
parallel. The argument nowait indicates that the loop that reached
the end can proceed with further execution on its thread. If nowait
is absent, all loops have to reach the end, and only then the
execution continues on all threads.

sections Identifies a non-iterative work-sharing constuct that specifies a set of
constucts that are to be divided among threads in a team.

section Indicates that the associated code block should be executed in
parallel.

single,
 end single

Identifies a construct that specifies that the associated structured
block is executed by only one thread in the team.

parallel do,
end parallel do

A shortcut for a parallel region that contains a single do
directive.

Note
The parallel or do OpenMP directive must be immediately
followed by a do statement (do-stmt as defined by R818 of the
ANSI Fortran standard). If you place other statement or an OpenMP
directive between the parallel or do directive and the do
statement, the Intel® Fortran compiler issues a syntax error.

parallel
sections

Provides a shortcut form for specifying a parallel region containing a
single sections directive.

master,
end master

Identifies a constuct that specifies a structured block that is executed
by the master thread of the team.

critical[lock],
end
critical[lock]

Identifies a construct that restricts execution of the associated
structured block to a single thread at a time.

barrier Synchronizes all the threads in a team.

atomic Ensures that a specific memory location is updated atomically.

flush Specifies a "cross-thread" sequence point at which the
implementation is required to ensure that all the threads in a team
have a consistent view of certain objects in memory.

ordered,
end ordered

The structured block following an ordered directive is executed in
the order in which iterations would be executed in a sequential loop.

 147

threadprivate Makes the named file-scope or namespace-scope variables
specified private to a thread but file-scope visible within the thread.

OpenMP Clauses
Clause Description

private Declares variables to be private to each thread in a team.

firstprivate Provides a superset of the functionality provided by the
private clause.

lastprivate Provides a superset of the functionality provided by the
private clause.

shared Shares variables among all the threads in a team.

default Enables you to affect the data-scope attributes of variables.

reduction Performs a reduction on scalar variables.

ordered, end
ordered

The structured block following an ordered directive is executed in
the order in which iterations would be executed in a sequential
loop.

if If IF(scalar_logical_expression) clause is
present, the enclosed code block is executed in parallel only if
the scalar_logical_expression evaluates to
.TRUE.. Otherwise the code block is serialized.

schedule Specifies how iterations of the do loop are divided among the
threads of the team.

copyin Provides a mechanism to assign the same name to
threadprivate variables for each thread in the team
executing the parallel region.

List of OpenMP* Runtime Library Routines
The following table specifies the interface to OpenMP* runtime library routines. The names for the
routines are in user name space. The omp.h header file is provided in the include directory of
your compiler installation. There are definitions for two different locks, omp_lock_t and
omp_nest_lock_t, which are used by the functions in the table.
Function Description
SUBROUTINE
omp_set_num_threads
(num_threads)

Dynamically set the number of threads to use for this
region.

INTEGER FUNCTION
omp_get_num_threads()

Determine what the current number of threads is that
is permitted to execute a region.

INTEGER FUNCTION
omp_get_max_threads()

Obtains the maximum number of threads ever
permitted with this OpenMP implementation.

INTEGER FUNCTION
omp_get_thread_num()

Determines the unique thread number of the thread
currently executing this section of code.

INTEGER FUNCTION
omp_get_num_procs()

Determines the number of processors on the current
machine.

INTEGER FUNCTION
omp_in_parallel()

Determines if the region of code the function is called
in is running in parallel. Returns non-zero if inside a
parallel region, zero otherwise.

SUBROUTINE omp_set_dynamic
(dynamic_threads)
INTEGER dynamic_threads

Enable or disable dynamic adjustment of the number
of threads used to execute a parallel region. If
dynamic threads is non-zero, dynamic threads

 148

are enabled. If dynamic_threads is zero,
dynamic threads are disabled.

INTEGER FUNCTION
omp_get_dynamic()

Determine whether dynamic adjustment of the
number of threads executing a region is supported.
Returns non-zero if dynamic adjustment is supported,
zero otherwise.

SUBROUTINE
omp_set_nested(nested)
INTEGER nested

Enable or disable nested parallelism. If parameter is
non-zero, enable. Default is disabled.

INTEGER FUNCTION
omp_get_nested()

Determine whether nested parallelism is currently
enabled or disabled. Function returns non-zero if
nested parallelism is supported, zero otherwise.

SUBROUTINE
omp_init_lock(lock)
INTEGER lock

Initialize a unique lock and set lock to its value.

SUBROUTINE
omp_destroy_lock(lock)
INTEGER lock

 Disassociate lock from any locks.

SUBROUTINE
omp_set_lock(lock)
INTEGER lock

Force the executing thread to wait until the lock
associated with lock is available. The thread is
granted ownership of the lock when it becomes
available.

SUBROUTINE
omp_unset_lock(lock)
INTEGER lock

Release executing thread from ownership of lock
associated with lock. The lock argument must be
initialized via omp_init_lock(), and behavior
undefined if executing thread does not own the lock
associated with lock.

INTEGER
omp_test_lock(lock)

Attempt to set lock associated with lock. If
successful, return non-zero. lock must be initialized
via omp_init_lock(lock).

SUBROUTINE
omp_init_nest_lock(lock)
 INTEGER lock

 Initialize a unique nested lock and set lock to its
value.

SUBROUTINE
omp_destroy_nest_lock(lock
)
 INTEGER lock

Disassociate the nested lock "lock" from any
lock s.

SUBROUTINE
omp_set_nest_lock(lock)
 INTEGER lock

Force the executing thread to wait until the lock
associated with lock is available. The thread is
granted ownership of the lock when it becomes
available.

SUBROUTINE
omp_unset_nest_lock(lock)
INTEGER lock

Release executing thread from ownership of lock
associated with lock if count is zero. lock must
be initialized via omp_init_nest_lock().
Behavior is undefined if executing thread does not
own the lock associated with lock.

INTEGER
omp_test_nest_lock(lock)

Attempt to set lock associated with lock. If
successful, return nesting count, otherwise return
zero. lock must be initialized via
omp_init_lock().

 149

Compiler Limits

Maximum Size and Number
The table below shows the size or number of each item that the Intel® Fortran Compiler can
process. All capacities shown in the table are tested values; the actual number can be greater
than the number shown.

Item Tested Values
Maximum nesting of interface blocks 10
Maximum nesting of input/output implied DOs 20
Maximum nesting of array constructor implied
DOs

20

Maximum nesting of include files 10
Maximum length of a character constant 32767
Maximum Hollerith length 4096
Maximum number of digits in a numeric
constant

1024

Maximum nesting of parenthesized formats 20
Maximum nesting of DO, IF or CASE constructs 100
Maximum number of arguments to MIN and MAX 255
Maximum number of parameters 256
Maximum number of continuation lines in fixed
or free form

99

Maximum width field for a numeric edit
descriptor

1024

Additional Intrinsic Functions

Overview
The Intel® Fortran Compiler provides a few additional generic functions, and adds specific names
to standard generic functions (in particular, to accommodate DOUBLE COMPLEX arguments).
Some specific names are synonyms to standard names.

Note
 Many intrinsics listed in this section are handled as library calls. Not all the functions that
are listed in the sections that follow can be inlined.

Synonyms
The Intel® Fortran provides synonyms for standard Fortran intrinsic names. They are given in the
right-hand columns.
Standard Name Intel Fortran

Synonym
Standard
 Name

Intel Fortran
Synonym

DBLE DREAL DIGITS EPPREC
IAND AND MINEXPONENT EPEMIN
IEOR XOR MAXEXPONENT EPEMAX
IOR OR HUGE EPHUGE
RADIX EPBASE EPSILON EPMRSP

 150

Note that the Fortran standard intrinsic TINY and the Intel additional intrinsic EPTINY are not
synonyms. TINY returns the smallest positive normalized value appropriate to the type of its
argument, whereas EPTINY returns the smallest positive denormalized value.

DCMPLX Function

The DCMPLX function must satisfy the following conditions:

• If x is of type DOUBLE COMPLEX, then DCMPLX(x) is x.
• If x is of type INTEGER, REAL, or DOUBLE PRECISION, then DCMPLX(x) is

• DBLE(x) + 0i
• If x1 and x2 are of type INTEGER, REAL or DOUBLE PRECISION, then

DCMPLX(x1, x2) is DBLE(x1) + DBLE(x2) * i
• If DCMPLX has two arguments, then they must be of the same type, which must be

INTEGER, REAL, or DOUBLE PRECISION.
• If DCMPLX has one argument, then it may be INTEGER, REAL, or DOUBLE

PRECISION, COMPLEX or DOUBLE COMPLEX.

LOC Function
The LOC function returns the address of a variable or of an external procedure.

Argument And Result KIND Parameters
The following extensions to standard Fortran are provided:

y� References to the following intrinsic functions return INTEGER(KIND=2) results
when compile-time option -I2 or -i2 is specified: INT, IDINT, NINT,
IDNINT, IFIX, MAX1, MIN1.

y� The following specific intrinsic functions may be given arguments of type
INTEGER(KIND=2): IABS, FLOAT, MAX0, AMAX0, MIN0, AMIN0,
IDIM, ISIGN.

y� References to the following intrinsic functions return INTEGER(KIND=8): results
when compile-time option -I2 or -i2 is specified: INT, IDINT, NINT,
IDNINT, IFIX, MAX1, MIN1.

y� The following specific intrinsic functions may be given arguments of type
INTEGER(KIND=8): IABS, FLOAT, MAX0, AMAX0, MIN0, AMIN0,
IDIM, ISIGN.

y� References to the following specific intrinsic functions return REAL(KIND=8) results
when compile-time option -r8 is specified: ALOG, ALOG10, AMAX1, AMIN1,
AMOD, MAX1, MIN1, SNGL, REAL.

y� References to the following specific intrinsic functions return results of type
COMPLEX(KIND=8), that is the real and imaginary parts are each of 8 bytes, when
compile-time option -r8 is specified: CABS, CCOS, CEXP, CLOG, CSIN,
CSQRT, CMPLX.

Intel Fortran KIND Parameters
Each intrinsic data type (INTEGER, REAL, COMPLEX, LOGICAL and CHARACTER)
has a KIND parameter associated with it. The actual values which the KIND parameter for each
intrinsic type can take are implementation-dependent. The Fortran standard specifies that these
values must be INTEGER, that there must be at least two REAL KINDs and two COMPLEX
KINDs (corresponding in each case to default REAL and DOUBLE PRECISION), and that
there must be at least one KIND for each of the INTEGER, CHARACTER and LOGICAL
data types.

 151

INTEGER KIND values

KIND =1 1-byte INTEGER
KIND =2 2-byte INTEGER
KIND =4 4-byte INTEGER default KIND
KIND =8 8-byte INTEGER

REAL KIND values

KIND =4 4-byte REAL default KIND
KIND =8 8-byte REAL equivalent to DOUBLE PRECISION
KIND =16 16-byte REAL

COMPLEX KIND values

KIND =4 4-byte REAL & imaginary parts default KIND
KIND =8 8-byte REAL & imaginary parts equivalent to DOUBLE COMPLEX
KIND =16 16-byte REAL and imaginary parts equivalent to COMPLEX*32
KIND =32 32-byte REAL and imaginary parts

LOGICAL KIND values

KIND =1 1-byte LOGICAL
KIND =2 2-byte LOGICAL
KIND =4 4-byte LOGICAL default KIND
KIND =8 8-byte LOGICAL

CHARACTER KIND value

KIND =1 1-byte CHARACTER default KIND
Except for COMPLEX, the KIND numbers match the size of the type in bytes. For COMPLEX the
KIND number is the KIND number of the REAL or imaginary part.
An include file (f90_kinds.f90) providing symbolic definitions, for use when defining KIND
type parameters, is included as part of the standard Intel® Fortran release.

%REF and %VAL Intrinsic Functions
Intel® Fortran provides two additional intrinsic functions, %REF and %VAL, that can be used to
specify how actual arguments are to be passed in a procedure call. They should not be used in
references to other Fortran procedures, but may be required when referencing a procedure
written in another programming language such as C.
%REF(X) Specifies that the actual argument X is to be passed as a

reference to its value. This is how Intel Fortran normally passes
arguments except those of type character. For each character
value that is passed as an actual argument, Intel Fortran
normally passes both the address of the argument and its
length (with the length being appended on to the end of the
actual argument list as a hidden argument. Passing a character
argument using %REF does not pass the hidden length
argument.

%VAL(X) Specifies that the value of the actual argument X is to be
passed to the called procedure rather than the traditional
mechanism employed by Fortran where the address of the
argument is passed.

In general, %VAL passes its argument as a 32-bit, sign extended, value with the following
exceptions: the argument cannot be an array, a procedure name, a multi-byte Hollerith constant,

 152

or a character variable (unless its size is explicitly declared to be 1).
In addition, the following conditions apply:

y� If the argument is a derived type scalar, then a copy of the argument is generated and
the address of the copy is passed to the called procedure.

y� An argument of complex type will be viewed as a derived-type containing two fields - a
real part and an imaginary part, and is therefore passed in manner similar to derived-type
scalars.

y� An argument that is a double-precision real will be passed as a 64-bit floating-point value.
This behavior is compatible with the normal argument passing mechanism of the C programming
language, and it is to pass a Fortran argument to a procedure written in C where %VAL is
typically used.
The intrinsic procedures %REF and %VAL can only be used in each explicit interface block, or in
the actual CALL statement or function reference as shown in the example that follows.
Calling Intrinsic Procedures

PROGRAM FOOBAR
 INTERFACE
 SUBROUTINE FRED(%VAL(X))
 INTEGER :: X
 END SUBROUTINE FRED
 FUNCTION FOO(%REF(IP))
 INTEGER :: IP, FOO
 END FUNCTION FOO
 END INTERFACE
 ...
 CALL FRED(I) ! The value of I is passed to FRED
 J = FOO(I) ! I passed to FOO by reference,
 ! FOO receives a reference to
 ! the value of I.
 END PROGRAM

 Alternatively:
 PROGRAM FOOBAR
 INTEGER :: FOO
 EXTERNAL FOO, FRED
 CALL fred(%VAL(I))
 J = FOO(%REF(I))
 END PROGRAM

List of Additional Intrinsic Functions
To understand the tabular list of additional intrinsic functions that follows after these notes, take
into consideration the following:

y� Specific names are only included in the Additional Intrinsic Functions table if they are not
part of standard Fortran.

y� An intrinsic that takes an integer argument accepts either INTEGER(KIND=2) or
INTEGER(KIND=4) or INTEGER(KIND=8).

y� The abbreviation "double" stands for DOUBLE PRECISION.
y� The abbreviation "dcomplex" stands for DOUBLE COMPLEX. dcomplex type is

an Intel® Fortran extension, as are all intrinsic functions taking dcomplex arguments
or returning dcomplex results.

y� If an intrinsic function has more than one argument, then they must all be of the same
type.

 153

y� If a function name is used as an actual argument, then it must be a specific name, not a
generic name.

y� If a function name is used as a dummy argument, then it does not identify an intrinsic
function in the subprogram, but has a data type according to the normal rules for
variables and arrays.

Additional Intrinsic Functions

Intrinsic
Function

Definition

Generic
Name

Specific
Name

No of
Args

Type of
Args

Type of
Function

Type
conversion

Conversion to
double precision
See Note 1

DREAL 1 real
 real*16
 doubl
 complex*32

real
 real*16
 double
 complex*32

DFLOAT

1

integer*2
 integer*4
 integer*8

real*8
 real*8
 real*8

Conversion to dou
complexSee Note

DCMPLX

1 or 2

integer*2
 integer*4
 integer*8
 real*4
 real*8
 real*16
 real*16
 complex*8
 complex*16
 complex*32
 complex*32

complex*16
 complex*16
 complex*16
 complex*16
 complex*16
 complex*16
 complex*16
 complex*16
 complex*16
 complex*16
 complex*32

Absolute
value

|x|

ABS

ZABS
 CDABS
 TABS
 DABS
 QABS

1

dcomplex
 dcomplex
 real
 double
 real*16
 complex*32

double
 double
 real
 double
 real*16
 complex*32

Imaginary
part of a
complex
argument

xi

IMAG

DIMAG

CDIMAG
 TIMAG
 QIMAG

1

dcomplex
 dcomplex
 real
 real*16
 complex*32

double
 double
 real
 real*16
 complex*32

SQRT of a
complex
argument

(xr, -xi)

CONJG

DCONJ

GTCONJ
 DCONJ
 QCONJ

1

dcomplex
 real
 double
 complex*32

double
 real
 double
 complex*32

Square root

Ðx

SQRT

ZSQRT
 SQRT
 TSQRT
 DSQRT

1

dcomplex
 dcomplex
 real
 real*16

dcomplex
 dcomplex
 real
 real*16

Exponential

ex

EXP

ZEXP
 CDEX
 TEXP
 QEXP
 DEXP

1

dcomplex
 dcomplex
 real
 double
 real*16

dcomplex
 dcomplex
 real
 double
 complex*32

 154

 double double

Natural
Logarithm

loge(x)

LOG

ZLOG
 CDLOG
 DLOG
 QLOG

1

dcomplex
 dcomplex
 real*16
 real*16
 complex*32

dcomplex
 dcomplex
 double
 real*16
 complex*32

Bitwise
 Operation

AND AND 2 integer integer

See Note 1 OR OR 2 integer integer
 Exclusive OR XOR 2 integer integer
 Shift left: x1 logica

shifted left x2 bits.
must be > 0

 LSHIFT 2 integer integer

 Shift right: x1 logic
shifted right x2 bits
must be > 0

 RSHIFT 2 integer integer

Environ-
mental
Inquiries.
See Note 1

Base of number
systems

EPBASE

1

real
 double
 real*16
 real*16
 complex*32

integer
 integer
 integer
 integer
 complex*32

 Number of Signific
Bits

EPPREC

1

real
 double
 real*16
 real*16
 complex*32

integer
 integer
 integer
 integer
 integer

Minimum Exponen

EPEMIN

1

real
 double
 real*16
 real*16
 complex*32

integer
 integer
 integer
 integer
 integer

Maximum
Exponent

EPEMAX

1

real
 double
 real*16
 real*16
 complex*32

integer
 integer
 integer
 integer
 integer

Smallest non-zero
number

EPTINY

1

real
 double
 real*16
 double
 complex*32

real
 double
 real*16
 double
 double

Largest Number
Representable

EPHUG
E

1

integer
 real
 double
 real*16
 double
 complex*32

integer
 real
 double
 real*16
 double
 double

Epsilon

EPMRS
P

1

real
 double
 real*16
 double
 complex*32

real
 double
 real*16
 double
 complex*32

 155

Location
See Note 3

Address of LOC 1 any integer

Sine

sin(x)

SIN
 SIND

ZSIN
 SIND
 DSIND
 QSIND

1

dcomplex
 real*16
 double
 real*16
 complex*32

dcomplex
 real*16
 double
 real*16
 complex*32

Cosine

cos(x)

COS
 COSD

ZCOS
 CDCOS
 COSD
 DCOSD
 QCOSD

1

dcomplex
 dcomplex
 real
 double
 real*16
 complex*32

dcomplex
 dcomplex
 real
 double
 real*16
 complex*32

Tangent

tan(x)

TAND

TAND
 DTAND
 QTAND

1

real
 double
 real*16
 complex*32

real
 double
 real*16
 complex*32

Arcsine

arcsin(x)

ASIND

ASIND
 DASIND
 QASIND

1

real
 double
 real*16
 complex*32

real
 double
 real*16
 complex*32

Arc-cosine

ACOSD

ACOSD
 QCOSD

DACOS
D

QACOS
D

1

real
 complex*32
 double
 real*16
 complex*32

real
 complex*32
 double
 real*16
 complex*32

Arctangent

arctan(x)

ATAND

ATAND

DATAND

QATAND

1

real
 double
 real*16
 complex*32

real
 double
 real*16
 complex*32

arctan(x1-x2)

ATAN2D

ATAN2D
 DATAN2
 XATAN2D
 QATAN2

2222

real
 double
 real*16
 real*16
 complex*32

real
 double
 real*16
 real*16
 complex*32

Intel Fortran Compiler Key Files

Key Files Summary for IA-32 Compiler
The following tables list and briefly describe files that are installed for use by the IA-32 version of
the compiler.

 156

/bin Files
File Description

ifcvars.sh Batch file to set environment variables

ifc.cfg Configuration file for use from command line

ifc Intel® Fortran Compiler

ifccem FCE Manager Utility

f90com Executable used by the compiler

fpp Fortran preprocessor

profmerge Utility used for Profile Guided Optimizations

proforder Utility used for Profile Guided Optimizations

xild Tool used for Interprocedural Optimizations

/lib Files
File Description

libCEPCF90.a Fortran I/O library to coexist with C

libF90.a Intel-specific Fortran runtime library

libIEPCF90.a Intel-specific Fortran runtime I/O library

libPEPCF90.a Portability library

libPOSF90.a Posix library

libcprts.a C++ standard language library

libcxa.so C++ language library indicating I/O data location

libguide.a OpenMP library

libguide.so Shared OpenMP library

libimf.a Special purpose math library functions, including
some transcendentals, built only for Linux.

libintrins.a Intrinsic functions library

libirc.a Intel-specific library (optimizations)

libsvml.a Short-vector math library (used by vectorizer)

Key Files Summary for Itanium(TM) Compiler
The following tables list and briefly describe files that are installed for use by the Itanium(TM)
compiler version of the compiler.

/bin Files
File Description

efcvars.sh Batch file to set environment variables

efc.cfg Configuration file for use from command line

efc Intel® Fortran Compiler

efccem FCE Manager Utility

f90com Executable used by the compiler

fpp Fortran preprocessor

ias Assembler

profmerge Utility used for Profile Guided Optimizations

 157

proforder Utility used for Profile Guided Optimizations

xild Tool used for Interprocedural Optimizations

/lib Files
File Description

libCEPCF90.a Fortran I/O library to coexist with C

libF90.a Intel-specific Fortran run-time library

libIEPCF90.so Intel-specific Fortran I/O library

libPEPCF90.a Portability library

libPOSF90.so Posix library

libcprts.a C++ standard language library

libcxa.so C++ language library indicating I/O data location

libirc.a Intel-specific library (optimizations)

libm.a Math library

libguide.a OpenMP library

libguide.so Shared OpenMP library

libmofl.a Multiple Object Format Library, used by the Intel
assembler

libmofl.so Shared Multiple Object Format Library, used by the
Intel assembler

libintrins.a Intrinsic functions library

Lists of Error Messages

Overview
This section provides lists of error messages generated during compilation phases or reporting
program error conditions. It includes the error messages for the following areas:

y� runtime
y� allocation
y� input-output
y� intrinsic procedures
y� mathematical
y� exceptions

Runtime Errors (IA-32 Only)
These errors are caused by an invalid run-time operation. Following the message, a post-mortem
report is printed if any of the compile-time options -C, -CA, -CB, -CS, -CU, -CV or
-d[n] was selected.

Error

Option(s)
Required

Message

401 -CU Unassigned variable

404 none Assigned label is not in specified list
405 none Integer is not assigned with a format label

 158

406 -CB Array bounds exceeded

439 none nth argument is not present
440 none Inconsistent lengths in a pointer assignment
442 none Inconsistent length for CHARACTER pointer function

*447 -CS Invalid DIM argument to LBOUND
*448 -CS Invalid DIM argument to UBOUND

*449 -CS Invalid DIM argument to SIZE
451 none Procedure is a BLOCKDATA
454 -CS Array shape mismatch

455 -CB Array section bounds inconsistent with parent array

456 -CB Invalid character substring ending position

457 -CB Invalid character substring ending position

458 none Object not allocated
459 -CA Array not allocated

460 -CA Pointer not allocated

461 -CA, -CU Pointer is undefined

462 -CA Assumed-shape array is not allocated

463 -CA Assumed-shape array is undefined

464 none Inconsistent lengths in a character array constructor
441 -CV
443 -CV
444 -CV
480 -CV
481 -CV

441 -CV Inconsistent length for CHARACTER pointer argument
argument-name

443 -CV Inconsistent length for CHARACTER argument

444 -CV Inconsistent length for CHARACTER function
480 -CV Too many arguments specified

481 -CV Not enough arguments specified

*482 -CV Incorrect interface block

*483 -CV Interface block required for subprogram-name

*484 -CV name is not a type-kind function-subroutine

*485 -CV Argument type mismatch

*486 -CV Array rank mismatch

*These errors are followed by additional information, as appropriate:
y� nth dummy argument is not an actual-argument-type
y� type1 actual argument passed to type2 dummy argument n
y� type actual argument passed to cray-pointer dummy argument n
y� Cray-pointer actual argument passed to type dummy argument n
y� n th dummy argument is [not] a cray-pointer
y� n th actual argument is not compatible with type RECORD
y� name is [not] a pointer-valued function
y� n th dummy argument is [not] a pointer
y� name is [not] a dynamic CHARACTER function

 159

y� n th dummy argument is [not] optional
y� n th dummy argument is [not] an assumed-shape array
y� name is [not] an array-valued function
y� n th dummy argument is an array but the actual argument is a scalar
y� n th dummy argument is a scalar but the actual argument is an array
y� The actual rank (x) of name does not match the declared rank (y)
y� The data type of name does not match its declared type
y� n th dummy argument and the actual argument are different data types
y� n th actual argument passed to Fortran subprogram using %VAL
y� n th actual argument passed to Fortran subprogram using %REF

Allocation Errors
The following errors can arise during allocation or deallocation of data space.
If the relevant ALLOCATE or DEALLOCATE includes a STAT = specifier, then an
occurrence of any of the errors below will cause the STAT variable to become defined with the
corresponding error number, instead of the error message being produced.
In the error messages, vartype is

array a pointer to an array, an allocatable array, or a
temporary array

character
scalar

a pointer to a character scalar, an automatic character
scalar, or a temporary character scalar

pointer a pointer to a non-character scalar

Error Message
491 vartype is already allocated.

492 vartype is not allocated.
493 vartype was not created by ALLOCATE.

494 Allocation of nnn bytes failed
 or
 Allocation of array with extent nnn failed
 or
 Allocation of array with element size nnn failed
 or
 Allocation of character scalar with element size nnn failed
 or
 Allocation of pointer with element size nnn failed.

495 Heap initialization failed.

Input/Output Errors
The number and text of each input-output error message is given below, with the context in which
it could occur and an explanation of the fault which has occurred. If the input-output statement
includes an IOSTAT=STAT specifier, then an occurrence of any of the errors that follow will
cause the STAT variable to become defined with the corresponding error number.
Error Message Where Occurring Description
117 Unit not

connected
OPEN An attempt was made to read or write to a closed

unit.

 160

118 File already
connected

OPEN An attempt was made to OPEN a file on one unit
while it was still connected to another.

119 ACCESS conflict OPEN, Positional,
READ, WRITE

When a file is to be connected to a unit to which it is
already connected, then only the BLANK, DELIM,
ERR, IOSTAT and PAD specifiers may be redefined.
An attempt has been made to redefine the ACCESS
specifier. This message is also used if an attempt is
made to use a direct-access I/O statement on a unit
which is connected for sequential I/O or a sequential
I/O statement on a unit connected for direct access
I/O.

120 RECL conflict OPEN When a file is to be connected to a unit to which it is
already connected, then only the BLANK, DELIM,
ERR, IOSTAT and PAD specifiers may be redefined.
An attempt has been made to redefine the RECL
specifier.

121 FORM conflict OPEN When a file is to be connected to a unit to which it is
already connected, then only the BLANK, DELIM,
ERR, IOSTAT and PAD specifiers may be redefined.
An attempt has been made to redefine the FORM
specifier.

122 STATUS conflict OPEN When a file is to be connected to a unit to which it is
already connected, then only the BLANK, DELIM,
ERR, IOSTAT and PAD specifier may be redefined.
An attempt has been made to redefine the STATUS
specifier.

123 Invalid STATUS CLOSE STATUS=DELETE has been specified in a CLOSE
statement for a unit which has no write permissions;
for example, the unit has been opened with the
READONLY specifier.

125 Specifier not
recognized

OPEN A specifier value defined by the user has not been
recognized.

126 Specifiers
inconsistent

OPEN Within an OPEN statement one of the following
invalid combinations of specifiers was defined by the
user:
ACCESS=DIRECT was specified when
STATUS=APPEND
BLANK=FORMATTED was specified when FORM=
UNFORMATTED

127 Invalid RECL
value

OPEN, DEFINE
FILE

The value of the RECL specifier was not a positive
integer.

128 Invalid filename INQUIRE The name of the file in an Inquire by file statement is
not a valid filename.

129 No filename
specified

OPEN In an OPEN statement, the STATUS specifier was
not SCRATCH or UNKNOWN and no filename was
defined.

130 Record length not
specified

OPEN The RECL specifier was not defined although
ACCESS=DIRECT was specified.

131 An equals
expected

Namelist READ A variable name, array element or character
substring reference in the input was not followed by
an ‘=’.

 161

132 Value separator
missing

List-Directed
READ, Namelist
READ

A complex or literal constant in the input stream was
not terminated by a delimiter (that is, by a space, a
comma or a record boundary).

133 Value separator
expected

Namelist READ A subscript value in a character substring or array
element reference in the input was not followed by a
comma or close bracket.

134 Invalid scaling WRITE with
FORMAT

If d represents the decimal field of a format descriptor
and k represents the current scale factor, then the
ANSI Standard requires that the relationship -
d<k<d+2 is true when an E or D format code is used
with a WRITE statement. This requirement has been
violated.

135 Invalid logical
value

Formatted READ A logical value in the input stream was syntactically
incorrect.

136 Invalid character
value

Namelist READ A character constant does not begin with a quote
character.

137 Value not
recognized

List-Directed
READ, Namelist
READ

An item in the input stream was not recognized.

138 Invalid repetition
value

List-Directed
READ, Namelist
READ

The value of a repetition factor found in the input
stream is not a positive integer constant.

139 Illegal repetition
factor

List-Directed
READ, Namelist
READ

A repetition factor in the input stream was
immediately followed by another repetition factor.

140 Invalid integer Formatted READ The current input field contained a real number when
an integer was expected.

141 Invalid real Formatted READ The current input field contained a real number which
was syntactically incorrect.

143 Invalid complex
constant

List-Directed
READ, Namelist
READ

The current input field contained a complex number
which was syntactically incorrect.

144 Invalid subscript Namelist READ A subscript value in an array element reference in the
input was not a valid integer.

145 Invalid substring Namelist READ A subscript value in a character substring reference
was not a valid integer or was not positive.

146 Variable not in
Namelist

Namelist READ The data contained an assignment to a variable
which is not in the NAMELIST list.

147 Variable not an
array

Namelist READ A variable name in the data was followed by an open
bracket but the name is not an array or character
variable.

148 Invalid character Formatted READ A character has been found in the current input
stream which cannot syntactically be part of the entity
being assembled.

149 Invalid Namelist
input

Namelist READ The first character of a record read by a Namelist
READstatement was not a space.

150 Literal not
terminated

List-Directed
READ, Namelist
READ

A literal constant in the input file was not terminated
by a closing quote before the end of the file.

 162

151 A variable name
expected

Namelist READ A list of array or array element values in the data
contained too many values for the associated
variable.

152 File does not exist OPEN An attempt has been made to open a file which does
not exist with STATUS=OLD.

153 Input file ended READ All the data in the associated internal or external file
has been read.

154 Wrong length
record

READ, WRITE The record length as defined by a FORMAT
statement, or implied by an unformatted READ or
WRITE, exceeds the defined maximum for the
current input or output file.

155 Incompatible
format descriptor

READ/WRITE with
FORMAT

A format description was found to be incompatible
with the corresponding item in the I-O list.

156 READ after
WRITE

READ An attempt has been made to read a record from a
sequential file after a WRITE statement.

158 Record number
out of range

Direct Access
READ/WRITE,
FIND

The record number in a direct-access I-O statement
is not a positive value, or, when reading, is beyond
the end of the file.

159 No format
descriptor for data
item

READ/WRITE with
FORMAT

No corresponding format code exists in a FORMAT
statement for an item in the I-O list of a READ or
WRITE statement.

160 READ after
Endfile

READ An attempt has been made to read a record from a
sequential file which is positioned at ENDFILE.

161 WRITE operation
failed

WRITE After repeated retries WRITE(2) could not
successfully complete an output operation. This may
occur if a signal to be caught interrupts output to a
slow device

162 No WRITE
permission

WRITE An attempt has been made to write to a file which is
defined for input only.

163 Unit not defined or
connected

FIND The unit specified by a FIND statement is not open.
The unit should first be defined by a DEFINE FILE
statement, or should be connected by some other
means.

164 Invalid channel
number

Any I-O Operation The unit specified in an I/O statement is a negative
value.

166 Unit already
connected

DEFINE FILE The unit specified in a DEFINE FILE statement is
already open.

167 Unit already
defined

DEFINE FILE,
OPEN

The same unit has already been specified by a
previous DEFINE FILE statement.

168 File already exists OPEN An attempt has been made to OPEN an existing file
with STATUS=NEW.

169 Output file
capacity
exceeded

READ, WRITE An attempt has been made to write to an internal or
external file beyond its maximum capacity.

171 Invalid operation
on file

Positional, READ,
WRITE

An I/O request was not consistent with the file
definition; for example, attempting a BACKSPACE on
a unit that is connected to the screen.

172 various READ, WRITE An unexpected error was returned by READ2 - the
error text will be the NT* message associated with
the failure.

 163

173 various READ, WRITE An unexpected error was returned by WRITE- the
error text will be the LINUX* message associated
with the failure.

174 various READ, WRITE An unexpected error was returned by LSEEK - the
error text will be the LINUX message associated with
the failure.

175 various OPEN, CLOSE An unexpected error was returned by UNLINK - the
error text will be the LINUX message associated with
the failure.

176 various OPEN, CLOSE An unexpected error was returned by CLOSE- the
error text will be the LINUX message associated with
the failure.

177 various OPEN An unexpected error was returned by CREAT - the
error text will be the LINUX message associated with
the failure.

178 various OPEN An unexpected error was returned by OPEN- the
error text will be the LINUX message associated with
the failure.

181 Substring out of
range

Namelist READ A character substring reference in the input data lay
beyond the bounds of the character variable.

182 Invalid variable
name

Namelist READ A name in the data was not a valid variable name.

185 Too many values Namelist READ
specified

A repetition factor (of the form r*c) exceeded the
number of elements remaining unassigned in either
an array or array element reference.

186 Not enough
subscripts

Namelist READ
specified

An array element reference contained fewer
subscripts than are associated with the array.

187 Too many
subscripts

Namelist READ
specified

An array element reference contained more
subscripts than are associated with the array.

188 Value out of range Formatted READ During numeric conversion from character to binary
form a value in the input record was outside the
range associated with the corresponding I-O item.

190 File not suitable OPEN A file which can only support sequential file
operations has been opened for direct access I-O.

191 Workspace
exhausted

OPEN Workspace for internal tables has been exhausted.

192 Record too long READ The length of the current record is greater than that
permitted for the file as defined by the RECL=
specifier in the OPEN statement

193 Not connected for
unformatted I-O

Unformatted
READ/WRITE

An attempt has been made to access a formatted file
with an unformatted I-O statement.

194 Not connected for
formatted
 I-O

Formatted
READ/WRITE

An attempt has been made to access an unformatted
file with a formatted I-O statement.

195 Backspace not
permitted

BACKSPACE An attempt was made to BACKSPACE a file which
contains records written by a list-directed output
statement; this is prohibited by the ANSI Standard.

199 Field too large List-Directed
READ, Namelist
READ

An item in the input stream was found to be more
than 1024 characters long (this does not apply to
literal constants).

 164

203 POSITION conflict OPEN When a file is to be connected to a unit to which it is
already connected, then only the BLANK, DELIM,
ERR, IOSTAT and PAD specifiers may be redefined.
An attempt has been made to redefine the POSITION
specifier.

204 ACTION conflict OPEN When a file is to be connected to a unit to which it is
already connected, then only the BLANK, DELIM,
ERR, IOSTAT and PAD specifiers may be redefined.
An attempt has been made to redefine the ACTION
specifier.

205 No read
permission

READ An attempt has been made to READfrom a unit which
was OPENed with ACTION="WRITE".

206 Zero stride invalid Namelist READ An array subsection reference cannot have a stride of
zero.

208 Incorrect array
triplet syntax

Namelist READ An array subsection triplet has been input incorrectly.

209 Name not a
derived type

Namelist READ A name in the data which is not a derived type has
been followed by a ‘%’.

210 Invalid component
name

Namelist READ A derived type reference has not been followed by an
‘=’.

211 Component name
expected

Namelist READ A ‘%’ must be followed by a component name in a
derived type reference.

212 Name not in
derived type

Namelist READ A component is not in this derived type.

213 Only one
component may
be array-valued

Namelist READ In a derived-type reference, only the derived type or
one of its components may be an array or an array
subsection.

214 Object not
allocated

READ/WRITE An item has been used which is either an unallocated
allocatable array or a pointer which has been
disassociated.

Other Errors Reported by I/O statements
Errors 101-107 arise from faults in run-time formats:
Error Message

101 Syntax error in format
102 Format is incomplete
103 A positive value is required here
104 Minimum number of digits exceeds width
105 Number of decimal places exceeds width
106 Format integer constants > 32767 are not

supported
107 Invalid H edit descriptor

Notes
y� The I/O statements OPEN, CLOSE and INQUIRE are classified as Auxiliary I/O

statements. The I/O statements REWIND, ENDFILE and BACKSPACE are classified
as Positional I/O statements.

y� The IOSTAT = variable is set to -1 if an end-of-file condition occurs, to -2

 165

if an end-of-record condition occurs (in a non-advancing READ), to the error
number if one of the listed errors occurs, and to 0 if no error occurs.

y� Should no input/output specifier relating to the type of the occurring input/output error be
given (END=, EOR=, ERR= or IOSTAT=, as appropriate), then the input/output error
will terminate the user program. All units which are currently opened will be closed, and
the appropriate error message will be output on Standard Error followed (if requested) by
a postmortem report (see Runtime Diagnostics).

y� The form of an input/output error message is presented in the table that follows.
I/O Error nnn : Text of message

In Procedure : Procedure name
At Line : Lline number
Statement : I/O statement type
Unit : Unit identifier or Internal File
Connected To : Ffile name
Form : Formatted, Unformatted or Print
Access : Sequential or Direct
Nextrec : Record number
Records Read : Number of records input
Records Written : Number of records output
Current I/O Buffer : Snapshot of the current record with a pointer to

the current position

 Note
 Only as much information as is available or pertinent will be displayed.

Intrinsic Procedure Errors
The following error messages, which are unnumbered, are generated when incorrect arguments
are specified to the Intel® Fortran Compiler intrinsic procedures, and option -CS was selected
at compile-time. The messages are given in alphabetic order.
Each message is preceded by a line of the form:
ERROR calling the intrinsic subprogram name:
where name is the name of the intrinsic procedure called. The term "integer" indicates
integer format of an argument.

List of Intrinsic Errors
Argument integer of the intrinsic function name has string length integer. It should have string
length at least integer.
Argument integer of the intrinsic function name is a rank integer array.
It should be a rank integer array.
Argument integer of the intrinsic function name is an array with integer elements. It should be an
array with at least integer elements.
Argument name has the value integer and argument name has the value integer . Both
arguments should have non-negative values and their sum should be less than or equal to
integer.
Array argument name has size integer.
It should have size integer.
Array arguments name1 and name2 should have the same shape.
The shape of argument name1 is: (integer,integer,...,integer).
The shape of argument name2 is: (integer,integer,...,integer).
At least one of the array arguments should have rank = 2

 166

The extent of the last dimension of MATRIX_A is integer.
The extent of the first dimension of MATRIX_B is integer.
These values should be equal.
The DIM parameter had a value of integer.
Its value should be integer.
The DIM parameter had a value of integer.
Its value should be at least integer and no larger than integer.
The name array has shape: (integer,integer,...,integer).
The shape of name should be: (integer,integer,...,integer).
The NCOPIES argument has a value of integer. NCOPIES should be non-negative.
The ORDER argument should be a permutation of the integer1 to integer.
The contents of the ORDER argument array is: (integer,integer,...,integer).
The rank of the RESULT array should be equal to the size of the SHAPE array.
The rank of the RESULT array is integer. The size of the SHAPE array is integer.
The RESULT array has shape: (integer,integer,...,integer).
The shape of the RESULT array should be: (integer,integer,...,integer).
The RESULT array has size integer. It should have size integer.
The RESULT character string has length integer. It should have length integer.
The SHAPE argument has size integer.
Its size should be at least integer and no larger than integer.

y� The SHAPE argument should have only non-negative elements.
y� The contents of the SHAPE array is: (integer,integer,...,integer).
y� The SIZE argument has a value integer. Its value should be non-negative.
y� The size of the SOURCE array should be at least integer.
y� The size of the SOURCE array is integer.
y� When setting seeds with the intrinsic function name, the first seed must be at least

integer and not more than integer, and the second seed must be at least integer and not
more than integer.

Mathematical Errors
This section lists the errors that can be reported as a consequence of using an intrinsic function
or the exponentiation operator **.
If any of the errors below is reported, the user program will terminate. A postmortem report (see
Runtime Diagnostics) will be output if the program was compiled with the option -d[n]. All
input-output units which are open will be closed.
The number and text of mathematical errors are:
Error Message
16 Negative DOUBLE PRECISION value raised to a non-integer power
17 DOUBLE PRECISION zero raised to non-positive power
22 REAL zero raised to non-positive power
23 Negative REAL value raised to a non-integer power
24 REAL value raised to too large a REAL power
38 INTEGER raised to negative INTEGERpower
39 INTEGERzero raised to non-positive power
40 INTEGER to INTEGER power overflows
46 DOUBLE PRECISION value raised to too large a DOUBLE PRECISION power
47 COMPLEX zero raised to non-positive INTEGER power

 167

Exception Messages
The following messages, which are unnumbered, are a selection of those which can be
generated by exceptions (signals). They indicate that a hardware-detected or an asynchronous
error has occurred. Note that you can obtain a postmortem report when an exception occurs by
compiling with the -d[n] option.
The occurrence of an exception usually indicates that the Fortran program is faulty.
Message Comment
QUIT signal Program aborted by the user typing ^/ (ctrl + /)
Illegal Instruction May be indicative of a bad call on a function that is

defined to return a derived type result: either the sizes
of the expected and actual results do not correspond,
or the function has not been called as a derived type
function.

Alignment Error Access was attempted to a variable which is not
aligned on an address boundary appropriate to its
type; this could occur, for example, when a formal
double-precision type variable is aligned on a single
word boundary.

Address Error **Bus
Error**

Usually caused by a wrong value being used as an
address (check the associativity of all pointers).

