
Intel® Fortran
Programmer’s
Reference

Copyright © 1996-2001 Intel Corporation
All Rights Reserved
Issued in U.S.A.
Order Number: 687928-5001

World Wide Web: http://developer.intel.com

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel
or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Con-
ditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied war-
ranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular
purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

This Intel¨ Fortran ProgrammerÕs Reference as well as the software described in it is furnished under license and may
only be used or copied in accordance with the terms of the license. The information in this manual is furnished for infor-
mational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corpora-
tion. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or trans-
mitted in any form or by any means without the express written consent of Intel Corporation.

Intel may make changes to specifications and product descriptions at any time, without notice.

Intel, Pentium, Pentium Pro, Xeon, Itanium, and MMX are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 1996-2001.

Copyright© 1996 Hewlett-Packard Company.

Copyright© 1996 Edinburgh Portable Compilers, Ltd.

Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copy-
right laws. All rights reserved.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
sub-paragraph (c)(I)(ii) of the Rights in Technical Data and Computer Software clause in DFARS 252-227-7013,

Hewlett-Packard Company
3000 Hanover Street

Palo Alto, CA 94304 U.S.A

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-19(c0(1,2).

Copyright© 1983-96 Hewlett-Packard Company.

Copyright¨ 1980, 1984, 1986 Novell, Inc.

Material in this document based on the book, Fortran Top 90ß90

Key Features of fortran 90 by Adams, Brainerd, Martin and Smith is produced with the permission of the publisher, Uni-
comp, Inc.

Copyright© 1979, 1980, 1983, 1985-1993 The Regents of the University of California. This software and documentation
is based in part on materials licensed from The Regents of the University of California. We acknowledge the role of the
Computer Systems Research Group and Electrical Engineering and Computer Sciences Department of the University of
California at Berkeley and the other named Contributors in their development.

iii

Contents
About This Manual

Related Publications... xxvi
Notational Conventions ... xxvii

Chapter 1 Introduction to Intel® Fortran
 New Features in Fortran 95.. 1-1

Source Format .. 1-2
Data Types.. 1-2
Operators .. 1-2
Control Constructs .. 1-3
Arrays.. 1-3
Procedures.. 1-4
Pointers... 1-5
Modules .. 1-5
Non-advancing I/O .. 1-5
Namelist I/O .. 1-6

Chapter 2 Language Elements
Character Set .. 2-1
Lexical Tokens ... 2-2
Names ... 2-2
Program Structure ... 2-3
Statement Labels... 2-3

iv

Intel Fortran Programmer’s Reference

Construct Names ... 2-4
Statements... 2-4

Statement Order ... 2-6
Source Program Forms ... 2-8

Fixed Source Form ... 2-8
Initial Line ... 2-9
Continuation Line ... 2-9
Comment Line.. 2-10
Tab-format Lines .. 2-10

Free Source Form... 2-10
Source Lines .. 2-10
Statement Labels ... 2-11
Spaces ... 2-11
Examples Using Spaces .. 2-11
Comments .. 2-12
Statement Continuation.. 2-12
Example of Statement Continuation........................... 2-13

Intersection Source Form.. 2-13
INCLUDE Line ... 2-14

Example of INCLUDE Lines....................................... 2-15

Chapter 3 Data Types and Data Objects
Terminology ... 3-1
Intrinsic Data Types ... 3-2
Derived Types.. 3-4
Type Declarations .. 3-5

Examples of Type Declarations .. 3-7
Alternative Form of Intrinsic Type Spec Declaration 3-8

Alternative Form of Initialization Within Declaration 3-9
Increasing Default Sizes .. 3-9

Intrinsic Inquiry Functions ... 3-9
Attributes... 3-10

Contents

v

Representation of Literal Constants..................................... 3-11
Integer Constants .. 3-11

BOZ Constants .. 3-12
Real Constants... 3-13
Complex Constants .. 3-14
Character Constants .. 3-14
Logical Constants... 3-16
Typeless Constants .. 3-16

Extended Use of BOZ Constants............................... 3-17
Hollerith Constants .. 3-18

Character Substrings .. 3-19
Derived-type Definition.. 3-20

Structure Constructor ... 3-22
Implicit and Explicit Typing .. 3-22

IMPLICIT Statement .. 3-23
Data Initialization... 3-24
Storage Association and Alignment 3-25

Storage Association Alignment Rule 3-25
Dynamic Data Objects .. 3-26

Allocatable Arrays .. 3-27
Pointers .. 3-27

Cray-Style Pointers.. 3-27
Automatic Objects .. 3-28

Records and Structures .. 3-28

Chapter 4 Arrays
 New Features... 4-1
Array Properties .. 4-3
Array Declaration .. 4-4

Syntax .. 4-5
Examples of Array Specifiers ... 4-5
Array Element Storage Order ... 4-6

vi

Intel Fortran Programmer’s Reference

Array Categories.. 4-7
Explicit-shape Arrays .. 4-7
Assumed-shape Arrays... 4-9
Deferred-shape Arrays.. 4-12

Pointer Arrays .. 4-12
Allocatable Arrays .. 4-13

Assumed-size Arrays .. 4-15
Whole Arrays and Array Subobjects.................................... 4-16

Array Elements ... 4-17
Whole Arrays .. 4-19
Array Sections... 4-20

Section Subscript List... 4-20
Array of Derived-type Components 4-25
Array of Character Substrings.................................... 4-27

Array Constructors... 4-27
Syntax ... 4-28

 Zero-sized Arrays ... 4-30
Array Expressions.. 4-31
Array Functions.. 4-34

Intrinsic Functions ... 4-34
User-defined Functions... 4-35

Array Inquiry Functions.. 4-36

Chapter 5 Expressions and Assignment
Expressions ... 5-1

Formation of Expressions ... 5-3
Primary ... 5-3
Operators ... 5-4
Precedence of Operators ... 5-5
Special Forms of Expression.. 5-7
Constant Expression .. 5-7
Initialization Expression.. 5-8

Contents

vii

Specification Expression.. 5-10
Interpretation of Expressions.. 5-12

Intrinsic Operators ... 5-12
Array Operands ... 5-14
Example... 5-14
Evaluation of Expressions ... 5-15
Logical Operators and Integer Operands 5-15
Arithmetic Operators and Logical Operands.............. 5-15

Assignment ... 5-17
Assignment Statement ... 5-17

Intrinsic Assignment... 5-18
Examples of Intrinsic Assignment.............................. 5-19

Pointer Assignment .. 5-20
Examples of Pointer Assignment............................... 5-21

Masked Array Assignment ... 5-21
Examples of Mask Array Assignment 5-23

Chapter 6 Execution Control
Control Constructs and Statement Blocks 6-1
CASE Construct .. 6-3

DO Construct.. 6-5
Counter-controlled DO Loop.. 6-5
Conditional DO Loop ... 6-7
Infinite DO Loop... 6-8

FORALL Construct and Statement................................... 6-9
IF Construct .. 6-14

Flow Control Statements... 6-15
CONTINUE Statement ... 6-16
CYCLE Statement .. 6-16
EXIT Statement .. 6-17
Assigned GO TO Statement... 6-18
Computed GO TO Statement ... 6-19

viii

Intel Fortran Programmer’s Reference

Unconditional GO TO Statement 6-20
Arithmetic IF Statement .. 6-21
Logical IF Statement ... 6-21
PAUSE Statement... 6-22
STOP Statement... 6-23

Chapter 7 Program Units and Procedures
 Overview... 7-1

Program Units ... 7-1
Program Unit Concepts .. 7-2

Procedures.. 7-2
Scope and Association ... 7-3

Scope ... 7-3
Association... 7-3

Procedures .. 7-5
Procedure Categories ... 7-6

Intrinsic Procedures ... 7-6
External Procedures... 7-7
Module Procedures .. 7-7
Internal Procedures.. 7-7

Referencing Procedures ... 7-7
Subroutine Subprogram ... 7-7
Function Subprogram... 7-8
Interfaces ... 7-8
Generic Referencing .. 7-9
Built-in Functions.. 7-9
Example ... 7-10

Procedure Definition ... 7-10
Functions and Subroutines .. 7-11
Statements Introducing Procedures........................... 7-11
Internal Procedures.. 7-13
RECURSIVE Procedures... 7-14

Contents

ix

PURE Procedures ... 7-14
ELEMENTAL Procedures .. 7-16
Statement Functions.. 7-17

Returning to the Calling Unit .. 7-18
Subprogram Arguments ... 7-18

Argument Correspondence.. 7-19
Argument Association.. 7-19
Duplicated Association .. 7-23
INTENT Attribute ... 7-24

Interfaces.. 7-24
INTERFACE Block... 7-26
INTERFACE TO Block... 7-28
Generic Names and Procedures 7-29
Defined Operators ... 7-30
Defined Assignment... 7-31

Modules... 7-33
Use Statement.. 7-36

Main Program.. 7-42
Block Data... 7-43

Chapter 8 I/O and File Handling
 Records.. 8-1

Formatted Records... 8-1
Unformatted Records ... 8-2
End-of-file Record .. 8-2

Files... 8-2
External Files.. 8-2

Scratch Files .. 8-2
Internal Files ... 8-3

Connecting a File to a Unit.. 8-4
Connecting to an External File ... 8-4
Preconnected Unit Numbers .. 8-5

x

Intel Fortran Programmer’s Reference

Automatically Opened Unit Numbers................................ 8-6
File Access Methods.. 8-7

Sequential Access .. 8-7
Formatted I/O ... 8-8
List-directed I/O.. 8-8

Namelist-directed I/O .. 8-12
Unformatted I/O.. 8-15

Direct Access .. 8-15
Nonadvancing I/O .. 8-16
I/O Statements... 8-16
Syntax of I/O Statements... 8-18

I/O Specifiers .. 8-19
I/O Data List .. 8-25

Simple Data Elements.. 8-26
Implied-DO Loop .. 8-27

ASA Carriage Control .. 8-29
Example Programs .. 8-30

Internal-file Example ... 8-30
Nonadvancing-I/O Example .. 8-32
Sequential- and Direct-access Example 8-34

Chapter 9 I/O Formatting
FORMAT Statement .. 9-2
Format Specification .. 9-3
Variable Expressions in Formats ... 9-3
Edit Descriptors ... 9-4

 Character String (’...’ or "...") Edit Descriptor 9-7
Newline ($) Edit Descriptor ... 9-8
Slash (/) Edit Descriptor .. 9-9
Colon (:) Edit Descriptor.. 9-9
A and R (character) Edit Descriptors 9-10
B (binary) Edit Descriptor.. 9-12

Contents

xi

On Input ... 9-13
On Output .. 9-13

BN and BZ (blank) Edit Descriptors 9-14
D, E, EN, ES, F, G, and Q (real) Edit Descriptors........... 9-15

Real Edit Descriptors on Input 9-16
Real Edit Descriptors on Output 9-17
D and E edit descriptors .. 9-17
EN and ES edit descriptor ... 9-18
F Edit Descriptor .. 9-19
G Edit Descriptor ... 9-19
Q Edit Descriptor ... 9-21

H (Hollerith) Edit Descriptor.. 9-21
I (integer) Edit Descriptor ... 9-22
L (logical) Edit Descriptor ... 9-24
O (octal) Edit Descriptor ... 9-25
P (scale factor) Edit Descriptor....................................... 9-27
Q (bytes remaining) Edit Descriptor 9-28
S, SP, and SS (plus sign) Edit Descriptors 9-29
T, TL, TR, and X (tab) Edit Descriptors 9-29
Z (hexadecimal) Edit Descriptor 9-30

Embedded Format Specification ... 9-32
Nested Format Specifications ... 9-33
Interaction Between Format Specification and I/O Data List 9-34

Chapter 10 Intel Fortran Statements
Attributes ... 10-2
Statements and Attributes... 10-3

ALLOCATABLE (Statement and Attribute) 10-5
ALLOCATE... 10-7
ASSIGN.. 10-10
BACKSPACE.. 10-13
BLOCK DATA ... 10-15

xii

Intel Fortran Programmer’s Reference

CALL ... 10-18
CASE .. 10-21
CHARACTER.. 10-24
CLOSE.. 10-28
COMMON ... 10-30
COMPLEX .. 10-34
CONTAINS.. 10-38
CONTINUE ... 10-40
CYCLE .. 10-41
DATA... 10-42
DEALLOCATE .. 10-46

Guidelines for Using DEBUG 10-49
DIMENSION (Statement and Attribute) 10-55
DO... 10-60
DOUBLE PRECISION .. 10-67
ELSE... 10-70
ELSE IF... 10-71
ELSEWHERE ... 10-72
END .. 10-75
END (Construct).. 10-76
END INTERFACE ... 10-78
END TYPE .. 10-79
ENDFILE... 10-80
ENTRY.. 10-82
EQUIVALENCE... 10-86
EXIT .. 10-91
EXTERNAL (Statement and Attribute).......................... 10-92
FORMAT ... 10-94
FUNCTION ... 10-96
GO TO (Assigned) .. 10-98
GO TO (Computed) .. 10-99
GO TO (Unconditional) ... 10-100

Contents

xiii

IF (Arithmetic) ... 10-101
IF (Block) .. 10-102
IF (Logical) ... 10-103
IMPLICIT .. 10-104
INCLUDE.. 10-107
INQUIRE .. 10-108
INTEGER .. 10-119
INTENT (Statement and Attribute) 10-122
INTERFACE ... 10-125
INTRINSIC (Statement and Attribute) 10-128
LOGICAL.. 10-130
MODULE .. 10-133
MODULE PROCEDURE .. 10-135
NAMELIST ... 10-137
NULLIFY... 10-139
OPEN ... 10-141
OPTIONAL (Statement and Attribute) 10-151
PARAMETER (Statement and Attribute) 10-155
PAUSE.. 10-158
POINTER (Statement and Attribute) 10-163
PRINT... 10-166
PRIVATE (Statement and Attribute) 10-168
PROGRAM... 10-171
PUBLIC (Statement and Attribute) 10-172
READ ... 10-175
Namelist-directed I/O.. 10-179
REAL .. 10-181
RETURN .. 10-188
REWIND... 10-190
SAVE (Statement and Attribute) 10-191
SELECT CASE... 10-194
SEQUENCE ... 10-195

xiv

Intel Fortran Programmer’s Reference

STOP .. 10-198
SUBROUTINE .. 10-209
TARGET (Statement and Attribute) 10-211
TYPE (Declaration) ... 10-215
TYPE (Definition) .. 10-218
USE... 10-221
WHERE (Statement and Construct) 10-226
WRITE .. 10-230

Appendix A Intel Fortran Extensions
Language Elements... A-1
Data Types and Objects .. A-2
Array Concepts .. A-3
Expressions ... A-3
Execution Control .. A-3
Scope, Program Units, and Procedures A-3
Attributes.. A-4

ALIAS.. A-5
Syntax .. A-6
Example ... A-6
Description ... A-6

ALLOCATABLE... A-6
C Attribute ... A-7

Syntax .. A-7
Description ... A-7

DLLEXPORT, DLLIMPORT... A-7
EXTERN ... A-8
FAR ... A-8
HUGE.. A-9
LOADDS ... A-9
NEAR .. A-10
PASCAL .. A-10

Contents

xv

REFERENCE ... A-11
STDCALL ... A-11

Example... A-11
Usage .. A-12

VALUE.. A-13
Example... A-14

VARYING.. A-14
I/O and File Handling .. A-14
I/O Formatting ... A-15
Statements .. A-15
Intrinsic Procedures .. A-15
Miscellaneous ... A-16

Glossary

Index

Tables

2-1 Fortran 95 Character Set .. 2-2
2-2 Intel Fortran Statement Categories 2-4
2-3 Statement Ordering Requirements 2-7
2-4 Statements Allowed in Scoping Units (Y=yes)......... 2-7
3-1 Types and KIND Parameters 3-2
3-2 Escape Characters ... 3-15
3-3 Example of Structure Storage................................. 3-26
5-1 Intrinsic Operators... 5-5
5-2 Operator Precedence.. 5-6
5-3 Logical operators .. 5-14
5-4 Conversion of variable=expression......................... 5-18
7-1 Categories of intrinsic functions 7-6
7-2 Allowable Block Data Attributes 7-44
8-1 Input Values for List-directed I/O 8-9
8-2 Format of list-directed Input Data.............................. 8-9
8-3 Format of List-directed Output Data........................ 8-11
8-4 Data Transfer Statements....................................... 8-17

xvi

Intel Fortran Programmer’s Reference

8-5 File Positioning Statements..................................... 8-18
8-6 Auxiliary Statements.. 8-18
8-7 I/O Statements and Specifiers (Y=Yes).................. 8-19
8-8 I/O Specifiers Values... 8-22
8-9 ASA Carriage-control Characters............................ 8-29
9-1 Edit Descriptors ... 9-4
9-2 Character String Edit Descriptor:

 Output Examples... 9-8
9-3 Contents of Character Data Fields

 on Input ...9-11
9-4 Contents of Character Data Fields

 on Output...9-11
9-5 A and R Edit Descriptors: Input Examples9-12
9-6 A and R Edit Descriptors: Output Examples 9-12
9-7 B Edit Descriptor: Input Examples........................... 9-13
9-8 B Edit Descriptor: Output Examples........................ 9-14
9-9 BN and BZ Edit Descriptors: Input Examples.......... 9-15
9-10 D, E, F, and G Edit Descriptors:

 Input Examples..9-17
9-11 D and E Edit Descriptors: Output Examples 9-18
9-12 EN and ES Edit Descriptors: Output Examples....... 9-18
9-13 F Edit Descriptor: Output Examples 9-19
9-14 G Edit Descriptor: Output Examples9-20
9-15 H Edit Descriptor: Output Examples........................ 9-22
9-16 I Edit Descriptor: Input Examples 9-23
9-17 I Edit Descriptor: Output Examples9-23
9-18 L Edit Descriptor: Input Examples 9-24
9-19 L Edit Descriptor: Output Examples 9-25
9-20 O Edit Descriptor: Input Examples 9-26
9-21 O Edit Descriptor: Output Examples9-26
9-22 P Edit Descriptor: Input and Output Examples........ 9-28
9-23 Z Edit Descriptor: Input Examples........................... 9-31
9-24 Z Edit Descriptor: Output Examples 9-32
9-25 Format Control and Nested Format

 Specifications .. 9-35
10-1 Attribute Compatibility (Y=YES) 10-2

xxv

About This Manual
This manual describes the Intel® Fortran Language for programmer’s
reference. It also provides description of all the library functions and
intrinsic procedures.

This manual is organized as follows:

Chapter 1 “Introduction to Intel Fortran.” Summarizes features of
Intel Fortran that distinguish it from FORTRAN 77.

Chapter 2 “Language Elements.” Describes the basic language
elements of Intel Fortran, including character set,
names, statement types and order, source program
format, and the INCLUDE line.

Chapter 3 “Data Types and Data Objects.” Describes intrinsic and
derived types, the type declaration statement, attributes,
constants, implicit typing, storage association,
alignment, and dynamic data objects.

Chapter 4 “Arrays.” Describes arrays and array-handling features
of Intel Fortran.

Chapter 5 “Expressions and Assignments.” Describes expressions,
operators, assignment, and the WHERE construct.

Chapter 6 “Execution Control.” Describes the constructs and
statements that control program execution.

Chapter 7 “Program Units and Procedures.” Describes program
units and procedures, argument correspondence and
association, interfaces, and modules.

xxvi

Intel Fortran Programmer’s Reference

Chapter 8 “I/O and File Handling.” Describes the types of records
and files, file connection and access, the I/O data list, the
implied-DO loop, and ASA carriage control. At the end
of this chapter are example programs that illustrate
various feature of Intel Fortran I/O, including
nonadvancing I/O.

Chapter 9 “I/O Formatting.” Describes the syntax and use of
format specifications and edit descriptors, as used with
formatted I/O.

Chapter 10 “Intel Fortran Statements.” Describes the syntax and
function of all Intel Fortran statements and attributes.
The statements and attributes are described in
alphabetical order.

Appendix A “Intel Fortran Extensions.” Briefly summarizes all Intel
Fortran extensions to the Fortran standard.

Glossary Defines terms used in this manual.

Related Publications
The following documents provide additional information relevant to the
Intel Fortran Compiler:

• Fortran 95 Handbook, Jeanne C. Adams, Walter S. Brainerd, Jeanne T.
Martin, Brian T. Smith, and Jerrold L. Wagener. The MIT Press, 1997.
Provides a comprehensive guide to the standard version of the Fortran
95 Language

• Fortran 90/95 Explained, Michael Metcalf and John Reid. Oxford
University Press, 1996. Provides a concise description of the Fortran
95 language.

• For Win32-specific information, see the documentation included with
the Microsoft Win32 Software Development Kit.

• For Microsoft Fortran PowerStation 32 information, see the
documentation included with the Microsoft Fortran Powerstation 32
Development System for Windows NT, Version 1.0.

Information about the target architecture is available from Intel and from
most technical bookstores. Some helpful titles are:

• Intel® Fortran Libraries Reference, Intel order number 687929
• Intel® Fortran Programmer’s Reference, Intel order number 687928

About This Manual

xxvii

• Intel® C/C++ Compiler User’s Guide, order number 741901
• Intel® Architecture Optimization Reference Manual, Intel Corporation,

order number 245127
• Intel Architecture Software Developer’s Manual:

— Volume 1: Basic Architecture, order number 243190
— Volume 2: Instruction Set Reference Manual, order number

243191
• Intel Processor Identification with the CPUID Instruction, order

number 241618

Most Intel documents are also available from the Intel Corporation web site
at www.intel.com

Notational Conventions
This manual uses the following conventions:

This type style indicates an element of syntax, a reserved word, a
keyword, a filename, computer output, or part of a
program example. The text appears in lowercase
unless uppercase is significant.

THIS TYPE STYLE Fortran source text appears in upper case.

l is lowercase letter L in examples. 1 is the
number 1 in examples. O is the uppercase O in
examples. 0 is the number 0 in examples.

This type style indicates the exact characters you type as input.

This type style indicates a place holder for an identifier, an
expression, a string, a symbol, or a value.
Substitute one of these items for the place holder.

[items] items enclosed in brackets are options.

{item | item} Select only one of the items listed between braces.
A vertical bar (|) separates the items.

... Ellipses indicate that you can repeat the preceding
item.

This type style indicates an Intel Fortran Language extension
format.

xxviii

Intel Fortran Programmer’s Reference

This type style indicates an Intel Fortran Language extension
discussion. Throughout the manual, extensions to
the ANSI standard Fortran language appear in this
font and color to help you easily identify when
your code uses a non-standard language
extension.

1-1

Introduction to Intel®
Fortran Compiler 1

This manual is a complete reference description of the Intel® Fortran
compiler. Intel Fortran is fully compliant with ISO/IEC 1539:1995,
hereafter referred to as “the Fortran 95 Standard” or as “the Standard
Fortran” or as “Fortran 95.” Intel Fortran also includes a number of
extensions to the Standard, as well as command-line options that allow you
to override the default actions of the compiler. This manual describes the
standard features, the extensions and the command-line options.

The rest of this chapter briefly summarizes the standard features of
Fortran 95 that are not found in FORTRAN 77. It is chiefly of interest to
the developer who is familiar with FORTRAN 77 but new to Fortran 95. If
you are already familiar with Fortran 95, you may want to turn to
Appendix A, “ Intel Fortran Extensions” which lists all of the Intel
extensions and refers to other parts of this manual, where the extensions are
more fully described. For a full description of the command-line options,
see the Intel® Fortran Compiler User’s Guide.

New Features in Fortran 95
Some extensions to FORTRAN 77 are included in Fortran 95 and other
completely new features have been added. The following list summarizes
features of Fortran 95 that are not in standard FORTRAN 77 and indicates
where they are described in the manual.

1-2

1 Intel Fortran Programmer’s Reference

Source Format

The fixed source form of FORTRAN 77 is extended by the addition of the
semicolon (;) statement separator, and the (!) trailing comment, and also a
free source form is provided.

The format used in a source program file is normally indicated by the file
suffix, but the default format can be overridden by the command-line
options /FI and /FR, as described in Intel Fortran Compiler User’s Guide.

Data Types

Intrinsic data types are now parameterized. Each data type can have one or
more kinds identified by a KIND type parameter. This is an integer value
that determines the range and/or precision of values that entities of that type
may hold.

Several KIND types may be implemented for each intrinsic data type; also,
intrinsic inquiry functions are provided to establish what is available
making “precision portability” possible.

In Intel Fortran, the KIND type parameter value is typically the number of
bytes used to represent an entity of that type, except for COMPLEX entities,
where the number of bytes required is double the KIND type value.

On Windows NT*, Intel Fortran provides an interface to the NT Unicode
support for Fortran programs. See the Intel Fortran User’s Guide for more
information.

Derived data types are available: they are defined by the user and can be
composed of components that are of the intrinsic types (INTEGER, REAL,
COMPLEX, LOGICAL, and CHARACTER) or of previously defined derived
data types. Scalar and array entities of derived data types may be declared.

For more details on data types, see Chapter 3, “Data Types and Data
Objects.”

Operators

Intrinsic operators can be extended and new operations defined, for use with
operands of intrinsic or derived data types. The intrinsic assignment
operator can be extended similarly.

Introduction to Intel Fortran 1

1-3

User-defined operations and defined assignment are implemented by means
of user-written procedures; see Chapter 7, “Program Units and Procedures.”
for details.

Control Constructs

The CASE construct enables one of a set of statement blocks to be executed
on the basis of a case selector value (that can be INTEGER, CHARACTER
or LOGICAL).

• Additional forms of the DO statement are provided, as well as the
CYCLE and EXIT statements, to branch to the end of a DO loop and out
of a DO loop respectively.

These facilities are described in Chapter 6, “Execution Control.”

Arrays

Fortran 95 greatly extends array facilities which include the following:

• Array sections that permit selection of a subset of array elements have
been introduced. Operations for processing whole arrays and array
sections are included, and expressions, functions, and assignments can
be array-valued. The WHERE construct and statement provide for
masked-array assignment.

• Array constructors are provided. An array constructor is an unnamed,
rank-one array value, the elements of which may be constant or
variable in value. The RESHAPE intrinsic function can be used to
produce an array value of higher rank from an array constructor.

• Several new sorts of array (extensions in FORTRAN 77) are provided
in Fortran 95:
— Assumed-shape (“assumed” meaning “taking on the

characteristics of”)
— Deferred-shape (an allocatable array or array pointer)
— Automatic, which is a new sort of explicit-shape array

• Many intrinsic array functions are provided in Fortran 95, classed as
elemental, transformational, or inquiry.

Arrays are discussed in Chapter 4, “Arrays.”

1-4

1 Intel Fortran Programmer’s Reference

Procedures

A large number of new intrinsic procedures and procedure-related features
are provided in the language. Many of these features are “elemental.” Thus
they accept either scalar or array arguments. In the latter case, the result is
as if the procedure were applied separately to each element of the array.

Other additions are transformational functions, which operate on their
arguments in a nonelemental fashion. These functions return properties of
the arguments rather than values computed from them.

The following are some of these new procedures and feature-related
procedures:

• interface block—This feature is the basis of a number of new facilities:
— The interface block enables explicit specification of procedure

interfaces, so that the names and properties of the dummy
arguments of such a procedure are known in the scoping unit
invoking the procedure. This makes it possible for the compiler to
ensure that the dummy and actual arguments match.

— Optional arguments and keyword-identified arguments are also
available when the procedure interface is explicit.

— In addition, the procedure interface block enables user-defined
generic procedures to be written, and is the mechanism used to
specify defined operators and defined assignment.

• intent Attribute—Dummy arguments to procedures can now be given
an INTENT attribute (IN, OUT or INOUT).

• local scoping—Internal subprograms can be defined within a module
subprogram, an external subprogram, or a main program unit. They are
local to the scoping unit in which they are declared.

• recursive procedures—Recursive procedures that can invoke
themselves, directly or indirectly (an extension in FORTRAN 77), are
available as a standard feature in Fortran 95.

These facilities are discussed in Chapter 7, “Program Units and
Procedures.”

Introduction to Intel Fortran 1

1-5

Pointers

Arrays and scalar variables can be given the POINTER attribute in
Fortran 95. A pointer is an alias, and the variable (or allocated space) for
which it is an alias is its target. Pointer facilities enable data to be accessed
and handled dynamically. Allocatable arrays (noted in the array discussion
earlier) are similar to array pointers, but are slightly simpler, more limited,
and more efficient.

In Intel Fortran, the pointers are of two styles: Fortran 95 pointers and Cray.
Cray pointers are non-standard and are discussed in “Cray-Style Pointers”
in Chapter 3.

Modules

A module is a new type of program unit that allows the specification of data
objects, parameters, derived types, procedures, operators, and NAMELIST
groups. Partial or complete access to these module entities is provided by
the USE statement. An entity may be declared PRIVATE to limit visibility
to the module itself.

Typical applications of modules are the specification of global data (in
preference to the more troublesome common block mechanism) or the
specification of a derived type and its associated operations.

Modules are discussed in “Modules” in Chapter 7.

Non-advancing I/O

In FORTRAN 77, after a record-based I/O operation, the file pointer is
moved to the start of the next record.

In Fortran 95, use of the I/O specifier ADVANCE=NO, causes the file pointer
to be positioned after the characters just read or written, but not
automatically at the start of the next record.

This makes character I/O operations much easier to handle. It is also
possible to read a variable length record and determine its length.

I/O facilities are discussed in Chapters 8, “I/O and File Handling.” and 9,
“I/O Formatting.”

1-6

1 Intel Fortran Programmer’s Reference

Namelist I/O

Namelist I/O, similar to that provided in FORTRAN 77, is available in Intel
Fortran 95. The READ/WRITE specifier NML=namelist-group-name
has been added together with the NAMELIST statement that allows
specification of the variables belonging to a NAMELIST group.

2-1

Language Elements 2
This chapter describes the basic elements of an Intel® Fortran program,
including the character set, lexical tokens, and names, and describes the
source program formats. It also summarizes the categories of statements in
Intel Fortran and the rules controlling their use and ordering within program
units. The INCLUDE line facility is described at the end of the chapter.

Character Set
The Fortran 95 character set consists of letters, digits, the underscore
character, and special characters, as detailed in Table 2-1.

The processor character set consists of the Fortran 95 character set, plus:

• Control characters (Tab, Newline , and Carriage Return). Carriage
Return and Tab are usually treated as “white space” in a source
program. Their use may affect the appearance of a listing file.

• You can use the hash character (#), which may appear in column 1 to
initiate a comment. The hash character is an Intel Fortran extension.

2-2

2 Intel Fortran Programmer’s Reference

Intel Fortran supports the default character type, which has kind parameter
= 1, as described in Chapter 3, “Data Types and Data Objects.” However,
support is provided for the use of conversions from Unicode to multibyte
character sets (MBCS) and back. For more information see the Intel®
Fortran Compiler User’s Guide.

Lexical Tokens
Lexical tokens are the building blocks of a program; they consist of
sequences of characters. They denote names, operators, literal constants,
labels, keywords, delimiters, and can include the following characters and
character combinations:

, = => : :: ; %

Names
Names are used in Fortran 95 to denote entities such as variables,
procedures, derived types, named constants, and common blocks. A name
must start with a letter and consists thereafter of any combination of letters,
digits, and underscore (_) characters.

Table 2-1 Fortran 95 Character Set

Category Characters

Letters A to Z, a to z*

* Lowercase alphabetic characters are equivalent to uppercase characters except when they appear
in character strings or Hollerith constants.

Digits 0 to 9

Underscore _

Special characters blank (space)
= + - * / () , . ' : ! “ % & ; < >
?** $

** Although “?” has been designated a special character, it has no special meaning in the Fortran 90
language.

Language Elements 2

2-3

As an extension to Standard Fortran, the dollar sign may also be used in a
name, but not as the first character.

Standard Fortran 95 allows a maximum length of 31 characters in a name; in
Intel Fortran this limit is extended to 255 characters, and all are significant—
that is, two names that differ only in their 255th character are treated as
distinct. However, names and keywords are case insensitive; thus
Title$23_Name and TITLE$23_NAME are the same name.

Program Structure
A complete executable program contains one main program unit and zero or
more other program units, where each of these can be compiled separately.

A program unit is one of the following:

• Main program unit
• External function subprogram unit
• External subroutine subprogram unit
• Block data program unit
• Module program unit

Execution of the program starts in the main program and then control can be
passed between the main program and the other program units.

The Fortran 95 program units, and the transfer of control between them, are
described in Chapter 7, “Program Units and Procedures.”

Statement Labels
A Fortran 95 statement can have a preceding label, composed of one to five
digits. All statement labels in the same scoping unit must be unique; leading
0s are not significant in distinguishing them. Although most Fortran 95
statements can be labeled, not all statements can be branched to. The
FORMAT statement must have a label.

The INCLUDE line (which is not a statement but a directive to the compiler)
must not have a label.

2-4

2 Intel Fortran Programmer’s Reference

Construct Names
Fortran 95 has these types of constructs. CASE, IF, DO, FORALL and
WHERE. These constructs can optionally be given names. When names are
used with the DO construct, they can affect the operation of the CYCLE and
EXIT statements.

The construct name appears before the first statement of the construct,
followed by a “:” character. It should then be repeated at the end of the final
statement of the construct. Chapter 6, “Execution Control,” describes
Fortran 95 constructs.

Statements
All Intel Fortran statements are listed in Table 2-2, with the following
categorization codes. They are fully described in Chapter 10, “Intel Fortran
Statements,” in alphabetical order.

All control statements are executable statements.

a Assignment statement

c Control statement

e Executable statement

i I/O statement

n Nonstandard statement (extension)

p Program structure statement

s Specification statement

t Can be a terminal statement (of a DO construct)

Table 2-2 Intel Fortran Statement Categories

Statement Code Statement Code Statement Code

ACCEPT e,i,n END INTERFACE OPEN e,i,t

ALLOCATABLE s END MAP n,p OPTIONAL s

ALLOCATE e,t END MODULE p PARAMETER s

ASSIGN a,e,t END SELECT c,e PAUSE c,e,t

continued

Language Elements 2

2-5

Assignment
statement

a,e,t END STRUCTURE n,p POINTER s

AUTOMATIC n,s END
SUBROUTINE

e,p POINTER (Cray) n,s

BACKSPACE e,i,t END TYPE p Pointer
assignment

a,e

BLOCK DATA p END UNION n,p PRINT e,i,t

BYTE n,s END WHERE c,e PRIVATE s

CALL c,e,t ENDFILE e,i,t PROGRAM p

CASE c,e ENTRY p PUBLIC s

CHARACTER s EQUIVALENCE s READ e,i,t

CLOSE e,i,t EXIT c,e REAL s

COMMON s EXTERNAL s RECORD n,s

COMPLEX s FORMAT i RETURN c,e

CONTAINS p FUNCTION p REWIND e,i,t

CONTINUE c,e,t GOTO (assigned) c,e SAVE s

CYCLE c,e GOTO (computed) c,e SELECT CASE c,e

DATA s GOTO
(unconditional)

c,e SEQUENCE s

DEALLOCATE e,t IF (arithmetic) c,e Statement function p

DECODE e,i,n IF (block) c,e STATIC n,s

DEFINE FILE e,i,n IF (logical) c,e,t STOP c,e

DIMENSION s IMPLICIT s STRUCTURE n,s

DO c,e INCLUDE p SUBROUTINE p

DOUBLE COMPLEX n,s INQUIRE e,i,t TARGET s

DOUBLE
PRECISION

s INTEGER s TYPE
(declaration)

p,s

ELSE c,e INTENT s TYPE (definition) s

ELSE IF c,e INTERFACE p TYPE (I/O) e,i,n

ELSEWHERE c,e INTRINSIC s UNION n,p

continued

Table 2-2 Intel Fortran Statement Categories (continued)

Statement Code Statement Code Statement Code

2-6

2 Intel Fortran Programmer’s Reference

Statement Order

Table 2-3 summarizes the rules for statement ordering. It should be read in
conjunction with Table 2-4, which checks off those statements that can
appear in the various categories of scoping unit.

In Table 2-3, vertical lines separate statements that can be interspersed;
horizontal lines separate statements that cannot be interspersed. Thus, for
example, the tables indicate that:

• the USE statements, if present, must come immediately after the initial
statement of the program unit.

• the FORMAT statements can appear anywhere in the program unit
between the USE statement position and the CONTAINS statement
position (but not in modules, because Table 2-4 prohibits their
appearance in modules).

• the DATA statements can be interspersed with executable constructs.

ENCODE e,i,n LOGICAL s USE s

END (program unit) e,p MAP n,p VIRTUAL n,s

END BLOCK DATA p MODULE p VOLATILE n,s

END DO c,e,t MODULE
PROCEDURE

s WHERE c,e,t

END FORALL c, e FORALL c, e

END FUNCTION e,p NAMELIST s WRITE e,i,t

END IF c,e NULLIFY a,e,t

Table 2-2 Intel Fortran Statement Categories (continued)

Statement Code Statement Code Statement Code

Language Elements 2

2-7

Table 2-3 Statement Ordering Requirements

PROGRAM, FUNCTION, SUBROUTINE,
MODULE, or BLOCK DATA statement

USE statements

FORMAT
and
ENTRY
statements

IMPLICIT NONE

PARAMETER
statements

IMPLICIT statements

PARAMETER

 and DATA
statements

Derived- type definitions,

Interface blocks,

type declaration statements,

Statement function statements,

and Specification statements

DATA
statements

Executable constructs

CONTAINS statement

INTERNAL subprograms or MODULE subprograms

END statement

Table 2-4 Statements Allowed in Scoping Units (Y=yes)

Scoping Unit

Statement

M
ain

P
ro

g
ram

E
xtern

al

P
u

b
p

ro
g

ram

M
o

d
u

le

M
o

d
u

le

P
u

b
p

ro
g

ram

In
tern

al

S
u

b
p

ro
g

ram

In
terface

B
o

d
y

B
lo

ck

D
ata

USE statement Y Y Y Y Y Y Y

ENTRY statement Y Y

FORMAT statement Y Y Y Y

PARAMETER
statement

Y Y Y Y Y Y Y

IMPLICIT statement Y Y Y Y Y Y Y

Type declaration
statement

Y Y Y Y Y Y Y

Specification
statement

Y Y Y Y Y Y Y

continued

2-8

2 Intel Fortran Programmer’s Reference

Source Program Forms
Fortran 95 has a free source form, but also accepts FORTRAN 77’s fixed
source form (as it must, since FORTRAN 77 is a subset of Fortran 95).
Although the two forms are quite different, it is possible to use an
“intersection” form that satisfies both. This would be necessary, for
example, when preparing Fortran text that was intended to be INCLUDEd
(see “INCLUDE Line” on page 14) in a Fortran program whose source
form, fixed or free, was not known.

The fixed source form, the free source form, and the intersection form are
described below.

The Intel Fortran compilation system assumes that source files are in the
fixed format form, unless the source file being compiled has the suffix
.f90. However, you can use the command-line options /FI and /FR to
change the format accepted by the compiler. See the Intel® Fortran
Compiler User’s Guide.

Fixed Source Form

Statements or parts of statements must be written between character
positions 7 and 72. Any text following position 72 is ignored. The
/Qextend_source option (see the Intel Fortran Compiler User’s Guide)
extends the statement to position 132. Positions 1-6 are reserved for special
use. Blanks are not significant except within a character context.

DATA statement Y Y Y Y Y Y

Derived-type definition Y Y Y Y Y Y Y

Table 2-4 Statements Allowed in Scoping Units (continued) (Y=yes)

Scoping Unit

Statement

M
ain

P
ro

g
ram

E
xtern

al

P
u

b
p

ro
g

ram

M
o

d
u

le

M
o

d
u

le

P
u

b
p

ro
g

ram

In
tern

al

S
u

b
p

ro
g

ram

In
terface

B
o

d
y

B
lo

ck

D
ata

Language Elements 2

2-9

For example:

RETURN

R E T U R N

are equivalent, but:

c = "abc"

c = "a b c"

are not equivalent.

Multiple statements may appear on one line separated by a semicolon (;).

There are three classes of lines in Fortran 95 fixed source form:

1. Initial line
2. Continuation line
3. Comment line

Initial Line

An initial line has the following form:

• Positions 1 to 5 may contain a statement label.
• Position 6 contains a space or the digit 0.
• Positions 7 to 72 (optionally, to 254) can contain the statement.

Continuation Line

A continuation line has the following form:

• Positions 1 to 5 are blank.
• Position 6 contains any character other than 0 or a space. One practice

is to number continuation lines consecutively from 1.
• Positions 7 to 72 (optionally, to 254) contain the continuation of a

statement.

The Fortran 95 Standard specifies that a statement must not have more than
19 continuation lines.

In Intel Fortran, a statement consists of an initial line and up to 99
continuation lines.

2-10

2 Intel Fortran Programmer’s Reference

Comment Line
Comment lines may be included in a program. Such lines do not affect the
program in any way but can be used by the programmer to include
explanatory notes. The letter C, or c , or an asterisk (*) in position 1 of a
line, designates that line as a comment line; the comment text is written in
positions 1 to 72. A line containing only blank characters in positions 1 to
72 is also treated as a comment line.
An exclamation mark (!) in position 1 or in any position except position 6,
causes the rest of the line to be treated as a comment.

 In Intel Fortran, a line with D or d in position 1 is by default treated as a
comment. A command-line option, the /Qd_lines option, treats lines with
D or d in position 1 as statements to be compiled. This facility is useful in
program debugging. See the Intel Fortran Compiler User’s Guide for more
information about the +dlines option.
Also, Intel Fortran provides the extension that a line with # in position 1 is
treated as a comment. This allows source files that have been preprocessed
with fpp to be compiled.

Tab-format Lines

In Intel Fortran a tab character in the first position of a line can be used to
skip past the statement label positions. If the character following the tab
character is a digit, this is assumed to be in position 6, the continuation
indicator position. Any other character following the tab character is
assumed to be in position 7, the start of a new statement. A tab character in
any other position of a line is treated as a space.

Free Source Form
In this form the source line is not divided into fields of predefined width, as
in the fixed form. This makes it more convenient for input of text at an
interactive terminal. The details of the free source form are as follows.

Source Lines
Lines can contain from 0 to 132 characters. The /Qextend_source
option (see the Intel Fortran Compiler User’s Guide) can extend the
statement to position 132. Several Fortran 95 statements can be placed on a
single source line, separated by “;” characters, and a single Fortran 95
statement can extend over more than one source line, as described below in
“Statement Continuation” on page 12.

Language Elements 2

2-11

Statement Labels

Statement labels are not required to be in columns 1-5, but must be
separated from the statement itself by at least one space.

Spaces

Spaces are significant:

• Spaces do not always appear within a lexical token, such as a name or
an operator.

• In general one or more spaces are required to separate adjacent
statement keywords, names, constants, or labels. Within the following
keyword pairs, however, the space is optional:

The keyword after END can be any allowed by the Fortran 95 syntax,
including the following: BLOCK DATA, DO, FILE, FUNCTION, IF,
INTERFACE, MAP, MODULE, PROGRAM, SELECT, SUBROUTINE,
STRUCTURE, TYPE, UNION, or WHERE.

Spaces are not required between a name and an operator because the latter
begins and ends with special symbols that cannot be part of a name.
Multiple spaces, unless in a character context, are equivalent to a single
space.

Examples Using Spaces

Spaces are denoted here (and throughout this manual where it is necessary
to stress their presence) by b.

IFbb(TEXT.EQ.’bbbYES’) ... ! Valid

BLOCK DATA GO TO

DOUBLE PRECISION IN OUT

ELSE IF SELECT CASE

END keyword

2-12

2 Intel Fortran Programmer’s Reference

Valid: the two spaces after IF are equivalent to one space. No spaces are
required before or after.EQ., because there is no ambiguity. Note that the
three spaces in the character constant are significant.

IF(MbARY.bGE.MIKE) ... ! Faulty

Faulty: the space is invalid in MbARY, and the space is invalid in .bGE..
(This example would be valid in the fixed form.)

Comments

In free source form, the only way of indicating a comment is by use of the
“!” symbol. Unless it appears in a character context, the occurrence of a
“!” symbol defines the start of a comment, which always continues to the
end of the source line. It is thus not possible to embed a comment inside
program text within a single source line, but it can follow program text on a
source line. Furthermore, a Fortran 95 statement on a line with a trailing
comment can be continued on subsequent lines.

Statement Continuation

A statement can be split over two or more source lines by appending an
ampersand (&) symbol to each source line involved except the last. The
ampersand must not be within a character constant.

In this way, in Standard Fortran 95, a statement can occupy up to 40 source
lines. As an extension, Intel Fortran increases this limit to 100 source lines.

The END statement cannot be split by means of a continuation line.

The text of the source statement in a continuation line is assumed to resume
from column 1, unless the first nonblank symbol in the line is an ampersand,
in which case the text resumes from the first position after the ampersand.

Language Elements 2

2-13

Example of Statement Continuation

Consider the following two statements:

INTEGER marks, total, difference,& ! work variables

 mean, average

INTEGER marks, total, difference, mean_& ! work variables

 &value average

The second of these statements declares an integer variable called
mean_value. Any spaces appearing in the variable name as a result of the
continuation would have been invalid, which is why another “&” was used
in the continuation line. (Alternatively “value” could have been positioned
at column 1.) Splitting lexical tokens, including character constants, across
source lines in this way, is permitted but should be avoided if possible.
Comments cannot be continued.

Intersection Source Form

It is possible to write programs in a way that is acceptable as both free
source form and fixed source form, unless in extended fixed format source
mode. The rules are:

• Put labels in positions 1-5.
• Put statement bodies in positions 7-72.
• Begin comments with an exclamation mark (!) in any position

except 6.
• Indicate all continuations with an ampersand in position 73 of the line

to be continued and an ampersand in position 6 of the continuing line.
• Do not insert blanks in tokens.
• Separate adjacent names and keywords with a space.

2-14

2 Intel Fortran Programmer’s Reference

INCLUDE Line
An INCLUDE line inserts text into a program during compilation. The
INCLUDE line is a directive to the compiler; it is not a Fortran 95 statement.
The format of an INCLUDE line is:

INCLUDE character-literal-constant
character-literal-constant is the name of a
file containing the text to be included. The character
literal constant must not have a kind parameter that is a
named constant.

The contents of the specified file are substituted for the INCLUDE line
before compilation and are treated as if they were part of the original
program source text.

Use of the INCLUDE line provides a convenient way to include source text
that is the same in several program units. For example, interface blocks or
common blocks may constitute a file that is referenced in the INCLUDE
line.

Modules provide access to data, types, and procedures that can be shared
among procedures and thus provide a more effective way to accomplish
most of what an INCLUDE line can do. However, as illustrated by the last
INCLUDE line in the examples that follow, it is possible to use an INCLUDE
line to include a portion of a subprogram; this is not possible with a module.

The INCLUDE line must appear on one line with no other text except
possibly a trailing comment. There must be no statement label. This means,
for example, that it is not possible to branch to it, and it cannot be the action
statement that is part of an IF statement. Putting a second INCLUDE or
another Fortran 95 statement on the same line using “;” as a separator is not
permitted. Continuing an INCLUDE line using “&” is also not permitted.

INCLUDE lines may be nested. That is, a second INCLUDE line may appear
within the text to be included, and the text that it includes may also have an
INCLUDE line, and so on. Intel Fortran has a maximum INCLUDE line
nesting level of 10. However, the text inclusion must not be recursive at any
level; for example, included text A must not include text B if B includes
text A.

Language Elements 2

2-15

The text of the file to be included must consist of complete Fortran 95
statements.

Example of INCLUDE Lines
INCLUDE "MY_COMMON_BLOCKS"

INCLUDE "/usr/include/machine_parameters.h"

...

! Program text may be included within the

! executable part of the program as well as

! the specification part.

READ *, theta

INCLUDE "FUNCTION_CALCULATION"

...

If character-literal-constant is only a filename, in other words
no pathname is specified, the compiler searches a user-specified path. See
the Intel Fortran Compiler User’s Guide for information about the
/Idirectory option, which tells the compiler to search directories
specified by directory to locate files to be included.

3-1

Data Types and
Data Objects 3

This chapter describes both intrinsic and derived data types and the form of
the declaration statements used to assign these data types to data objects and
functions. It defines the format of constants for each of the intrinsic data
types. It illustrates the definition, declaration, and use of derived types. It
outlines implicit typing and data initialization. Finally there is a brief
discussion of the mechanisms available for storage association and for
dynamic storage allocation.

Terminology
A data type defines a set of values and a means of representing,
manipulating, and interpreting them. Intrinsic numeric and nonnumeric
types are defined in the language, and a user can define additional types,
known as derived types, which are structures composed of the intrinsic
types and of other derived types.

A data object is a constant, a variable, a subobject of a variable, or a
subobject of a constant, and has a data type.

A constant has a value that cannot be changed during execution of the
program. A constant is a literal constant, unless it has the PARAMETER
attribute, in which case it is a named constant.

A variable may have a value and this value can be defined and redefined
during execution of the program. It can be a scalar variable, an array
variable, or a subobject of a variable.

3-2

3 Intel Fortran Programmer’s Reference

 A subobject of a variable can be an array element, an array section, a
character substring, or a structure component. A subobject of a constant is a
portion of the constant; the portion referenced may depend on the value of a
variable.

Intrinsic Data Types
The numeric types are INTEGER, REAL, and COMPLEX; the nonnumeric
types are CHARACTER and LOGICAL.

Each Fortran 95 implementation defines a set of representations for each of
these types. Each representation corresponds to a different range of values
that can be attained by entities or constants declared to be of the
corresponding type.

For real and complex types, different representations also have different
levels of precision. Each representation is assigned an identifying KIND
parameter, which is an integer value. One of the representations for each
type is designated the default representation for that type. Table 3-1 shows
the options available with Intel Fortran.

Table 3-1 Types and KIND Parameters

Type
KIND
Parameter Range

Storage
Bytes Alignment

INTEGER (BYTE) 1 -128 to 127 1 1

INTEGER 2 -215 to 215-1 2 2

INTEGER 4 (default) -231 to 231-1 4 4

INTEGER 8 -263 to 263-1 8 8

REAL

Precision:

6 to 9 decimal digits

4 (default) -3.402823x1038 to
-1.175495x10-38

and 0.0 and

+1.175495x10-38 to
+3.402823x1038

4 4

continued

Data Types and Data Objects 3

3-3

The KIND parameter for an intrinsic data type is the same as the storage
requirements for that data type except for COMPLEX where the KIND
parameter is the KIND parameter of the real or imaginary part.

REAL

Precision:

15 to 17 decimal digits

8 -1.797693x10+308 to
-2.225073x10-308

and 0.0 and

 +2.225073x10-308 to
+1.797693x10+308

8 8

REAL

Precision:

33 to 35 decimal

digits

16 -1.189731x10+4932 to
-3.362103x10-4932

and 0.0 and

+3.362103x10-4932 to
+1.189731x10+4932

16 16

COMPLEX* 4 (default) same as for REAL(4) 8 4

COMPLEX** 8 same as for REAL(8) 16 8

COMPLEX(KIND=16) 16 two components of
REAL(16)

32 16

CHARACTER 1 (default) ASCII character set*** 1 1

LOGICAL 1 .TRUE.
.FALSE.****

1 1

LOGICAL 2 .TRUE. .FALSE.** 2 2

LOGICAL 4 (default) .TRUE. .FALSE.** 4 4

LOGICAL 8 .TRUE. .FALSE.** 8 8

* COMPLEX (KIND=4) is the same as COMPLEX o r COMPLEX*8.

** COMPLEX (KIND=8) is the same as DOUBLE COMPLEX or COMPLEX*16.

*** The ASCII character set uses only the values 0 to 127, but the Intel Fortran implementation allows use of all 8 bits of a
CHARACTER entity. The processing of character sets requiring multibyte representation for each character makes use
of all 8 bits.

****In a standard conforming program, .TRUE. is represented by 1 and .FALSE. is represented by 0. In
nonstandard conforming programs involving arithmetic operators with logical operands, a logical variable may be
assigned a value other than 0 or 1. In this case, any nonzero value is considered to be .TRUE. and only the value
zero is considered to be .FALSE.

Table 3-1 Types and KIND Parameters (continued)

Type
KIND
Parameter Range

Storage
Bytes Alignment

3-4

3 Intel Fortran Programmer’s Reference

Examples of simple type declarations are:

INTEGER :: i,j

! i and j are default 4-byte integers

INTEGER(KIND=2) :: i2

! i2 is a 2-byte integer

REAL,DIMENSION(5,5) :: a

! a is a 5x5 array of default reals

CHARACTER(LEN=10) :: c10

! c10 is a variable of 10 characters

Derived Types
Fortran 95 allows the creation of new data types that are constructed from
the intrinsic data types and previously defined new data types. These new
data types are known as derived types.

For example, a derived type for manipulating coordinates consisting of two
real numbers can be defined as follows:

TYPE coord

 REAL :: x,y

END TYPE coord

x and y are components of the derived type coord.

Variables of type coord, named a and b, can be
declared as follows:

TYPE(coord) :: a, b

An assignment statement

a = b

copies the values of all the defined components of b to those of a.

The individual components of a and b are referenced as a%x, a%y, b%x,
and b%y. By coding appropriate procedures (as described in “Scope and
Association” in Chapter 7), the scope of the standard operators can be
extended so that, for example,

a = a + b

could be defined to be equivalent to

a%x = a%x + b%x; a%y = a%y + b%y

Data Types and Data Objects 3

3-5

or to anything else, depending on the user-defined procedure that is
provided to implement the operation.

A derived-type entity can be used as an argument to a procedure and can be
the result of a function— that is, a function of derived type can be defined.

Type Declarations
The general form of a type declaration statement is:

type-spec[[,attribute-spec] ... ::]entity-list

type-spec

is one of :

• INTEGER [kind-selector]
• REAL [kind-selector]
• DOUBLE PRECISION [kind-selector]
• CHARACTER [char-selector]
• LOGICAL [kind-selector]
• TYPE (type-name)

• DOUBLE COMPLEX (Intel Fortran extension)

• BYTE (Intel Fortran extension)

BYTE is equivalent to INTEGER (KIND=1). DOUBLE PRECISION is
equivalent to REAL (KIND=8) and DOUBLE COMPLEX is equivalent to
COMPLEX (KIND=8).
kind-selector is

([KIND=]scalar-int-init-expr)

scalar-int- is a scalar integer initialization expression that must

 init-expr evaluate to one of the KIND parameters available (see
Table 3-1).

char-selector see “CHARACTER” in Chapter 10 for details.

type-name is the name of a derived type.

attribute-spec is one or more compatible items from the following:

• PARAMETER
• access-spec

3-6

3 Intel Fortran Programmer’s Reference

• ALLOCATABLE
• DIMENSION (array-spec)
• EXTERNAL
• INTENT (intent-spec)
• INTRINSIC
• OPTIONAL
• POINTER
• SAVE
• TARGET

Table 10-1 contains a matrix of attribute compatibility.

access-spec is one of:

• PUBLIC
• PRIVATE

array-spec is a list of array bounds. Chapter 4, “Arrays,” describes
the formats.

intent-spec is one of:

• IN
• OUT
• INOUT

entity is one of:

• variable-name [(array-spec)]
[* character-length]
 [= initialization-expression]

• function-name [(array-spec)]
[* character-length]

Note that when there is an initialization-expression in the
entity there must also be a :: separator in the statement.

Data Types and Data Objects 3

3-7

Examples of Type Declarations

Below are examples of type declaration statements, some of which include
data initialization components.

INTEGER i, j, k

! Default, KIND=4, integers i j k.

INTEGER :: i,j,k

! Using optional separator.

INTEGER(KIND=8) :: i=2**40

! An 8-byte initialized integer.

INTEGER(8),DIMENSION(10) :: i

! 10 element array of 8-byte integers.

REAL, DIMENSION(2,2):: a = &

RESHAPE((/1.,2.,3.,4./),(/2,2/))

! Using an array constructor for initialization.

COMPLEX :: z=(1.0,2.0)

! Initialized complex.

COMPLEX z=(1.0,2.0) ! FAULTY

! Syntax error - no :: present.

CHARACTER(KIND=1) :: c

! One character (default length).

CHARACTER(LEN=10) :: c

! A 10-byte character string.

CHARACTER(*),PARAMETER :: title=’Ftn 95 MANUAL’

! Length can be * for a named constant.

! title is a 13-byte character string.

3-8

3 Intel Fortran Programmer’s Reference

CHARACTER(LEN=n) :: c

! If the statement is in a subprogram,

! n must be known at entry, otherwise

! it must be a constant.

SUBROUTINE x(c)

 CHARACTER*(*) :: c

 ! c assumes the length of the actual argument.

END

TYPE(node):: list_element

! A single entity, of derived type node.

TYPE(coord) :: origin = coord(0.0,0.0)

! Declaration and initialization of a

! user-defined variable

Alternative Form of Intrinsic Type Spec Declaration

As an extension, Intel Fortran allows, for noncharacter types, the
type-spec to be given in the form:

type * length

where type is an intrinsic type excluding CHARACTER, and length is the
number of bytes of storage required, as in Table 3-1. Alternatively, *length
may be placed after the entity name. If the entity is an array with an
array-spec following it, *length may also be positioned after the
array-spec.

Example
REAL*8 r8(10)

REAL r8*8(10)

REAL r8(10)*8

are all equivalent to the following preferred notation:

REAL(8), DIMENSION(10) :: r8

Data Types and Data Objects 3

3-9

Except for COMPLEX, length is the same as the equivalent KIND
parameter; for COMPLEX, the KIND parameter is the KIND parameter of the
real or imaginary part and so:

COMPLEX*8 is equivalent to COMPLEX(KIND=4).

COMPLEX*16 is equivalent to COMPLEX(KIND=8).

Alternative Form of Initialization Within Declaration

Intel Fortran permits the use of slashes delimiting the data values rather
than the equal sign introducing the data item, although it is recommended
that this format is not used. The :: separator must not be used and array
constructors and structure constructors cannot be used. Arrays may be
initialized by defining a list of values that will be sequence associated with
the elements of the array (the DATA statement, which permits the use of
implied-DO loops may be more appropriate).

Examples
INTEGER i/1/,j/2/

REAL a(2,2)/1.1,2.1,1.2,2.2/ ! a(i,j)=i.j

Increasing Default Sizes

Intel Fortran provides command-line options (/4I2, /4I4, /4I8) that
increase the default sizes of integer, logical, real, and complex items. The
options are described in the Intel® Fortran Compiler User’s Guide for
Win32* Systems.

Intrinsic Inquiry Functions

Two intrinsic functions, SELECTED_INT_KIND and
SELECTED_REAL_KIND, are provided to determine the most appropriate
KIND parameter to use for a given range and precision. These functions can
be used to significantly enhance the portability of programs. The value of
the KIND parameter can be set to the result returned by one of these
functions.

3-10

3 Intel Fortran Programmer’s Reference

SELECTED_INT_KIND has one argument which specifies the range
required. For example:

PARAMETER(intkind=SELECTED_INT_KIND(11))

will set the parameter intkind to a value of 8, as the function will return
the KIND parameter with the smallest storage requirement that can contain
integers with a magnitude of 1011. Integer variables can then be declared
using the value of intkind thus:

INTEGER(KIND=intkind) :: i, j, k

SELECTED_REAL_KIND has two arguments corresponding to the range
and precision required. For example:

PARAMETER(rlkind=SELECTED_REAL_KIND(P=10,R=99))

returns a value of 8, supporting at least 10 digits of precision for values with
magnitude of at least 1099. Declaring all REAL entities with
REAL(rlkind) enables easy modification if it becomes necessary to
change the range or precision.

Attributes

The attributes that may be included in a type declaration are individually
described in Chapter 10, “Attributes,” with further references from there to
appropriate sections of the manual. A one-line summary of the purpose of
each attribute is given here.

ALLOCATABLE Storage for the array is to be explicitly allocated during
execution.

DIMENSION

(array-spec) Declares an array.

EXTERNAL Defines a subprogram or block data to be in another
program unit.

INTENT

(intent-spec) Defines the mode of use of a dummy argument.

INTRINSIC Allows the use of a specific intrinsic name as an actual
argument.

OPTIONAL Declares the presence of an actual argument as optional.

Data Types and Data Objects 3

3-11

PARAMETER Defines named constants.

POINTER Declares the entity to be a pointer.

PRIVATE Inhibits visibility outside a module.

PUBLIC Provides visibility outside a module.

SAVE Ensures the entity retains its value between calls of a
procedure.

TARGET Enables the entity to be the target of a pointer.

All the above attributes can also be specified by using separate statements,
although an attribute may not be specified more than once for an entity.

Note that in Intel Fortran there are two POINTER statements with differing
syntax. One supports the Standard Fortran 95 definition and the other
supports Cray-style pointers.

The following additional attributes are Intel Fortran extensions and can only
be specified using separate statements:

AUTOMATIC Entity does not retain its value between procedure calls.

STATIC Entity retains its value between procedure calls.

VOLATILE Provides data sharing between asynchronous
processes.

An attribute compatibility table and further information and examples can
be found in the relevant entries in Chapter 10, Intel Fortran Statements.

Representation of Literal Constants
The formats of constants for each of the intrinsic data types are described
below.

Integer Constants

A signed integer literal constant is:

[sign] digit-string [_kind-parameter]

sign is one of:

• +
• -

3-12

3 Intel Fortran Programmer’s Reference

digit-string is:

• digit[digit] ...

kind-parameteris one of:

• digit-string

• the name of a scalar integer constant (PARAMETER)

For example:

• -123
• 123_1

• 123_ILEN where ILEN is a named integer constant that must have a
value which is a valid KIND parameter, either 1, 2, 4, or 8

BOZ Constants

In DATA statements, additional forms of unsigned constants are permitted
for initializing integer variables. The values are expressed in binary, octal,
or hexadecimal notation, and are collectively known as BOZ constants. The
formats are:

A binary constant is one of:

• B ’digit-string ’

• B "digit-string "

where digit-string contains only the digits 0 and 1.

An octal constant is one of:

• O ’digit-string ’

• O "digit-string "

where digit-string contains only the digits 0, ..., 7.

A hexadecimal constant is one of:

• Z ’hex-digit-string ’

• Z "hex-digit-string "

where hex-digit-string contains only the characters 0, ..., 9,
A, ..., F,a,...,f .

Data Types and Data Objects 3

3-13

For example:

INTEGER i ,j ,k

DATA i/B’01001010’/

DATA j/O’112’/

DATA k/Z’4A’/

initializes i, j, and k to the decimal value 74.

As an extension, Intel Fortran also allows octal constants with a trailing O,
and hexadecimal constants with a trailing X. For example:

’112’O ’4A’X

are alternative representations to those used in the example above.

Intel Fortran also extends the range of use of these constants to contexts
other than initializing integers. These extensions are described in “Typeless
Constants”, page 3-16.

Real Constants

A signed real literal constant is one of:

• [sign] digit-string [exponent] [_kind-parameter]
• [sign] digit-string.[digit-string] [exponent]

[_kind-parameter]
• [sign] [digit-string] .digit-string [exponent]

[_kind-parameter]

exponent is

exponent-letter [sign] digit-string

exponent-letter is one of:

• E
• D
• Q

sign and digit-string are explained in the section “Integer
Constants”, page 3-11.

The use of Q is an Intel Fortran extension.

3-14

3 Intel Fortran Programmer’s Reference

If no KIND parameter is present, or if the exponent letter E is present,
then the default KIND representation will be used. If the exponent
letter is D, the KIND parameter used will be 8, and if the exponent
letter is Q, the KIND parameter will be 16. If both an exponent and a
KIND parameter are specified, the exponent letter must be E.

For example:

Complex Constants

A complex literal constant has the form:

(real-part , imaginary-part)

real-part, imaginary-part are each one of:

• signed-integer-literal-constant
• signed-real-literal-constant

The KIND parameter of the complex value will correspond to the KIND
parameter of the part with the larger storage requirement. For example:

Character Constants

A character literal constant is one of:

• [kind-parameter_] ’character-string’

• [kind-parameter_] "character-string"

• [kind-parameter_] ‘character-constant’C

3.4E-4 0.00034

42.E2 4200

1.234_8 1.234 with approximately 15 digits precision

-2.53Q-300 -2.53x10-300 with approximately 34 digits
precision

(1.0E2, 2.3E-2) default complex value

(3.0_8,4.2_4) complex value with KIND=8

Data Types and Data Objects 3

3-15

The delimiting characters are not part of the constant. If it is required to
place a single quote in a string delimited by single quotes then two single
quotes must be used; and similarly for double quotes. For example:

1_’A.N.Other’

’Bach’’s Preludes’ (actual constant is Bach’s Preludes)

"" (a zero length constant)

For compatibility with C, Intel Fortran has an extension that allows you to
specify a null-terminated character constant. You can use this where a
character constant can appear. You must take into account that the last byte
of the character entity will be taken up by a zero. For example,

CHARACTER*5 STRING
DATA STRING/’1234’C/

This works correctly because the fact that the initializing STRING as a C
character constant means that the last byte is initialized as zero. However,

CHARACTER*5 STRING
DATA STRING/’12345’C/

will generate a warning because there are too many data values to fit in the
five bytes of STRING.

Also for compatibility with C usage, Intel Fortran allows the backslash
character (\) to be used as an escape character in character strings. You can
use a compile-time option, the /nbs option (see the Intel Fortran Compiler
User’s Guide) to disable this feature. When the /nbs option is not used, the
default behavior is to ignore the backslash character, and either substitute
an alternative value for the character following, or to interpret the character
as a quoted value. The escape characters that are recognized and their
effects are described in
Table 3-2.

Table 3-2 Escape Characters

Escape Character Effect

\n newline

\t horizontal tab

\v vertical tab

\b backspace

3-16

3 Intel Fortran Programmer’s Reference

Thus:

’ISN\’T’ is a valid string where /nbs is not used.

The backslash is not counted in the length of the string.

If \& appears at the end of a line when the /nbs option is active, the & will
not be treated as a continuation indicator.

Logical Constants

The form of a logical literal constant is one of:

• .TRUE. [_kind-parameter]
• .FALSE. [_kind-parameter]

Example
.TRUE.
.FALSE._2

Typeless Constants

Intel Fortran extends the uses of binary, octal, and hexadecimal constants
beyond those prescribed in the Fortran 95 Standard. Binary, octal, and
hexadecimal constants (BOZ constants) can be used wherever an intrinsic
literal constant of any numeric or logical type is permitted. Intel Fortran also
allows Hollerith constants to be used in these contexts and where a
character type is required.

\f form feed

\0 null

\’ apostrophe (does not terminate a string)

\" double quote (does not terminate a string)

\\ \

\x x, where x is any other character

Table 3-2 Escape Characters (continued)

Escape Character Effect

Data Types and Data Objects 3

3-17

Extended Use of BOZ Constants
The format of BOZ constants is described in “BOZ Constants”, page 3-12.

If possible, the type attached to a typeless constant is derived from the
magnitude of the constant and the context in which it appears. When used
as one operand of a binary operator, it assumes the type of the other
operand. If it is used as the right-hand side of an assignment, the type of the
object on the left-hand side is assumed. When used to define the value
within a structure constructor, it assumes the type of the corresponding
component. If appearing in an array constructor, it assumes the type of the
first element of the constructor.

Further rules:
• If the context does not determine the type, a warning is issued and the

type attached to the constant is:
— INTEGER(4) if the constant occupies 1-4 bytes.
— INTEGER(8) if the constant occupies more than 4 bytes.
Leading zeros are considered significant in determining the size.
For example:
Z’00000001’ assumes INTEGER(4)
Z’000000001’ assumes INTEGER(8)

The compiler truncates and issues a warning about constants that can only
be represented by more than 8 bytes (for example,
Z’12345678123456781234’). The resulting truncated value differs from
that specified in the source code.
• When the size of type determined by context does not match the size of

the actual constant, the constant is either extended with zeros on the
left or truncated from the left as necessary.

• If a single constant is assigned to a complex entity, it is assumed to
represent the real part only and will assume the real type with the same
length as the complex entity.

• In user generic procedure resolution (see Chapter 7 for details), an
actual argument that is a BOZ constant is considered to match a logical
or numeric dummy argument; however, an ambiguous reference is
likely to occur.

• Except for the intrinsic conversion procedures, a BOZ constant used as
an actual argument for an intrinsic procedure assumes the integer type.

3-18

3 Intel Fortran Programmer’s Reference

• The intrinsic functions INT, LOGICAL, REAL, DBLE, DREAL, CMPLX,
and DCMPLX are available to cast a BOZ constant to a specific type. If a
BOZ constant is given as argument arg to these functions, the type
assumed for arg is as follows:
— For functions INT and LOGICAL the assumed type will be

respectively INTEGER(KIND=a) and LOGICAL(z=a), where a
is 4 if the constant occupies 1 to 4 bytes, and 8 otherwise.

— For the functions REAL, DBLE, DREAL, CMPLX, and DCMPLX an
argument of type REAL(KIND=b) is assumed, where b is 4 if the
constant occupies 1 to 4 bytes, 8 if it occupies 5 to 8 bytes, and 16
otherwise.

Examples
Z’4A1’ Hexadecimal constant is INTEGER(4).

10_2 + Z’1000A’ The value is 20 (constant treated as
INTEGER(2) and truncated on the left).

LOGICAL(2) :: lgl2 Constant treated as LOGICAL(2), the

 lgl2 = B’1’ type of the variable.

ABS(Z’41’) Constant treated as INTEGER(4); IABS
is used.

REAL(Z’3FF0000000000000’)Constant treated as REAL(8) as it is
more than 4 bytes.

Hollerith Constants
Hollerith constants have the format:

lenHstring where

len is the number of characters in the constant and

string contains exactly len characters. The value of the
constant is the value of the pattern of bytes
generated by the ASCII values of the characters.

For example:

3HABC

5HABCbb

bb represents two space characters, to make the length equal to 5.

Hollerith constants may appear anywhere that a BOZ constant can appear,
and additionally where a character string is valid. When there is a mismatch
in lengths the constant will be truncated on the right, or padded on the right
with space characters.

Data Types and Data Objects 3

3-19

If a Hollerith constant is used as an argument to the conversion functions
INT and LOGICAL, KIND=1 and KIND=2 are added as possible values for
KIND=a (see the BOZ rules earlier in this section); these apply when the
length of the constant is 1 or 2 characters/bytes.

Character Substrings
A character-substring is a contiguous portion of a scalar character
entity, referred to as the parent-string. The substring is defined by
giving the character positions of its start and end. The format is:

parent-string ([starting-position] :
[ending-position])

starting-position is a scalar expression. If starting-position
is omitted, a value of 1 is assumed. The
starting-position must be greater than or
equal to 1 unless the substring has zero length.

ending-position is a scalar integer expression. If
ending-position is omitted the value of the
length of the character string is assumed.

The length of the substring is:

MAX (ending-position - starting-position + 1, 0)

Example
’ABCDEFGH’ (3:5)

is a character substring of length 3 equal to

’CDE’

’ABC’ (-1 : 2)

is invalid.

’ABC’(2: -1)

has a zero length.

3-20

3 Intel Fortran Programmer’s Reference

Derived-type Definition
The format of a derived-type definition is:

TYPE [[, access-spec] ::] type-name

[private-sequence-statement] ...

component-definition-statement

[component-definition-statement] ...

END TYPE [type-name]

access-spec Specifies one of the following:

PRIVATE
PUBLIC

type-name is the name of the type being defined.
type-name must not conflict with the intrinsic
type names.

private-sequence- is a PRIVATE statement or a SEQUENCE
statement.

 The use of PRIVATE and PUBLIC is only allowed
if the type definition is within a module. Their use
is explained in “PRIVATE (Statement and
Attribute),” and “SEQUENCE” in Chapter 10.

The SEQUENCE statement is explained below.

component-definition-statement is:

type-spec [[component-attr-list]::]
component-declaration

component-attr-listcan only contain the DIMENSION and POINTER
attributes.

component-declaration is:

component-name [(component-array-spec)]
[*character-length][component-initialization]

where component-initialization has one of the following forms:

 = initialization-expression

 => NULL()

Data Types and Data Objects 3

3-21

The first form of component-initialization is used for components
that are not of POINTER type.

The second form of component-initialization is used for POINTER
components, and indicates that the pointer has an initial status of
disassociated (or nullified).

The ability to initialize a pointer in this manner is useful because there are
several instances in the language where a pointer may not be used unless it
has a defined association status.

A component array without the POINTER attribute must have an
explicit-shape specification with constant bounds.

The presence of the SEQUENCE statement implies that the components of
the type will be arranged in storage in the order in which they are defined.
The type is then known as a sequence derived type. If all
components are of character type it has character sequence type,
and if all the components are of numeric type it has numeric sequence
type.

Equivalencing variables of derived type which have different sequence
types is a supported extension.

If a component is of the same derived type as the type being defined then
the component must have the POINTER attribute.

For example, a singly linked list can be created as a set of “nodes”, each
containing a value and a pointer to the next node. A type node can be
defined as follows:

TYPE node

INTEGER :: value

TYPE(node), POINTER :: next

! next must have the POINTER

! attribute

END TYPE node

3-22

3 Intel Fortran Programmer’s Reference

Structure Constructor

A structure constructor specifies a scalar value for a derived type by
specifying the values for the components in the order that they appear in the
definition. For example:

TYPE employee

 CHARACTER(LEN=30) :: surname

 CHARACTER(LEN=20) :: firstname

 INTEGER :: id

END TYPE employee

TYPE(employee) :: programmers(30)

TYPE(employee) :: &

 robjones=employee(’Jones’,’Rob’,20)

programmers(1) = employee(’Smith’,’John’,34)

employee(’Smith’,’John’,34) is a structure constructor that
contains the values assigned to the components of the first element of the
array programmers by the final statement above.

Note that the name of the type must precede the parenthesized data values
of the components, a value must be present for each component, and objects
of derived type may be initialized by a structure constructor in a
derived-type declaration.

Implicit and Explicit Typing
If an entity is declared or used without being explicitly typed, then the
entity’s type will be determined from the initial symbol of its name, known
as implicit typing. The default implicit typing rules are as follows:

• Names with initial letter A to H or O to Z: REAL
• Names with initial letter I to N: INTEGER

Thus:

DIMENSION a(5), i(10)

k=1

b=k

implicitly declares a and b as default reals and i and k as default integers.

Data Types and Data Objects 3

3-23

Do not use implicit typing if you can avoid it because your types can be
converted to a type that you do not want. Instead explicitly type all entities
using declaration statements. Implicit typing can be disabled with the
IMPLICIT NONE statement, as described below, ensuring that any
appearance of an entity that has not appeared in an explicit type declaration
statement will be the subject of an error message and render the program
invalid.

IMPLICIT Statement

The IMPLICIT statement provides a means of changing or canceling the
default implicit typing. This takes effect for the scoping unit in which it
appears, except where overridden by explicit type statements.

The statement is one of:

• IMPLICIT NONE

• IMPLICIT implicit-spec-list

implicit-spec-list is:

type-spec (letter-spec-list)

letter-spec is one of:

letter
letter - letter

IMPLICIT NONE overrides the predefined implicit type specification. If
this statement is included in a scoping unit then all the names in that unit
must have their types explicitly declared. It must appear before any
PARAMETER statements. A scoping unit that includes an IMPLICIT NONE
statement may not include any other IMPLICIT statements. A
command-line option, the /4{Y|N}d option, can be specified that has the
effect of including an IMPLICIT NONE statement in every program unit
(See the Intel Fortran Compiler User’s Guide).

Examples
IMPLICIT NONE

! Enforce explicit typing

IMPLICIT REAL(a-h,o-z),INTEGER(i-n)

! This is equivalent to the default typing:

! a through h and o through z implies REAL

3-24

3 Intel Fortran Programmer’s Reference

! i through n implies INTEGER

IMPLICIT REAL(KIND=8)(d),COMPLEX(8)(z)

! d implies REAL(8) z implies COMPLEX(8);

! other letters retain any assigned types

IMPLICIT TYPE(node)(l,n)

! Derived types can be included

A scoping unit may contain more than one “active” IMPLICIT statement,
but any letter must be included in only one letter-spec. IMPLICIT
statements must precede all other specification statements except
PARAMETER statements. The IMPLICIT statement has no effect on the
default types of intrinsic functions.

The implicit rules of a host scoping unit will apply to a contained scoping
unit, but can be completely or partially overridden by implicit statements
within the contained scoping unit.

Data Initialization
Compile-time data initialization can be carried out using type declaration
statements and DATA statements. The format of the DATA statement is fully
described in “DATA” in Chapter 10, where the initialization formats for
each of the intrinsic type declarations are also specified.

Examples
INTEGER i

LOGICAL test

CHARACTER(LEN=10):: string

REAL,DIMENSION(2,4) :: array
COMPLEX,DIMENSION(3) :: zz

DATA i,test,string/21,.TRUE.,’10 letters’/

DATA zz/3*(1.0,2.0)/ ! Using a repeat factor.

DATA ((array(i,j),i=1,2),j=1,4)/1.0,2*2.0,5*3.0/

! Using an implied DO loop.

Data Types and Data Objects 3

3-25

! i = 21 test = .TRUE.

! string = ’10 letters’

! All elements of zz = (1.0,2.0)

! The 8 elements of array are

! 1.0 2.0 3.0 3.0

! 2.0 3.0 3.0 3.0

Storage Association and Alignment
In general, no assumptions about the relative storage locations of any
entities can be made. The use of COMMON and EQUIVALENCE statements
enable storage association to be established. The detailed syntax and
description of these statements is given in Chapter 10.

The COMMON statement enables common blocks of storage to be established.
The use of a COMMON statement referring to the same common block in
more than one program unit ensures that the same storage locations are
referenced in each of the program units.

The EQUIVALENCE statement enables more than one name to be given to
the same storage location within a program unit. Where common block
elements or array elements are referenced, restrictions apply because of the
imposed sequencing of these elements within storage.

The SEQUENCE statement appears only in a derived-type definition (see
“Derived-type Definition” on page 20). It enables derived-type variables to
be located in common blocks and to be named in EQUIVALENCE
statements.

Storage Association Alignment Rule

The COMMON and SEQUENCE storage statements enforce an ordering of
variables within storage. Association may be established between variables
with different type and KIND parameters. The general rules for the
alignment of variables in storage are as follows:

• A variable will be stored at an address that is a multiple of the alignment
required for storage of a scalar variable with the same type and KIND
parameters (see Table 3-1). This is an extension to the Fortran 95
Standard.

3-26

3 Intel Fortran Programmer’s Reference

• A sequence derived type will have the same alignment as the
component that has the most restrictive alignment requirement.

Examples

The following code illustrates how a sequence of variables would be stored
within a derived type.

TYPE t

 SEQUENCE

 CHARACTER(LEN=7) :: c

 INTEGER(2) :: i2

 REAL(8) :: r8

 REAL(4) :: r4

END TYPE t

TYPE (t), DIMENSION(5) :: ta

Each element of t is allocated as in the following table. The first component
of t starts at an address that is a multiple of 8:

The four trailing padding bytes are necessary to preserve the alignment of
r8 in each element of the array.

Dynamic Data Objects
Allocatable arrays, pointers and automatic objects are allocated
dynamically.

Table 3-3 Example of Structure Storage

Component Byte Offset Length

c 0 7

i2 8 2

r8 16 8

r4 24 4

padding 28 4

Data Types and Data Objects 3

3-27

Allocatable Arrays

The definition and description of use of allocatable arrays is in “Allocatable
Arrays” in Chapter 4.

Pointers

A variable with the POINTER attribute is referred to as a pointer. It can be in
one of three states: undefined, disassociated, or associated. On entry to a
program, all pointers are undefined.

 If variable p is a pointer:

• ALLOCATE(p) acquires storage and associates p with this storage,
which becomes its target.

• DEALLOCATE(p) disassociates p from its target (which must have
been previously ALLOCATEd) and frees the storage occupied by the
target.

• NULLIFY(p) disassociates p from any target but does not alter the
status of the target.

The ASSOCIATED intrinsic function inquires if a pointer is associated with:

• Any target
• A specific target
• The same target as another pointer

A pointer can also be associated with an existing target using pointer
assignment (see Chapter 5 for details). Briefly, p => t associates pointer p
with target t. If t is a pointer then p becomes associated with the target
with which t is associated.

Cray-Style Pointers

For compatibility with earlier versions of Fortran, Intel Fortran supports
Cray-style pointer variables; see Chapter 10, Intel Fortran Statements for the
syntax and examples. The use of Cray-style pointers is not recommended.

3-28

3 Intel Fortran Programmer’s Referemce

Automatic Objects

An automatic object is an explicit-shape array or character string whose size
is determined by values which are known only on entry to the procedure in
which it is declared. It cannot be a dummy argument and cannot possess the
SAVE attribute. Its storage space is dynamically allocated upon invocation
of the subprogram and is released on return from the subprogram.

Example
SUBROUTINE sub(n,...)

 ! a and c are not in the dummy argument list

 INTEGER, INTENT(IN) :: n

 ! n must have a value on entry

 REAL, DIMENSION(n) :: a

 CHARACTER(LEN=n) :: c

 ...

END SUBROUTINE sub

Array a is dynamically allocated on entry to the subroutine sub, by which
time the value of n has been defined. Similarly, character variable c will be
dynamically allocated, with length n. The storage for both of these
automatic objects will be released on return from the subroutine.

Records and Structures
Intel Fortran also provides STRUCTURE and RECORD statements to
provide compatibility with earlier implementations. The Fortran 95
derived-type (TYPE) feature now provides similar facilities.

The STRUCTURE and RECORD statements are extensions to the Fortran
95 Standard. For details see the “STRUCTURE” and “RECORD” in Chapter
10, Intel Fortran Statements.

4-1

Arrays 4
Array processing is a feature of many Fortran programs and one of the
major features of Fortran 95 is the ability to process an array as a whole, or
in part, rather than on an element-by-element basis as in traditional Fortran.
Fortran 95 has also introduced new array categories that include automatic
arrays, pointer arrays, arrays that may be allocated dynamically, and
functions that return an array result. These new array categories and the
concepts introduced to support them are described in this chapter.

New Features
The following is a summary of new array features provided in Fortran 95:

Array categories Fortran 95 provides a number of different categories of
arrays: explicit-shape (including automatic and
adjustable), assumed-shape, deferred-shape (including
allocatable and pointer), and assumed-size. They are
each described later in this chapter.

Whole array Expressions may contain array operands and be
 processing array-valued. They may also contain array sections,

which are array-valued. Function results may also be
array valued. There is no implied order in which the
element-by-element operations are performed. If such
operations appear in an assignment statement where the
left-hand side is an array, the effect is as if the right-hand
side were completely evaluated before any part of the
assignment takes place. A scalar may also be used in
array expressions; more details of array expressions
appear later in this chapter.

4-2

4 Intel Fortran Programmer’s Reference

Masked array Certain array elements, selected by a mask, can be
assignment assigned in array assignment statements using the

WHERE statement or WHERE construct. For any
elemental operation in the assignments, only the
elements selected by the mask participate in the
computation.

Masked array assignments are described later in
 “Masked Array Assignment” in Chapter 5 and under
the WHERE statement in “WHERE (Statement and
Construct)” in Chapter 10.

Intrinsic functions A number of new intrinsic functions have been provided
to manipulate arrays. They are mostly classed as
transformational functions.

Array sections A selected portion of an array, called an array section,
can be specified. It is then treated as an array in its own
right and can be used as such. The section can be
specified by the use of subscript triplets, vector
subscripts, or both.

Array substrings It is possible to attach a substring specifier to the
subscript list of a character array; the result is
considered to be an array section, that (as noted above)
is itself an array.

Array constructors An array constructor allows an array to be constructed
from a list of scalar values and arrays of any rank. An
array constructor is a one-dimensional array and can be
used wherever such an array is valid. Arrays of higher
rank can be constructed by combining an array
constructor with the RESHAPE intrinsic function.

Arrays 4

4-3

Zero-sized arrays Fortran 95 has introduced the concept of an array with
no elements. These arrays are known as zero-sized
arrays and allow certain algorithms to be written
naturally without having to allow for edge conditions;
more details are given later in this chapter.

Examples of these features are given in the appropriate
sections below.

Array Properties
A Fortran array is a single, named entity consisting of a set of objects called
array elements, all of the same type and type parameters, arranged in a
rectangular pattern of one or more dimensions. An array is therefore said to
have the DIMENSION attribute, and arrays in Fortran 95 may have up to
seven dimensions. An array has the following properties:

rank The number of dimensions of the array. This is fixed for
a given array, and is determined from the array
declaration. If an object is not an array, then it is said to
be scalar and to have rank zero.

lower bound, Each array dimension has a lower bound, an
upper bound, upper bound, and an extent that is defined as:
extent

MAX (upper bound -lower bound + 1, 0)

Bounds are integer valued and may be positive, zero, or
negative. Unlike FORTRAN 77, it is permissible for the
lower bound to be greater than the upper bound; if
this happens then there are no elements in the dimension
and the extent of the dimension is defined to be zero.

size The size of an array is the total number of array
elements, computed as the product of all its extents. If
the extent of any dimension is zero, the size of the array
is zero and the array contains no elements. An array with
no elements is known as a zero-sized array.

4-4

4 Intel Fortran Programmer’s Reference

shape The shape of an array is a vector of the extents of each
dimension of the array; the shape can thus be expressed
as a one-dimensional array of size equal to the rank of
the array being described. For example, if given the
following declarations:

REAL :: a1(10)

INTEGER :: a2(2,4)

LOGICAL :: a3(5,5,0)

COMPLEX :: s1

The rank of a1 is 1 as it only has one dimension, the extent of the single
dimension is 10, and the size of a1 is also 10. a1 has a shape represented by
the vector [10].

a2 has been declared with two dimensions and consequently has a rank of
2, the extents of the dimensions are 2 and 4 respectively, and the size of a2
is 8. The vector [2, 4] represents the array’s shape.

a3 has a rank of 3, the extent of the first two dimensions is 5, and the extent
of the third dimension is zero. The size of a3 is the product of all the extents
and is therefore zero. The shape of a3 is [5, 5, 0].

s1 is a scalar and therefore has a rank of zero, and its shape is represented
by an empty vector.

Array Declaration
An object is declared as an array if its declaration includes an array
specifier. An array specifier is enclosed in parentheses and defines the rank
(number of dimensions), or the rank and shape, of the array and may either
follow the DIMENSION keyword in a type declaration statement or may
follow the declaration of a name.

See “Examples of Type Declarations” in Chapter 3 and “ALLOCATABLE
(Statement and Attribute)” in Chapter 10 for descriptions of the statements
that can be used to declare arrays.

Arrays 4

4-5

Syntax

In Fortran 95, an array specifier is used to classify an array as
explicit-shape, assumed-shape, deferred-shape, or assumed-size; these
different classes of array are discussed later under the section “Array
Categories”, page 4-7.

The syntax of an array specifier is:

array-spec is either a comma separated list of one of the following:

• explicit-shape-spec

• assumed-shape-spec

• deferred-shape-spec

• assumed-size-spec

explicit-shape-spec

[lower-bound :] upper-bound

assumed-shape-spec

[lower-bound] :

deferred-shape-spec

:

assumed-size-spec

[explicit-shape-spec-list ,] [lower-bound :] *

Each set of bounds defines one dimension of the array, and the number of
sets of bounds defines the rank of the array. If a lower bound is not specified
then the default lower bound for that dimension is 1.

Examples of Array Specifiers

The following declarations illustrate various forms of an array specifier.

REAL :: x(10, 1:5, -2:3)

DIMENSION p(1500)

! x and p have explicit shape, in this example

! the bounds are constant

INTEGER :: ibuff (i:,j:), obuff (:)

! ibuff and obuff are assumed-shape arrays

4-6

4 Intel Fortran Programmer’s Reference

INTEGER :: cnts (mdim,ndim)

! an array with an explicit shape, the bounds

! are not constant

COMPLEX, ALLOCATABLE, DIMENSION (:,:) :: coords

! declares an array with deferred shape

REAL, POINTER :: ptr(:,:,:)

! a pointer with deferred shape and a rank of

! three

CHARACTER*5 :: text(10,*)

! the array text has an assumed size

Array Element Storage Order

The sequence in which elements in an array are stored in memory (the array
element order) is important in certain circumstances, such as:

• Input and output list items
• Internal file I/O
• The DATA statement
• Argument association involving assumed-size or explicit-shape arrays
• Certain intrinsic functions (for example, RESHAPE, TRANSFER, PACK,

and UNPACK)
• Array constants in array constructors
• Storage association (for example, as entailed by use of the COMMON or

EQUIVALENCE statements)

Array elements are stored in column major order — that is, the order is
columnwise: the subscripts along the first dimension vary most rapidly, and
the subscripts along the last dimension vary most slowly. Thus the order of
the elements in an array declared with the bounds (3,2) is (1,1), (2,1),
(3,1), (1,2), (2,2), (3,2).

Arrays 4

4-7

In general, for an array a declared as

DIMENSION a(1:u1, 1:u2, 1:u3

the position of array element a(s1,s2,s3) is given by the formula

s1 + (s2-1) x u1 + (s3-1) x u1 x u2

If the array has more dimensions, the formula is extended accordingly, as
implied by its structure. If the lower bound of any dimension is not 1, then
the formula has to be elaborated slightly, but the general form is unaffected.

Notice that the upper bound of the rightmost dimension (u3) does not
appear. An assumed-size array, described below, is characterized in its
declaration by the rightmost upper bound being given as an asterisk (*).
This is possible because its value is not needed in order to compute the
position of any array element.

Array Categories
There are several different categories of arrays in Fortran 95. Each category
is based on the shape of the array as defined by its array specifier.

Explicit-shape Arrays

An explicit-shape array has explicitly declared bounds for each
dimension; they are neither taken from an actual array argument
(“assumed”) nor otherwise specified later, prior to use (“deferred”). Each
dimension of an explicit-shape array is of the form:

[lower bound:] upper bound

For a given dimension, the values of the lower bound and upper bound
define the range of the array in that dimension. The bounds may be positive,
negative, or zero. Normally the lower bound will be less than the upper
bound; if the lower bound is the same as the upper bound then that
dimension will contain only one element; if it is greater, then the dimension
contains no elements, the extent of the dimension will be zero, and the array
will be zero-sized. If a lower bound is not specified then it will assume the
default value of 1.

4-8

4 Intel Fortran Programmer’s Reference

More generally, the bounds of a dimension may be any specification
expression. A specification expression is always a scalar and of type
integer; it is either a constant expression, or one in which all variables are
available at the time the subprogram is activated. Chapter 5, “Expressions
and Assignment,” describes specification expressions in more detail.

There are various forms of explicit-shape array; the simplest form is
represented by an array declaration in which the name of the array is not a
dummy argument and all the bounds are constant expressions. This form of
array may have the SAVE attribute and you can declare it in any program
unit.

An automatic array is an explicit-shape array that is not a dummy argument,
and which has at least one nonconstant bound. You can declare automatic
arrays in a subroutine or function, but they may not have the SAVE attribute
nor can they be initialized. Large automatic arrays may adversely affect the
performance of your programs on Windows*-based operating systems.

A dummy array is identified by the appearance of its name in a dummy
argument list; its bounds may be constants or expressions. Dummy arrays
can only be declared in a subroutine or function.

An adjustable array is a particular form of a dummy array; its name is
specified in a dummy argument list but at least one of its bounds is a
nonconstant specification expression.

Explicit-shape arrays may also be used as function results; these are
described in the section “Array Functions,” page 4-34, and also in
Chapter 7, Program Units and Procedures.

Example

The subroutine below demonstrates how explicit-shape arrays may be
declared.

SUBROUTINE sort(list1,list2,m,n)

! examples of arrays with explicit shape

INTEGER :: m,n

INTEGER :: cnt1(2:99)

! a rank-one array, having an explicit shape

! represented by the vector [98]

Arrays 4

4-9

REAL :: list1(100), list2(0:m-1,-m:n)

! two dummy arrays with explicit shape, list1

! is a rank-one array with an extent of 100 and

! list2 is a rank-two array with an extent of

! m * (m+n+1). Note that list2 is also an

! adjustable array

REAL :: work(100,n)

! work is an automatic array as it does not

! appear in the dummy argument list and its

! bounds are not constant

INTEGER, PARAMETER :: buffsize = 0

REAL :: buffer (1: buffsize)

! the array buffer has explicit shape, in this

! example however it has no elements and is

! zero-sized

...

END SUBROUTINE SORT

Assumed-shape Arrays

An assumed-shape array is a dummy argument that assumes the shape of
the corresponding actual argument. This should be compared with an
explicit-shape dummy array in which the shape of the array is specified
locally.

Each dimension of an assumed-shape array has the form:

[lower bound] :

where

lower bound is a specification expression; it can be omitted and
would then take the default value of 1. Note that it is the
shape of the actual argument that is assumed and not its
bounds and that the actual and dummy argument may
have different lower (and upper) bounds for each
dimension.

4-10

4 Intel Fortran Programmer’s Reference

An assumed-shape array subscript may extend from the specified lower
bound to an upper bound that is equal to the lower bound plus the extent in
that dimension of the actual argument minus one.

A procedure that declares an assumed-shape dummy argument must have
an explicit interface in the calling program unit; this is explained more
thoroughly in Chapter 7, “Program Units and Procedures.”

Examples

The subroutine below demonstrates various forms of an assumed-shape
array declaration.

SUBROUTINE initialize (a,b,c,n)

! examples of assumed-shape arrays

INTEGER :: n

INTEGER :: a(:)

! the array a is a rank-one assumed-shape array,

! it assumes (or inherits) its shape and size

! from the corresponding actual argument; its

! lower bound is 1 regardless of the lower bound

! defined for the actual argument

COMPLEX :: b(ABS(n):)

! a rank-one assumed-shape array, the lower

! bound is ABS(n) and the upper bound will be

! the lower bound plus the extent of the

! corresponding actual argument minus one

Arrays 4

4-11

REAL, DIMENSION(:,:,:,:,:) :: c

! an assumed-shape array with 5 dimensions

! (rank=5), and all the lower bounds are 1

...

END SUBROUTINE initialize

As mentioned previously, if a procedure has an argument that is an
assumed-shape array, its interface must be known to the calling program
unit. For example, if subroutine initialize is an external subroutine,
then it must appear in an interface block as follows:

PROGRAM main

INTEGER :: parts(0:100)

COMPLEX :: coeffs(100)

REAL :: omega(-2:+3, -1:+3, 0:3, 1:3, 2:3)

INTERFACE

 SUBROUTINE initialize (a,b,c,n)

 INTEGER :: n

 INTEGER :: a(:)

 COMPLEX :: b(ABS(n):)

 REAL, DIMENSION(:,:,:,:,:) :: c

END SUBROUTINE initialize

END INTERFACE

CALL initialize &

(parts,coeffs,omega,lbound(omega,1))

...

END PROGRAM main

4-12

4 Intel Fortran Programmer’s Reference

Interface blocks are described further in Chapters 7 and 10.

Deferred-shape Arrays

A deferred-shape array is either an allocatable array or it is a pointer array.
The array specification for a deferred-shape array is of the form:

: [, :] ...

It defines the rank of the array but not the bounds. The array is therefore
said to have deferred-shape.

The shape of the array becomes defined either when the array is allocated or
when a pointer array becomes associated with a target. Note that the form of
array specifier for assumed-shape arrays and deferred-shape arrays is
similar, but a deferred-shape array has either the ALLOCATABLE attribute
which defines an allocatable array or it has the POINTER attribute which
defines a pointer array; an assumed-shape array may have neither of these
attributes.

Pointer Arrays

A pointer array is an array that has the POINTER attribute and may
therefore be used to point to some target object. Initially a pointer array has
no shape and may not be referenced until it becomes associated either
through an ALLOCATE statement or through a pointer assignment statement.

Chapter 3, Data Types and Data Objects describes in more detail the
concept of pointers and how they may become associated, and
disassociated, while “POINTER (Statement and Attribute)” in Chapter 10
explains how the POINTER statement may be used to declare a pointer.

Once a pointer array has become associated you can use it in any context in
which an array is allowed. Note that a pointer array is not an array of
pointers; that is, its elements do not have the POINTER attribute. To create
an array of pointers, define a derived type consisting of a single pointer
component and declare an array of this derived type.

Examples

The following declarations illustrate the concepts associated with declaring
a pointer array.

Arrays 4

4-13

REAL, POINTER, DIMENSION(:) :: p1

! p1 is declared as a pointer to a rank-one
! array of type real, p1 is not associated
! with any target

INTEGER, POINTER :: p2(:,:)

! p2 is a pointer to an integer array of
!rank-two,
! p2 must be associated with a target before it
! can be referenced

TYPE err_type
 INTEGER :: class
 REAL :: code
END TYPE err_type
TYPE(err_type), POINTER, DIMENSION(:,:,:) :: err
! err is a pointer to a rank-3 array of type
! err_type

INTEGER, POINTER :: p3(n)
! this is ILLEGAL, pointers cannot have an
! explicit shape

Allocatable Arrays
An allocatable array has only its name and rank declared at compile-time,
plus the ALLOCATABLE attribute. It can be allocated and deallocated as
required by use of the ALLOCATE and DEALLOCATE statements. These
statements give the user the ability to manage space dynamically at
execution time.
The ALLOCATABLE statement and attribute, the ALLOCATE statement, and
the DEALLOCATE statement are described in Chapter 10.
An allocatable array has an allocation status which is initially set to
not-allocated. The array may not be referenced while it is in this state
except as an argument to the ALLOCATED intrinsic inquiry function, which
may be used to determine the allocation status of an allocatable array. Once
the allocatable array is allocated, its allocation status becomes allocated
and the array may be used in any context in which an array may appear. If
an allocatable array is deallocated then its allocation status returns to

4-14

4 Intel Fortran Programmer’s Reference

not-allocated. It is an error to either allocate an allocatable array
whose status is allocated, or to deallocate an allocatable array when its
status is not-allocated.

The allocation status of a local allocatable array that does not have the
SAVE attribute becomes undefined if the allocation status of the array is
allocated when the procedure in which it is defined exits. In
Intel Fortran such an array will be automatically deallocated.

Although pointer arrays provide more functionality, allocatable arrays are
simpler and provide more opportunities for compiler optimization. When
exiting a particular scope, any array that is ALLOCATABLE and is not
SAVEd is automatically deallocated. This prevents memory leaks.

Example

The following subroutine contains an example of an allocatable array
declaration and uses the ALLOCATED intrinsic function to illustrate how its
allocation status may change.

SUBROUTINE foo

! demonstrate the use of an allocatable array

REAL, ALLOCATABLE, DIMENSION(:,:) :: matrix

! the array matrix is rank-2 allocatable

! array, it has no shape and no storage

INTEGER :: n

LOGICAL :: a1

LOGICAL :: a2

LOGICAL :: a3

a1 = ALLOCATED(matrix)

! a1 is assigned the value .FALSE. as the

! allocation status of the array is

! not allocated

READ *,n

ALLOCATE(matrix(n,n))

Arrays 4

4-15

! dynamically create the array matrix; after

! it has been allocated the array will have

! the shape [n, n]

a2 = ALLOCATED(matrix)

! a2 is assigned the value .TRUE. as the

! allocatable array does exist and its

! allocation status is therefore allocated

DEALLOCATE (matrix)

a3 = ALLOCATED (matrix)

! a3 is assigned the value .FALSE. as the

! allocation status of the array is

! not-allocated

END SUBROUTINE foo

Assumed-size Arrays

An assumed-size array is an older FORTRAN 77 feature that has
been modernized in Fortran 90 with the introduction of assumed-shape
arrays; the use of assumed-size arrays in new code is discouraged.

An assumed-size array is a dummy argument whose size is not specified;
this is in contrast to an explicit-shape dummy array where the extents of
each dimension are specified, and an assumed-shape array where the
extents of each dimension are assumed from the corresponding actual
argument. The form of an assumed-size array specifier is the same as for an
explicit-shape array except that the upper bound of the last dimension is an
asterisk (*).

All dummy array arguments and their corresponding actual argument share
the same initial element and are storage-associated. In the case of
explicit-shape and assumed-size arrays, the actual and dummy array do not
have to have the same shape or even rank. However the size of the dummy
array must not exceed the size of the actual argument. Therefore a subscript

4-16

4 Intel Fortran Programmer’s Reference

in the last dimension of an assumed-size array may extend from the lower
bound to another value, providing that the value does not cause the
reference to go beyond the storage associated with the actual argument.

Because the last dimension of an assumed-size array has no upper bound,
the dimension has no extent and the array consequently has no shape. The
name of an assumed-size array therefore cannot be used in contexts in
which a shape is required, such as the name of a function result or in a
whole array reference.

Example

The example below shows how an assumed-size array may be declared.

SUBROUTINE foo(a,n)

! an example of an assumed-size array

INTEGER :: n

REAL :: a(n,3:*)

! declares a to be a rank-two array, the array

! has no shape and its size must not be greater

! than the size of associated dummy argument;

! the bounds of the first dimension range from 1

! through to n, the lower bound of the second

! dimension starts at 3, and its upper bound is

! not specified

...

END SUBROUTINE foo

Whole Arrays and Array Subobjects
An array may be referred to either as a whole or in part. Any part of an array
that may be referenced independently of other parts of the array is known as
a subobject of the array, and includes either an array element or an array
section. These terms are explained below.

Arrays 4

4-17

Array Elements

An individual element of an array is a scalar and has the same type and type
parameters as the array; an element of an array may be referred to by an
array element reference that takes the form of the array name followed by a
subscript list enclosed in parentheses. A subscript list is an ordered set of
subscript expressions separated by commas, one expression for each array
dimension. Each subscript expression must be scalar and of type integer and
must have a value that lies within the declared bounds for that dimension.

Intel Fortran also allows a subscript expression of type real; the expression
will automatically be converted to type integer after it has been evaluated.

An array element may be used in any expression in which a scalar is
allowed.

Example

The example below declares various arrays and then shows how elements of
these arrays may be referenced. The example also contains some invalid
array element references and explains why they are illegal.

SUBROUTINE foo(a,b,c,n)

INTEGER :: n

INTEGER :: a(:)

! a is an assumed-shape array

REAL :: b(-100:n)

! b is an adjustable dummy array

REAL :: c(100,100)

! c is an explicit-shape dummy array

REAL, ALLOCATABLE :: d(:,:,:)

! d is an allocatable array

REAL, POINTER :: e(:,:)

! e is a pointer to a rank-2 array

4-18

4 Intel Fortran Programmer’s Reference

REAL, TARGET :: f(5,5)

! f is an explicit-shape array with rank 2 and

! size 25

INTEGER :: i,j

! examples of valid array element references

a(1) = 100b(a(n)) = b(a(n)) + ABS(c(10*i,j)) /

ABS(a(n))

ALLOCATE(d(10,10,n))

! allocate d with shape [10, 10, n]

d(5,5,n) = LOG10 (n)

e => f
! associate pointer e with array f
e(1,1) = n
! assign n to the first array element of e,
! this is equivalent to assigning n to f(1,1)

! examples of INVALID array element references

a(0) = 100
! illegal - a reference outside the array
! bounds, the default lower bound of an
! assumed shape array is 1

c(100) = 123
! illegal - the array has a rank of two but

only! one subscript has been specified

c(101,1) = 0.0
! illegal - the subscript 101 is outside the
! bounds of its dimension

END SUBROUTINE foo

Arrays 4

4-19

Whole Arrays

All the elements of an array are referenced if the array name is used without
any bracketed subscript list; this is known as a whole array reference.
Whole array references may be used in such contexts as input/output
statements and argument lists, and also in any array-valued expression. An
array-valued expression is an expression whose value is an array and may
be formed from operations involving arrays; this is discussed in more detail
in a following section.

Example

The subroutine in the example below illustrates various contexts in which a
whole array reference may be used. It also contains some examples of
simple array operations, which will be explained later in the section “Array
Expressions”.

SUBROUTINE change (a,b)

! examples of references to a whole array

REAL, DIMENSION(:,:) :: a,b
! declare a and b to be rank-two assumed-shape
! arrays

REAL, ALLOCATABLE :: temp(:,:)
! temp is an allocatable array, it will be
! assigned storage below

ALLOCATE(TEMP(SIZE(a,1),SIZE(a,2))
! create temp with the same shape as the
! assumed-shape array a
temp = a
! copy all of array a into temp

a = b - 1.0
! subtract 1.0 from each element of b and
! assign to the corresponding element of a

4-20

4 Intel Fortran Programmer’s Reference

b = b - temp

! decrement each element of b by the

! corresponding element in temp

WRITE(*,*) b

DEALLOCATE(temp)

END SUBROUTINE change

Array Sections

The term array section is used in Fortran 95 to denote an array that is a
selected portion of another array, known as the parent. An array section is
an array even if it consists of only one element (or possibly none) and can
therefore be specified wherever an array name may be specified.

In Fortran 95, an array section may be defined:

• By a section subscript list
• By an array of derived-type components
• By an array of character substrings

Each of these will be described in turn below.

Section Subscript List

There are two subscript forms used to describe a section: subscript triplets
and vector subscripts.

• The subscript triplet notation enables a lower bound, an upper bound,
and a stride to be specified for any dimension of the parent array. A
subscript triplet selects elements in a regular manner from a dimension;
the stride can, for example, be used to select every second element.

• A vector subscript is any expression that results in a rank-one integer
value; the values of the array select the corresponding elements of the
parent array for a given dimension. Vector subscripts can be used to
describe an irregular pattern and may be useful for indirect array
addressing such an indexing by a table.

Arrays 4

4-21

Syntax

An array section reference using a section subscript list is:

array-name (section-subscript-list)

section-subscript-is a comma-separated list of
list section-subscript.

section-subscript is one of:

• subscript

• subscript-triplet

• vector-subscript

subscript is:

scalar-integer-expression

subscript- is
triplet [subscript] : [subscript] [: stride]

stride is

scalar-integer-expression

vector- is a rank-one integer array expression.
subscript

A section-subscript-list must specify a section-subscript
for each dimension of the parent array. The rank of the array section is the
number of subscript-triplets and vector-subscripts that
appear in the section-subscript-list; and because an array section
is also an array, at least one subscript-triplet or
vector-subscript must be specified.

Subscript triplet

The first subscript of a subscript triplet specifies the lower bound for the
dimension, the second subscript specifies the upper bound, and the stride
defines the increment between subscript values. All three components of a
subscript triplet are optional; if a bound is left out, then that bound is taken
from the parent array; if the stride is omitted, then the increment between
subscript values is assumed to be one. However, you must specify an upper
bound if a subscript triplet is used in the last dimension of an assumed-sized
array.

4-22

4 Intel Fortran Programmer’s Reference

The stride must not be zero; if it is positive then the subscripts range from
the lower bound up to and including the upper bound, in steps of stride.
Note that when the difference between the upper bound and lower bound is
not a multiple of the stride then the last subscript value selected by the
subscript triplet will be the largest integer value that is not greater than the
upper bound; thus the array expression a(1: 9: 3) will select subscripts
1, 4, and 7 from a.

It therefore follows that a bound in a subscript triplet need not be within the
declared bounds for that dimension of the parent array so long as all the
elements selected are within its declared bounds.

Strides may be negative as well as positive. A negative stride selects
elements from the parent array starting at the lower bound and proceeds
backwards through the parent array in steps of the stride down the last value
that is greater than the upper bound. For example, the expression a(9:
1:- 3) will select the subscripts 9, 6, and 3 in that order from a.

If the section bounds are such that no elements are selected in a dimension,
the section has zero-size; for example, the section a(2:1).

Example

The following example shows the power of the subscript triplet notation in
assigning the same value to a regular pattern of array elements.

INTEGER, DIMENSION(3,6) :: x,y,z

! x, y, and z are 3x6 arrays.

x = 0; y = 0; z = 0

! These are whole-array assignments.

x(3,2:4:1) = 1

y(2,2:6:2) = 2

z(1:2,3:6) = 3

! Using subscript triplets, elements of x, y,

! and z have been assigned, as follows.

! X Y Z

! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3

! 0 0 0 0 0 0 0 2 0 2 0 2 0 0 3 3 3 3

! 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Arrays 4

4-23

Vector Subscripts

A vector subscript is an array expression that evaluates into a rank-one
integer array. The values of the expression represent the subscript value of
the elements to be selected. For example, if v represents a rank-one array
initialized with the values 4, 3, 1, 7, then the array section a(v) is a
rank-one array composed of the array elements a(4), a(3), a(1), and
a(7) — in that order. Note that vector subscripts are commonly specified
using array constructors that are described in the next section; as an
example of these, the expressions a(v) and a((/ 4, 3, 1, 7/)) have
the same section of the array a.

There are various restrictions associated with the use of an array section
with vector subscript; they may not appear:

• On the right hand side of a pointer assignment statement.
• In an I/O statement as an internal file.
• As an actual argument that is associated with a dummy argument

declared with INTENT(OUT) or INTENT(INOUT) or with no
INTENT.

It is permissible for a vector subscript to specify the same element more
than once. When a vector subscript of this form is used to specify an array
section, the array section is known as a many-one array section. An
example of a many-one array section is:

a((/ 4, 3, 4, 7/))

where element 4 has been selected twice. Fortran 95 does not define the
order in which elements are selected in array operations and it is therefore
illegal for a many-one array section to appear in either an input list or on the
left-hand side of an assignment statement.

A vector subscript allows irregular patterns of elements to be selected as
opposed to subscript triplets that select elements in a uniform pattern.

Example
The following example illustrates the concept of an array section using a
section subscript list.

INTEGER, DIMENSION(4) :: m = (/ 2, 3, 8, 1/)

! m is a rank-1 array that has been

! initialized with the values of an array

! constructor

4-24

4 Intel Fortran Programmer’s Reference

INTEGER :: i

REAL, DIMENSION(10) :: a = (/ (i*1.1, i=1,10) /)

! a is a rank-1 array that has been

! initialized with the values

! 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9,

! 11.0

REAL, DIMENSION(4,2) :: b

! b is an uninitialized 4x2 array

PRINT *,a(m)

! prints 2.2, 3.3, 8.8, and 1.1

b(:,1) = a((/ 5, 10, 6, 5/))

! assigns the values 5.5, 11.0, 6.6, and 5.5

! to the first column of b; this is an example

! of a many-one array section

b(:,2) = b(MIN(m,4),1)

! the vector subscript MIN(m,4) represents a

! rank-1 array with the values 2, 3, 4, 1 and

! the second column of b is assigned with

! 11.0, 6.6, 5.5, 5.5

a(m) = a(m) + 20.0

! increments a(2), a(3), a(8), and a(1) by 20.0

PRINT *,a

! prints 21.1, 22.2, 23.3, 4.4, 5.5, 6.6, 7.7,

! 28.8, 9.9, 11.0

Arrays 4

4-25

Array of Derived-type Components

Chapter 3, Data Types and Data Objects describes how derived types may
be declared. They may be scalars or arrays and may contain components
which are scalars or arrays of intrinsic type. The components may also be
variables of derived type nested to any arbitrary level. Fortran 95 requires
that in any variable name reference at most one component of the name has
a non-zero rank and a reference to an array of derived-type components is
one in which a component of the name, but not the last, is an array. Thus
given the declaration:

TYPE sampletype

character(8) :: time

real :: reading

logical :: flags(4)

END TYPE sampletype

TYPE (sampletype) :: sample(100)

then the operands below are examples of a whole array:

sample

sample(n)%flags

and the following operand is an example of an array of derived-type
components:

sample%reading

This array has a rank of 1 and a size of 100; it consists of the array elements
sample(1)%reading, sample(2)%reading, ...,
sample(100)%reading.

Similarly the operand below:

sample%time

represents a CHARACTER(8) array, its rank is 1, its size is 100, and it is
composed of the elements sample(1)%time, sample(2)%time, ...,
sample(100)%time.

This concept may be taken one step further, for although the term
sample%flags is not allowed, sample%flags(4) is valid and
represents an array of derived-type components that is composed of all the
final elements of the component flags that belong to the array sample.

4-26

4 Intel Fortran Programmer’s Reference

Example

The following subroutine includes the declaration of the derived-type
sample and demonstrates some simple uses of an array of derived-type
components.

SUBROUTINE process(sample,case)

TYPE sampletype

 CHARACTER(8):: time

 REAL :: reading

 LOGICAL :: flags(4)

END TYPE sampletype

TYPE (sampletype) :: sample(100)

! declare sample to be a rank-1 dummy array

! of type sampletype, the array has 100

! elements

INTEGER :: case

IF (case == 1) THEN

 sample%reading = 0.0

 ! initializes every component reading of the

 ! array sample to zero

ENDIF

IF (case == 2) THEN

 sample%reading = DIM(sample%reading,0.0)

 ! any negative value in the array

 ! sample%reading is replaced by zero

ENDIF

IF (case == 3) THEN

 WRITE(*,10) &

(sample(i)%time,sample(i)%reading, i=1,100)

 ! prints two columns, the first column

Arrays 4

4-27

 ! contains the 100 components time and the

 ! second column contains the 100 components

 ! reading

ENDIF

10 FORMAT(A,E15.7)

END SUBROUTINE process

Array of Character Substrings

An array section of type character may also have a substring range
specified. An array section of this form is known as an array substring and
is composed of array elements whose values only include the specified
substring from each corresponding element of the array section.

Example

This example illustrates the concept of an array substring.

CHARACTER(11) :: dates(40)

dates(5:10)(8:) = "1996"

The variable dates(5:10) is an array section that includes elements 5
through to 10 of the parent array dates, and the variable
dates(5:10)(8:11) is also an array section of the array dates but
only contains the last 4 character positions of the elements 5 through to 10.

Array Constructors
An array constructor allows a rank-one array to be constructed from a list of
scalar values, arrays of any rank, and implied DO specifications. The type of
an array constructor is taken from the values in the list which must all have
the same type and type parameters (including character length), and its
shape is taken from the number of values specified.

An array constructor may appear in any context in which a rank-one array
expression is allowed. An array with a rank greater than one may be
constructed by passing the array constructor to the RESHAPE intrinsic
function.

4-28

4 Intel Fortran Programmer’s Reference

If the list contains only constant values, the array constructor may be used
to initialize a named constant, or it may be used in an initialization
expression in a type declaration statement; however an array constructor
may not be used to initialize variables in a DATA statement as this
statement may only contain scalar constants.

Syntax

The syntax of an array constructor is:

(/ array-constructor-value-list /)

array-constructor-value-list is a comma-separated list of:

array-constructor-value

array-constructor-value is one of:

• scalar-expression

• array-expression

• array-constructor-implied-do

array-constructor-implied-do is:

(array-constructor-value-list , scalar-int-var-name
= &
scalar-int-expression , scalar-int-expression &
[, scalar-int-expression])

If an array expression appears in a value list, it is treated as a succession of
values appearing in array element order (see “Array Element Storage
Order” on page 6).

The extent of an array constructor is the number of values supplied. If no
values were supplied then the array constructor is zero-sized. For example,
the size of the following array constructor:

(/ (i, i=10,n) /)

depends on the value of the variable n; if the value of the variable is less
than 10 then the constructor will contain no values.

Intel Fortran allows the use of the square brackets square brackets ([]) in
place of slashed (/ ... /). This notation is an extension to the
Fortran 95 Standard.

Arrays 4

4-29

Examples
x = (/19.3, 24.1, 28.6/)

! Array x is assigned three real values.

j = (/4, 10, k(1:5), 2 + l, &

 (m(n), n = -7,-2),16, 1/)

! One vector, consisting of 16 integer values,

! is assigned to j.

a = (/(base(k), k=1,5)/)

! 5 values are assigned.

REAL,DIMENSION(2):: t

PARAMETER (t=(/ 36.0, 37.0/))

! The named constant t is a rank-one array

! initialized with the values 36.0 and 37.0.

z=RESHAPE((/1,2,3,4,5,6,7,8/), (/2,4/))

! the array constructor is reshaped as 1 3 5 7

! 2 4 6 8

! and is then assigned to z

alaska = site("NOME",(/-63,4/))

! An array constructor is used for the second

! component of the structure constructor.

diagonal = (/ (b(i,i), i=1,n) /)

hilbert = RESHAPE((/ ((1.0/(i+j), i=1,n), &

 j=1,n) /), (/ n,n /))

ident = RESHAPE ((/ (1, (0, i=1,n), j=1,n-1), &

 1 /), (/ n,n /))

As illustrated by the last three examples, an array constructor with implied
DOs and the RESHAPE function can be used to construct arrays that cannot
be expressed conveniently with alternative notations.

4-30

4 Intel Fortran Programmer’s Reference

 Zero-sized Arrays
The size of an array is the product of the extents of each dimension; if any
extent is zero then the array has no size and is known as a zero-sized array.
Any of the arrays described in this chapter may be zero-sized apart from
assumed-sized arrays, which have no specified size. This concept of a
zero-sized arrays is important if a number of algorithms are to be expressed
naturally.

Note that while zero-sized arrays have no elements, they do still have a
shape and this is important when they are used in array expressions which
are described below. Operations involving zero-sized arrays are generally
null operations.

Examples

Some examples of zero-sized arrays are given below:

INTEGER, PARAMETER :: cases = 0

REAL :: data1(cases,2), data2(cases,3)

! both data1 and data2 are explicit-shape

! arrays and have zero size; data1 has

! shape [0 , 2] and data2 has the shape

! [0 , 3]

DO i = 1,n+1

a(i) = SIN(x(i))

b(i:n) = b(i:n) + a(i)

ENDDO

! the array section b(i:n) becomes a

! zero-sized array in the last iteration of

! the DO loop

WRITE(*,"(9a)",ADVANCE="NO") &

(/ (title(i),i=1,cols) /)

! if the variable cols is less than 1, then

! the array constructor contains no values

! and no data will be output

Arrays 4

4-31

Array Expressions
The preceding sections have primarily been concerned with describing the
concepts of arrays in Fortran 95, the various categories of arrays, and the
different ways that they may be referenced. An important feature of
Fortran 95 is also the ability to use arrays as operands in expressions; for
example, in traditional Fortran an expression of the form

a + b

must include scalars, but in Fortran 95 the variables a and b may equally be
arrays. Operations involving arrays are performed elementally — that is, an
equivalent scalar operation is performed on each element of the arrays.

Array operations generally require the arrays involved to be conformable
—that is, they must have the same rank (number of dimensions), same
shape, and the extents of corresponding dimensions must be the same.
Assumed-size arrays therefore may not be used in an array operation,
although a section of such an array is allowed. Note that conformability
does not require the lower and upper bounds of corresponding dimensions
to be the same.

The Fortran array semantics specifies that array operations are conceptually
performed in parallel — that is, the result of such an operation must be as if
the operation were performed on each element independently and in any
order. The practical effect of this is that, because an assignment statement
may have the same array on both the left and right-hand sides, the
right-hand side is fully evaluated before any assignment takes place. This
means that in some cases the compiler may create temporary space to hold
intermediate results of the computation.

A scalar may appear in an array expression. The effect is as if the scalar
were evaluated and then broadcast to form a conformable array of elements,
each having the value of the scalar. Thus a scalar used in an array context is
regarded as conformable with the array or arrays involved.

Zero-sized arrays may also be used in an array expression, but while they
have no elements they do have a shape and must therefore follow the rule of
conformable arrays. Note that scalars are conformable with any array and
may therefore be used in an operation involving a zero-sized array.

4-32

4 Intel Fortran Programmer’s Reference

Example

The following example contains valid and invalid examples of array
operations.

SUBROUTINE foo(a,b,c)

REAL :: a(:)

! a is an assumed-shape array with rank-one

REAL, POINTER :: b(:,:)

! b is a pointer to a rank-two array

REAL :: c(*)

! c is an assumed-size array

REAL, ALLOCATABLE :: d(:)

! d is an allocatable array, its shape can

! only be defined in an ALLOCATE statement

ALLOCATE(d(SIZE(a)))

! creates the array d with the same size as a;

! in this example a and d are conformable as

! they have the same shape

d = a

! copies the array a into d

b = 0.0

! sets each element of the array associated

! with b to 0.0; the effect is as if the scalar

! were broadcast into a temporary array, with

! the same shape as b,that is then assigned

! to the left-hand side

Arrays 4

4-33

d = a + d

! corresponding elements of a and d are added

! together and then stored back into the

! corresponding array element of d

d = a + SQRT(d)

! conceptually the operand SQRT(d) is evaluated

! into an intermediate array with the same shape

! as d; each element of the intermediate array

! will be added to the corresponding element of

! a and stored into the corresponding element of

! d

DEALLOCATE(d)

! examples of invalid uses of arrays

a = c

! illegal - c is an assumed-size array and so

! has no shape; an assumed-size array may not be

! used as a whole array operand (except in an

! argument list)

a = a + b

! illegal - the arrays a and b do not have the

! same shape and are therefore not conformable

a = a + d

! illegal - in this example d has already been

! deallocated and may not be referenced

! subsequently

END SUBROUTINE foo

4-34

4 Intel Fortran Programmer’s Reference

Array Functions
Functions may be used in array expressions. As well as returning a scalar
result, a function may also be defined to return an array result. Array
functions may be used in any array expression provided that they do not
appear:

• In an input list
• On the left side of an assignment statement (unless returning the result

from within a function)

Array functions may also be used in an array expression wherever a scalar
function reference is allowed but must be conformable—that is, the
function result must have the same shape as the expression. Functions that
return arrays are also known as array-valued functions and may be either:

• Intrinsic functions
• User-defined functions

Intrinsic Functions

The group of functions known as elemental procedures and transformation
procedures have particular relevance to array expressions. Elemental
procedures are specified for scalar arguments, but when used with an array
argument will return an array result with the same shape as its argument(s);
each element of the result is as if the function were applied to each
corresponding element of the argument. Examples of elemental intrinsic
procedures are the mathematical functions SQRT and SIN.

A transformational procedure on the other hand generally has one or more
array arguments that the procedure operates on as a whole, and usually
returns an array result whose elements may depend not only on the
corresponding elements of the arguments but also on the values of other
elements of the arguments. The RESHAPE intrinsic mentioned earlier in the
chapter is an example of a transformational procedure; other examples are
the intrinsic functions SUM and MATMUL.

Arrays 4

4-35

User-defined Functions

User-defined functions are not elemental in that they are defined to return
either a scalar result or to return an array result; also they cannot be used
interchangeably with scalar or array arguments. A scalar function may of
course appear in an array expression but the effect, as with any other scalar,
is to first broadcast its value throughout a conformable array. A reference to
a user-defined array function must obey the rules for functions in general,
and must also conform to the shape of the expression in which it appears.

User-defined functions are described in Chapter 7, Program Units and
Procedures.

Example

The following example shows how an array-valued function may be
referenced.

PROGRAM main

! the following interface block describes the

! characteristics of a function genrand; the

! function inputs a single integer scalar and

! returns a real array of rank-one with an

! extent equal to the value of its argument

INTERFACE

 FUNCTION genrand(n)

 INTEGER:: n

 REAL, DIMENSION (n)::genrand

 END FUNCTION genrand

END INTERFACE

REAL :: a(100)

REAL :: b(10,10)

a = genrand(SIZE(a))

! the array a is set to the result returned by

! the function genrand, note that the left

4-36

4 Intel Fortran Programmer’s Reference

! and right hand side are conformable.

b = RESHAPE(a + genrand(100),(/ 10, 10 /))

! each element of a is added with the

! corresponding element of the result returned

! by genrand to form an intermediate rank-one

! result that is passed into the intrinsic

! function RESHAPE. In this example, the

! RESHAPE intrinsic transforms its argument

! into a 10 by 10 array; again the left and

! right hand side are conformable.

...

END PROGRAM main

Array Inquiry Functions
Fortran 95 has a number of intrinsic inquiry functions that may be used to
interrogate the properties of an array. The array need not be defined as these
functions examine the array itself rather than its values, but in general, an
allocatable array must have been allocated and a pointer array must either
be associated with a target or have been explicitly disassociated.

The inquiry functions that can be used to return the properties of an array
are:

ALLOCATED interrogates whether an allocatable array is allocated.

ASSOCIATED examines the association status of a pointer to determine
whether it is associated with a target.

LBOUND returns either the lower bound of a specific dimension or
the lower bounds of the array as a whole.

SHAPE returns the shape of the array as a rank-one integer array.

SIZE returns the size of the array or the extent of a particular
dimension.

UBOUND is similar to LBOUND but returns an upper bound for a
dimension or the upper bounds for all the dimensions of
the array.

5-1

Expressions and
Assignment 5

This chapter describes the syntax and uses of the different forms of
expressions and assignments in Fortran 95.

Expressions
An expression can consist of operands, operators, and parentheses, and
defines a computation that upon evaluation yields a result. This result can
be an operand in a larger expression.

Expressions are used in many contexts in Fortran 95, for example, in
assignment statements, in procedure references, and in output statements.
An expression has a value and therefore a type and a kind. Expressions are
formed from operands and operators that may be intrinsic or user-defined.

An operand may be a constant, variable, array element, array section,
structure component, substring, array constructor, structure constructor,
function reference, or an expression enclosed in parentheses. Parentheses
have the usual mathematical meaning.

An operator can be an intrinsic operator or a user-defined operator. The
intrinsic operators are defined within the language; each has a specific
meaning for a set of defined operand types. The range of types that an
intrinsic operator accepts can be extended, and entirely new operators can
be defined, by inclusion of an appropriate interface block and function
subprogram definitions. Details are given in Chapter 7, Program Units and
Procedures.

5-2

5 Intel Fortran Programmer’s Reference

Examples
3.14159

! A constant is an expression.

v

! A variable is an expression.

2.0 * a - b ** 3.3

! An expression using *, -, and **.

SIN(a+b) - a * SQRT(b) / d

! An expression using intrinsic functions

! SQRT and SIN.

a .plus. b - c .times. f

! An expression using user-defined

! operators -,.plus., and .times..

(/ 1, 2, 3 /) ** 2 + v

! An array expression, using an array

! constructor.

fcn(x+y) * SUM(aa, DIM=1)

! An expression using the intrinsic

! function SUM and an external function

! fcn.

.NOT. l

! An expression using the unary logical

! .NOT.intrinsic operator.

(3.0, 5.0) - CONJG(cx)

! An expression using a complex constant

! and intrinsic function CONJG.

rational(1, 2*j) * rational(i, j)

Expressions and Assignment 5

5-3

! An expression using the structure

! constructor rational and an extended

! definition of the intrinsic operator *.

Formation of Expressions

The expressions can be primary, consisting of operands only, and more
complex, including both operator(s) and operand(s). In addition, there could
be special forms of expressions. All these forms are described in the
following sections.

Primary

A primary, the simplest form of expression, consists only of an operand,
that can be any of:

• A constant or variable
1.0, ’ab’, a

• An array element or array section
a(1,3), a(1,2:3)

• A character substring or structure component
ch(1:3), employee%name

• An array constructor
(/1.0,2.0/)

• A structure constructor
employee(8, “Wilson”, 123876)

• A function reference
SQRT(x)

• An expression in parentheses
(b + SIN(y)**2)

When the primary is an array variable, the complete array is referenced. An
assumed-size array variable cannot be a primary. An array section of an
assumed-size array can be a primary if the extent of the last dimension of
the section is defined by the use of a subscript, a section subscript with an
extent for the upper bound, or a vector subscript. (See Chapter 4, Arrays for
a discussion of arrays.)

If the primary has the POINTER attribute, then the target associated with it
is used as the operand.

5-4

5 Intel Fortran Programmer’s Reference

Operators

The more general form of an expression is:

[operand1] operator operand2

If operand1 is present then the operator is binary (operates on two
operands), otherwise it is a unary operator (operates on only one operand).
Table 5-1 lists the intrinsic operators and the types of operands for which
they have a defined meaning.

Note that:

• The operators +, -, /, *, and ** are used for addition, subtraction,
division, multiplication, and exponentiation respectively.

• The operators + and - can be used as unary or binary operators.
• The operator // is used to concatenate two strings.
• The Standard does not allow two adjacent operators. For example, i +

-j is not valid; this example should be rewritten as i + (-j).
However, Intel Fortran does allow the exponentiation operator to be
followed by a signed entity, for example, i ** -j is permitted and is
equivalent to i ** (-j).

• The relational operators .EQ., .NE., and others are used to compare
values.

• Logical operators are available to perform Boolean arithmetic; these
are .NOT., .AND., .OR., .EQV., and .NEQV.. Their behavior is
described in Table 5-3.

• As an extension, Intel Fortran also supports the .XOR. operator, which
is equivalent to .NEQV..

A more detailed description of the interpretation of the operators is given in
Table 5-1.

Expressions and Assignment 5

5-5

Precedence of Operators

When an expression expands to:

operand1 operator1 operand2 operator2 operand3 ...

it is necessary to define the order in which the operators will be applied.
Each operator is assigned a precedence. The defined order of evaluation is
that any subexpressions containing an operator with higher precedence than
the adjacent operators will be evaluated first. Where operators are of equal
precedence, evaluation will be from left to right, except for the
exponentiation operator (**), which is evaluated from right to left. Any
expression or subexpression may be enclosed in parentheses; such
expressions are always evaluated first using the rules explained above. This
usage of parentheses is therefore equivalent to normal mathematical usage.
Table 5-2 lists the precedence of the operators; it is followed by some
examples.

Table 5-1 Intrinsic Operators

Category Operators Valid Operand Types

Arithmetic **

* /

+ -

Numeric, of any combination of
types and kind parameters

Character // Character, of any length but same
kind parameters

Relational .EQ. .NE.

== /=

Both operands of numeric type
(mixed kind parameters allowed),
or both of character type, with
same kind parameters

Relational .GT. .GE.

.LT. .LE.

> >=

< <=

Both operands of numeric type
except complex (mixed kind
parameters allowed), or both of
character type (same kind
parameters)

Logical .NOT. .AND. .OR.
.EQV. .NEQV.
.XOR.

Logical (mixed kind parameters)

5-6

5 Intel Fortran Programmer’s Reference

Examples

a+b*c

is a + (b*c) (* has a higher precedence than +)

a/b*c

is (a/b)*c (/ and * have the same precedence, and
evaluation is left to right)

a**b**c

is a**(b**c) (** evaluates right to left)

a.AND.b.AND.c.OR.d

is ((a.AND.b).AND.c).OR.d)

Table 5-2 Operator Precedence

Precedence Operators

Highest User defined unary operators

**

* /

Unary + Unary -

+ -

//

.EQ. .NE. .LT. .LE. .GT. .GE. ==
/= < <= > >=

.NOT.

.AND.

.OR.

.EQV. .NEQV. .XOR.

Lowest User defined binary operators

Expressions and Assignment 5

5-7

Special Forms of Expression

Within certain language constructs only strictly defined forms of expression
are permitted. For example, the value of an entity with the PARAMETER
attribute—that is, a named constant—may be defined by an expression, but
it must be possible to evaluate the expression during compilation—the
expression must be an initialization expression, a strictly defined form of
constant expression.

The bound of an array that is a dummy array argument in a subprogram may
be an expression, but it must be possible to evaluate this expression on entry
to the subprogram: the expression must be a specification expression.

Constant expressions, initialization expressions, and specification
expressions are defined in the following sections.

Constant Expression

A constant expression is either a constant or an expression containing only
intrinsic operators and constant operands. In this context, a constant
includes any well-defined part of a constant—for example, a substring with
constant start and end points, or an array or structure constructor where all
the expressions used are constants or constant expressions. A constant
expression can also include references to intrinsic functions that can be fully
evaluated at compilation time.

Certain intrinsics cannot be evaluated by the compiler; these are
ALLOCATED, ASSOCIATED, and PRESENT, and any inquiry intrinsic with
arguments such that the property inquired about (for example type
parameters or array bounds) is not constant.

A constant expression may appear in any context in which a general
expression may be used.

Examples of a constant expression are:

123 !an integer literal

"Hello " // " World" ! a character constant

 ! expression

3.0_single ! a real literal constant

 ! where single is a named

5-8

5 Intel Fortran Programmer’s Reference

 ! integer constant

coord(0.0,infinity) ! a structure constructor

 ! in which "infinity" is

 ! a named constant

(/ SQRT(x), x, x*x /) ! an array constructor in

 ! which x is a named real

 ! constant

x*x + 2*x*y + y*y ! a constant numeric

 ! expression where x and

 ! y are named constants

SUM(iterations,DIM=1) ! reference to a

 ! transformational

 ! intrinsic where

 ! iterations is an

 ! array-valued named

 ! constant

SHAPE(matrix) ! a reference to an

 ! inquiry intrinsic in

 ! which "matrix" is an

 ! array with constant

 ! bounds

Initialization Expression

An initialization expression is a constant expression with the following
further restrictions:

• Exponentiation is only allowed if the second operand is an integer.
• Any subexpression used within the expression must be an initialization

expression.
• All arguments to intrinsic function references must be initialization

expressions.
• Only the following transformational intrinsic functions may be

referenced:
— REPEAT

— RESHAPE

— SELECTED_INT_KIND

Expressions and Assignment 5

5-9

— SELECTED_REAL_KIND

— TRANSFER

— TRIM

• If you use an inquiry intrinsic, you can only use it to ask about an
aspect of an entity that is a compile-time constant. For example, you
can use an inquiry intrinsic to ask about the bounds of an array, or a
KIND-type parameter.

• Intel Fortran allows references to elemental intrinsic functions with
floating-point constants or named constants of a floating-point type, so
long as the parameters to the elemental function reference are
rank-zero, compile-time constant expressions.

Initialization expressions are required in the following situations:

• When defining values of named constants.
• When specifying a kind parameter in a type specification statement.
• When specifying the KIND dummy argument of a type conversion

intrinsic function.
• For initial values in type declaration statements.
• For expressions in structure constructors in DATA statements.
• For case values in CASE statements.
• For subscript expressions or substring ranges in EQUIVALENCE

statements.

The following are valid initialization expressions:

-456 ! an integer literal

(“Hello “// “World”) ! a character constant

 ! expression

pi * r ** 2 ! a constant numeric

 ! expression where

 ! pi and r are named

 ! constants

ABS(i * j) ! a reference to an

 ! elemental intrinsic in

 ! which i and j are

 ! named integer constants

SELECTED_REAL_KIND(7) ! a reference to a

 ! transformational

 ! intrinsic

5-10

5 Intel Fortran Programmer’s Reference

The following are not valid initialization expressions:

x ** 2.5 ! x is not a compile-time

 ! constant

SUM((/ i, 2 /)) ! reference to a

 ! prohibited function

Specification Expression

A specification expression is an expression that has a scalar value, is of type
integer, and can be evaluated on entry to the scoping unit in which it
appears. This imposes the following conditions on primaries used in a
specification expression:

• Constants or variables must be available by argument, host, or use
association or be in common.

• Any variable referenced must not be a dummy argument with either the
OPTIONAL attribute or the INTENT(OUT) attribute.

• All arguments to intrinsic function references must be specification
expressions.

• Elemental intrinsic function references must return integer results.
• Only the following transformational intrinsic functions may be

referenced:
— SELECTED_INT_KIND

— SELECTED_REAL_KIND

— TRANSFER

• The inquiry intrinsics ALLOCATED, ASSOCIATED, and PRESENT may
not be referenced.

• Other inquiry intrinsics may be referenced provided that the property
interrogated is not defined by either a pointer assignment or
ALLOCATE statement; furthermore, an inquiry intrinsic may not
interrogate the following properties of an assumed size array:
— Upper bound of the last dimension
— Extent of the last dimension
— Size of the array
— Shape of the array

Expressions and Assignment 5

5-11

Note that there are some important differences between specification
expressions and initialization expressions; the differences are summarized
below:

• Initialization expressions
— Must be a constant expression
— Can be either scalar or array valued
— Can be any type
— Can reference an inquiry intrinsic (except for ALLOCATED,

ASSOCIATED, and PRESENT) to interrogate a property of an
entity provided that the property is constant

• Specification expressions
— Must be scalar valued
— Must be integer type
— Can reference variables via host, argument, or use association
— Can reference variables in common
— Subject to certain restrictions, can reference an inquiry intrinsic

(except for ALLOCATED, ASSOCIATED, and PRESENT) to
interrogate a property of an entity; the property need not be
constant.

Specification expressions may be used where any arbitrary expression is
allowed, and they may also be used to declare the bounds of an array and
the length of a character variable. Do not use them as follows:

• as subscripts or substring ranges in an EQUIVALENCE statement
• in a CASE statement
• as a KIND parameter in a type declaration statement
• as initial values in a PARAMETER or type declaration statement
• as the limits or increment of an implied DO loop in a DATA statement
• as a KIND dummy argument to type conversion intrinsics

Examples of specification expressions are:

789 ! an integer literal

 ! constant

MAX(m+n,0) ! m and n are integer

 ! dummy arguments

LEN(c) ! c is a character

5-12

5 Intel Fortran Programmer’s Reference

 ! variable accessible

 ! via host association

SELECTED_INT_KIND(5) ! a reference to a

 ! transformational

 ! intrinsic

UBOUND(arr,DIM=n) ! a reference to an array

 ! inquiry intrinsic in

 ! which arr is an array

 ! accessible via USE

 ! association and n is a

 ! variable in common

Interpretation of Expressions

The expressions can be interpreted differently depending on the type and
the KIND type parameters and operator types.

Intrinsic Operators
• Arithmetic operators (+, -, /, *, **)

The two operands may be of different numeric types or different KIND
type parameters. The type of the result is as follows:
— The type of either operand if the types and KIND type parameters

are the same.
— The type of the operand with the larger KIND type parameter if the

types are the same but not the kind type parameters.
— Complex if either operand is complex and the other is not.
— Real if either operand is real and the other is not complex.

• Except for a value raised to an integer power, each operand that differs
in type or kind type parameter from that of the result is converted to a
value with the type and kind type of the result before the operation is
performed.
The arithmetic operators behave as expected, with the following
qualifications:
— The division of an integer by an integer is defined to be the integer

closest to the true result that is between zero and the true result.

Expressions and Assignment 5

5-13

— Exponentiation of an integer to a negative integer, i1**i2,
where i2 is negative, is interpreted as 1/(i1**(-i2)), where
the division is interpreted as described for division of one integer
by another.

— If x1 and x2 are real with x1 negative, then x1**x2 could be an
invalid expression, as the result could be complex. Note, however,
that CMPLX(x1)**x2 is valid; the result is the principal value.

• Relational operators (.EQ., .NE., .GT., .GE., .LT.,
.LE., ==, /=, >, >=, <, <=)

If the operands of a relational operator are numerical expressions with
different type or kind type parameters, the operands are converted to
the type and kind type parameters that the sum of the operands have,
and then they are compared. If the operands are character expressions,
the shorter operand is blank padded to the length of the other prior to
the comparison. The comparison starts at the first character and
proceeds until a character differs or equality is confirmed. The
collating sequence is defined in Appendix C.

• Character operators (//)
In a character concatenation operation, each operand must be a
character type and have the same kind type parameter. The character
length parameter of the result is the sum of the character length
parameters of the operands.

• Logical operators (.AND., .OR., .EQV., .NEQV., .XOR.,
.NOT.)
In a standard conforming program the two operands must be of logical
type but may be of different kind type parameters. The type of the
result is as follows:
— the type of either operand if the kind type parameters are the same
— the type of the operand with the larger kind type parameter if the

kind type parameters are not the same
An operand that differs in kind type from that of the result is converted
to a value with the type and kind type of the result before the operation
is performed.

5-14

5 Intel Fortran Programmer’s Reference

As an extension, Intel Fortran permits the operands to be of type
integer.The behavior of the logical operators is as shown in
Table 5-3:

Intel Fortran accepts .XOR. as an alternative notation for .NEQV. .

Array Operands

If both operands are arrays, then they must have the same shape. If one
operand is a scalar, then it is treated as an array of the same shape as the
other operand in which all elements have the value of the scalar. The result
of the operation is an array in which each element is the result of applying
the operator repeatedly to corresponding elements of the two operands.

Example
REAL,DIMENSION(3):: a, b, c

a = a+ 1.5

! Increases each element of a by 1.5

c = a * b

! It is equivalent to

! DO i = 1,3

! c(i) = a(i) * b(i)

! ENDDO

Table 5-3 Logical operators

opnd1 opnd2 .AND. .OR. .EQV.
.NEQV.
.XOR. .NOT. opnd1

.TRUE. .TRUE. .TRUE. .TRUE. .TRUE. .FALSE. .FALSE.

.TRUE. .FALSE. .FALSE. .TRUE. .FALSE. .TRUE. .FALSE.

.FALSE. .TRUE. .FALSE. .TRUE. .FALSE. .TRUE. .TRUE.

.FALSE. .FALSE. .FALSE. .FALSE. .TRUE. .FALSE. .TRUE.

Expressions and Assignment 5

5-15

Evaluation of Expressions

The definition of the language allows the compiler to generate code that
evaluates an expression by any sequence that produces a result
mathematically equivalent to the sequence implied by the Fortran 95
statement. This permits optimization of the code, including, for example,
the reordering of expressions and the promotion of common
subexpressions.

Because the order of evaluation of an expression is not defined, it is invalid
for any function reference within an expression to modify any of the other
components appearing within the expression. Thus, for example,
fun(x)+x is indeterminate if the reference to fun modifies the value of
the argument x.

Logical Operators and Integer Operands
The logical operators can be used with integer operands to perform bit
operations. The logical operations are performed for each bit of the binary
representations of the integers. When the operands are of different lengths,
the shorter is considered to be extended to the length of the other operand
as if it were a signed integer, and the result has the length of the longer
operand.

The following example shows the use of logical operators to perform
bit-masking operations.

INTEGER(2) mask2

INTEGER(4) mask4

DATA mask2/ -4 /

DATA mask4/Z"ccc2"/

mask4 = mask4 .NEQV. mask2 !set mask4 to

 !Z"ffff333e"

mask2 = .NOT. mask4 !set mask2 to

 !Z"ccc1"

Arithmetic Operators and Logical Operands
Logical and integer types can be combined with the arithmetic operators.
The logical variable is treated as an integer of equivalent size, and the result
of the operation is an integer value. When different lengths of operands are
involved, the shorter is considered extended as a signed integer.

5-16

5 Intel Fortran Programmer’s Reference

The following example shows how logical operands can be used
interchangeably with integer operands

LOGICAL(1) :: boolean1 = -4

LOGICAL(4) :: boolean4 = 2**16 + 27

INTEGER(1) :: flag1

INTEGER(4) :: flag4

flag4 = boolean4 - boolean1 !set flag4 to

 !2**16 + 31

IF (boolean4 > 65536) THEN !an example of

 !a relational

 !operator with

 !a logical

 !operand

 flag1 = -(boolean4/65536) !set flag1 to -1

ENDIF

Integer and Logical Functions
References to functions are classified as expressions, and Intel Fortran
allows integer function results to be used in logical expressions, and also
user-defined logical function results to be used in integer expressions.

Bit Manipulation Intrinsics
In general, an integer actual argument may not be used in a reference to a
procedure when the corresponding dummy argument is of type logical, nor
may a logical actual argument be used when the dummy argument is of type
integer. The only relaxation of this rule allowed by Intel Fortran is in calls to
bit manipulation intrinsics, when logical and integer arguments may be used
interchangeably.

The following code contains a standard-conforming reference to a bit
manipulation intrinsic:

INTEGER :: mask = 65535

LOGICAL :: is_even = .TRUE.

IF (IAND(mask,1) /= 0) is_even = .FALSE.

Expressions and Assignment 5

5-17

The following code contains a similar but nonstandard reference supported
by Intel Fortran:

LOGICAL :: mask = z"ffff"

INTEGER :: is_even = .TRUE.

IF (IAND(mask,1)) is_even = .FALSE.

Logical Truth Values
In a standard-conforming program, a logical variable or expression will be
.TRUE. (the value 1 in Intel Fortran) or .FALSE. (the value 0 in
Intel Fortran). In nonstandard conforming programs involving logical
operators with integer operands or arithmetic operators with logical
operands, a logical variable or expression may have a value other than 1 to
return .TRUE.. In this case, any nonzero value is considered to be
.TRUE. and a zero value .FALSE. .

Typeless Entities

The Fortran 95 Standard defines a specific set of integer literals known
collectively as BOZ constants that represent values in binary, octal, or
hexadecimal. These constants may be used in DATA statements as initial
values. In Intel Fortran, BOZ constants assume a type and kind that is
compatible with the context in which they appear, and may be used
interchangeably wherever integer, logical, real, or complex literals are
allowed.

Intel Fortran allows Hollerith constants to be used in the same contexts as
BOZ constants and also wherever a character literal may appear.

BOZ constants and Hollerith constants are collectively known as typeless
constants and are described in “Representation of Literal Constants” in
Chapter 3; the rules associated with the use of these constants are also
described in “Typeless Constants” in Chapter 3.

Assignment
This section discusses assignment statement and two varieties of
assignments: pointer and masked array.

Assignment Statement

An assignment statement transfers the value of an expression to a variable.

5-18

5 Intel Fortran Programmer’s Reference

The syntax of an assignment statement is:

variable = expression

The interpretation of the assignment is defined for the allowed intrinsic type
combinations of variables and expressions; these are intrinsic assignments.
Assignments for additional combinations can be defined by inclusion of the
appropriate defined assignment interfaces and corresponding subroutine
subprograms, as detailed in “Defined Assignment” in Chapter 7.

Intrinsic Assignment

The variable may be any nonpointer variable or a pointer variable that is
associated with a target.

The valid combinations of types for the variable and the expression are
given in the following table. The intrinsic functions used to describe the
conversions are detailed in the Intel Fortran Compiler User’s Guide.

As described in the section “Interpretation of Expressions” on page 12,
Intel Fortran allows integer and logical operands to be used
interchangeably. Intel Fortran also allows logical expressions to be assigned
to integer variables and integer expressions to logical variables. So, from

Table 5-4 Conversion of variable=expression

Variable Type Expression Type Conversion

integer integer, real, or complex INT(expression, KIND(variable))

real integer, real, or complex REAL(expression, KIND(variable))

character character (same kind
parameters)

CMPLX(expression, KIND(variable))

logical logical Truncate expression if expression length is greater
than variable length; otherwise, pad value
assigned to variable, with blanks if necessary.

logical logical LOGICAL(expression, KIND(variable))

derived type same derived type None

Expressions and Assignment 5

5-19

Table 5-4, a logical expression may also be assigned to real or complex
variables, and similarly, a real or complex expression may be assigned to a
logical variable.

If the variable is a scalar, the expression must be scalar. If the variable is an
array or an array section, the expression must be an array valued expression
of the same shape or a scalar. If the variable is an array or an array section,
and the expression is a scalar, the value of the expression is assigned to all
elements of the variable. If the variable and expression are arrays, the
assignment is carried out element by element with no ordering implied.

The expression is evaluated completely before the assignment is started.
For example:

CHARACTER (LEN=4):: c

c(1:4) = ’abcd’

c(2:4) = c(1:3)

sets c(2:4) to "abc", not to "aaa", which might result from a
left-to-right character-by-character assignment.

If the variable is a pointer, then it must be associated with a target; the value
of the expression is assigned to the target.

Examples of Intrinsic Assignment
INTEGER ICNT

TYPE CIRCLE

 REAL RADIUS

 REAL X, REAL Y

END TYPE

TYPE (CIRCLE) CIRCLE1, CIRCLE2

REAL AREA, PI

LOGICAL BOOLX, BOOLY, PIXEL(10,10)

INTEGER A(10,5)

INTEGER, DIMENSION (10,10):: MATRIX1, MATRIX2

CHARACTER*3 INITIALS

CHARACTER*10 SURNAME

CHARACTER*20 NAME

5-20

5 Intel Fortran Programmer’s Reference

ICNT = ICNT + 1

!example of an integer assignment

CIRCLE1 = CIRCLE2

!example of a derived-type assignment

AREA = PI * CIRCLE%RADIUS**2

!example of a real assignment

PIXEL(X,Y) = BOOLX .AND. BOOLY

!assigns a logical expression to an element of

!the logical array pixel

A(:,1:2) = 0

!first two columns of A are set to zero

MATRIX1 = MATRIX2

!each element of MATRIX2 is assigned to the

!corresponding element of MATRIX1

NAME = INITIALS // SURNAME

!example of a character assignment

Pointer Assignment

The pointer assignment statement establishes an association between a
pointer object and a target.

The syntax is:

pointer-object=> target

subject to the following constraints:

• pointer-object is a variable or variable component with the
POINTER attribute; if target is a variable, it must have the TARGET
or POINTER attribute. If target is an expression, then it must either
be a reference to a function that returns a pointer result or a
user-defined operation that returns a pointer result.

Expressions and Assignment 5

5-21

• The type, kind parameters and rank of pointer-object and
target must be the same.

• target cannot be an assumed-size whole array or an array section
with a vector subscript.

If target is a pointer already associated with a target, then
pointer-object becomes associated with the target of target. If
target is a pointer that is disassociated or undefined, then
pointer-object inherits the disassociated or undefined status of
target.

Examples of Pointer Assignment

The following examples show association of scalar and array pointers with
scalar and array targets.

INTEGER, POINTER :: P1, P2, P3(:)

INTEGER, TARGET :: T1, T2(10)

! P1, P2 and P3 are currently undefined.

P1 => T1 ! P1 is associated with T1.

P2 => P1 ! P2 is associated with T1.

 ! P1 remains associated with T1.

P1 => T2(1) ! P1 is associated with T2(1).

 ! P2 remains associated with T1.

P3 => T2 ! P3 is associated with T2.

P1 => P3(2) ! P1 is associated with T2(2).

NULLIFY(P1) ! P1 is disassociated.

P2 => P1 ! Now P2 is also disassociated.

Masked Array Assignment

In masked array assignment, a logical array expression, the mask, controls
evaluation of the array expressions and assignment to the array variables.

Masked array assignment is provided in Fortran 95 by the WHERE statement
and the WHERE construct.

5-22

5 Intel Fortran Programmer’s Reference

The syntax of the WHERE statement is:

WHERE (array-logical-expression) array = expression

array-logical-expression, array, and expression must all be
conformable. The array-logical-expression (the mask) is
evaluated for each element and the outcome (.TRUE. or .FALSE.) used to
determine whether an assignment is made to the corresponding element of
array.

The syntax of the WHERE construct is:

WHERE (array-logical-expression)

 array = expression

 [array = expression] ...

[ELSEWHERE

 array = expression

 [array = expression] ...]

END WHERE

The WHERE construct is similar to the WHERE statement, but more general in
that several array = expression clauses can be controlled by one
array-logical-expression. In addition, an optional ELSEWHERE
part of the construct may be used to assign array elements whose
corresponding array-logical-expression elements evaluate
.FALSE..

When a WHERE construct is executed, array-logical-expression is
evaluated just once and therefore any subsequent assignment in a WHERE
block (the block following the WHERE statement), or ELSEWHERE block to
an entity of array-logical-expression has no effect on the masking.
Thereafter, successive assignments in the WHERE block are evaluated in
sequence as if they were specified as:

WHERE (array-logical-expression) array = expression

Each assignment in the ELSEWHERE is executed as if it were:

WHERE (.NOT.array-logical-expression) array = expression

For example, the following WHERE construct:

WHERE (a > b)

 a = b

 b = 0

Expressions and Assignment 5

5-23

ELSEWHERE

 b = a

 a = 0

END WHERE

is evaluated as if it was specified as:

mask = a > b

WHERE (mask) a = b

WHERE (mask) b = 0

WHERE (.NOT.mask) b = a

WHERE (.NOT.mask) a = 0

Only assignment statements may appear in a WHERE block or an
ELSEWHERE block. Within a WHERE construct, only the WHERE statement
may be the target of a branch.

Examples of Mask Array Assignment
REAL, dimension(5) :: a

WHERE (a > 0.0) a = SQRT(a)

Each positive element of array a is replaced by its
square root.

REAL, DIMENSION(5) :: a

COMPLEX, DIMENSION(5) :: ca

WHERE (a > 0.0)

 ca = CMPLX(0.0)

 a = SQRT(a)

ELSEWHERE

 ca = SQRT(CMPLX(a))

 a = 0.0

END WHERE

Each positive element of array a is replaced by its square root; the
remaining elements calculate the complex square roots of their values,
which are then stored in the corresponding elements of the complex array
ca. Note that in the ELSEWHERE clause the assignment to array a should
not appear before the assignment to array ca; otherwise, all of ca will be
set to zero.

5-24

5 Intel Fortran Programmer’s Reference

The form of a WHERE construct is similar to that of an IF construct, but with
the following important difference: no more than one block of an IF
construct may be executed, but in a WHERE construct at least one (and
possibly both) of the WHERE and ELSEWHERE blocks will be executed. In a
WHERE construct, this difference has the effect that results in a WHERE block
may feed into, and hence affect, variables used in the ELSEWHERE block.
Notice, however, that results generated in an ELSEWHERE block cannot feed
back into variables used in the WHERE block.

The following demonstrates how results in a WHERE block could affect
assignments in the ELSEWHERE block:

REAL, DIMENSION x(100)

WHERE (x(2:100) /= 0.0)

 x(2:100) = 1.0/x(2:100) !the last 99

 !non-zero elements

 !of x are replaced

 !by their reciprocal

ELSEWHERE

 x(2:100) = x(1:99) !the last 99 zero

 !elements of x are

 !replaced by their

 !preceding neighbor

 !which may have

 !been modified by

 !the WHERE block

END WHERE

6-1

Execution Control 6
The normal flow of execution in a Fortran 95 program is sequential:
statements execute in the order of their appearance in the program.
However, you can alter this flow, using Fortran 95 control constructs and
flow control statements.

This chapter describes the operations performed by control constructs and
flow control statements. For a full description of each Fortran 95 control
statement, see “Statements and Attributes” in Chapter 10. The WHERE
construct is described in “Masked Array Assignment” in Chapter 5.

Control Constructs and Statement Blocks
A control construct consists of a statement block whose execution logic is
defined by one of the following control statements:

• CASE statement
• DO statement
• FORALL statement
• IF statement

A statement block is a sequence of statements delimited by a control
statement and its corresponding terminal statement. A statement block
consists of zero or more statements and can include nested control
constructs. However, any nested construct must have its beginning and end
within the same statement block.

6-2

6 Intel Fortran Programmer’s Reference

Although the Fortran Standard forbids transferring control into a statement
block except by means of its control statement, Intel Fortran allows it. The
Fortran Standard does permit transferring control out of a statement block.
For example, the following IF construct contains a GO TO statement that
legally transfers control to a label that is defined outside the IF construct:

 IF (var > 1) THEN

 var1 = 1

 ELSE

 GO TO 2

 END IF

 .

 .

 .

2 var1 = var2

The next logical IF statement is nonstandard (but permitted by Intel Fortran)
because it would transfer control into the DO construct:

IF (.NOT.done) GO TO 4 ! nonstandard!

 .

 .

 .

DO i = 1, 100

 sum = b + c

 4 b = b + 1

END DO

The following sections describe the operations performed by the control
constructs.

Execution Control 6

6-3

CASE Construct
The CASE construct selects (at most) one out of a number of statement
blocks for execution.

[construct-name :] SELECT CASE (case-expr)

[CASE (case-selector) [construct-name]

 statement-block]

.

.

.

[CASE DEFAULT [construct-name]

 statement-block]

END SELECT [construct-name]

Notes on Syntax
• case-selector is one of the following:

— case-value

— low :

— : high

— low : high

For additional information about case-selector, see the description of
the CASE statement in “CASE” in Chapter 10.

• a case-selector must be mutually exclusive and must agree in type
with case-expr.

• case-expr must evaluate to a scalar value and must be an integer,
logical, or character type.

• If construct-name is given in the SELECT CASE statement, the same
name can appear after any CASE statement within the construct, and
must appear in the END CASE statement. The construct name cannot be
used as a name for any other entity within the program unit.

• CASE constructs can be nested. Construct names can then be useful in
avoiding confusion.

• Although the Standard forbids branching to any statement in a CASE
construct other than the initial SELECT CASE statement from outside
the construct, Intel Fortran allows it. The Standard allows branching to
the END SELECT statement from within the construct.

6-4

6 Intel Fortran Programmer’s Reference

Execution Logic

The execution sequence of the CASE construct is as follows:

1. case-expr is evaluated.
2. The resulting value is compared to each case-selector.
3. If a match is found, the corresponding statement-block executes.
4. If no match is found but a CASE DEFAULT statement is present, its

statement-block executes.
5. If no match is found and there is no CASE DEFAULT statement,

execution of the CASE construct terminates without any block
executing.

6. The normal flow of execution resumes with the first executable
statement following the END SELECT statement, unless a statement in
statement-block transfers control.

Example

The following CASE construct prints an error message according to the
value of ios_err:

INTEGER :: ios_err

...

SELECT CASE (ios_err)

CASE (:900)

 PRINT *, "Unknown error"

CASE (913)

 PRINT *, "Out of free space"

CASE (963:971)

 PRINT *, "Format error"

CASE (1100:)

 PRINT *, "ISAM error"

CASE DEFAULT

 PRINT *, "Miscellaneous Error"

END SELECT

Execution Control 6

6-5

DO Construct

The DO construct repeatedly executes a statement block. The syntax of the
DO statement provides two ways to specify the number of times the
statement block executes:

• By specifying a loop count.
• By testing a logical expression as a condition for executing each

iteration.

You can also omit all control logic from the DO statement, in effect creating
an infinite loop. The following sections describe the three variations of the
DO construct.

You can use the CYCLE and EXIT statements to alter the execution logic of
the DO construct. For information about these statements, see “Flow Control
Statements” on page 15.

Counter-controlled DO Loop

A counter-controlled DO loop uses an index variable to determine the
number of times the loop executes.

Syntax

[construct-name :] DO index = init, limit [, step]

statement-block

END DO [construct-name]

Intel Fortran also supports the older, FORTRAN 77-style syntax of the DO
loop:

DO label index = init, limit [, step]

statement-sequence

label terminal-statement

A third form, combining elements of the other two, is also supported:

[construct-name :] DO label index = init, limit [,
step]

For a full description of the DO loop syntax—including a list of legal
terminal-statements—see “DO” in Chapter 10.

6-6

6 Intel Fortran Programmer’s Reference

Execution Logic

The following execution steps apply to all three syntactic forms, except as
noted:

1. The loop becomes active, and index is set to init.
2. The iteration count is determined by the following expression:

MAX(INT (limit - init + step) / step, 0)

step is optional, with the default value of 1. It may not be 0.

Note that the iteration count is 0 if either of the following conditions is true:

• step (if present) is a positive number and init is
greater than limit.

• step is a negative number and init is less than
limit.

3. If the iteration count is 0, the construct becomes inactive and the
normal flow of execution resumes with the first executable statement
following the END DO or terminal statement.

4. The statement-block executes. (In the case of the old-style
syntactic form, both statement-sequence and
terminal-statement execute.)

5. The iteration count is decremented by 1, and index is incremented by
step, or by 1 if step is not specified.

6. Go to Step 3.

Example

This example uses nested DO loops to sort an array into ascending order:

INTEGER :: scores(100)

DO i = 1, 99

 DO j = i+1, 100

NOTE. To ensure compatibility with older versions of Fortran, you can
use the /Q command-line option to ensure that, when a
counter-controlled DO loop is encountered during program execution, the
body of the loop executes at least once. For more information about this
option, see the Intel® Fortran Compiler User’s Guide.

Execution Control 6

6-7

 IF (scores(i) > scores(j)) THEN

 temp = scores(i)

 scores(i) = scores(j)

 scores(j) = temp

 END IF

 END DO

END DO

The following example uses the older syntactic form. Note that, unlike the
newer form, old-style nested DO loops can share the same terminal
statement:

 DO 10 i = 1, 99

 DO 10 j = i+1, 100

 if (scores(i) <= scores(j)) GO TO 10

 temp = scores(i)

 scores(i) = scores(j)

 scores(j) = temp

10 CONTINUE

Conditional DO Loop

A conditional DO loop uses the WHILE syntax to test a logical expression as
a condition for executing the next iteration.

Syntax

[construct-name :] DO WHILE (logical-expression)

statement-block

END DO [construct-name]

Intel Fortran also supports the older syntax of the DO WHILE loop:

DO label WHILE (logical-expression)

statement-sequence

label terminal-statement

6-8

6 Intel Fortran Programmer’s Reference

Execution Logic
1. The loop becomes active.
2. The logical-expression is evaluated. If the result of the evaluation is

false, the loop becomes inactive, and the normal flow of execution
resumes with the first executable statement following the END DO
statement, or in the old DO-loop syntax, the terminal statement.

3. The statement-block executes. (In the case of the old-style
syntactic form, both statement-sequence and terminal-statement
execute.)

4. Go to Step 2.

Example
! Compute the number of years it takes to

! double the value of an investment earning

! 4% interest per annum

REAL :: money, invest, interest

INTEGER :: years

money = 1000

invest = money

interest = .04

years = 0

DO WHILE (money < 2*invest) ! doubled our money?

 years = years + 1

 money = money + (interest * money)

END DO

PRINT *, "Years =", years

Infinite DO Loop

The DO statement for the infinite DO loop contains no loop control logic. It
executes a statement block for an indefinite number of iterations, until it is
terminated explicitly by a statement within the block; for example, a
RETURN or EXIT statement.

Execution Control 6

6-9

Syntax

[construct-name :] DO

 statement-block

END DO [construct-name]

Execution Logic

The execution sequence of an infinite DO loop is as follows:

1. The loop becomes active.
2. statement-block executes.
3. Go to Step 2.

Example
! Compute the average of input values;

! press 0 to exit

INTEGER :: i, sum, n

sum = 0

n = 0

average: DO

 PRINT *, ’Enter a new number or 0 to quit’

 READ *, i

 IF (i == 0) EXIT

 sum = sum + i

 n = n + 1

END DO average

PRINT *, ’The average is ’, sum/n

FORALL Construct and Statement

The FORALL construct and statement are similar to the DO statement,
providing indexed repetitive execution of a statement or block of
statements. However, when you use FORALL, you are specifying that the
operations within a statement on array elements in the body of the FORALL
construct may be executed in parallel. The result stored in each array
element is independent of the result stored in other elements. FORALL
allows indexed parallel assignment of values to an array.

6-10

6 Intel Fortran Programmer’s Reference

Syntax

The syntax of the FORALL statement is:

[construct-name :] FORALL (forall-
triplet-specification-list
[, scalar-logical-expression])

[forall-body-construct]

END FORALL [forall-construct-name]

The syntax of the FORALL construct is:

[construct-name :] FORALL (forall-
triplet-specification-list
[, scalar-logical-expression])

forall-assignment-statement

where:

forall-construct-name is an optional identifier that must be unique
 within the program unit

forall-triplet-specification-list is:

index-name = scalar-integer-expression :
 scalar-integer-expression :
 [scalar-integer-expression]

forall-body-construct is one of:

an assignment statement
WHERE construct
FORALL construct
FORALL statement

scalar-logical-expression
is a mask value, indicating whether the
operation should be carried out on each
 array element.

forall-assignment-statement
is an assignment statement or a pointer
assignment statement

Execution Control 6

6-11

A FORALL construct has more than one statement in the
forall-body-construct, while a FORALL statement has a single FORTRAN
statement as its forall-body-construct. A FORALL statement does not need
an END FORALL to mark the end of the iterative statement group, since
there is only one statement in the group. For example,

 FORALL (I=1:N) A(I,I) = B(I)

Each operation on an array element in a statement of FORALL construct
must complete execution before an operation on the same array element in
the next sequential statement can begin execution.

Example

The following code —

DIMENSION A(10,10), B(10)

REAL A,B,C

DATA A/100*2.0/,B/10*1.0/,C/4.0/

INTEGER I

FORALL(I=1:10:2)

 A(I,I) = A(I,I) + C * B(I)

 A(I,I) = A(I,I) + 1

 B(I) = A(I,1)

END FORALL

PRINT *, B

END

produces these results:

7.000000 1.000000 2.000000 1.000000 2.000000
1.000000 2.000000 1.000000 2.000000 1.000000

The code above is equivalent to:

DIMENSION A(10,10), B(10)

REAL A,B,C

DATA A/100*2.0/,B/10*1.0/,C/4.0/

INTEGER I,J

DO I=1,10,2

 A(I,I) = A(I,I) + C * B(I)

 A(I,I) = A(I,I) + 1

6-12

6 Intel Fortran Programmer’s Reference

 B(I) = A(I,1)

ENDDO

PRINT *, B

END

Usage Rules

Follow these rules when using the FORALL construct and statement:

• With a FORALL construct name, the same identifier must appear on the
FORALL and END FORALL statements.

• The index variable for a FORALL statement or construct must be a
scalar integer variable. The index variable may be a formal parameter
with the INTENT(IN) attribute. If the index variable is INTENT(IN),
the increment or decrement of the variable is not reflected on return to
the calling routine.

• The forall-triplet-specification-list must not contain a
reference to any scalar variable from the list in which the expression
appears. For example, the following FORALL statement is invalid:
FORALL (N= 1:K, K=1,L) A(N,K) = 0.0

This statement is invalid because the limit for the first index triplet is K,
and the next part of the specification list uses K as an index variable.

• The FORALL statement may specify a
scalar-logical-expression that forms a mask. Operations in
the FORALL construct are carried out on the array elements whose
indices have a .TRUE. value relative to the mask expression. For
example:
DIMENSION A(100)
DO I=1,100
 A(I) = REAL(I)
ENDDO
FORALL (I=1:100, A(I) > 20.0 .AND. A(I) < 90.0)
 A(I) = A(I) * A(I)
END FORALL
PRINT *, A
END

Execution Control 6

6-13

This FORALL construct squares each array element of A from A(20) to
A(89) inclusive. The mask is based upon the value of the array
elements themselves, not the value of the index variable I.

• Any procedure referenced in the scalar-logical-expression
that forms the mask, or in any statement in the FORALL body construct
must be a PURE procedure.

• Within a FORALL body construct, you must not alter the value of the
scalar index variable used to control the FORALL construct. This
includes changing the value of the index variable by using the same
index variable for a nested FORALL construct.
FORALL(I=1:10)
 FORALL(I=1:10)
 END FORALL
END FORALL

The above construct is invalid.
• A FORALL body construct may not be the target of a GOTO or other

branch construct.
• The stride portion of a forall-triplet-specification-list

may not equal zero.
• You cannot perform a many-to-one assignment within a single

statement of a FORALL construct.
For example:
DIMENSION F(10),A2(10)
DATA F/1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0/
A2 = F * 3.0
FORALL (J=1:10)
 F((/1,1,2,2,3,3,4,4,5,5/)) = A2(J)
END FORALL
END

will yield:

badfor.f

 main program

 F((/1,1,2,2,3,3,4,4,5,5/)) = A2(J)

 ^

6-14

6 Intel Fortran Programmer’s Reference

Error 513 at (5:badfor.f) : The FORALL with index J causes more than
one assignment to this (sub)object.

Execution Logic

The execution logic of a FORALL statement is as follows:

1. When your program executes a FORALL construct, it first determines
the values for the FORALL index variables, then evaluates the mask
expression, if there is one, and finally executes the body of the FORALL
construct.

2. The expressions forming each component of the
forall-triplet-specification-list may be evaluated in
any order, and if necessary, converted to the type and KIND value of the
index variable.

3. If there is no mask expression, it is as if the mask were present, and all
values were .TRUE. If the mask is .TRUE. for a particular index
value, then that index value is in the set of active index values for the
FORALL construct.

4. FORALL body constructs are executed in the order in which they
appear, for all active index values. The statements executed may be
assignment statements, pointer assignment statements, a WHERE
construct or statement, or a nested FORALL construct.

IF Construct

The IF construct selects between alternate paths of execution. The
executing path is determined by testing logical expressions. At most, one
statement block within the IF construct executes.

Syntax

[construct-name :] IF (logical-expression1) THEN

 statement-block1

[ELSE IF (logical-expression2) THEN [construct-name]

 statement-block2] ...

[ELSE [construct-name]

 statement-block3]

END IF [construct-name]

Execution Control 6

6-15

Execution Logic
1. The logical-expression1 is evaluated. If it is true,

statement-block1 executes.
2. If logical-expression1 evaluates to false and ELSE IF

statements are present, the logical-expression for each ELSE IF
statement is evaluated. The first expression to evaluate to true causes
the associated statement-block to execute.

3. If all expressions evaluate to false and the ELSE statement is present,
its statement-block executes. If the ELSE statement is not present, no
statement block within the construct executes.

4. The normal flow of execution resumes with the first executable
statement following the END IF statement.

Example
! Compare two integer values

IF (num1 < num2) THEN

 PRINT *, "num1 is smaller than num2."

ELSE IF (num1 > num2) THEN

 PRINT *, "num1 is greater than num2."

ELSE

 PRINT *, "The numbers are equal"

END IF

Flow Control Statements
Flow control statements alter the normal flow of program execution or the
execution logic of a control construct. For example, the GO TO statement
can be used to transfer control to another statement within a program unit,
and the EXIT statement can terminate execution of a DO construct.

This section describes the operations performed by the following flow
control statements:

• CONTINUE statement
• CYCLE statement
• EXIT statement
• Assigned GO TO statement

6-16

6 Intel Fortran Programmer’s Reference

• Computed GO TO statement
• Unconditional GO TO statement
• Arithmetic IF statement
• Logical IF statement
• PAUSE statement
• STOP statement

For additional information about these statements, see Chapter 10, Intel
Fortran Statements.

CONTINUE Statement

The CONTINUE statement has no effect on program execution. It is
generally used to mark a place for a statement label, especially when it
occurs as the terminal statement of a FORTRAN 77-style DO loop.

Syntax

CONTINUE

Execution Logic

No action occurs.

Example
! find the 50th triangular number

 triangular_num = 0

 DO 10 i = 1, 50

 triangular_num = triangular_num + i

10 CONTINUE

 PRINT *, triangular_num

CYCLE Statement

The CYCLE statement interrupts execution of the current iteration of a DO
loop.

Execution Control 6

6-17

Syntax

CYCLE [do-construct-name]

Execution Logic
1. The current iteration of the enclosing DO loop terminates. Any

statements following the CYCLE statement do not execute.
2. If do-construct-name is specified, the iteration count for the named DO

loop decrements. If do-construct-name is not specified, the iteration
count for the immediately enclosing DO loop decrements.

3. If the iteration count is nonzero, execution resumes at the start of the
statement block in the named (or enclosing) DO loop. If it is zero, the
relevant DO loop becomes inactive.

Example
LOGICAL :: even

INTEGER :: number

loop: DO i = 1, 10

 PRINT *, "Enter an integer: "

 READ *,number

 IF (number == 0) THEN

 PRINT *, "Must be nonzero."

 CYCLE loop

 END IF

 even = (MOD(number, 2) == 0)

 IF (even) THEN

 PRINT *, "Even"

 ELSE

 PRINT *, "Odd"

 END IF

END DO loop

EXIT Statement

The EXIT statement terminates a DO loop. If it specifies the name of a DO
loop within a nest of DO loops, the EXIT statement terminates all loops by
which it is enclosed, up to and including the named DO loop.

6-18

6 Intel Fortran Programmer’s Reference

Syntax

EXIT [do-construct-name]

Execution Logic

If the do-construct-name is specified, execution terminates for all DO
loops that are within range, up to and including the DO loop with that name.
If no name is specified, execution terminates for the immediately enclosing
DO loop.

Example
DO

 PRINT *, "Enter a nonzero integer: "

 READ *, number

 IF (number == 0) THEN

 PRINT *, "Bye"

 EXIT

 END IF

 even_odd = MOD(number, 2)

 IF (even_odd == 0) THEN

 PRINT *, "Even"

 ELSE

 PRINT *, "Odd"

 END IF

END DO

Assigned GO TO Statement

The assigned GO TO statement transfers control to the statement whose
statement label was assigned to an integer variable by an ASSIGN
statement.

Syntax

GO TO integer-variable [, (label-list)]

If label-list is present, then the label previously assigned to
integer-variable must be in the list.

Execution Control 6

6-19

Execution Logic

Control transfers to the executable statement at integer-variable.

Example
INTEGER int_label

 ...

 ASSIGN 20 TO int_label

 ...

GOTO int_label

...

20 ...

Computed GO TO Statement

The computed GO TO statement transfers control to one of several labeled
statements, as determined by the value of an arithmetic expression.

Syntax

GO TO (label-list) [,] integer-expression

Execution Logic
1. integer-expression is evaluated.
2. The resulting integer value (the index) specifies the ordinal position of

the label that is selected from label-list.
3. Control transfers to the executable statement with the selected label. If

the value of the index is less than 1 or greater than the number of labels
in label-list, the computed GO TO statement has no effect, and control
passes to the next executable statement in the program.

Example
 DO

 PRINT *, "Enter a number 1-3: "

 READ *, k

 GO TO (20, 30, 40) k

 PRINT *, "Number out of range."

6-20

6 Intel Fortran Programmer’s Reference

 EXIT

20 i = 20

 GO TO 100

30 i = 30

 GO TO 100

40 i = 40

100 print *, i

 END DO

Unconditional GO TO Statement

The unconditional GO TO statement transfers control to the statement with
the specified label.

Syntax

GO TO label

Execution Logic

Control transfers to the statement at label.

Example

Older, “dusty-deck” Fortran programs often combine the GO TO statement
with the logical IF statement to form a kind of leap-frog logic, as in the
following:

 IF (num1 /= num2) GO TO 10

 PRINT *, "num1 and num2 are equal."

 GO TO 30

10 IF (num1 > num2) GO TO 20

 PRINT *, "num1 is smaller than num2."

 GO TO 30

20 PRINT *, "num1 is greater than num2."

30 CONTINUE

Execution Control 6

6-21

Arithmetic IF Statement

The arithmetic IF transfers control to one of three labeled statements, as
determined by the value of an arithmetic expression.

Syntax

IF (arithmetic-expression) label1, label2, label3

Execution Logic
1. arithmetic-expression is evaluated.
2. If the resulting value is negative, control transfers to the statement at

label1.
3. If the resulting value is 0, control transfers to the statement at label2.
4. If the resulting value is positive, control transfers to the statement at

label3.

Example

Note that, as in this example, two or more labels in the label list can be the
same.

i = MOD(total, 3) + 1

IF (i) 10, 20, 10

Logical IF Statement

The logical IF statement executes a single statement, conditional upon the
value of a logical expression. The statement it executes must not be any of
the following:

• a statement used to begin a construct
• an END statement
• an IF statement

Syntax

IF (logical-expression) executable-statement

6-22

6 Intel Fortran Programmer’s Reference

Execution logic
1. logical-expression is evaluated.
2. If it evaluates to true, executable-statement executes.
3. The normal flow of execution resumes with the first executable

statement following the IF statement. (If executable-statement is an
unconditional GO TO statement, control resumes with the statement
specified by the GO TO statement.)

Example
LOGICAL :: finished

.

.

.

IF (finished) PRINT *, "Done."

PAUSE Statement

The PAUSE statement temporarily suspends program execution until the
user or the system resumes execution. The PAUSE statement is an
obsolescent feature in Fortran 90 that has been deleted from the standard
language in Fortran 95. However, Intel Fortran fully supports the PAUSE
statement.

Syntax

PAUSE [pause-code]

where pause-code is one of the following optional messages:

• a scalar character constant of type default character
• a string of up to six digits; leading zeros ignored. (Fortran 95 and

FORTRAN 77 standards limit the number of digits to five.)

Execution Control 6

6-23

Execution Logic
1. If you specify a [pause-code] message, the PAUSE statement

displays the message specified and then the default prompt.
or
If you do not specify a [pause-code] message, the following
prompt is then displayed:

on Windows NT and Windows 95 Systems:
Fortran Pause - Enter <CR> to continue

where <CR> is the carriage control character. The program looks for
input from stdin (typically your terminal keyboard). If you enter a
blank line, execution resumes at the next executable statement.
Anything else is treated as a DOS command, and executed by a
system()call. The program loops, letting you execute multiple DOS
commands until a you enter a blank line. The program resumes at the
next executable statement.

If the standard input device is other than a your keyborad terminal, the
message is:

To resume execution, execute the following a command:

kill -15 pid

pid is the unique process identification number of the suspended program.
You can issue the kill command at any terminal that you are logged into.

Example
PAUSE 999

STOP Statement

The STOP statement terminates program execution.

Syntax

STOP [stop-code]

where stop-code is a character constant, a named constant, or a list of up to
5 digits.

6-24

6 Intel Fortran Programmer’s Reference

Execution logic

Program terminates execution. If stop-code is specified, the following is
written to standard output:

STOP stop-code

Example
STOP "Program has stopped executing."

7-1

Program Units and
Procedures 7

This chapter describes the internal structure of each type of program unit,
how it is used, and how information is communicated between program
units and shared by them. All Fortran 95 statements are described in detail
in this chapter.

Overview
This overview summarizes the main features of program units, procedures,
scope, and association.

Program Units

A program unit is one of the following:

• Main program unit
• External function subprogram unit
• External subroutine subprogram unit
• Block data program unit
• Module program unit

A complete executable program contains one main program unit and zero or
more other program units, where each of these can be compiled separately.

7-2

7 Intel Fortran Programmer’s Reference

Program Unit Concepts

A program unit corresponds to the following characteristics:

• The main program, subroutine subprogram, and function subprogram
are all executable. The nonexecutable program units are block data
units and modules, which provide only definitions used by other
program units.

• Each program unit is an ordered set of constructs, statements,
comments, and include lines. The heading statement identifies the kind
of program unit it is; it is optional in a main program unit. An END
statement marks the end of a program unit.

• Program execution begins with the first executable statement in the
main program. The main program is often used as a “driver” to control
computations defined in other program units.

• A module program unit contains data declarations, user-defined type
definitions, procedure interfaces, common block declarations, namelist
group declarations, and subprogram definitions used by other program
units. It also specifies the accessibility (PUBLIC or PRIVATE) of these
entities.

• Block data program units are used only to specify initial values for
variables in named common blocks. With the provision of modules in
Fortran 95, block data program units are no longer needed for new
programs because modules can provide global data initializations.

• Main programs, external subprograms, and module subprograms may
contain internal subprograms.

• All program units, except block data, may contain procedure interface
blocks.

Procedures

Procedures can be defined by the following characteristics:

• A procedure is either a function or a subroutine. It encapsulates an
arbitrary sequence of computations that may be invoked directly during
program execution.

• A procedure is defined by a subprogram— that is, a subprogram
defines (or is an implementation of) a procedure. A procedure can also
be implemented by means other than the Fortran Language.

Program Units and Procedures 7

7-3

• If a subprogram contains one or more ENTRY statements, it defines a
procedure for each ENTRY statement, as well as a procedure for the
SUBROUTINE or FUNCTION statement.

Scope and Association

Two further concepts are required for a full understanding of program
structure: scope and association.

Scope

All defined Fortran entities have a scope within which their properties are
known. For example, a label used within a subprogram cannot be referenced
directly from outside the subprogram; the subprogram is the scoping unit of
the label. A variable declared within a subprogram has a scope that is the
subprogram. A common block name can be used in any program unit and it
refers to the same entity — that is, the name has global scope. At the other
extreme, the index variable used within an implied DO list in a DATA
statement or array constructor, for example, has a scope consisting only of
the implied DO list construct itself.

Association

Entities may be associated by host, storage, use, pointer or
argument association. One scoping unit can encapsulate others, and
an entity declared in an outer unit may also, by default, be known within the
contained subprogram. This is an example of host association. Examples of
storage association are: use of an EQUIVALENCE statement (sharing data
within a subprogram), use of a COMMON statement (sharing data across
program units). The USE statement provides access to entities defined in a
module to other program units by use association. A pointer and its target
have pointer association. The actual and dummy arguments of a subprogram
have argument association when the subprogram is invoked.

Example

Different kinds of scope and association are illustrated in the following:

SUBROUTINE get(i, j)

 INTEGER i,j

7-4

7 Intel Fortran Programmer’s Reference

 COMMON /buffer/ x, y

 ! i,j,x, and y are local names.

 ! get and buffer are global.

•
•
•

END

MODULE stack_database

! stack_database is global.

TYPE stack_type

 INTEGER top; REAL, POINTER :: ptr(:)

 END TYPE stack_type

•
•
•

 CONTAINS

 SUBROUTINE create(stack)

 ! create is local.

 TYPE(stack_type) :: stack

 ! Host association of stack_type.

•
•
•

 END SUBROUTINE create

•
•
•

END MODULE stack_database

PROGRAM main

! main is global

 USE stack_database

 INTEGER a, b

 TYPE (stack_type) :: main_stack

 ! Use association of stack_type.

Program Units and Procedures 7

7-5

 COMMON /buffer/ t(2)

 ! t is local but buffer is global; thus t is

 ! storage associated with x and y.

•
•
•

 CALL get(a,b)

 CALL create(main_stack)

 ! Use association of create.

•
•
•

END

In this example, the names buffer, get, stack_database, create,
and main have the scope of the entire executable program, and are called
global names. All of the program units main, get, create and
stack_database are “scoping units”. A scoping unit in general is not an
entire program unit, but is a unit with holes in it. The holes occur wherever
a scoping construct such as another program unit or derived-type definition
appears within it. For example, the scoping unit corresponding to the
module stack_database does not include the inner parts of the
procedure create.

Lines of communication or association can be established between the local
entities of two or more scoping units. For example, the CALL statement to
get in main associates the dummy and actual arguments (all are local
names in this case), so that while get is being executed the dummy
argument i is the same as a, and the dummy argument j is the same as b;
this is argument association. The local variables x and y in get
communicate with the local variable t in main by storage association.

Procedures
Fortran 95 procedures are implemented either as function subprograms or
as subroutine subprograms. A function subprogram returns a value, the
function-result, for use within an expression evaluation.

7-6

7 Intel Fortran Programmer’s Reference

Procedure Categories

There are several categories of procedures described in the following
sections.

Intrinsic Procedures

Intrinsic procedures are those available for use without any declaration or
definition. They are described in detail in the Intel® Fortran Compiler
User’s Guide.

Intrinsic procedures provide a way to incorporate into Standard Fortran 95
the most common computations important to scientific and engineering
applications. Standard Fortran 95 has 110 intrinsic functions and 5 intrinsic
subroutines. Table 12 lists the different categories of intrinsic functions and
gives the total number of intrinsic functions for each category.

Some intrinsic procedures are known as elemental—that is, they can take
scalar arguments to produce a scalar result, and they can accept
conformable arrays as arguments, in which case they operate on each array
element separately and return an array as a result.

Several different intrinsic procedures can be called using the same name
when the actual arguments are of different kinds, types and ranks. For
example, when using SQRT(x), x can be of type real or complex, it can be
of any defined kind, and it can be an array of any of these types, of any rank.
The name used is a generic name for a set of procedures, each of which
accepts an argument of a fixed kind, type, and rank.

Table 7-1 Categories of intrinsic functions

Category Total

Conversion intrinsics 16

Array intrinsics 17

Inquiry and model intrinsics 28

Numeric computation 26

Character computation 12

Bit computation 9

Program Units and Procedures 7

7-7

External Procedures

An external procedure is a separately compilable program unit whose name
and any additional entry points have global scope.

Module Procedures

A module procedure can appear only within a module. Its name can be
made available outside the scope of its host only by use association. It is not
otherwise accessible outside of its host.

Internal Procedures

An internal procedure can appear only within a main program, an external
subprogram, or a module subprogram. It cannot have additional entry
points, and it is not accessible outside its host. It appears between a
CONTAINS and END statement of its host.

Referencing Procedures

The following sections describe how to reference a procedure subprogram:

Subroutine Subprogram

A subroutine subprogram is referenced by using the CALL statement
specifying the subroutine name, one of its entry point names, or when the
subroutine is implementing an assignment operation.

The syntax of the CALL statement is:

CALL subroutine-name &

[([actual-argument-spec-list])]

actual-argument-spec

is [keyword =] actual-argument

keyword

is dummy-argument

7-8

7 Intel Fortran Programmer’s Reference

actual-argument

is one of the following:
— expression
— variable
— procedure-namealternate-return

alternate-return

is one of the following:
— *label
— &label

label is permitted in Intel Fortran in fixed source form only.

Alternate returns are arguments that permit control to branch to a particular
label following the call. label is the statement label of an executable
statement in the same scoping unit as the CALL statement.

Function Subprogram

A function subprogram is referenced by its name, by one of its entry point
names or by the operator defined by the function.

The syntax of a function reference is:

function-name ([actual-argument-spec-list])

where actual-argument-spec is as above, except that an alternate return
cannot be included.

On invocation, the calling program unit can identify actual arguments that
are then associated with dummy arguments in the procedure definition. This
is also applicable to subroutine subprograms.

Interfaces

The interface of a procedure is the information required to compile a call to
the procedure. This information includes the characteristics of the dummy
arguments and of the result for a function procedure. It is explicit if all of
these characteristics are defined within the scope of the reference. If they
are not, the compiler may be able to make sufficient assumptions about
them and the interface is then implicit. Under many circumstances an
explicit interface is mandatory. Internal procedures and module procedures
always have an explicit interface.

Program Units and Procedures 7

7-9

Explicit interfaces can be specified by means of an INTERFACE block. An
INTERFACE block is also used to define the extended use of the standard
operators, to define new operators and to extend the definition of the
assignment operator. Additionally, it provides the capability of using a
generic name to reference any one of a set of procedures.

Generic Referencing

The user can define a generic name and code several procedures to cater for
the required different combinations of argument characteristics. Then, by
including the specifications of these routines within an interface definition,
use just the generic name for referencing any of the procedures (the choice
of procedure being determined by matching actual and dummy arguments).
The technique can also be used to extend the selection of argument types.

Built-in Functions

Intel Fortran provides two functions that are extension to the language:
%VAL and %REF. These extensions can be used to communicate with
procedures written in programming languages other than Fortran 95 that
have different argument passing conventions. These functions specify how
an actual argument is to be passed in a procedure reference.
• %VAL(a) specifies that the value of the actual argument a is to be

passed to the called procedure. The argument a can be a constant,
variable, array element, or derived-type component. %VAL
approximates the default argument passing mechanism of the C
programming language, and it is to pass a Fortran object to a procedure
written in C where %VAL is typically used.

• %REF(a) specifies that the actual argument a is to be passed as a
reference to its value. This is how Intel Fortran normally passes
arguments except those of type character; for each character
argument, Intel Fortran normally passes both a reference to the
argument and its length, with the length being appended to the end of
the actual argument list. Passing a character argument using %REF
disables the passing of the character length argument.

These two routines may only be used in either an interface block, or in the
actual CALL statement or function reference.

For information about %VAL and %REF, see the description of the CALL
statement in Chapter 10, Intel Fortran Statements.

7-10

7 Intel Fortran Programmer’s Reference

Example

This first example uses %VAL and %REF in an interface block:

PROGRAM foobar

 INTERFACE

 SUBROUTINE fred(%VAL(X))

 INTEGER :: x

 END SUBROUTINE fred

 FUNCTION foo (%REF(ip))

 INTEGER :: ip, foo

 END FUNCTION foo

 END INTERFACE

 ...

CALL fred(i) ! The value of i is passed to fred

j = foo(i) ! i passed to foo by reference,

 ! foo receives a reference to

 ! the value of i.

END PROGRAM

The next example employs %REF and %VAL in the actual procedure
references:

 PROGRAM foobar
 INTEGER :: foo
 EXTERNAL foo, fred
 ...
 CALL fred (%VAL(i))
 j = foo(%REF(i))
 END PROGRAM

Procedure interfaces and interface blocks are described later in this chapter.

Procedure Definition

Fortran procedures mostly consist of functions and subroutines defined in
the following sections.

Program Units and Procedures 7

7-11

Functions and Subroutines

Functions and subroutines are defined in Fortran 95 by means of
subprograms.

A subroutine subprogram has the following form:

subroutine-statement

 [specification-part]

 [execution-part]

 [internal-subprogram-part]

end-subroutine-statement

A function subprogram has the following form:

function-statement

 [specification-part]

 [execution-part]

 [internal-subprogram-part]

end-function-statement

internal-subprogram-part is:

CONTAINS

 [internal-subprogram]...

internal-subprogram

is a subprogram without any internal-subprogram-part.

end-subroutine-statement

is
END [SUBROUTINE [subroutine-name]]

end-function-statement

is
END [FUNCTION [function-name]]

Statements Introducing Procedures

The following sections describe specific statements with which each
procedure is introduced in the code.

7-12

7 Intel Fortran Programmer’s Reference

Subroutine Statement

The SUBROUTINE statement introduces a subroutine subprogram. The
syntax for subroutine-statement is:

[RECURSIVE] [PURE] [ELEMENTAL] SUBROUTINE
subroutine-name & [([dummy-argument-list])]

Function Statement

The FUNCTION statement introduces a function subprogram. The syntax for
function-statement is:

[prefix] FUNCTION function-name &

 ([dummy-argument-list]) [RESULT (result-name)]

prefix

is one of:
• type-spec [RECURSIVE]

• RECURSIVE [type-spec]
• PURE [type-spec]
• ELEMENTAL [type-spec]
The type-spec may appear before or after the attribute.

Dummy arguments are discussed in “Subprogram Arguments” on page 18;
actual arguments are described in “Referencing Procedures” on page 7.

The result-name must be different from the function-name, and must be
given if the function is recursive. If there is a result clause, the result-name
must be used as the result variable, otherwise the function name must be
used.

Entry Statement

The ENTRY statement defines a procedure entry. Its syntax is as follows:

ENTRY entry-name ([dummy-argument-list]) &

 [RESULT (result-name)]

The RESULT clause may appear only if the ENTRY statement is in a
function subprogram.

Program Units and Procedures 7

7-13

ENTRY statements can appear only within the execution part of a
subprogram; they provide additional names by which the subprogram can
be invoked. Execution will commence at the statement immediately
following the referenced ENTRY statement, but the ENTRY statement does
not interrupt the sequencing of execution across it. ENTRY statements may
not appear within an internal subprogram.

When used in a function subprogram, all ENTRY statements should return
results of the same type, kind, and shape; otherwise they should all return
results that are scalars without the POINTER attribute and which are of
intrinsic numeric or logical type.

Examples of the ENTRY statement are given in Chapter 10, Intel Fortran
Statements.

Internal Procedures

Internal procedures are defined by internal subprograms in the internal
subprogram part of a main, external, or module program unit. Internal
subprograms can be recursive. The following restrictions apply to internal
subprograms:

• They cannot have ENTRY statements.
• They cannot be passed as arguments.
• Their names are local to the host.
• The interface of an internal procedure is explicit in the host.
• Declarations in the host are inherited by the internal subprogram, but

can be overridden.
• They cannot be the host of another internal procedure.

Example of an internal function:

SUBROUTINE printav
! Start of external subprogram.
 REAL, DIMENSION(3) :: x
 ! Specification part.
 x=(/2.0,5.0,7.0/)
 PRINT *,av(x)
 ! Reference to function av.

7-14

7 Intel Fortran Programmer’s Reference

 CONTAINS
 REAL FUNCTION av(a)
 ! Start of internal subprogram.
 REAL a(:)
 av=SUM(a)/SIZE(a)

 ! References to intrinsic functions.

 END FUNCTION av

END SUBROUTINE printav

RECURSIVE Procedures

An internal or external procedure that directly or indirectly invokes itself is
recursive. Such a procedure must have the word RECURSIVE added to the
FUNCTION or SUBROUTINE statement.

If both RECURSIVE and a result clause are specified in the FUNCTION
statement, then the interface of the function being defined is explicit within
the subprogram.

Example of a recursive function:

RECURSIVE FUNCTION factorial (n) RESULT(r)

 INTEGER :: n, r

 IF (n.ne.0) THEN

 r = n*factorial(n-1)

 ELSE

 r = 1

 ENDIF

END FUNCTION factorial

PURE Procedures

A PURE procedure is a routine that does not change any value external to
the procedure implicitly. For a FUNCTION, this means that the only value a
pure function may change is its return value. For a SUBROUTINE, the
routine may change only the values of those formal parameters that are
declared INTENT(OUT). Variables in COMMON blocks or variables that are
host-associated or use-associated are regarded as external to the PURE

Program Units and Procedures 7

7-15

procedure, and may not be modified. Any local variable that is
storage-associated with an variable in a COMMON block or a variable that is
host or use associated may not be modified.

Host association occurs when the declaration point of a variable is in an
outer scope from the current procedure. USE association occurs when a
variable is made available in the current routine via a USE statement.

Variables in COMMON blocks or variables that are host or use associated may
not appear in the right-hand side of an assignment statement whose
left-hand side has a pointer component at any level, within a PURE
procedure.

All intrinsic functions and the intrinsic subroutine MVBITS are PURE
procedures.

Local variables of PURE procedures must not have the SAVE attribute, and
may not be used in a STATIC or VOLATILE statement.

This means also that you cannot give a local variable of a PURE procedure
an initial value in the specification portion of the routine, since this
automatically implies the SAVE attribute.

A PURE procedure may not contain a STOP, PRINT, OPEN, CLOSE,
BACKSPACE, REWIND, ENDFILE, or INQUIRE statement. WRITE and
READ statements may appear only if they reference internal files as the
logical unit.

Any routine CONTAINed within a PURE procedure must also be PURE.

Example
PURE FUNCTION ADDIT(I)

 INTENT (IN) I

 ADDIT = REAL(I) + 2.0

END FUNCTION

PURE SUBROUTINE SUBIT(RESULT,AIN1,AIN2)

 INTENT (OUT) RESULT

 INTENT (IN) AIN1,AIN2

 RESULT = AIN1 - AIN2

END SUBROUTINE

7-16

7 Intel Fortran Programmer’s Reference

In the following cases the use of a PURE procedure is required, if any
procedure is used at all:

• a function referenced in a FORALL statement
• a function referenced in a specification statement
• a procedure that is passed as an actual argument to a PURE procedure
• a procedure referenced in the body of a PURE procedure, including

defined operators or defined assignment

In these contexts, with the exception of intrinsic functions, you must define
an explicit INTERFACE for the referenced procedure, and the INTERFACE
must contain the PURE attribute.

ELEMENTAL Procedures

ELEMENTAL procedures allow you to specify routines that have scalar
formal parameters, but whose actual parameters are arrays of any rank, so
long as the actual parameters are conformable. A formal parameter may be
a scalar if it is used as a dimension specifier in declaration statement. An
ELEMENTAL procedure is implicitly a PURE procedure. The keywords
ELEMENTAL and PURE may appear on the same routine declaration, but in
this case PURE is redundant.

The result of executing an ELEMENTAL procedure is the same as if the
procedure were applied to each element of the array(s) in the actual
parameter(s) in any order, including simultaneously. ELEMENTAL functions
must return a scalar result.

It should be noted that some side effects are not recognized by standard
Fortran, such as IEEE floating point exception bits. It is the programmer’s
responsibility to make sure these side effects either do not occur, or have
acceptable results.

The following rules apply to ELEMENTAL procedures:

• Formal parameters must be INTENT(IN), and cannot be a procedure
parameter, or a pointer.

• The INTENT of each formal parameter must be specified.
• Local variables have the same restrictions as in a PURE procedure (i.e.

no SAVE attribute, cannot be used in a STATIC or VOLATILE
statement. See “PURE Procedures.”).

Program Units and Procedures 7

7-17

• Since an ELEMENTAL procedure is also PURE, an ELEMENTAL
procedure may not contain a STOP, PRINT, OPEN, CLOSE,
BACKSPACE, REWIND, ENDFILE, or INQUIRE statement. WRITE and
READ statements may appear only if they reference internal files as the
logical unit.

• An ELEMENTAL procedure cannot be RECURSIVE.
• A formal parameter of an ELEMENTAL procedure must not have a

POINTER type.
• The result of an ELEMENTAL function must not have a POINTER type.
• You cannot use alternate returns with an ELEMENTAL subroutine.

Statement Functions

If an evaluation of a function with a scalar value can be expressed in just
one Fortran assignment statement, such a definition can be included in the
specification part of a main program unit or subprogram. This definition is
known as a statement function, and is local to the scope in which it is
defined. The syntax is:

function-name (dummy-argument-list) =
scalar-expression

All dummy arguments must be scalars. All entities used in the expression
must have been declared earlier in the specification part. A statement
function can reference another statement function that has already been
declared. The name cannot be passed as a procedure-name argument.

Example

vol(r,h) = 3.14*h*r**2

! Definition, within the specification part of

! the subprogram.

 ...

 total = n * vol(0.5*d,x)

! Reference to the statement function, from

! within the same program unit.

 ...

7-18

7 Intel Fortran Programmer’s Reference

Returning to the Calling Unit

When the END statement of the subprogram is encountered, control will be
returned to the calling program unit. The RETURN statement can be used to
the same effect at any point within the subprogram.

The syntax of the RETURN statement is:

RETURN [scalar-integer-expression]

When alternate returns have been declared, the value of the scalar integer
expression determines which argument corresponds to the requested return
point. The dummy arguments corresponding to the alternate returns must
each be declared as an asterisk (*). If the value of the expression is n, then
the return is to the labeled statement referred to by the actual argument
corresponding to the nth dummy argument declared as an asterisk.

Subprogram Arguments

Actual arguments appear in a procedure reference and specify the actual
entities to be used by the procedure during its execution. Dummy arguments
are specified when the procedure is defined and are the name by which the
actual arguments are known within a procedure. When a procedure is
referenced during program execution, the actual arguments become
associated with the dummy arguments through argument association.

A dummy argument is one of:

• name

• * (subroutine only)

A subprogram actual argument is one of:

• expression

• procedure-name

• alternate return

Arguments allow a calling program unit and a called subprogram to
communicate with each other. The calling unit provides a list of actual
arguments and the called subprogram will have been declared with a list of
dummy arguments.

Program Units and Procedures 7

7-19

Argument Correspondence

If no keyword= component of an actual-argument-spec is included in the
reference, then each actual argument is assumed to correspond with the
dummy argument in the equivalent position in the dummy argument list.
The actual arguments may appear in any order if the keyword option is used
for all arguments. Actual arguments without the keyword option may be
followed by an argument with the keyword option. However, an argument
with the keyword option must only be followed by other arguments with the
keyword option.

Dummy arguments can be declared with the OPTIONAL attribute. If they
appear at the end of the dummy argument list, the reference can omit any
trailing arguments that are not required. Otherwise, keywords must be
provided to maintain an identifiable correspondence.

Example of Argument Correspondence

The intrinsic function SUM (has three arguments: array, dim, and mask,
in that order, and dim and mask are optional arguments. The following are
valid references:

SUM(a,2)

SUM(a,MASK=a.gt.0)

SUM(DIM=2,ARRAY=a)

The following is an invalid reference—the mask keyword should have been
specified:

SUM(a,DIM=2,a.gt.0) ! Invalid

Argument Association

Dummy and actual arguments must agree in kind, type, and usually in
rank—that is, both scalars, or both arrays of the same dimensionality. An
actual argument that is an expression or a reference to a function procedure
must match the type and kind of the dummy argument.

Scalar Dummy Argument

If the dummy argument is a scalar, then the corresponding actual argument
must be a scalar, or scalar expression, of the same kind and type.

7-20

7 Intel Fortran Programmer’s Reference

If the dummy argument is a character variable and has assumed length then
it will inherit the length of the actual argument. Otherwise the length of the
actual argument must be at least that of the dummy argument, and only the
characters within the range of the dummy argument can be accessed by the
subprogram. The lengths may differ only for default character types.

Array Dummy Argument

The different sorts of Fortran 95 arrays are described in Chapter 4,
“Arrays.”

If the dummy argument is an assumed-shape array, then the corresponding
actual argument must match in kind, type, and rank; the dummy argument
assumes its shape (the number of elements in each dimension) from the
actual argument, resulting in an element-by-corresponding-element
association between the actual and dummy arguments.

If the dummy argument has explicit shape or assumed size, the kind and
type of the actual argument must match but the rank need not, as the
elements are matched by sequence association. That is, the actual and
dummy arguments are each considered to be a linear sequence of elements
in storage without regard to rank or shape, and corresponding elements in
each sequence are associated with each other.

A consequence of this sequence association is that the overall size of the
actual argument must be at least that of the dummy argument, and only
elements within the overall size of the dummy argument can be accessed by
this subprogram.

Example

The following example illustrates sequence association.

Assuming that an actual array argument is declared thus:

REAL a(0:3,0:2)

And that the corresponding dummy array argument is declared thus:

REAL d(2,3,2)

Then the following correspondence between elements of the actual and
dummy argument is achieved:

Dummy <=> Actual

Program Units and Procedures 7

7-21

d(1,1,1) <=> a(0,0)d(2,1,1) <=> a(1,0)

d(1,2,1) <=> a(2,0)

...

d(2,3,2) <=> a(3,2)

When an actual argument and associated dummy argument are default
character arrays, they may be of unequal character length. If this is the case,
then the first character of the dummy and actual arguments will be matched,
and the successive characters, rather than array elements, will be matched.

Example

The following example illustrates character sequence association.

Assuming that an actual argument array is declared thus:

CHARACTER*2 a(3,4)

and that the corresponding dummy array argument is declared thus:

CHARACTER*4 d(2,3)

then the following correspondence between elements of the actual and
dummy argument is achieved:

Dummy <=> Actual

d(1,1) <=> a(1,1)//a(2,1)

d(2,1) <=> a(3,1)//a(1,2)

...

d(2,3) <=> a(2,4)//a(3,4)

An actual argument may be an array section, but passing an array section to
a nonassumed shape dummy argument may cause a copy of the array
section to be generated and is likely to result in a degradation in
performance.

Derived-type Dummy Argument

The corresponding dummy and actual arguments of derived types are of the
same derived type if the structures refer to the same type definition.
Alternatively, they are of the same type if all the following are true:

• They refer to different type definitions with the same name.
• They both have the SEQUENCE statement in their definition.

7-22

7 Intel Fortran Programmer’s Reference

• The components have the same names and types and are in the same
order.

• None of the components is of a private type or is of a type that has
private access.

Pointer Dummy Argument

If the dummy argument has the POINTER attribute, the actual argument
must also have the POINTER attribute, and match in kind, type, and rank;
the dummy argument in the procedure then behaves as if the actual
argument were used in its place. If the dummy argument does not have the
POINTER attribute but the actual argument is a pointer, the argument
association behaves as if the pointer actual argument were replaced by its
target at the time of the procedure reference.

Procedure Dummy Argument

If a dummy argument of a procedure is used as a procedure name within the
procedure, then the actual argument must be the name of an appropriate
subprogram, and its name must have been declared as EXTERNAL in the
calling unit or defined in an interface block. Internal procedures, statement
functions and generic names may not be passed as actual arguments.

If the actual argument is an intrinsic procedure, then the appropriate specific
name must be used in the reference, and must be declared as INTRINSIC in
the calling unit.

Example

DOUBLE PRECISION dsin,x,y,fun

INTRINSIC dsin

 ...

 y=fun(dsin,x)

 ...

DOUBLE PRECISION FUNCTION fun(proc,y)

DOUBLE PRECISION y, proc

 ...

 fun=proc(y)

 ...

END

Program Units and Procedures 7

7-23

Duplicated Association

If a subroutine call or function reference would cause a data object to be
associated with two or more dummy arguments, then that data object must
not be redefined within the subroutine or function. For example, in the
following:

PROGRAM p

 CALL s (a,a)

CONTAINS

 SUBROUTINE s (c,d)

 c = 22.01 ! invalid definition of

 ! one of the dummy

 ! arguments associated

 ! with data object a

 ...

 END SUBROUTINE

END PROGRAM

both dummy arguments, c and d, are associated with the actual argument a.
The definition of a, through the assignment to the dummy argument c, is
invalid. The above rule is extended to when the actual arguments are
overlapping sections of the same array.

Similarly, if a data object is available to a procedure through both argument
association and either use, host, or storage association, then the data object
must be defined and referenced only through the dummy argument.

In the following code, the data object a is available to the subroutine as a
consequence of argument association and host association. The reference to
a directly in the subroutine is illegal.

PROGRAM p

 CALL s (a,b)

CONTAINS

 SUBROUTINE s (c,d)

 c = 22.01 ! valid definition of a

 ! through the dummy

 ! argument

 d = 3.0*a ! reference to a directly

7-24

7 Intel Fortran Programmer’s Reference

 ! is illegal

 ...

 END SUBROUTINE

END PROGRAM

INTENT Attribute

To enable additional checking to be performed on argument matching and
to avoid possible unwanted side effects, an INTENT attribute can be
declared for each dummy argument, which may be specified as
INTENT(IN), INTENT(OUT) or INTENT(INOUT).

The values that may be specified for the INTENT attribute have the
following significance:

• IN is used if the argument is not to be modified within the subprogram.
• OUT implies that the actual argument must not be used within the

subprogram before it is assigned a value.
• INOUT (the form IN OUT is also permitted) implies that the actual

argument must be defined on entry and is definable within the
subprogram.

Interfaces

The interface to a procedure (referred to as the procedure interface) is that
information, about the procedure, which is pertinent when that procedure is
invoked. This information includes:

• The name of the procedure.
• The properties (type, kind, and attributes) of the result, if the procedure

is a function.
• The names, types, kinds, attributes, and order of the dummy arguments

of the procedure.

The procedure interface is said to be explicit if the above information is
available to a program unit containing a reference to the procedure; when
the above information is not known, the procedure interface is implicit. In
FORTRAN 77 all procedure interfaces are implicit, giving no way to ensure
that the actual arguments supplied in a procedure reference match the
dummy arguments within the procedure itself. In Fortran 95 procedure
interfaces can be either implicit or explicit.

Program Units and Procedures 7

7-25

A number of new Fortran 95 features, as listed below, require that the
procedures involved have explicit procedure interfaces available within the
scoping units invoking them. An explicit procedure interface is required
when:

• The procedure reference uses the keyword form of an actual argument.
• The procedure has OPTIONAL arguments.
• Any dummy argument is an assumed-shape array or pointer.
• The result of the procedure is an array or pointer.
• The procedure is a character function, the length of which is

determined dynamically.
• The procedure reference is to a generic name.
• The procedure reference is a consequence of a user-defined operator

function or operation.
• The procedure reference is a consequence of a user-defined

assignment.

Even where an explicit procedure interface is not required, making a
procedure interface explicit allows the compiler to check the validity of
references to the procedure.

In Fortran 95, all procedure interfaces are implicit except for procedures
which are:

• Intrinsic procedures—the interface of every intrinsic procedure is
explicit.

• Internal procedures—the interface of an internal procedure is explicit
within its host.

• Module procedures—the interface of a module procedure is explicit
within a program unit using the module, and within the module itself.

• Recursive functions which specify a result clause—the interface of
such a function is explicit within the function itself.

• External procedures whose interfaces have been made explicit by the
provision of an interface block.

7-26

7 Intel Fortran Programmer’s Reference

INTERFACE Block

When an external procedure (one which is outside the prevailing scope) or a
dummy procedure is referenced, it is sometimes necessary for its interface
to be made explicit. This is achieved by the provision of an interface block,
which is accessible to the scoping unit containing the procedure reference.
An interface block can also be used to:

• Define a generic procedure name, specify the set of procedures to
which the generic name applies, and make explicit the interfaces of any
external procedures contained within the set.

• Define a new operator or extend an already defined operator, specify
the set of functions which implement the operator, and make the
interfaces of any of these functions, which are external, explicit.

• Define new defined assignment operations, specify the set of
subroutines to which to implement these operations, and make the
interfaces of any of these subroutines, which are external, explicit.

• An explicit interface is described by an interface block, which appears
in the specification part of the programming unit containing the
procedure reference. An interface block may appear in any program
unit, except a block data program unit.

The syntax for an INTERFACE block is:

INTERFACE [generic-spec]

[interface-body]...

 [MODULE PROCEDURE module-procedure-name-list]

END INTERFACE

generic-spec

is one of:
• generic-name

• OPERATOR (operator)ASSIGNMENT (=)

generic-name

is the name of the generic procedure that is referenced in the
subprogram containing the interface block

Program Units and Procedures 7

7-27

operator

is one of the Fortran 95 unary or binary intrinsic operators, or a
user-defined unary or binary operator of the form:
.letter[letter]....

interface-body

is
function-statement

[specification-part]

end-function-statement

or

subroutine-statement

[specification-part]

end-subroutine-statement

The MODULE PROCEDURE statement is permitted in an interface block only
if there is a generic-spec present.

In the following example, the procedure interface for the function av is
made explicit by the inclusion of the interface block in the main program.

Example

REAL FUNCTION av(a)

! External function av with one assumed-shape

! dummy argument.

 REAL a(:)

 av = SUM(a)/SIZE(a)

END

PROGRAM main

REAL,DIMENSION(3) :: x

INTERFACE

 REAL FUNCTION av(a)

 REAL, INTENT(IN) :: a(:)

 END FUNCTION av

END INTERFACE

7-28

7 Intel Fortran Programmer’s Reference

x=(/2.0,4.0.7.0/)

PRINT *, av(x)

END

INTERFACE TO Block
The INTERFACE TO is an Intel Fortran extension that serves the same
purpose as the INTERFACE block with the following exceptions:
• The header is on the same line as the as the key phrase INTERFACE

TO.
• The block contains the specifications for just one subroutine or function

The syntax for an INTERFACE TO block is:

INTERFACE TO [function-statement
|subroutine-statement]

[formal-parameter-declarations]...

END

where,

function-statement is a function declaration statement.

subroutine-statement is a subrotuine declaration statement

formal-parameter-declarations is variable declaration statement.

The following is an example:

INTERFACE TO Integer*4 function CreateMutex

[stdcall, alias: ‘_CreateMutexA@12’]

(security, owner, string)

integer*4 security [value]

logical*4 owner [value]

integer*4 string [value]

END

In the preceding example, the procedure CreateMutex is being
referenced. The ALIAS attribute is being used to change the name of the
function. (See “Attributes” in Appendix A for a description of the ALIAS
attribute. Also, three variables (security, owner, string) and their
data types are being prototyped.

Program Units and Procedures 7

7-29

Generic Names and Procedures

The concept of generic names and procedures was introduced in FORTRAN
77 with the provision of generic intrinsic procedures. In Fortran 95 this
concept is extended to allow user-defined generic procedures.

Two or more procedures are said to be generic if they can be referenced
with the same name; the name by which the procedures can be referenced is
the generic name.

A generic name is defined by an interface block containing a
generic-spec and the specifications of the procedures that may be
invoked by referencing the generic name. The procedure specifications in
the interface block must be distinguishable from each other in one or more
of the following ways:

• The number of dummy arguments differ.
• Dummy arguments, from the specific procedure specifications, that

occupy the same position in the argument lists differ in type, kind, or
rank.

• The name of a dummy argument differs from the names of the other
dummy arguments in dummy argument lists of other procedure
specifications, or all dummy arguments with the same name differ in
either type, kind, or rank.

There may be more than one interface block with the same generic name,
but the procedure specifications in all such interface blocks must be
distinguishable by the above criteria.

When a generic name is referenced it must be possible to determine to
which of the specific procedures the generic name refers; the generic
reference must resolve to a unique specific procedure name. Selection of the
specific procedure is based on the properties of the actual argument list,
including:

• The number of actual arguments.
• The type, kind, and rank of each actual argument.
• The argument keyword, if supplied, of an actual argument.

The specific procedure whose dummy argument list matches the actual
argument list is selected and invoked from the list of procedure
specifications contained in the interface block that defines the generic

7-30

7 Intel Fortran Programmer’s Reference

name. The dummy argument list of exactly one of the procedure
specifications contained in the interface block must match the actual
arguments in the reference of the generic name.

The MODULE PROCEDURE statement can be used to extend the list of
procedure specifications that comprises the interface block, by naming
procedures that are accessible to the program unit containing the interface
block. In the MODULE PROCEDURE statement only the specific names of
the procedures are given as their procedure interfaces are already explicit.
The MODULE PROCEDURE statement may only appear in an interface block
that has a generic specification, and the interface block must either be in the
module containing the definitions of the named procedures or, in a program
unit in which the procedures are accessible through use association.

Example

In the following, it is assumed that two subroutines have been coded for
solving linear equations: rlineq for when the coefficients are real, and
zlineq for when the coefficients are complex. A generic name, lineq, is
declared as follows and then used for either reference.

INTERFACE lineq

 SUBROUTINE rlineq(ra,rb,rx)

 REAL,DIMENSION(:,:) :: ra

 REAL,DIMENSION(:) :: rb,rx

 END SUBROUTINE rlineq

 SUBROUTINE zlineq(za,zb,zx)

 COMPLEX,DIMENSION(:,:) :: za

 COMPLEX,DIMENSION(:) :: zb,zx

 END SUBROUTINE zlineq

END INTERFACE lineq

Defined Operators

The OPERATOR (operator) generic specification can be used to either
define a new user-defined operator symbol, or to extend the behavior of an
already defined or intrinsic operator.

When the OPERATOR (operator) generic specification is present in the
INTERFACE statement, the procedure specifications that immediately
follow must only describe function subprograms. The functions described

Program Units and Procedures 7

7-31

are those that are to be used to implement the operator for various type,
kind, and rank combinations of operand. These functions must have only
one or two mandatory arguments, which correspond to the operand(s) of a
unary or binary operator. The functions return the result of an expression of
the form:

operator operand

or

operand1 operator operand2

as appropriate. Each dummy argument of the functions described in the
interface block must have the INTENT(IN) attribute. If operator is one
of the Fortran 95 intrinsic operators, then each of the specified functions
must take the same number of arguments as the intrinsic operator has
operands, and the arguments must be distinguishable from those normally
associated with the intrinsic operation.

Argument keywords must not be specified in a reference to a user-defined
operator function when the operator syntax, rather than the name of the
specific function, is used in an expression.

An interface block that defines or extends an operator is analogous to
defining a generic procedure name, with the operator being the generic
name. Similarly a reference to a user-defined operator must resolve to a
unique specific function name. The selection of the function is
accomplished by matching the number, type, kind, and rank of the
operand(s) with the dummy argument lists of the function specifications
contained in the interface block. As with generic names exactly one such
specification must match the properties of the operands, and the function
whose specification does match is selected and invoked.

See the examples in the next section.

Defined Assignment

The ASSIGNMENT(=) option allows you to specify one or more
subroutines that extend the assignment operation. Each subroutine must
have only two mandatory arguments; the first argument can have either the
INTENT(OUT) or the INTENT(INOUT) attribute; the second argument

7-32

7 Intel Fortran Programmer’s Reference

must have the INTENT(IN) attribute. The first argument corresponds to
the variable on the left-hand side of the assignment statement, and the
second to the expression on the right-hand side.

In a similar manner to generic names and defined operators, defined
assignment must resolve to a unique specific subroutine. The subroutine
whose dummy arguments match the left and right-hand sides of the
assignment statement in all of kind, type, and rank is selected and invoked
from the list of subroutine specifications contained in the defined
assignment interface block.

Examples

The following example illustrates the definition of a user-defined unary
operator, .eigenvalues., that, when applied to an object of type
matrix, computes its eigenvalues:

INTERFACE OPERATOR (.eigenvalues.)

TYPE (vector) FUNCTION &

 find_eigenvalues(matrix_1)

USE new_types

TYPE (matrix), INTENT(IN) :: matrix_1

END FUNCTION find_eigenvalues

END INTERFACE

TYPE (matrix) :: a; TYPE (vector) :: b

! Compute the eigenvalues of a.

b = .eigenvalues. a

The next example extends the * operator and assignment in order to work
with entities of derived types.

! Extend the * operator.

INTERFACE OPERATOR (*)

 MODULE PROCEDURE polar_mul, interval_mul

END INTERFACE

! Extend assignment.

INTERFACE ASSIGNMENT (=)

 MODULE PROCEDURE assign_polar_to_complex

END INTERFACE

TYPE (polar) :: p1, p2

Program Units and Procedures 7

7-33

TYPE (interval) :: v1, v2, v

COMPLEX :: c

•
•
•

! A defined operation and an intrinsic

! assignment.

v = v1*v2

! A defined operation and an defined assignment.

c = p1*p2

Modules
Modules contain the definitions of data objects, derived-types, procedures,
and procedure interface blocks. These definitions may be used in other
program units. A module does not contain executable code, except in the
execution parts of module subprograms.

Typically, modules are used for:

• Definition and declaration of data types
• Definition and declaration of global data areas
• Definitions of operators
• Creation of subprogram libraries

The definitions within a module become available to another program unit
if that program unit contains a USE statement nominating the module. These
definitions are then said to be accessible by the other program unit through
use association.

A USE statement may appear within a module program unit, but such a
statement must not cause a module to reference itself either directly or
indirectly.

The syntax of a module program unit is:

MODULE module-name

 [specification-part]

 [module-subprogram-part]

7-34

7 Intel Fortran Programmer’s Reference

END [MODULE [module-name]]

module-subprogram-part

is
CONTAINS
module-subprogram[module-subprogram]...

module-subprogram

is one of:
• module-function-subprogram
• module-subroutine-subprogram

A module subprogram can contain internal subprograms. It differs from an
external subprogram in the following ways:

• A module subprogram name does not have global scope—it is known
only within the module. However, it can be made accessible to other
program units, however, through use association.

• The END statement of a module subprogram must contain the
SUBROUTINE or FUNCTION keyword, as appropriate; for an
external subprogram this is optional.

Points to note about module definition and use:

• Module entities that are accessible by use association are:
— Declared variables
— Named constants
— Derived-type definitions
— Procedure interfaces
— Module procedures
— Generic names
— Namelist groups

• The procedure interface of a module subprogram is automatically made
explicit in the program unit using the module—no interface block
needs to be created.

• A module subprogram can be passed as an actual argument.
• The specification part of a module must not contain statement function

definitions, automatic objects, or FORMAT statements.

Program Units and Procedures 7

7-35

• The SAVE attribute can be specified when declaring an entity within a
module or, alternatively, the entity may appear in a SAVE statement
within the module. This will preserve the entity’s value even when
there are no active program units using the module.

• Specifying the SAVE attribute within a module is unnecessary in
Intel Fortran, as entities declared within a module retain their value(s)
by default.

• Each entity declared in the module specification part, and each of the
module subprogram names, has either the PUBLIC or PRIVATE
attribute. By default all of the declared entities have the PUBLIC
attribute and thereby become accessible to other program units
accessing the module by use association. The PRIVATE attribute and
statement can be specified to inhibit access.

The PUBLIC and PRIVATE attributes and statements are described further
in Chapter 10, Intel Fortran Statements.

Example

The following schematic example shows a possible structure for an
application using modules.

MODULE datatypes

 [derived-type definitions] ...

END MODULE datatypes

MODULE global

 USE datatypes

 ! Gives access to module datatypes.

 [global data area definitions] ...

END MODULE global

MODULE operators

 USE datatypes

 ! Gives access to module datatypes.

 [generic interface definitions] ...

 [code for operator,assignment definitions]

 ...

7-36

7 Intel Fortran Programmer’s Reference

END MODULE operators

MODULE library

 USE operators

 ! Gives access to datatypes and operators.

 CONTAINS

•
• ! Module subprograms.
•

END MODULE library

PROGRAM main

 USE global

 ! Gives access to data areas. USE library

 ! Gives access to subprogram library,

 ! generic interfaces and operator

 ! definitions.

•
•
•

END

Use Statement

USE statements appear at the head of the specification part of a program unit
that requires access to information from modules. Such shared information
has use association.

The syntax of the USE statement is:

• USE module-name [, rename-list]

or

• USE module-name, ONLY : [access-list]

rename-list

is a comma separated list of rename

Program Units and Procedures 7

7-37

rename

is
local-name => module-entity-name

access -list

is a comma separated list of access

access

is one of:
• [local-name =>] module-entity-name
• OPERATOR (operator)

• ASSIGNMENT (=)

Notes

• The form USE module-name, without the ONLY option, provides
access to all PUBLIC entities within module-name available.

• The ONLY option restricts the information that is accessed through use
association to a listed subset of public items in the named module. Each
item can be renamed if necessary.

• A rename-list may be added to avoid name clashes.
• When more than one USE statement for the same module is present in a

scoping unit, then:
• If one of the USE statements is without the ONLY qualifier, then all of

the PUBLIC entities from the module are available and all of the
renames from the rename-lists and access-lists are interpreted as a
single concatenated rename-list.

• Otherwise, all of the USE statements have the ONLY qualifier and the
access-lists from these ONLY qualifiers are interpreted as a single
concatenated access-list.

Example 1

In this first example, the module linearsolver contains two module
procedures rlineq and zlineq; they are given the generic name lineq,
which is renamed to lq by the program unit using linearsolver. lq is
then invoked twice.

MODULE linearsolver

INTERFACE lineq

7-38

7 Intel Fortran Programmer’s Reference

 MODULE PROCEDURE rlineq, zlineq

END INTERFACE

CONTAINS

 SUBROUTINE rlineq(ra,rb,rx)

 REAL,DIMENSION(:,:) :: ra

 REAL,DIMENSION(:) :: rb, rx

 ! Code for rlineq.

 END SUBROUTINE rlineq

 SUBROUTINE zlineq(za,zb,zx)

 COMPLEX,DIMENSION(:,:) :: za

 COMPLEX,DIMENSION(:) :: zb, zx

•
• ! Code for zlineq.
•

 END SUBROUTINE zlineq

END MODULE linearsolver

PROGRAM main

 USE linearsolver, lq => lineq

 REAL ra(4,4),rb(4),rx(4)

 COMPLEX za(5,5),zb(5),zx(5)

•
•
•

 CALL lq(ra,rb,rx) ! Invokes rlineq.

•
•
•

 CALL lq(za,zb,zx) ! Invokes zlineq.

•
•
•

END PROGRAM main

Program Units and Procedures 7

7-39

Example 2

The next extended example entails the use of two modules, precision
and linear_equation_solver. The precision module is very short
and it is used to communicate a kind type parameter (adequate) to the
other program units in the program, and thus exemplifies precision
portability. The linear_equation_solver is a typical example of a
“real life” module that also demonstrates the power of Fortran 95 array
language. This module contains three module procedures, the first of which,
solve_linear_equations, uses the other two;
solve_linear_equations is itself invoked by the main program.

MODULE precision

 ! adequate is a kind number of a real representation with
at least 10

 ! digits of precision and 99 digits range, that normally
results

 ! in 64-bit arithmetic.

INTEGER, PARAMETER :: adequate =
SELECTED_REAL_KIND(10,99)

END MODULE precision

MODULE linear_equation_solver

þþUSE precision

 IMPLICIT NONE

 PRIVATE adequate

 CONTAINS

 SUBROUTINE solve_linear_equations (a, x, b, error)

 ! Solve the system of linear equations ax = b.

 ! error is true if the extents of a, x, and b are
incompatible or a

 ! zero pivot is found.

 REAL (adequate), DIMENSION (:, :), INTENT (IN) :: a

 REAL (adequate), DIMENSION (:), INTENT (OUT) :: x

 REAL (adequate), DIMENSION (:), INTENT (IN) :: b

 LOGICAL, INTENT (OUT) :: error

 REAL (adequate), DIMENSION (SIZE (b), SIZE (b) + 1) :: m

 INTEGER :: n

7-40

7 Intel Fortran Programmer’s Reference

 n = SIZE (b)

 ! Check for compatible extents.

 error = SIZE(a, DIM=1) /= n .OR. SIZE(a, DIM=2) /= n &

.OR. SIZE(x).LT. n

 IF (error) THEN

 x = 0.0

 RETURN

 END IF

 ! Append the right-hand side of the equation to m.

 m (1:n, 1:n) = a

 m (1:n, n+1) = b

 ! Factor m and perform forward substitution in the last
column of m.

 CALL factor (m, error)

 IF (error) THEN

 x = 0.0

 RETURN

 END IF

 ! Perform back substitution to obtain the solution.

 CALL back_substitution (m, x)

 END SUBROUTINE solve_linear_equations

 SUBROUTINE factor (m, error)

 ! Factor m in place into a lower and upper triangular
matrix using

 ! partial pivoting.

 ! Terminate when a pivot element is zero.

 ! Perform forward substitution with the lower triangle on
the

 ! right-hand side m(:,n+1)

 REAL (adequate), DIMENSION (:, :), INTENT (INOUT) :: m

 LOGICAL, INTENT (OUT) :: error

 INTEGER, DIMENSION (1) :: max_loc

 REAL (adequate), DIMENSION (SIZE (m, DIM=2)) :: temp_row

 INTEGER :: n, k

 INTRINSIC MAXLOC, SIZE, SPREAD, ABS

Program Units and Procedures 7

7-41

 n = SIZE (m, DIM=1)

 triang_loop: DO k = 1, n

 max_loc = MAXLOC (ABS (m (k:n, k)))

 temp_row (k:n+1) = m (k, k:n+1)

 m (k, k:n+1) = m (k-1+max_loc(1), k:n+1)

 m (k-1+max_loc(1), k:n+1) = temp_row (k:n+1)

 IF (m (k, k) == 0) THEN

 error = .TRUE.

 EXIT triang_loop

 ELSE

 m (k, k:n+1) = m (k, k:n+1) / m (k, k)

 m (k+1:n, k+1:n+1) = m (k+1:n, k+1:n+1) - &

 SPREAD (m (k, k+1:n+1), 1, n-k) * &

 SPREAD (m (k+1:n, k), 2, n-k+1)

 END IF

 END DO triang_loop

 END SUBROUTINE factor

 SUBROUTINE back_substitution (m, x)

 ! Perform back substitution on the upper triangle to
compute the

 ! solution.

 REAL (adequate), DIMENSION (:, :), INTENT (IN) :: m

 REAL (adequate), DIMENSION (:), INTENT (OUT) :: x

 INTEGER :: n, k

 INTRINSIC SIZE, SUM

 n = SIZE (m, DIM=1)

 DO k = n, 1, -1

 x (k) = m (k, n+1) - SUM (m (k, k+1:n) * x (k+1:n))

 END DO

 END SUBROUTINE back_substitution

END MODULE linear_equation_solver

PROGRAM example

 ! Use the two modules defined above.

 USE precision

 USE linear_equation_solver

7-42

7 Intel Fortran Programmer’s Reference

 IMPLICIT NONE

 REAL (adequate) a(3,3), b(3), x(3)

 INTEGER i, j

 LOGICAL error

DO i = 1,3

 DO j = 1,3

 a(i,j) = i+j

 END DO

END DO

a(3,3) = -a(3,3)

b = (/ 20, 26, -4 /)

 CALL solve_linear_equations (a, x, b, error)

 PRINT *, error

 PRINT *, x

END PROGRAM example

Main Program
A main program is a program unit. There must be exactly one main program
in an executable program. Execution always begins with the main program.

The main program can determine the overall design and structure of the
complete Fortran 95 program and often performs various computations by
referencing procedures. A Fortran program may consist of only a main
program, in which case all the program logic is contained within it.

A main program has the form:

[PROGRAM program-name]

[specification-part] ...

[execution-part] ...

[internal-subprogram-part]

END [PROGRAM [program-name]]

Program Units and Procedures 7

7-43

Like other program units, a main program has three parts: a specification
part, an execution part, and an internal procedure part that begins with the
CONTAINS statement. All three parts are optional.

The data environment is described in the specification part. The data
environment includes USE statements, declarations and specifications of the
attributes of variables, type definitions, and initial values. An automatic
object must not appear in the specification part of a main program.

The execution-part of a program unit contains executable-constructs such as
the CASE, DO, IF, or WHERE constructs, and action statements such as
assignment statements, data transfer statements, or IF statements.

Neither ENTRY nor RETURN statements are permitted in a main program.

The internal subprogram part contains one or more internal procedures.

The PROGRAM statement is optional; if it appears, the program name may be
used on the END statement.

Note that the smallest valid Fortran 95 program consists of the single
statement:

END

Block Data
A block data program unit initializes data values in common blocks. The
syntax of a block data program unit is:

BLOCK DATA [block-data-name]

[specification-part]

NOTE. If you use a PROGRAM statement, the program-name is global
to the executable program, and must not be the same as the name of any
other program unit, external procedure, or common block in the
executable program, nor the same as any local name in the main
program.

7-44

7 Intel Fortran Programmer’s Reference

END [BLOCK DATA [block-data-name]]

The specification part of a block data program unit can contain:

• Type declaration statements
• USE statements
• IMPLICIT statements
• COMMON statements
• DATA statements
• EQUIVALENCE statements
• Derived-type definitions
• Allowable attribute specification statements (see list below)

The following attributes can be specified:

There must not be more than one unnamed BLOCK DATA program unit in
an executable program. A named common block can be initialized in only
one BLOCK DATA program unit. Pointer objects cannot be initialized.

An Intel Fortran extension allows data objects in an unnamed common block
to be initialized as shown in the following example.

Example
BLOCK DATA blank

 COMMON//aa(3),ab(5)

 DATA aa/3*1.0/

 DATA ab/1.0,2.0,3*4.0/

END BLOCK DATA blank

Another extension in Intel Fortran allows the DATA initialization of variables
in COMMON blocks, in any program unit or subprogram, and not just in
BLOCK DATA. However a given COMMON block can only be initialized in
one program unit only.

Table 7-2 Allowable Block Data Attributes

PARAMETER INTRINSIC SAVE

DIMENSION POINTER TARGET

8-1

I/O and File Handling 8
This chapter describes input/output (I/O) and file handling as supported by
Intel Fortran. Included at the end of the chapter are example programs that
illustrate different types of I/O.

Records
The record is the basic unit of Fortran 95 I/O operations. It consists of either
characters or binary values, depending upon whether the record is formatted
or unformatted. The following sections describe both formatted and
unformatted records, plus the special case of the end-of-file record.

Note that nonadvancing I/O makes it possible to read and write partial
records. For more information, see “Nonadvancing I/O,” .

Formatted Records

A formatted record consists of characters that have been edited during
list-directed or namelist-directed I/O, or by a format specification during a
data transfer. (For information about format specifications, see Chapter 9,
I/O Formatting.) The length of a formatted record is measured in characters;
there is no predefined maximum limit to the length of a formatted record.

8-2

8 Intel Fortran Programmer’s Reference

Unformatted Records

An unformatted record consists of binary values in machine-representable
format. The length of an unformatted record is measured in bytes.
Unformatted records cannot be processed by list-directed or
namelist-directed I/O statements or by I/O statements that use format
specifications to edit data.

End-of-file Record

The end-of-file record is a special case: it contains no data and is the last
record of a sequential file. The end-of-file record is written:

• By the ENDFILE statement
• When the file is closed—either explicitly by the CLOSE statement or

implicitly when the program terminates—immediately following a
write operation

• When a BACKSPACE statement executes after a write operation, before
the file is backspaced

Files
A file is a collection of data, organized as a sequence of logical records.
Records in a file must be either all formatted or all unformatted, except for
the end-of-file record.

The following sections describe the two types of files, external files and
internal files.

External Files

An external file is stored on disk, magnetic tape, or some other peripheral
device. External files can be accessed sequentially or directly as described
in “File Access Methods.”

Scratch Files

A scratch file is a special type of external file. It is an unnamed, temporary
file that exists only while it is open—that is, it exists no longer than the life
of the program. Intel Fortran uses the tempnam(3S) system routine to

I/O and File Handling 8

8-3

name the scratch file. The name becomes unavailable through the file
system immediately after it is created, and it cannot be seen by the ls(1)
command and cannot be opened by any other process.

To create a scratch file, you must include the STATUS=’SCRATCH’
specifier in the OPEN statement, as in the following:

OPEN (25, STATUS=’SCRATCH’)

In all other respects, a scratch file behaves like other external files. For an
example of a program that uses a scratch file, see “Sequential- and
Direct-access Example.”

Internal Files

An internal file is stored in a variable where it exists for the life of the
variable. Its main use is to enable programs to transfer data internally
between a machine representation and a character format, using edit
descriptors to make the conversions. (For more information about edit
descriptors, see Chapter 9, I/O Formatting.)

An internal file can be one of the following:

• A character variable
• A character array
• A character array element
• A character substring
• An integer or real array (Intel Fortran extension)

• Any of the above that is either a field of a structure or a component of a
derived type

Note, however, that a section of a character array with a vector subscript
cannot be used as an internal file.

Accessing records in an internal file is analogous to accessing them in a
formatted sequential file; see “Formatted I/O.” For an example program that
uses an internal file, see “Internal-file Example.”

An internal file is not connected to a unit number and therefore does not
require an OPEN statement. It is referenced as a character variable. In the
following example, the WRITE statement transfers the data from char_var

8-4

8 Intel Fortran Programmer’s Reference

to the internal file int_file, using list-directed formatting. Because
int_file is declared to be 80 characters long, it is assumed that the length
of char_var will be no more than 80 characters.

CHARACTER(LEN=80) :: int_file

...

WRITE (FILE=int_file, FMT=*) char_var

Connecting a File to a Unit
Before a program can perform any I/O operations on an external file, it must
establish a logical connection between the file and a unit number. Once the
connection is established, the program can reference the file by specifying
the associated unit number (a non-negative integer expression). In the
following example, the OPEN statement connects unit number 1 to the file
my_data, allowing the WRITE statement to write the values in
total_acct and balance to my_data:

OPEN (UNIT=1, FILE=’my_data’)

WRITE (1, ’(F8.2)’) total_acct, balance

The following sections describe three types of unit numbers:

• Those that are explicitly connected by means of the OPEN statement
• Preconnected unit numbers
• Automatically opened unit numbers

Connecting to an External File

Typically, the connection between an external file and a unit number is
established by the OPEN statement. When the program is finished using the
file, the connection is terminated by the CLOSE statement. Once the
connection is terminated, the unit number can be assigned to a different file
by means of another OPEN statement. Similarly, a file whose connection
was broken by a CLOSE statement can be reconnected to the same unit
number or to a different unit number.

A unit cannot be connected to more than one file at a time.

I/O and File Handling 8

8-5

The following code establishes a connection between unit 9 and the external
file first_file, which is to be by default opened for sequential access.
When the program is finished with the file, the CLOSE statement terminates
the connection, making the unit number available for connection to other
files. Following the CLOSE statement, the program connects unit 9 to a
different external file, new_file:

! connect unit 9 to first_file

 OPEN (9, FILE=’first_file’)

 ...

! process file

 ...

! terminate connection

 CLOSE (9)

! connect same unit number to new_file

 OPEN (9, FILE=’new_file’)

 ...

! process file

 ...

! terminate connection

 CLOSE (9)

Preconnected Unit Numbers

Unit numbers 5, 6, and 0 are preconnected; that is, they do not have to be
explicitly opened and are connected to system-defined files, as follows:

• Unit 5 is connected to standard input—by default, the keyboard of the
machine on which the program is running.

• Unit 6 is connected to standard output—by default, the
terminal/display of the machine on which the program is running.

• Unit 0 is connected to standard error—by default, the terminal/display
of the machine on which the program is running.

Each predefined logical unit is automatically opened when a Fortran 95
program begins executing and remains open for the duration of the
program. This means, for example, that standard output can be used by a
PRINT statement without prior execution of an OPEN statement. Attempting
to CLOSE a preconnected logical unit has no effect.

8-6

8 Intel Fortran Programmer’s Reference

A preconnected unit number can be reused with an OPEN statement that
assigns it to a new file. Once a preconnected unit number is connected to a
new file, however, it cannot be reconnected to its original designation.

You can use the input/output redirection (< and >) and piping (|)
operators to redirect from standard input, standard output, or standard error
to a file of your own choosing.

Automatically Opened Unit Numbers

Unit numbers that have not been associated with a file by an OPEN
statement can be automatically opened using the READ or WRITE statement.
When a file is automatically opened, a string is created of the form:

fort.XX

where XX is replaced by the unit number in the range 01 to 99.

If you have made an environment variable assignment of the form
fort.XX=path, the file named in path is opened. Otherwise, the file
whose name is fort.XX is opened in the current directory. If the file does
not exist, it is created.

The following program:

PROGRAM Auto

WRITE (11,’(A)’) ’Hello, world!’

END

writes the string

Hello, world!

to the file fort.11.

If this program is compiled to a.out and is run as follows (using /bin/sh
or /bin/ksh)

fort.11=datafile

export fort.11

a.out

the output string is written to the file datafile instead of fort.11.

I/O and File Handling 8

8-7

Automatically opened files are always opened as sequential files. Other
characteristics of an automatically opened file, such as record length and
format, are determined by the data transfer statement that creates the file. If
the statement does not specify formatted, list-directed, or namelist-directed
I/O, the file is created as an unformatted file.

File Access Methods
Intel Fortran allows both sequential access and direct access. You specify
the access method with the OPEN statement when you connect the file to a
unit number. The following example opens the file new_data for direct
access:

OPEN(40, ACCESS=’DIRECT’, RECL=128, &

 FILE=’new_data’)

If you do not specify an access method, the file is opened for sequential
access.

The following sections describe both sequential and direct methods.

Sequential Access

Records in a file opened for sequential access can be accessed only in the
order in which they were written to the file. A sequential file may consist of
either formatted or unformatted records. If the records are formatted, you
can use list-directed, namelist-directed, and formatted I/O statements to
operate on them. If the records are unformatted, you must use unformatted
I/O statements only. The last record of a sequential file is the end-of-file
record.

The following sections describe the types of I/O that can be used with
sequential files, namely:

• Formatted I/O
• List-directed I/O
• Namelist-directed I/O
• Unformatted I/O

8-8

8 Intel Fortran Programmer’s Reference

Formatted I/O

Formatted I/O uses format specifications to define the appearance of data
input to or output from the program, producing ASCII records that are
formatted for display. (Format specifications are described in detail in
Chapter 9, I/O Formatting.) Data is transferred and converted, as necessary,
between binary values and character format. You cannot perform formatted
I/O on a file that has been connected for unformatted I/O; see “Unformatted
I/O.”

Formatted I/O can be performed only by data transfer statements that
include a format specification. The format specification can be defined in
the statement itself or in a FORMAT statement referenced by the statement.

For an example of a program that accesses a formatted file, see Sequential-
and Direct-access Example.

List-directed I/O

List-directed I/O is similar to formatted I/O in that data undergoes a format
conversion when it is transferred but without the use of a format
specification to control formatting. Instead, data is formatted according to
its data type. List-directed I/O is typically used when reading from standard
input and writing to standard output.

List-directed I/O uses the asterisk (*) as a format identifier instead of a list
of edit descriptors, as in the following READ statement, which reads three
floating-point values from standard input:

READ *, A, B, C

List-directed I/O can be performed only on internal files and on formatted,
sequential external files. It works identically for both file types.

List-directed Input

Input data for list-directed input consists of values separated by one or more
blanks, a slash, or a comma preceded or followed by any number of blanks.
(No values may follow the slash.) An end-of-record also acts as a separator
except within a character constant. Leading blanks in the first record read
are not considered to be part of a value separator unless followed by a slash
or comma.

I/O and File Handling 8

8-9

Input values can be any of the values listed in Table 8-1. (A blank is
indicated by the symbol b.)

Reading always starts at the beginning of a new record. Records are read
until the list is satisfied, unless a slash in the input record is encountered.
The effect of the slash is to terminate the READ statement after the
assignment of the previous value; any remaining data in the current record
is ignored.

Table 8-2 outlines the rules for the format of list-directed input data.

Table 8-1 Input Values for List-directed I/O

Value Meaning

z A null value, indicated by two successive separators with zero
or more intervening blanks (for example, ,b/).

c A literal constant with no embedded blanks. It must be
readable by an I, F, A, or L edit descriptor. Binary, octal, and
hexadecimal data are illegal.

r*c Equivalent to r (an integer) successive occurrences of c in
the input record. For example, 5*0.0 is equivalent to 0.0
0.0 0.0 0.0 0.0.

r*z Equivalent to r successive occurrences of z.

Table 8-2 Format of list-directed Input Data

Data Type Input Format Rules

Integer Conforms to the same rules as integer constants.

Real and Double
Precision

Any valid form for real and double precision. In
addition, the exponent can be indicated by a signed
integer constant (the Q, D, or E can be omitted),
and the decimal point can be omitted for those
values with no fractional part.

continued

8-10

8 Intel Fortran Programmer’s Reference

List-directed Output

The format of list-directed output is determined by the type and value of the
data in the output list and by the value of the DELIM= specifier in the OPEN
statement. (For information about the DELIM= specifier, see the description
of the OPEN statement in Chapter 10, Intel Fortran Statements.)
Table 8-3 summarizes the rules governing the display of each data type.

Complex and
Double Complex

Two integer, real, or double precision constants,
separated by a comma and enclosed in
parentheses. The first number is the real part of the
complex or double complex number, and the
second number is the imaginary part. Each of the
numbers can be preceded or followed by blanks or
the end of a record.

Logical Consists of a field of characters, the first nonblank
character of which must be a T for true or an F for
false (excluding the optional leading decimal point).
Integer constants may also appear.

Character Same form as character constants. (Delimiting with
single or double quotation marks is needed only if
the constant contains any separators; delimiters
are discarded upon input.) Character constants can
be continued from one record to the next. The
end-of-record does not cause a blank or any other
character to become part of the constant. If the
length of the character constant is greater than or
equal to the length, len, of the list item, only the
leftmost len characters of the constant are
transferred. If the length of the constant is less than
len, the constant is left-justified in the list item with
trailing blanks.

Table 8-2 Format of list-directed Input Data (continued)

Data Type Input Format Rules

I/O and File Handling 8

8-11

With the exception of character values, all output values are preceded by
exactly one blank. A blank character is also inserted at the start of each
record to provide ASA carriage control if the file is to be printed (see “ASA
Carriage Control”). For example, the following statement:

PRINT *, ’Hello, world!’

outputs the line (where b indicates a blank):

bHello,bworld!

If the length of the values of the output items is greater than 79 characters,
the current record is written and a new record started.

Slashes, as value separators, and null values are not output by list-directed
WRITE statements.

Table 8-3 Format of List-directed Output Data

Data Type Output Format Rules

Integer Output as an integer constant.

Real and
Double
Precision

Output with or without an exponent, depending on the
magnitude. Also, output with field width and decimal places
appropriate to maintain the precision of the data as closely
as possible.

Complex Output as two numeric values separated by commas and
enclosed in parentheses.

Logical If the value of the list element is .TRUE., then T is output.
Otherwise, F is output.

Character Output using the Alen format descriptor, where len is the
length of the character expression (adjusted for doubling).
If DELIM=’NONE’ (the default), no single (’) or double (")
quotation marks are doubled, and the records may not be
suitable list-directed input. If the value specified by
DELIM= is not ’NONE’, only the specified delimiter is
doubled. Character strings are output without delimiters,
making them also unsuitable for list-directed input.

8-12

8 Intel Fortran Programmer’s Reference

Namelist-directed I/O

Namelist-directed I/O enables you to transfer a group of variables by
referencing the name of the group, using the NML= specifier in the data
transfer statement. The NAMELIST statement specifies the variables in the
group and gives the group a name.

Like list-directed I/O, namelist-directed I/O does not use a format
specification when formatting data but uses default formats, as determined
by the data types.

In the following example, the NAMELIST statement defines the group
name_group, which consists of the variables i, j, and c. The READ
statement reads a record from the file connected to unit number 27 into
name_group. The PRINT statement then writes the data from the variables
in name_group to standard output. (As an extension, Intel Fortran allows
this use of the PRINT statement in namelist I/O.)

INTEGER :: i, j

CHARACTER(LEN=10) :: c

NAMELIST /name_group/ i, j, c

...

READ (UNIT=27,NML=name_group)

PRINT name_group

Each namelist-directed output record begins with a blank character to
provide for ASA carriage control if the records are to be printed (see “ASA
Carriage Control”).

Namelist-directed I/O can be performed only on formatted, sequential
external files.

The following program illustrates namelist-directed I/O:

PROGRAM namelist

INTEGER, DIMENSION(4) :: ivar

CHARACTER(LEN=3), DIMENSION(3,2) :: cvar

LOGICAL :: lvar

REAL :: rvar

I/O and File Handling 8

8-13

NAMELIST /nl/ ivar, cvar, lvar, rvar

READ (*,nl)

PRINT nl

END PROGRAM namelist

If the input data is:

&nl

ivar = 4,3,2,1

lvar=toodles

cvar=,,’QRS’,2*,2*’XXX’

rvar=5.75E25, cvar(3,2)(1:2)=’AB’

/

the output from this program will be:

b&NLbIVAR = 4 3 2 1bCVAR =’’, ’QRS’, ’’, ’’, ’XXX’,
’ABX’bLVAR = TbRVAR = 5.75000E+25b/

The following sections describe the format of namelist-directed input and
output. For detailed information about the NAMELIST statement, see
Chapter 10, Intel Fortran Statements.

Namelist-directed Input

A namelist-directed input record takes the following form:

1. An ampersand character (&) immediately followed by a namelist group
name. The group name must have been previously defined by a
NAMELIST statement.

As an extension, the dollar sign ($) can be substituted for the
ampersand (&).

2. A sequence of name-value pairs and value separators. A name-value
pair consists of the name of a variable in the namelist group, the equals
sign (=), and a value having the same format as for list-directed input
(z, c, r*c, and r*). A name-value pair can appear in any order in the
sequence or can be omitted.

8-14

8 Intel Fortran Programmer’s Reference

A value separator may be one of the following:
• Blanks
• Tabs
• Newlines
• Any of the above with a single comma

A NAMELIST comment may appear following a value separator. It begins
with an exclamation mark (!), except when the exclamation mark is a
character in a literal constant. The comment extends to the end of the
NAMELIST record. A slash appearing within the comment does not end the
record; the comment itself ends the input record. A comment may appear as
the first non-blank character in an input record, but in this case, the input
record consists only of the comment. NAMELIST comments are ignored.

3. A terminating slash (/).

As an extension, ($END) can be substituted for the slash.

Names of character type may be qualified by substring range expressions
and array names by subscript/array section expressions. If the name in a
name-value pair is that of an array, the number of the values following the
equals sign must be separated by value separators and must not exceed the
number of elements in the array. If there are fewer values than elements,
null values are supplied for the unfilled elements.

Namelist-directed input values are formatted according to the same rules as
for list-directed input data; see Table 8-2.

Namelist-directed Output

The output record for namelist-directed I/O has the same form as the input
record, but with these exceptions:

• The namelist group name is always in uppercase.
• Logical values are either T or F.
• As in list-directed output, character values are output without

delimiters by default, making them unsuitable for namelist-directed
input. However, you can use the DELIM= specifier in the OPEN
statement to specify the single or double quotation mark as the
delimiter to use for character constants.

• Only character and complex values may be split between two records.

I/O and File Handling 8

8-15

Unformatted I/O

Unformatted I/O does not perform format conversion on data it transfers.
Instead, data is kept in its internal, machine-representable format. You
cannot perform unformatted I/O on files that have been connected for
formatted I/O (see “Formatted I/O”).

Unformatted I/O is more efficient than formatted, list-directed, or
namelist-directed I/O because the transfer occurs without the conversion
overhead. However, because unformatted I/O transfers data in internal
format, it is not portable.

Direct Access

When performing I/O on a direct-access file, records can be read or written
in any order. The records in a direct-access file are all of the same length.

Reading and writing records is accomplished by READ and WRITE
statements containing the REC= specifier. Each record is identified by a
record number that is a positive integer. For example, the first record is
record number 1; the second, number 2; and so on. If REC= is not specified:

• The READ statement inputs from the current record, and the file pointer
moves to the next record.

• The WRITE statement outputs to the record at the position of the file
pointer, and the file pointer is advanced to the next record.

As an extension, Intel Fortran allows sequential I/O statements to access a
file connected for direct access.

Once established, a record number of a specific record cannot be changed or
deleted, although the record may be rewritten. A direct-access file does not
contain an end-of-file record as an integral part of the file with a specific
record number. Therefore, when accessing a file with a direct-access read or
write statement, the END= specifier is not valid and is not allowed.

Direct-access files support both formatted and unformatted record types.
Both formatted and unformatted I/O work exactly as they do for sequential
files. However, you cannot perform list-directed, namelist-directed, or
nonadvancing I/O on direct-access files.

8-16

8 Intel Fortran Programmer’s Reference

For an example program that uses direct access, see “Sequential- and
Direct-access Example.”

Nonadvancing I/O
By default, a data transfer leaves the file positioned after the last record read
or written. This type of I/O is called advancing. Fortran 95 also allows
nonadvancing I/O, which positions the file just after the last character read
or written, without advancing to the next record. It is character-oriented and
can be used only with external files opened for sequential access. It cannot
be used with list-directed or namelist-directed I/O.

To use nonadvancing I/O, you must specify ADVANCE=’NO’ in the READ
or WRITE statement. The example program, “Sequential- and Direct-access
Example” uses nonadvancing I/O in the first WRITE statement, which is
reproduced here:

WRITE (6, FMT=’(A)’, ADVANCE=’NO’) ’ Enter number to
insert in list: ’

The effect of nonadvancing I/O on the WRITE statement is to suppress the
newline character that is normally output at the end of a record. This is the
desired effect in the example program: by using a nonadvancing WRITE
statement, the user input to the READ statement stays on the same line as the
prompt.

(You can get the same effect with the newline ($) edit descriptor, an Intel
Fortran extension that also suppresses the carriage-return/linefeed
sequence at the end of a record; see Chapter 9, I/O Formatting.)

For an example program that illustrates nonadvancing I/O in a READ
statement, see “Nonadvancing-I/O Example.” For more information about
nonadvancing I/O and the ADVANCE= specifier, see the READ and WRITE
statements in Chapter 10, Intel Fortran Statements.

I/O Statements
Intel Fortran supports three types of I/O statements:

• Data transfer statements (see Table 8-4)
• File positioning statements (see Table 8-5)
• Auxiliary statements (see Table 8-6)

I/O and File Handling 8

8-17

For detailed information about all I/O statements, refer to Chapter 10, Intel
Fortran Statements.

Table 8-4 Data Transfer Statements

Statement Use

ACCEPT Inputs data from the preconnected default input device
(standard input). (Extension)

DECODE Inputs data from an internal file. (Extension)

ENCODE Outputs data to an internal file. (Extension)

PRINT Outputs data to the preconnected default output device file
(standard output).

READ Inputs data from a connected or automatically opened unit.

TYPE Synonym for the PRINT statement. (Extension)

WRITE Outputs data to a connected or automatically opened unit.

NOTE. Although the DECODE and ENCODE statements are available as
compatibility extensions for use with internal files, they are nonportable
and are provided for compatibility with older versions of Fortran. To keep
your programs standard-conforming and portable, you should use the
READ and WRITE statements with both external and internal files.

ACCEPT and TYPE are also available as compatibility extensions for
reading from standard input and writing to standard output. However, if
you wish your program to be portable, you should use the READ and
PRINT statements instead of the ACCEPT and TYPE statements.

8-18

8 Intel Fortran Programmer’s Reference

Syntax of I/O Statements
The general syntactic form of file-positioning and auxiliary statements is:

statement-name (io-specifier-list)

where

statement-name is one of the statements listed in Table 8-5 or
Table 8-6.

io-specifier-list is a comma-separated list of I/O specifiers that
control the statement’s operation.

Table 8-5 File Positioning Statements

Statement Use

BACKSPACE Moves the file pointer of the connected sequential
file to the start of the previous record.

ENDFILE Writes an end-of-file record as the next record of the
sequential file.

REWIND Moves the file pointer of the connected file to the
initial point of the file.

Table 8-6 Auxiliary Statements

Statement Use

CLOSE Disconnects a unit from a file.

INQUIRE Requests information about a file or unit.

OPEN Connects an existing file to a unit, creates a file and
connects it to a unit, or changes certain specifiers of
a connection between a file and a unit.

I/O and File Handling 8

8-19

The general form of a data-transfer statement is:

statement-name (io-specifier-list) data-list

where

statement-name is one of the statements listed in Table 8-4.

io-specifier-list is a comma-separated list of I/O specifiers that
control the data transfer.

data-list is a comma-separated list of data items.

The following sections describe the I/O specifiers and the form of
data-list. For detailed information about the syntax of individual I/O
statements, see Chapter 10, Intel Fortran Statements.

I/O Specifiers

I/O specifiers provide I/O statements with additional information about a
file or a data transfer operation. They can also be used (especially with the
INQUIRE statement) to return information about a file. Table 8-7 lists all
I/O specifiers supported by Intel Fortran and identifies the statements in
which each can appear. Note that the ACCEPT, DECODE, ENCODE, and
TYPE statements are not listed in the table as they are nonstandard. All I/O
specifiers and statements are fully described in Chapter 10, Intel Fortran
Statements.

Table 8-7 I/O Statements and Specifiers (Y=Yes)

I/O statements

I/O Specifiers B
A
C
K
S
P
A
C
E

C
L
O
S
E

E
N
D
F
I
L
E

I
N
Q
U
I
R
E

O
P
E
N

P
R
I
N
T

R
E
A
D

R
E
W
I
N
D

W
R
I
T
E

ACCESS= Y Y

ACTION= Y Y

continued

8-20

8 Intel Fortran Programmer’s Reference

ADVANCE= Y Y

ASSOCIATEVARIABLE= Y

BINARY= Y

BLANK= Y Y

BLOCKSIZE= Y Y

BUFFERCOUNT= Y

CARRIAGECONTROL= Y

DEFAULTFILE= Y Y

DELIM= Y Y

DIRECT= Y

DISPOSE=
(same as STATUS)

Y

DISP[OSE]= Y

EXTENDSIZE= Y

END= Y

EOR= Y

ERR= Y Y Y Y Y Y Y Y

EXIST= Y

FILE= Y Y

FILEOPT= Y

continued

Table 8-7 I/O Statements and Specifiers (continued) (Y=Yes)

I/O statements

I/O Specifiers B
A
C
K
S
P
A
C
E

C
L
O
S
E

E
N
D
F
I
L
E

I
N
Q
U
I
R
E

O
P
E
N

P
R
I
N
T

R
E
A
D

R
E
W
I
N
D

W
R
I
T
E

I/O and File Handling 8

8-21

FMT= Y Y

FORM= Y Y

FORMATTED= Y

INITIALSIZE= Y

IOLENGTH= Y

IOFOCUS= Y

IOSTAT= Y Y Y Y Y Y Y Y

MAXREC ONOPEN= Y Y

NAME= Y Y

NAMED= Y

NEXTREC= Y

NML= Y Y

NOSPANBLOCKS= Y

NUMBER= Y

OPENED= Y

ORGANIZATION= Y Y

PAD= Y Y

POSITION= Y Y

READ= Y

READONLY= Y

continued

Table 8-7 I/O Statements and Specifiers (continued) (Y=Yes)

I/O statements

I/O Specifiers B
A
C
K
S
P
A
C
E

C
L
O
S
E

E
N
D
F
I
L
E

I
N
Q
U
I
R
E

O
P
E
N

P
R
I
N
T

R
E
A
D

R
E
W
I
N
D

W
R
I
T
E

8-22

8 Intel Fortran Programmer’s Reference

READWRITE= Y

RECORDTYPE= Y Y

REC= Y Y

RECL= or RECORDSIZE= Y Y

SEQUENTIAL= Y

SHARE= Y Y

SHARED= Y

STATUS= Y Y

TITLE on OPEN= Y

UNFORMATTED= Y

UNIT= Y Y Y Y Y Y Y Y

USEROPEN= Y

WRITE= Y

Table 8-8 I/O Specifiers Values

I/O Specifiers Possible Values Default Values

ACCESS= ‘DIRECT’ SEQUENTIAL ‘SEQUENTIAL’

ACTION= ‘READ’, ‘WRITE’,
‘READWRITE’

Processor-Dependent

ADVANCE= ‘YES’, ‘NO’ ‘Yes’

continued

Table 8-7 I/O Statements and Specifiers (continued) (Y=Yes)

I/O statements

I/O Specifiers B
A
C
K
S
P
A
C
E

C
L
O
S
E

E
N
D
F
I
L
E

I
N
Q
U
I
R
E

O
P
E
N

P
R
I
N
T

R
E
A
D

R
E
W
I
N
D

W
R
I
T
E

I/O and File Handling 8

8-23

ASSOCIATEVARIABLE= variable-name No default

BINARY= ‘YES’, ‘NO’, ‘UNKNOWN’ Formatted: ‘Yes’
Unformatted: ‘No’

BLANK= ‘NULL’, ‘ZERO’,
‘UNDEFINED’

‘NULL’

BLOCKSIZE= integer-expression 512

BUFFERCOUNT= integer-expression 1

CARRIAGECONTROL= ‘FORTRAN’, ‘NONE’, ‘LIST’ Formatted: ‘LIST’
Unformatted: ‘NONE’

DEFAULTFILE= character-expression Current working directory

DELIM= ‘APOSTROPHE’, ‘QUOTE’,
‘NONE’

‘NONE’

DIRECT= ‘YES’, ‘NO’, ‘UNKNOWN’ ‘NO’

DISPOSE=
(same as STATUS)

‘OLD’, ‘NEW’, ‘UNKNOWN’,
‘REPLACE’, ‘SEARCH’

‘NEW’

DISP[OSE]= ‘KEEP’, ‘SAVE’, ‘DELETE’,
‘PRINT’, ‘PRINT/DELETE’,
‘SUBMIT’, ‘SUBMIT/DELETE’

‘KEEP’

EXTENDSIZE= integer-expression 512

END= Label No default

EOR= Label No default

ERR= Label No default

EXIST= .TRUE. .FALSE. No default

FILEOPT= character-constant

FMT= character-expression, *,
label

No default

FORM= ‘FORMATTED’ ‘FORMATTED’ for
sequential access

continued

Table 8-8 I/O Specifiers Values (continued)

I/O Specifiers Possible Values Default Values

8-24

8 Intel Fortran Programmer’s Reference

FORMATTED= ‘YES’, ‘NO’, ‘UNKNOWN’ Direct access: ‘No’
Sequential access: ‘Yes’

INITIALSIZE= integer-expression

IOFOCUS= logical expression If unit is ‘*’, defaults to
.FALSE., otherwise
.TRUE.

IOLENGTH= length

IOSTAT= scalar-default-integer-
value

No default

MODE= ‘READ’, ‘WRITE’,
‘READWRITE’

‘READWRITE’

NAME= filename or undefined

NAMED= .TRUE. or .FALSE.

NEXTREC= next-record-#, undefined

NML= namelist-group-name No default

NOSPANBLOCKS no values Spanning blocks OK (no
value)

NUMBER= num

OPENED= .FALSE., .TRUE.

ORGANIZATION= ‘SEQUENTIAL’, ‘RELATIVE’,
‘UNKNOWN’

PAD= ‘YES’, ‘NO’ ‘YES’

POSITION= ‘ASIS’, ‘REWIND’,
‘APPEND’

‘ASIS’

READ= ‘YES’, ‘NO’, ‘UNKNOWN’

READONLY No value

continued

Table 8-8 I/O Specifiers Values (continued)

I/O Specifiers Possible Values Default Values

I/O and File Handling 8

8-25

I/O Data List

The I/O data list can be used with any data transfer statement except
namelist I/O (see “Namelist-directed I/O.” The general form of the I/O data
list is:

item1[,item2. . .]

where

item is a either a simple data element or an implied-DO loop.

The following sections describe simple data elements and the implied-DO
loop.

RECORDTYPE= ‘FIXED’, ‘VARIABLE’,
‘SEGMENTED’, ‘STREAM’,
‘STREAM_CR’

Direct access: ‘FIXED’
Otherwise: ‘VARIABLE’

REC= scalar-integer expression No default

RECL= positive-scalar-integer
expression

Processor-Dependent

SEQUENTIAL= ‘YES’, ‘NO’, ‘UNKNOWN’

SHARE= scalar-integer-expression

SHARED= No value

SIZE= scalar-default-integer
variable

STATUS= ‘OLD’, ‘NEW’, ‘UNKNOWN’,
‘REPLACE’, ‘SEARCH’

‘UNKNOWN’

TITLE= character expression

UNFORMATTED= ‘YES’, ‘NO’, ‘UNKNOWN’

UNIT= scalar-integer-expression No default

USEROPEN= procedure-name

WRITE= ‘YES’, ‘NO’, ‘UNKNOWN’

Table 8-8 I/O Specifiers Values (continued)

I/O Specifiers Possible Values Default Values

8-26

8 Intel Fortran Programmer’s Reference

Simple Data Elements

In a read operation, the simple data element specifies a variable, which can
include:

• A scalar
• An array
• An array element or section
• A character substring
• A structure
• A component of a structure
• A record
• A field of a record
• A pointer

In a write operation, the simple data element can include any variable that is
valid for a read operation, plus most expressions. Note that, if the
expression includes a function reference, the function must not itself
perform I/O.

The output list in the following PRINT statement contains two simple list
elements, a variable named radius and an expression formed from
radius:

99 FORMAT(’Radius = ’, F10.2, ’Area = ’, F10.2)

 PRINT 99, radius, 3.14159*radius**2

The next READ statement contains three simple elements: a character
substring (name(1:10)), a variable (id), and an array name
(scores):

88 FORMAT(A10,I9,10I5)

 READ(5, 88) name(1:10), id, scores

If an array name is used as a simple data element in the I/O list of a WRITE
statement, then every element in the array will be displayed. If a format
specification is also used, then the format will be reused if necessary to
display every element. For example, the following code

 INTEGER :: i(10) = (/1,2,3,4,5,6,7,8,9,10/)

88 FORMAT(’ N1:’,I5, ’ N2:’,I5, ’ N3:’,I5)

 PRINT 88, i

I/O and File Handling 8

8-27

will output the following:

N1: 1 N2: 2 N3: 3

N1: 4 N2: 5 N3: 6

N1: 7 N2: 8 N3: 9

N1: 10 N2:

The following restrictions apply to the use of arrays in input and output:

• Sections of character arrays that specify vector-valued subscripts
cannot be used as internal files.

• An assumed-size array cannot be referenced as a whole array in an
input or output list.

The following restrictions apply to the use of structures and records in input
and output:

• All components of the structure or fields of the record must be
accessible within the scoping unit that contains the data transfer
statement.

• Every component of the structure or field of the record is written.
• A structure in an I/O list must not contain a pointer that is an ultimate

component—that is, the last component in a variable reference. In the
expression a%b%c, a and b can be pointers, but not c.

Implied-DO Loop

An implied-DO loop consists of a list of data elements to be read, written, or
initialized, and a set of indexing parameters. The syntax of an implied-DO
loop in an I/O statement is:

(list , index = init , limit [, step])

where

list is an I/O list, which can contain other implied-DO loops.

index is an integer variable that controls the number of times
the elements in list are read or written. The use of real
variables is supported but obsolescent.

init is an expression that is the initial value assigned to
index at the start of the implied-DO loop.

limit is an expression that is the termination value for index.

8-28

8 Intel Fortran Programmer’s Reference

step is an expression by which index is incremented or
decremented after each execution of the DO loop. step
can be positive or negative. Its default value is 1.

Inner loops can use the indexes of outer loops.

The implied-DO loop acts like a DO construct. The range of the implied-DO
loop is the list of elements to be input or output. The implied-DO loop can
transfer a list of data elements that are valid for a write operation. index is
assigned the value of init at the start of the loop. Execution continues in
the same manner as for DO loops (see Chapter 6, Execution Control).

The implied-DO loop is generally used to transmit arrays and array
elements, as in the following:

INTEGER :: b(10)

PRINT *, (b(i), i = 1,10)

If b has been initialized with the values 1 through 10 in order, the PRINT
statement will produce the following output:

1 2 3 4 5 6 7 8 9 10

If an unsubscripted array name occurs in the list, the entire array is
transmitted at each iteration. For example:

REAL :: x(3)

PRINT *, (x, i=1, 2)

If x has been initialized to be [1 2 3], the output will be:

 1.0 2.0 3.0 1.0 2.0 3.0

The list can contain expressions that use the index value. For example:

REAL :: x(10) = (/.1, .2, .3, .4, .5, .6, &

 .7, .8, .9, 1 /)

PRINT *, (i*2, x(i*2), i = 1, 5)

print the numbers

2 .2 4 .4 6 .6 8 .8 10 1

Implied-DO loops can also be nested. The form of a nested implied-DO loop
in an I/O statement is:

(((list, index1 = init1, limit1, step1), index2 = init2, limit2,
step2)

 ... indexN = initN, limitN, stepN)

I/O and File Handling 8

8-29

Nested implied-DO loops follow the same rules as do other nested DO loops.
For example, given the following statements:

REAL :: a(2,2)

a(1,1) = 1

a(2,1) = 2

a(1,2) = 3

a(2,2) = 4

WRITE(6,*)((a(i,j),i=1,2),j=1,2)

the output will be:

 1.0 2.0 3.0 4.0

The first, or nested DO loop, is completed once for each execution of the
outer loop.

ASA Carriage Control
If you are on a UNIX* system, the program asa(1) processes the output of
a Fortran 95 program that uses ASA carriage control characters so that it
can be properly handled by many printers.

The syntax of asa is:

asa [file-names]

where

file-names is a list of file names to be output with carriage control
characters interpreted according to ASA rules.

Table 8-9 lists the ASA carriage-control characters and their meanings.

Table 8-9 ASA Carriage-control Characters

Character Meaning

blank Advance one line.

0 Advance two lines.

continued

8-30

8 Intel Fortran Programmer’s Reference

The asa reads input from file-names or from standard input if
file-names is not specified. The first character of each line is interpreted
as a control character. Lines beginning with any character other than those
listed in Table 8-9 are interpreted as if they began with a blank, and an
appropriate diagnostic appears on standard error. The first character of each
line is not printed. The asa program interprets input lines and sends its
output to standard output. Each input file begins on a new page.

To properly view the output of programs that use asa carriage control
characters, asa should be used as a filter. For example, the following
example pipes the output of fortran_asa, an executable Intel Fortran
program that outputs lines with ASA carriage control characters, through the
asa filter to the line printer command, lp:

fortran_asa | asa | lp

On Windows NT systems, if you have the Mortice Kern Systems (MKS)
toolkit, you can use the MKS version of asa and use the print command
rather than lp.

Example Programs
This section gives example programs that illustrate I/O and file-handling
features of Intel Fortran.

Internal-file Example

The following program illustrates how internal files can use edit descriptors
internally. The comments within the program explain in detail what the
program does.

! ifile.f90

This program is a driver for the function roundoff, which truncates and
rounds a floating-point number to a requested number of decimal places.
The main program prompts for two numbers, a double-precision number

1 Advance to top of next page.

+ Do not advance; overstrike previous line.

Table 8-9 ASA Carriage-control Characters (continued)

Character Meaning

I/O and File Handling 8

8-31

and an integer. These are passed to the function roundoff as arguments. The
double-precision argument (x) is the value to be rounded, and the integer
(n) represents the number of decimal places for rounding. The function
converts both arguments to character format, storing them in separate
internal files. The function uses the F edit descriptor (to which n in
character format has been appended) to round x. This rounded value is
finally converted back from a character string to a double-precision number,
which the function returns.

 PROGRAM internal_file

 REAL (KIND=8) :: x, y, roundoff

Use nonadvancing I/O to suppress the newline and keep the prompt on the
same line as the input.

 WRITE (6, ’(X, A)’, ADVANCE=’NO’) ’Enter a real number: ’

 READ (5, ’(F14.0)’) x

 WRITE (6, ’(A)’) ’How many significant digits (1 - 9) to the’

 WRITE (6, '(X, A)', ADVANCE='NO') 'right of the decimal point?’

! Don’t enter a number greater than you input into x!

 READ (5, '(I1)') n

 y = roundoff(x, n)

 PRINT *, y

 END

This function truncates and rounds x to the number of decimal places
specified by n. The function performs no error checking on either argument.

REAL (KIND=8) FUNCTION roundoff(x, n)

INTEGER :: n

REAL (KIND=8) :: x

CHARACTER (LEN=14) :: dp_val

CHARACTER :: dec_digits

Use an edit descriptor to convert the value of n to a character, writing the
result to the internal file dec_digits.

WRITE (dec_digits, '(I1)') n

8-32

8 Intel Fortran Programmer’s Reference

Concatenate dec_digits to the string ’F14.’. The complete string
forms an edit descriptor that will convert the binary value of x to a
formatted character string that formats the value. The character represents
the requested level of precision. The formatted number is stored in the
internal file dp_val.

WRITE (dp_val, ’(F14.’//dec_digits//’)’) x

Re-convert the formatted record in dp_val to a binary value that the
function will return.

READ (dp_val, ’(F14.0)’) roundoff

END

When compiled with the command line:

f90 -o ifile ifile.f90

the program writes the following to standard output:

Enter a real number: 3.1415927

How many significant digits (1 - 9) to the

right of the decimal point? 3

3.142

Nonadvancing-I/O Example

The following program illustrates nonadvancing I/O on input. It reads a
formatted sequential file, each record of which consists of a name followed
by one or more grades. For each record, the program first reads the name,
then uses a DO loop to read all grades in the record. After reading the last
grade, the program computes and displays the average. The comments
explain what the program does.

! nonadv.f90

! assumptions: no errors in file (hence no
error-checking),

! name field occupies 20 characters, and at least one
grade

PROGRAM proc_grades

 INTEGER :: grade, count, sum, average

I/O and File Handling 8

8-33

 CHARACTER(LEN=20) name

 OPEN(20, FILE=’grades’)

 WRITE (6, 10) "Name", "Average"

 WRITE (6, *) "--------------------------"

 DO

 sum = 0

 count = 0

Read the first field of the record, using nonadvancing I/O so as not to
advance beyond that field. Note that the END= specifier causes the program
to exit the loop and branch to the statement labeled 999 when it detects
end-of-file.

READ(20, "(A20)", ADVANCE=’NO’, END=999) name

! read in grades

DO

Again, use non-advancing I/O to avoid advancing to the next record after
each read. The EOR= specifier causes the program to break out of the loop
and resume execution at the statement labeled 99.

 READ(20, "(I3)", ADVANCE=’NO’, EOR=99) grade

 count = count + 1

 sum = sum + grade

 END DO

99 average = sum/count

 ! Write each student’s name and average.

 WRITE(6, 20) name, average

 END DO

10 FORMAT (X, A, T21, A)

20 FORMAT (X, A, I3)

999 CLOSE(20)

END PROGRAM proc_grades

Use the following command line to compile the program:

f90 -o nonad nonad.f90

If the file grades contains the following records:

8-34

8 Intel Fortran Programmer’s Reference

SandrabDelfordbbbbb79b85b81b72100100

JoanbArunsoeltonbbbbbb8b64b77b79

EdenbPhilpottsbbbbbb100b92b87b65bb0

SoamesbJenynsbbbbbbbb97b78b58b75b88b73

AnitabJaysonbbbbbbbbb93b85b90b95b68b72b93

JoebKorzeniowskibbbbbb9b27b35b49

HarrietbMyrlebbbbbbbb84b78b93b95b97b92b84b93

PetebHartleybbbbbbbbb67b54b58b71b93b58

the program will produce the following output:

Name Average

Sandra Delford 86

Joan Arunsoelton 57

Eden Philpotts 68

Soames Jenyns 78

Anita Jayson 85

Joe Korzeniowski 30

Harriet Myrle 89

Pete Hartley 66

Sequential- and Direct-access Example

The following program illustrates both sequential and direct access on
external files. The file opened for direct access is a scratch file. The
comments explain what the program does.

! dir_acc.f90

This program uses an external file and a scratch file to insert a number into
a list of numerically sorted numbers. The sorted list is held in a external file.
The program uses the scratch file as a temporary holding place. The
program uses the direct access method with the scratch file.

PROGRAM direct_access

REAL :: number_to_insert, number_in_list

INTEGER :: rec_num, ios1, ios2, i

! Initialize counter.

I/O and File Handling 8

8-35

rec_num = 0

ios1 must be initialized to 0 so that the error-handling section at the end of
the program will work correctly

ios1= 0

! Open the scratch file and the sequential data file

OPEN (18, FILE=’list’, STATUS=’UNKNOWN’, IOSTAT=ios1,
ERR=99)

OPEN (17, STATUS=’SCRATCH’, ACCESS=’DIRECT’,
FORM=’FORMATTED’, &

 IOSTAT=ios1, ERR=99, RECL=16)

Use non-advancing I/O to suppress newline at the end of output record, thus
keeping the prompt on the same line with the input.

WRITE (6, FMT=’(A)’, ADVANCE=’NO’) ’ Enter number to
insert in list: ’

READ *, number_to_insert

Read from sorted list and write to scratch file until we find where to insert
number; then, write number_to_insert, and continue writing rest of
sorted numbers to scratch file.

DO WHILE (ios1 >= 0) Enter loop only if OPEN didn’t
encounter EOF

The END=15 specifier in the READ statement gets us out
of the loop, once we’re in it.

READ (18, *, END=10, IOSTAT=ios2, ERR=99) number_in_list

IF (number_to_insert <= number_in_list) THEN

rec_num = rec_num + 1 ! add the new record

WRITE(17, 100, REC=rec_num) number_to_insert

DO

rec_num = rec_num + 1

WRITE(17, 100, REC=rec_num) number_in_list

READ (18, *, END=15, IOSTAT=ios2, ERR=99)
number_in_list

8-36

8 Intel Fortran Programmer’s Reference

END DO

ELSE

rec_num = rec_num + 1

WRITE (17, 100, REC=rec_num) number_in_list

END IF

END DO

The file is empty or the item goes at the end of file. Add 1 to rec_num for
the record to be inserted.

10 rec_num = rec_num + 1

WRITE (17, 100, REC=rec_num) number_to_insert

Copy the scratch file to the data file. But first rewind so that we start writing
at beginning of the data file.

15 REWIND 18

Read from scratch file and write to data file

DO i = 1, rec_num

 READ (17, 100, REC=i) number_in_list

 WRITE (18, *) number_in_list

END DO

CLOSE (18)

CLOSE (17)

STOP ’Inserted!’

! Error handling section

99 IF (ios1 /= 0) THEN

 WRITE (7, 200) "Open error = ", ios1

ELSE

 WRITE (7, 200) "Read error = ", ios2

END IF

100 FORMAT (F16.6)

200 FORMAT (A, 2I6)

END

Use the following command line to compile the program:

I/O and File Handling 8

8-37

f90 -o dir_acc dir_acc.f90

If the file list contains the following records:

3.01

6.0

6.22

7.54

27.9

and the input is

6.15

the file rewritten by the program will contain the following numbers:

3.010000

6.000000

6.150000

6.220000

7.540000

27.900000

9-1

I/O Formatting 9
I/O formatting occurs during data transfer operations when data is
converted between its machine-readable binary representation and
human-readable character format. Although unformatted data transfers are
faster because they do not incur the overhead of data conversion, I/O
formatting is useful for displaying data in a human-readable form and for
transferring data between machines with different machine representations
for a data type.

I/O formatting can be implicit or explicit. Implicit formatting occurs during
list-directed and namelist-directed I/O: data is converted without
programmer intervention, based on the data types of the I/O list items. (For
information about list-directed and namelist-directed I/O, see
Chapter 8, I/O and File Handling.) Explicit formatting occurs under the
control of the programmer, who specifies how the data is to be converted.

This chapter describes explicit I/O formatting and includes information
about the following:

• FORMAT statement
• Format specification
• Edit descriptors
• Format specification in character expressions
• Nested format specifications
• Interaction between format specification and I/O list

9-2

9 Intel Fortran Programmer’s Reference

FORMAT Statement
The function of the FORMAT statement is to specify formatting information
that can be used by one or more of the following data transfer statements:

• ACCEPT (extension)
• DECODE (extension)
• ENCODE (extension)

• PRINT

• READ

• TYPE (extension)

• WRITE

The syntax of the FORMAT statement is:

label FORMAT (format-spec)

where

label is a statement label.

format-spec is a format specification consisting of a
comma-separated list of edit descriptors. For detailed
information about edit descriptors, see the next section.

The FORMAT statement must include label so that the data transfer
statements can reference it. One FORMAT statement can be referenced by
many data transfer statements. In the following example, both the READ and
WRITE statements reference the same FORMAT statement:

READ(UNIT=22, FMT=10)ivar, fvar

WRITE(17, 10)ivar, fvar

...

10 FORMAT(I7, F14.3)

For additional information about the FORMAT statement and data transfer
statements, see Chapter 10, Intel Fortran Statements.

I/O Formatting 9

9-3

Format Specification
A format specification consists of a list of edit descriptors that define the
format of data to be read with a READ statement, or written with a WRITE or
PRINT statement. A format specification can appear either in a FORMAT
statement or in a character expression in a data transfer statement.

The syntax of a format specification is:

[descriptor1[, descriptor2...]]

where

descriptor is an edit descriptor that is used to convert data between
its internal (binary) format and an external (character)
format. Edit descriptors are described in detail in the
following section.

Note that format specifications are not used in list-directed and
namelist-directed I/O.

Variable Expressions in Formats
With variable expressions, you can replace an integer constant in any
arbitrary expression. You must enclose the expression in angle brackets.
For example, in the following statement

FORMAT(4f8.2)

you can replace the 8 with the variable X as in the following:

FORMAT(4f<X>.2)

Also, you can use more complicated expressions within the brackets as
follows:

FORMAT(4f<2*X+Y>.2)

Further, you can replace the 4 or the 2 by any expression.

The following rules apply to using variable expressions in formats:
• The expression is re-evaluated each time it is found in a format scan.
• If necessary, the expression is converted to integer type.

• All valid Fortran 95 statements are allowed, including function calls.

9-4

9 Intel Fortran Programmer’s Reference

• You cannot use variable expressions in formats generated at runtime.
• The single exception is the n in an nH... edit descriptor. See the

following section for a description of edit descriptors.

Edit Descriptors
Edit descriptors are encoded characters that describe data conversion
between an internal (binary) format and an external (character) format.
There are three types of edit descriptors:

• Data edit descriptors define the format of data to be read or written,
such as its type and width (in characters). All data edit descriptors are
repeatable; that is, they can be preceded by a positive integer that
specifies the number of times the edit descriptor is to be replicated.

• Control edit descriptors specify editing information, such as the
number of spaces between input items, treatment of blanks in input,
and scale factors. Of the control edit descriptors, only the slash (/) is
repeatable.

• Character string edit descriptors output text. None of these is
repeatable.

Output format edit descriptors can produce default minimum field widths
that eliminate "white space" on output, for formatting numeric values. To
specify a minimum field width, the width w should be zero when used with
the I,B,O,Z, or F edit descriptors.

All of the edit descriptors supported by Intel Fortran are listed in Table 9-1.
As indicated by the syntax descriptions included in the table, the field width
specification (w) is optional for all data edit descriptors in Intel Fortran.
(Note that the Standard defines the field width specifier to be optional only
for the A edit descriptor.) The table also identifies which edit descriptors are
repeatable and which can be used on input, output, or both.

Table 9-1 Edit Descriptors

Descriptor Type Repeatable? I/O Use Function

‘...’ or
‘...’

Character
String

No Output Output enclosed string.

$ Control No Output Suppress newline at end of
output.

continued

I/O Formatting 9

9-5

/ (slash) Control Yes Input and
output

End current record and
begin new record.

: (colon) Control No Input and
output

Stop formatting if I/O list is
exhausted.

A[w] or
R[w]

Data Yes Input and
output

Convert character AND
Non-character data.

B[w[.m]] Data Yes Input and
output

Convert integer data, using
binary base.

BN Control No Input and
output

Ignore blanks in numeric
input data.

BZ Control No Input and
output

Treat blanks as zeroes in
numeric input data.

D[w.d[Ee]] Data Yes Input and
output

Convert real type data with
exponent.

E[w.d[Ee]] Data Yes Input and
output

Convert real type data with
exponent.

EN[w.d[Ee]] Data Yes Input and
output

Convert real type data, using
engineering notation.

ES[w.d[Ee]] Data Yes Input and
output

Convert real type data, using
scientific notation.

F[w.d] Data Yes Input and
output

Convert real type data
without exponent.

G[w.d[Ee]] Data Yes Input and
output

Convert numeric data, all
types.

nHs Character
String

No Output Output following n
characters.

I[w[.m]] Data Yes Input and
output

Convert integer numeric
data.

L[w] Data Yes Input and
output

Convert logical data.

O[w[.m]] Data Yes Input and
output

Convert integer data, using
octal base.

continued

Table 9-1 Edit Descriptors (continued)

Descriptor Type Repeatable? I/O Use Function

9-6

9 Intel Fortran Programmer’s Reference

The following sections describe the edit descriptors.

kP Control No Input and
output

Set scale factor to k.

Q[w.d] Data Yes Input and
output

Convert real type data with
exponent.

Q Control No Input Return number of bytes
remaining to be read in
current input record.

[n]R Control No Input and
output

Changes the Radix for
integer-formatted I/O.

S or SP Control No Output Print optional plus sign.

SS Control No Output Do not print optional plus
sign.

Tc Control No Input and
output

Move to column c.

TLc Control No Input and
output

Move c columns to the left.

TRc or cX Control No Input and
output

Move c columns to the right.

X[w]

Z[w[.m]] Data Yes Input and
output

Convert integer data, using
hexadecimal base.

Table 9-1 Edit Descriptors (continued)

Descriptor Type Repeatable? I/O Use Function

I/O Formatting 9

9-7

 Character String (’...’ or "...") Edit Descriptor

The character string edit descriptor is used to write a character constant to a
formatted output record. It cannot be used to format input. You can use
either apostrophes or quotation marks to delimit the constant. Whichever
you use, they must be balanced. That is, if you begin with an apostrophe,
you must also end with it. If the enclosed character constant includes a
delimiting character, it must be of the other type; or you can escape the
delimiter by giving another of the same type. The width of the field is the
number of characters enclosed by the character string edit descriptors,
including any blanks.

Table 9-2 gives examples of the character string edit descriptor on output.
Note that b represents a blank.

NOTE. There is no single edit descriptor that defines a field for complex
data. Instead, you must use two real edit descriptors--the first for the real
part of the number, and the second for the imaginary part. The two edit
descriptors may be different or the same, and you can insert control and
character string edit descriptors between them.

Likewise, there are no edit descriptors for formatting derived types and
pointers. For derived types, you must specify the appropriate sequence of
edit descriptors that match the data types of the derived type’s
components. For pointers, you must specify the edit descriptor that
matches the type of the target object.

9-8

9 Intel Fortran Programmer’s Reference

Newline ($) Edit Descriptor

The newline edit descriptor is an Intel Fortran extension that suppresses the
generation of the newline character (that is, the carriage-return/linefeed
sequence) during formatted, sequential output. By default, the cursor moves
to a newline after each output statement. The newline edit descriptor causes
the cursor to remain on the same line, immediately to the right of the last
character output.

Table 9-2 Character String Edit Descriptor: Output Examples

Descriptor Field Width Output

’Enter data:’ 11 Enter data:

"David’s turn" 12 David’s turn

"bbbSpacesbbb" 12 bbbSpacesbbb

’That’’ll do.’ 11 That’ll do.

"""That’ll do!""" 13 "That’ll do!"

"""" 1 "

’"’ 1 "

NOTE. Nonadvancing I/O also suppresses the newline at the end of a
record. Unlike the newline ($) edit descriptor, it is a standard feature of
Fortran 95, and can be used in input and output. For more information,
see Chapter 8, I/O and File Handling and the ADVANCE= I/O specifier in
the description of the OPEN statement in Chapter 10, Intel Fortran
Statements.

NOTE. Also, as an extension in Intel Fortran, you can use the backslash
(\) character as the new line edit descriptor.

I/O Formatting 9

9-9

Slash (/) Edit Descriptor

The slash edit descriptor terminates the current record and begins
processing a new record (such as a new line on a terminal). This edit
descriptor has the same result for both input and output: it terminates the
current record and begins a new one. For example, on output a newline
character is printed, and on input a new line is read.

Keep in mind the following considerations when using the slash edit
descriptor:

• If a series of two or more slashes are written at the beginning of a
format specification, the number of records skipped is equal to the
number of slashes.

• If n slashes appear other than at the beginning of a format specification
(where n is greater than 1), processing of the current record terminates
and n - 1 records are skipped.

• If a format contains only n slashes (and no other format specifiers),
n + 1 records are skipped.

The / edit descriptor does not need to be separated from other descriptors
by commas.

Colon (:) Edit Descriptor

The colon edit descriptor (:) is used when performing formatted I/O to
terminate format control when the I/O list has been exhausted. If all items in
an I/O list have been read or written, the colon edit descriptor stops any
further format processing. If more items remain in the list, the colon edit
descriptor has no effect.

Consider the following example:

WRITE (*, 40) 1, 2

WRITE (*, 50) 1, 2

40 FORMAT(3(’ value =’, I2))

50 FORMAT(3(:, ’ value =’, I2))

The first WRITE statement outputs the line:

value = 1 value = 2 value =

9-10

9 Intel Fortran Programmer’s Reference

The descriptor ’value =’ is repeated a third time because format control is
not terminated until the descriptor I2 is reached and not satisfied.

The second WRITE statement outputs the line:

 value = 1 value = 2

This time, the colon descriptor terminates format control before the string
’ value=’ is output a third time.

A and R (character) Edit Descriptors

The A and R edit descriptors define fields for character data. The A edit
descriptor specifies left-justification, and the R edit descriptor specifies
right-justification.

The R edit descriptor is an Intel Fortran extension.

The syntax for the character edit descriptors is:

[r]A[w]

[r]R[w]

where

r is a positive integer constant, specifying the repeat
factor.

w is the field width. If w is not specified, the default is the
length in bytes of the corresponding I/O list item.

As a portability extension, the list item can be of any data type.

When the A and R edit descriptors are used for input and output, the results
can differ according to whether the width (w) specified for the edit
descriptor is less than, greater than, or equal to the length of the I/O list
item. The results on input are summarized in Table 9-3; the results on output
are summarized in Table 9-4.

I/O Formatting 9

9-11

For examples of the use of character edit descriptors on input, see Table 9-5;
for output examples, see Table 9-6. In the tables, b represents a blank and z
represents a Null.

Table 9-3 Contents of Character Data Fields on Input

Descriptor
Width/Length
Relationship Result

A width < length Data is left-justified in variable, followed
by blanks.

width >= length Data is taken from rightmost characters
in the field.

R width < length Data is right-justified in variable,
preceded by nulls.

width >= length Data is taken from rightmost characters
in the field.

Table 9-4 Contents of Character Data Fields on Output

Descriptor
Width/Length
Relationship Result

A width <= length Data is taken from leftmost
characters in the field.

width > length Output the value, preceded by
blanks.

R width <= length Data is taken from rightmost
characters in the field.

width > length Output the value, preceded by
blanks.

9-12

9 Intel Fortran Programmer’s Reference

B (binary) Edit Descriptor

The B edit descriptor defines a field for binary data. It provides for
conversion between an external binary number and its internal
representation.

The syntax for the binary edit descriptor is:

[r]B[w[.m]]

where

r is a positive integer constant, specifying the repeat
factor.

Table 9-5 A and R Edit Descriptors: Input Examples

Edit
Descriptor Input Field

Variable
Length Value Stored

A3 XYZ 3 XYZ

R3 XYZ 4 zXYZ

A5 ABCbb 10 ABCbbbbbbb

R9 RIGHTMOST 4 MOST

R8 CHAIRbbb 8 CHAIRbbb

R4 CHAIR 8 zzzzCHAI

A4 ABCD 2 CD

Table 9-6 A and R Edit Descriptors: Output Examples

Edit
Descriptor

Internal
Characters

Variable
Length Output

A6 ABCDEF 6 ABCDEF

R4 ABCDEFGH 8 EFGH

A4 ABCDE 5 ABCD

A8 STATUS 6 bbSTATUS

R8 STATUS 6 bbSTATUS

R8 STATUS 8 STATUSbb

I/O Formatting 9

9-13

w is a positive integer constant, specifying the field width.

m is an unsigned integer constant, specifying the minimum
number of digits that must be in the field and forcing
leading zeroes as necessary up to the first nonzero digit.
The m value is ignored on input. If m is not specified, a
default value of 1 is assumed. If m is larger than w, the
field is filled with w asterisks.

On Input

Variables to receive binary input must be of type integer. The only legal
characters are 0s and 1s. Nonleading blanks are ignored, unless the file is
opened with BLANK=’ZERO’.

If the file is opened with BLANK=’ZERO’, nonleading blanks are treated as
zeroes. (For more information about the BLANK= specifier, see the
description of the OPEN statement in Chapter 10, Intel Fortran Statements.)
Plus and minus signs, commas, or any other symbols are not permitted. If a
nonbinary digit appears, an error occurs. The presence of too many digits
for the integer variable (or I/O list item) is illegal.

Table 9-7 gives examples of the binary edit descriptor on input.

On Output

Unlike input, list items on output may be of any type, though character
values are output only as the binary equivalent of their ASCII representation
(without a length descriptor). If w is greater than the number of converted
binary digits (excluding leading zeroes), the binary digits are right-justified
in the output field.

Table 9-7 B Edit Descriptor: Input Examples

Descriptor Input field (Binary) Value Stored (Binary)

B8 1111 1111

B8 01111 1111

B4 10101 1010

B8 1.1 error: illegal character

9-14

9 Intel Fortran Programmer’s Reference

If w is less than the number of converted binary digits, the field is filled with
w asterisks. This primarily affects the output of negative values. Because
negative values are output in twos complement form, their high-order bits
are nonzero and cause the field to be filled with asterisks when w is less
than the number of binary digits in the entire output value.

The field width required to fully represent the binary value of an item is
eight times its size in bytes. For example, an INTEGER*4 item could
require a field w of up to 32 characters.

Only 1s and 0s are printed on output.

Table 9-8 gives examples of the binary edit descriptor on output.

BN and BZ (blank) Edit Descriptors

The BN and BZ edit descriptors control the interpretation of embedded and
trailing blanks in numeric input fields. The syntax of the blank edit
descriptors is:

BN

BZ

At the beginning of the execution of an input statement, blank characters
within numbers are ignored except when the unit is connected with
BLANK=’ZERO’ specified in the OPEN statement. BN and BZ override the
BLANK= I/O specifier for the current READ statement. For more details
about the BLANK= I/O specifier, see the OPEN statement in Chapter 10, Intel
Fortran Statements.

If a BZ edit descriptor is encountered in the format specification, trailing
and embedded blanks in succeeding numeric fields are treated as zeroes.
The BZ edit descriptor remains in effect until a BN edit descriptor or the end

Table 9-8 B Edit Descriptor: Output Examples

Descriptor Internal Value Output

B5 27 11011

B8 27 bbb11011

B8.6 27 bb011011

B8 -27 ********

I/O Formatting 9

9-15

of the format specification is encountered. If BN is specified, all embedded
blanks are removed and the input number is right justified within the field
width.

The BN and BZ edit descriptors affect only I, B, O, Q, F, D, E, EN, ES, G, and
Z format descriptors during the execution of an input statement. The BN and
BZ edit descriptors do not affect character and logical edit descriptors.

Table 9-9 gives examples of the BN and BZ edit descriptors on input.

The BN and BZ edit descriptors are ignored during the execution of an
output statement.

D, E, EN, ES, F, G, and Q (real) Edit Descriptors

The D, E, EN, ES, F, G, and Q edit descriptors define fields for real numbers.
The I/O list item corresponding to a real descriptor must be a numeric type.
(The Standard permits real and complex types only; as an extension, Intel
Fortran allows integers.)

The syntax for these edit descriptors is:

[r]D[w.d]

[r]E[w.d [{E|D|Q}e]]

Table 9-9 BN and BZ Edit Descriptors: Input Examples

Data
Descriptor

Input
Characters

BN Editing in
Effect BZ Editing in Effect

I4 1b2b 12 1020

F6.2 b4b.b2 4.2 40.02

E7.1 5b.bE1b 5.0 x 101 5.0 x 1011

E5.0 3E4bb 3.0 x 104 3.0 x 10400 (overflow)

NOTE. For the edit descriptors E, G, and D, you can use a comma as a
delimiter to terminate an input field.

9-16

9 Intel Fortran Programmer’s Reference

[r]EN[w.d [Ee]]

[r]ES[w.d [Ee]]

[r]F[w.d]

[r]G[w.d E[{|D|Q}e]]

[r]Q[w.d]

where

r is a positive integer constant, specifying the repeat
factor.

w is a positive integer constant, specifying the field width.

d is a nonnegative integer constant, specifying the number
of decimal places on output.

e is a positive integer constant, specifying the number of
digits in the exponent.

For formatting complex data, you can use two real edit descriptors—the
first for the real part of the number and the second for the imaginary part.
The two edit descriptors may be different or the same, and you can insert
control and character string edit descriptors between them.

Real Edit Descriptors on Input

The input field for the real descriptors consists of an optional plus or minus
sign followed by a string of digits that may contain a decimal point. If the
decimal point is omitted in the input string, then the number of digits equal
to d from the right of the string are interpreted to be to the right of the
decimal point. If a decimal point appears in the input string and conflicts
with the edit descriptor, the decimal point in the input string takes
precedence. This basic form can be followed by an exponent in one of the
following forms:

• A signed integer constant
• An E followed by an optionally signed integer constant
• A D followed by an optionally signed integer constant
• A Q followed by an optionally signed integer constant

All four exponent forms are processed in the same way. Note, however, that
e has no effect on input.

I/O Formatting 9

9-17

The EN and ES edit descriptors are the same as the F edit descriptor on
input. The Q edit descriptor (an Intel Fortran extension) is the same as the E
edit descriptor on input.

Table 9-10 gives examples of the real edit descriptors on input. (The BZ edit
descriptor listed in the “Descriptor” column treats nonleading blanks in
numeric fields as zeroes.)

Real Edit Descriptors on Output

The output field for the real descriptors consists of w character positions,
filled with leading blanks (if necessary) and an optionally signed real
constant with a decimal point, rounded to d digits after the decimal point.
The following sections describe the real edit descriptors on output in detail.

D and E edit descriptors

The D and E edit descriptors define a normalized floating-point field for real
and complex values. The value is rounded to d digits. The exponent part
consists of e digits. If Ee is omitted in a D or E edit descriptor, then the
exponent occupies two or three positions, depending on its magnitude. The
field width, w, should follow the general rule: w is greater than or equal to
d+7. If Ee is used, w is greater than or equal to d+e+5. This rule provides
positions for a leading blank, the sign of the value, the decimal point, d
digits, the exponent letter (D, E, or Q), the sign of the exponent, and the
exponent. The Ee, De, and Qe specifications, which are available with the E
edit descriptor, control which exponent letter is output.

Table 9-11 gives examples of the D and E edit descriptors on output.

Table 9-10 D, E, F, and G Edit Descriptors: Input Examples

Descriptor Input Field Value Stored

F6.5 4.51E4 45100

G4.2 51-3 .00051

E8.3 7.1bEb5 710000

D9.4 bbb45E+35 .0045 x 1035

BZ, F6.1 -54E3b -5.4 x 1030

9-18

9 Intel Fortran Programmer’s Reference

EN and ES edit descriptor

The EN and ES descriptors format floating-point values, using engineering
and scientific notation, respectively. They are similar in form to the E
descriptor, except:

• The field produced by the EN descriptor has an exponent that is
divisible by 3 and a significand that is in the range 1 to 999.

• The field produced by the ES descriptor has one digit before the
decimal point.

Table 9-12 gives examples of the EN and ES edit descriptors on output.

Table 9-11 D and E Edit Descriptors: Output Examples

Descriptor Internal value Output

D10.3 +12.342 bb.123D+02

E10.3E3 -12.3454 -.123E+002

E12.4 +12.34 bbb.1234E+02

D12.4 -.00456532 bb-.4565D-02

D10.10 +99.99913 **********

E11.5 +999.997 b.10000E+04

E10.3E4 +.624 x 10-30 .624E-0030

Table 9-12 EN and ES Edit Descriptors: Output Examples

Descriptor Internal value Output

EN12.3 +3.141 bbb3.141E+00

ES12.3 +3.141 bbb3.141E+00

EN12.3 +.00123 bbb1.230E-03

ES12.3 +.00123 bbb1.230E-03

EN12.3 -.7 -700.000E-03

ES12.3 -.7 bb-7.000E-01

EN12.3 +1234.5 bbb1.235E+03

ES12.3 +1234.5 bbb1.235E+03

I/O Formatting 9

9-19

F Edit Descriptor

The F edit descriptor defines a field for real and complex values. The value
is rounded to d digits to the right of the decimal point. The field width, w,
should be four greater than the expected length of the number to provide
positions for a leading blank, the sign, the decimal point, and a roll-over
digit for rounding if needed.

Table 9-13 gives examples of the F edit descriptor on output.

G Edit Descriptor

The G edit descriptor can be used with any data type but is commonly used
to define a field for real and complex values.

According to the magnitude of the data, the G edit descriptor is interpreted
as either an E or F descriptor. (For more information on these edit
descriptors, refer to “D and E edit descriptors” on page 17 and “F Edit
Descriptor” on page 19.) The E edit descriptor is used when one of the
following conditions is true:

• The magnitude is less than 0.1 but not zero.
• The magnitude is greater than or equal to 10**d (after rounding to d

digits).

If the magnitude does not fit either of these rules, the F edit descriptor is
used. When F is used, trailing blanks are included in the field where the
exponent would have been.

Table 9-13 F Edit Descriptor: Output Examples

Descriptor Internal value Output

F5.2 +10.567 10.57

F3.1 -254.2 ***

F6.3 +5.66791432 b5.668

F8.2 +999.997 b1000.00

F8.2 -999.998 -1000.00

F7.2 -999.997 *******

F4.1 +23 23.0

9-20

9 Intel Fortran Programmer’s Reference

For fixed- or floating-point format descriptors, the field width is w. The
value is rounded to d digits, and the exponent consists of e digits. If Ee is
omitted, the exponent occupies two positions. If Ee is omitted and the
exponent is greater than 99 (that is, it requires three digits), the exponent
letter is dropped from the output. The field width, w, should follow the
general rule: w is greater than or equal to the sum of d+7; or, if Ee is
specified, w is greater than or equal to the sum of d+e+5. This rule
provides positions for a leading blank, the sign of the value, d digits, the
decimal point, and, if needed, the exponent letter (D, E, or Q), the sign of the
exponent, and the exponent. Note that the Ee, De, and Qe specifications
control which exponent letter is output.

When used to specify I/O fields for integer, character, and logical data, the G
edit descriptor has the same syntax and same effect as the integer, character,
and logical edit descriptors. The d and e values (if specified) have no
effect.

Table 9-14 gives examples of the G edit descriptor on output.

Table 9-14 G Edit Descriptor: Output Examples

Edit
Descriptor

Internal
value Interpreted as Output

G10.3 +1234.0 E10.3 b0.123E+04

G10.3 -1234.0 E10.3 -0.123E+04

G12.4 +12345.0 E12.4 bb0.1235E+05

G12.4 +9999.0 F8.0, 4X bbb9999.bbbb

G12.4 -999.0 F8.1, 4X bb-999.0bbbb

G7.1 +.09 E7.1 0.9E-01

G5.1 -.09 E5.1 *****

G11.1 +9999.0 E11.1 bbbb0.1E+05

G8.2 +9999.0 E8.2 0.10E+05

G7.2 -999.0 E7.2 *******

I/O Formatting 9

9-21

Q Edit Descriptor

The Q edit descriptor (an Intel Fortran extension) has the same effect as the
E edit descriptor on output, except that it outputs a Q for the exponent
instead of an E.

The Q edit descriptor can also be used to determine the number of bytes
remaining to be read in an input record; see page 9-28, “Q (bytes remaining)
Edit Descriptor.”

H (Hollerith) Edit Descriptor

The H edit descriptor outputs a specified number of characters. The syntax
is:

nHcharacter-sequence

where

n is a positive integer that specifies the number of
characters to output. This number must exactly
match the actual number of characters in
character-sequence.

character-sequenceis the string of representable characters (including
blanks) to output.

Table 9-15 gives examples of the Hollerith edit descriptor on output.

NOTE. You should be careful if you split a Hollerith edit string across the
Fortran source lines. By default, the compiler treats the end of line
character as the end of the source line, even if it occurs before column 72
in fixed form source. If your Hollerith depends on treating the remaining
characters up to column 72 as blanks, use the -Qpad_ source option.
For details, see Intel Fortran Compiler User’s Guide.

9-22

9 Intel Fortran Programmer’s Reference

I (integer) Edit Descriptor

The I edit descriptor defines a field for an integer number. As an Intel
Fortran extension, it can also be used on real and logical data. The
corresponding I/O list item must be a numeric or logical type.

The syntax of the integer edit descriptor is:

[rI][w[.m]]

where

r is a positive integer constant, specifying the repeat
factor.

w is a positive integer constant, specifying the field width.

m is a nonnegative integer constant, specifying the
minimum number of digits that must be in the field and
forcing leading zeroes as necessary up to the first
nonzero digit. The m value is ignored on input. If m is
not specified, a default value of 1 is assumed. If m is
larger than w, the field is filled with w asterisks. If m = 0
and the list item is zero, only blanks are output.

On Input

The integer edit descriptor causes the interpretation of the next w positions
of the input record. The number is converted to match the type of the list
item currently using the descriptor. A plus sign is optional for positive
values. A decimal point must not appear in the field.

Table 9-16 gives examples of the integer edit descriptor on input.

Table 9-15 H Edit Descriptor: Output Examples

Edit Descriptor Field Width Output

12HbbbSpacesbbb 12 bbbSpacesbbb

14H"Itbisn’tbso." 14 "Itbisn’tbso."

NOTE. For the I edit descriptor, you can use a comma as a delimiter to
terminate an input field.

I/O Formatting 9

9-23

On Output

The integer edit descriptor outputs a numeric variable as a right-justified
integer value (truncated, if necessary). The field width, w, should be one
greater than the expected number of digits to allow a position for a minus
sign for negative values. If m is set to 0, a zero value is output as all blanks.

Table 9-17 gives examples of the integer edit descriptor on output.

Table 9-16 I Edit Descriptor: Input Examples

Descriptor Input field Value Stored

I4 b1bb 1

I5 bbbbb 0

I5 bbbbb1 0

I2 -1 -1

I4 -123 -123

I3 b12 12

I3 12b 12

I3 12b 120

I3 1.1 error: illegal character

Table 9-17 I Edit Descriptor: Output Examples

Descriptor Internal Value Output

I4 +452.25 b452

I2 +6234 **

I3 -11.92 -11

I5 -52 bb-52

I10 123456.5 bbbb123456

I6.3 3 bbb003

I3.0 0 bbb

I3 0 bb0

9-24

9 Intel Fortran Programmer’s Reference

L (logical) Edit Descriptor

The L edit descriptor defines a field for logical data. Its syntax is:

[r]L[w]

where

r is a positive integer constant, specifying the repeat
factor.

w is a positive integer constant, specifying the field width.

The I/O list item corresponding to an L edit descriptor must be of type
logical, short logical, or byte.

On Input

The field width is scanned for optional blanks followed by an optional
decimal point, followed by T (or t) for true or F (or f) for false. The first
nonblank character in the input field (excluding the optional decimal point)
determines the value to be stored in the declared logical variable. It is an
error if the first nonblank character is not T, t, F, f, or a period(.). Table
9-18 gives examples of the logical edit descriptor on input.

NOTE. For the L edit descriptor, you can use a comma as a delimiter to
terminate an input field.

Table 9-18 L Edit Descriptor: Input Examples

Edit Descriptor Input Field Value Stored

L1 T .TRUE.

L1 f .FALSE.

L6 .TRUE. .TRUE.

L7 .false. .FALSE.

L2 .t .TRUE.

L8 bbbbTRUE .TRUE.

L3 ABC error: illegal character

I/O Formatting 9

9-25

On Output

The character T or F is right-justified in the output field, depending on
whether the value of the list item is true or false. Table 9-19 gives examples
of the logical edit descriptor on output.

O (octal) Edit Descriptor

The O edit descriptor defines a field for octal data. It provides conversion
between an external octal number and its internal representation.

The syntax for the octal edit descriptor is:

[r]O[w[.m]]

where

r is a positive integer constant, specifying the repeat
factor.

w is a positive integer constant, specifying the field width.

m is a nonnegative integer constant, specifying the
minimum number of digits that must be in the field and
forcing leading zeroes as necessary up to the first
nonzero digit. The m value is ignored on input. If m is
not specified, a default value of 1 is assumed. If m is
larger than w, the field is filled with w asterisks.

On Input

The presence of too many digits for the integer variable (or list item) to
receive produces undefined results. Legal octal digits are 0 through 7. Plus
and minus signs are illegal.

Table 9-19 L Edit Descriptor: Output Examples

Descriptor Internal value Output (logical)

L5 false bbbbF

L4 true bbbT

L1 true T

9-26

9 Intel Fortran Programmer’s Reference

Table 9-20 gives examples of the octal edit descriptors on input.

On Output

List items may be of any type, though character variables are output only as
the octal equivalent of their ASCII representation (no length descriptor).

If w is greater than the number of converted octal digits (including blanks
between words but excluding leading zeroes), the octal digits are
right-justified in the output field. If w is less than the number of converted
octal digits, the field is filled with asterisks. This primarily affects the
output of negative values. Because negative values are output in twos
complement form, their high-order bits are nonzero and cause the field to be
filled with asterisks when w is less than the number of octal digits in the
entire output value. If m is set to 0, a zero value is output as all blanks.

Table 9-21 gives examples of the octal edit descriptors on output.

Table 9-20 O Edit Descriptor: Input Examples

Descriptor Input Field (Octal) Value Stored (Octal)

O8 12345670 12345670

O2 77 77

O3 064 64

O8 45r error: illegal character

Table 9-21 O Edit Descriptor: Output Examples

Descriptor Internal Value Output (Octal)

O6 80 bbb120

O2 80 **

O14 -9 bbb37777777767

O11 32767 bbbbbb77777

O6.4 79 bb0117

O12 1.1 bb7743146315

continued

I/O Formatting 9

9-27

P (scale factor) Edit Descriptor

The kP edit descriptor causes a scale factor of k to be applied to all
subsequent F, D, E, EN, ES, and G edit descriptors in the format
specification.

If the P edit descriptor does not precede an F, D, E, EN, ES, or G edit
descriptor, it should be separated from other edit descriptors by a comma. If
the P edit descriptor immediately precedes an F, D, E, EN, ES, or G edit
descriptor, the comma is optional. For example, the format specification:

(3P, I2, F4.1, E5.2)

is equivalent to

(I2, 3PF4.1, E5.2)

When a format specification is interpreted, the scale factor is initially set to
0. When a P edit descriptor is encountered, the specified scale factor takes
effect for the format specification and remains in effect until another P edit
descriptor is encountered.

The effect of the scale factor differs for input and output as follows:

On Input

If the value in the input field does not have an exponent, the internal number
is equal to the field value multiplied by 10-k. If the value in the input field
has an exponent, the scale factor has no effect. See Table 9-22 for examples
of the scale factor on input.

On Output

The scale factor has no effect on the EN, ES, F and G (interpreted as F) edit
descriptors. For the D, E, and G (interpreted as E) edit descriptors, the value
of the list item is multiplied by 10k as it is output but the exponent part is
decreased by k.

O12 ’A’ b101

O12 ’ABC’ b101b102b103

Table 9-21 O Edit Descriptor: Output Examples (continued)

Descriptor Internal Value Output (Octal)

9-28

9 Intel Fortran Programmer’s Reference

The value specified for the scale factor (k) must be in the range:

-d < k < d+2

where

d is the number of digits in the fractional part of the
number being written.

k is a signed integer that specifies the scale factor.

See Table 9-22 for examples of the scale factor on output.

When part or all of a format specification is repeated, the current scale
factor is not changed until another scale factor is encountered.

Q (bytes remaining) Edit Descriptor

The Q edit descriptor is an Intel Fortran extension that returns the number of
bytes remaining to be read in the input record, placing the result into the
corresponding integer variable in the I/O list. The return value can be used
to control the remaining input items.

Table 9-22 P Edit Descriptor: Input and Output Examples

Format
Specification Input Field Internal Value Output

(-2PG15.5) 1.97E-4 1.97 x 10-4 bbbbb.00197E-01

(2P, F15.5) 27.982 .2798199 bbbbbbb27.98200

(2P,ES15.5) 3518. 35.18 bbbb3.51800E+01

(-2P,EN15.5) 7.91E+5 7.91 x 105 bb791.00000E+03

(-2PE15.5) .17694 17.694 bbbbb.00177E+04

I/O Formatting 9

9-29

The Q edit descriptor is valid on input only; it is ignored on output. It can be
used for reading formatted, sequential, and direct-access files. The following
program segment reads variable-length strings from a sequential file:

CHARACTER(LEN=80) :: string

INTEGER :: n, i

...

READ (11,’(Q,80A1)’) n, (string (i:i), i=1, n)

For information about the Qw.d edit descriptor for editing real data, see
page 9-15, “D, E, EN, ES, F, G, and Q (real) Edit Descriptors.”

S, SP, and SS (plus sign) Edit Descriptors

The S, SP, and SS edit descriptors control printing of the plus sign character
in numeric output. The default behavior of Intel Fortran is not to print the
plus sign. However, an SP edit descriptor in the format specification causes
the plus sign to appear in any subsequent numeric output where the value is
positive. The SS descriptor suppresses the plus sign in subsequent numeric
output. The S edit descriptor restores the default behavior.

The sign edit descriptors have no effect on input.

T, TL, TR, and X (tab) Edit Descriptors

The tab edit descriptors position the cursor on the input or output record.
Their syntax is:

Tn

TLn

TRn

nX

where

n is a positive integer constant, specifying the number of
column positions to skip for positioning within the
current output or input record.

9-30

9 Intel Fortran Programmer’s Reference

The T edit descriptor references an absolute column number, while the
descriptors TL and TR reference a relative number of column positions to
the left (TL) or right (TR) of the current cursor position. Note that the TR
descriptor is identical to the X edit descriptor.

Z (hexadecimal) Edit Descriptor

The Z edit descriptor defines a field for hexadecimal data. This descriptor
provides for conversion between an external hexadecimal number and its
internal representation.

The syntax for the hexadecimal edit descriptor is:

[r]Z[w [.m]]

where

r is a positive integer constant, specifying the repeat
factor.

w is a positive integer constant, specifying the field width.

m is a nonnegative integer constant, specifying the
minimum number of digits that must be in the field and
forcing leading zeroes as necessary up to the first
nonzero digit. The m value is ignored on input. If m is
not specified, a default value of 1 is assumed. If m is
larger than w, the field is filled with w asterisks.

On Input

Variables to receive hexadecimal input must be of type integer. Legal
hexadecimal digits are 0 through 9, and A through F (or a through f).
Nonleading blanks are ignored, unless the file is opened with
BLANK=’ZERO’. If the file is opened with BLANK=’ZERO’, nonleading
blanks are treated as zeroes. (For more information about the BLANK=

NOTE. For the Z edit descriptor, you can use a comma as a delimiter to
terminate an input field.

I/O Formatting 9

9-31

specifier of the OPEN statement, see Chapter 10, Intel Fortran Statements.)
Plus and minus signs, commas, or any other symbols are neither permitted
on input nor printed on output. The presence of too many digits for the
integer variable (or list item) produces undefined results.

Table 9-23 gives examples of the hexadecimal edit descriptor on input.

On Output

List items may be of any type, though character variables are output only as
the hexadecimal equivalent of their ASCII representation (without a length
descriptor). If w is greater than the number of converted hexadecimal digits
(excluding leading zeroes), the hexadecimal digits are right-justified in the
output field. If w is less than the number of converted hexadecimal digits,
the field is filled with asterisks. This primarily affects the output of negative
values. Because negative values are output in twos complement form, their
high-order bits are nonzero and cause the field to be filled with asterisks
when w is less than the number of hexadecimal digits in the entire output
value. If m is set to 0, a zero value is output as all blanks.

The field width required to fully represent the hexadecimal value of an item
is twice its size in bytes. For example, a CHARACTER*12 item would
require a field width of 24 characters.

Table 9-24 gives examples of the hexadecimal edit descriptor on output.

Table 9-23 Z Edit Descriptor: Input Examples

Descriptor
Input Field
(Hexadecimal) Value Stored (Hexadecimal)

Z4 FF3B FF3B

Z4 fFfF FFFF

Z2 ABCD AB

Z3 1.1 error: illegal character

9-32

9 Intel Fortran Programmer’s Reference

Embedded Format Specification
A format specification can be embedded in a data transfer statement as a
character expression. Parentheses are included in the expression, and the
first nonblank character must be a left parenthesis. The matching right
parenthesis must also be in the expression. A list of edit descriptors appears
between the parentheses. Any characters appearing after the matching right
parenthesis are ignored.

If the character expression is a character constant, it must be delimited by
either apostrophes or quotation marks. If the character constant contains
another character constant, the nested character constant must also be
delimited. If the inner set of delimiters is the same as the outer set they must
be doubled. Each of the following statements is correct and will produce the
same results:

PRINT "(’i = ’, i2)", i

PRINT "(""i = "", i2)", i

PRINT ’("i = ", i2)’, i

PRINT ’(’’i = ’’, i2)’, i

WRITE (6, "(’i = ’, i2)") i

If the character expression is an array element, the entire specification must
be within that element. If the expression is a whole character array, the
format specification is the concatenation of the array elements in array
element order. (As an extension, Intel Fortran allows the use of an integer
array to contain a format specification.)

Table 9-24 Z Edit Descriptor: Output Examples

Descriptor Internal value Output

Z2 27 1B

Z6.4 27 bb001B

Z ’A’ b41

Z8 ’ABCD’ 41424344

Z8 1.1 3F8CCCCD

I/O Formatting 9

9-33

The following illustrates the use of a character array to hold the format
specification:

CHARACTER(LEN=6), DIMENSION(2) :: fspec

fspec(1) = ’(F8.3,’

fspec(2) = ’ I5)’

PRINT fspec, fvar, ivar

If the value of fvar is 12.34567 and ivar is 123, the output would be:

bb12.346bb123

Nested Format Specifications
A format specification can include a nested format specification (another set
of edit descriptors, enclosed in parentheses). You can also precede the
nested format specification with a repeat factor, as in the following
example:

(1H , 2(I5, F10.5))

This is equivalent to:

(1H, I5, F10.5, I5, F10.5)

Each nested specification is known as a group at nested level n. The value
of n begins at 1. For each successive level of nesting, n is incremented by
1. Each group at nested level 1 can contain one or more groups at nested
level 2, and so on.

For example:

(E9.3,I6,(2X,I4))

contains one group at nested level 1.

(L2,A3/(E10.3,4(A2,L4)))

has one group at nested level 1 and one at nested level 2.

(A,(3X,(I2,(A3)),I3),A)

contains one group at nested level 1, one at level 2, and one at level 3.

9-34

9 Intel Fortran Programmer’s Reference

A nested format specification can be preceded by a repeat specification. For
example, the following input record:

b26b6.4336b373.86b39bb49.79bb4bbb4395.4972

could be accessed with the following FORMAT statement:

10 FORMAT (I3,F7.4,2(F7.2,I3),F12.4)

The list of variables following READ statement corresponds to the preceding
FORMAT statement:

READ 10,i,a,b,j,d,k,f

The READ statement would read values for i and a; repeat the nested format
specification F7.2,I3 twice to read values for b, j, d, and k; and, finally,
read a value for f.

Interaction Between Format Specification and I/O Data
List

A formatted I/O statement references each item in an I/O list, and the
corresponding format specification is scanned to find a format descriptor for
each item. As long as an item is matched to an edit descriptor, normal
execution continues.

If there are more edit descriptors than list items, format control terminates
with the last list item. If there are fewer edit descriptors than list items, the
following three steps are performed:

1. The current record is terminated.
2. A new record is started.

NOTE. Default values are provided for the w, d, and e fields regardless
of which edit descriptors you select.

I/O Formatting 9

9-35

3. Format control is returned to the format specification based upon the
following hierarchy:
a. Control returns to the repeat specification for the rightmost group

at nested level 1. (For information about nested levels, see “Nested
Format Specifications” on page 33.)

b. If no repeat specification exists in the rightmost group at nested
level 1, control returns to the group itself.

c. If there is no group at nested level 1, control returns to the first
descriptor in the format specification.

Table 9-25 provides examples showing how control is returned to the
format specification in different circumstances.

Table 9-25 Format Control and Nested Format Specifications

Format Specification Control Returns to: Explanation

(I5,2(3X,I2,(I4))) 2(3X,I2,(I4)) The rightmost group at nested level 1 is
3X,I2,(I4). Control returns to the repeat
specifier for this group.

(F4.1,I2) (F4.1,I2) There is no group at nested level 1.
Control returns to the first descriptor in
the format specification.

(A3,(3X,I2),4X,I4) (3X,I2),4X,I4 Control returns to the group at nested
level 1.

10-1

Intel Fortran Statements 10
This chapter describes the Intel Fortran statements and attributes, arranged
in alphabetical order and providing syntactic descriptions, applicable rules,
and examples. This chapter does not describe assignment statements (see
Chapter 4, Arrays) or statement functions (see Chapter 7, Program Units
and Procedures). For general information about type declaration statements,
see Chapter 3, Data Types and Data Objects. For information about any of
the following specific type declaration statements, see this chapter:

• BYTE

• CHARACTER

• COMPLEX

• DOUBLE COMPLEX

• DOUBLE PRECISION

• INTEGER

• LOGICAL

• REAL

• RECORD

• TYPE(type-name)

This chapter describes statements and attributes only, not constructs. For
example, for information about the CASE statement, look here; for
information about the CASE construct, see Chapter 6, Execution Control.

10-2

10 Intel Fortran Programmer’s Reference

Attributes
Table 10-1 lists all the attributes that an Intel Fortran entity may possess and
indicates their compatibility. If the box at the intersection of two attributes
contains a check mark, then the attributes are mutually compatible and can
be held simultaneously by a Fortran 95 entity. The attributes are referred to
throughout this chapter as well as in the rest of the book.

Table 10-1 Attribute Compatibility (Y=YES)

A
L
L
O
C
A
T
A
B
L
E

A
U
T
O
M
A
T
I
C

D
I
M
E
N
S
I
O
N

E
X
T
E
R
N
A
L

In
it

ia
liz

at
io

n

I
N
T
E
N
T

I
N
T
R
I
N
S
I
C

O
P
T
I
O
N
A
L

P
A
R
A
M
E
T
E
R

P
O
I
N
T
E
R

P
R
I
V
A
T
E

P
U
B
L
I
C

S
A
V
E

S
T
A
T
I
C

T
A
R
G
E
T

V
O
L
A
T
I
L
E

ALLOCATABLE Y Y 3 Y Y Y Y Y

AUTOMATIC Y Y Y Y Y Y

DIMENSION Y Y Y Y Y Y Y Y Y Y Y Y Y Y

EXTERNAL Y Y Y Y

INITIALIZATION Y Y Y Y Y Y Y Y Y

INTENT Y Y Y Y Y

INTRINSIC Y Y Y

OPTIONAL Y Y Y Y Y Y Y

PARAMETER Y Y Y Y Y

POINTER Y Y Y Y Y Y Y Y Y

PRIVATE Y Y Y Y Y Y Y Y Y Y Y Y

PUBLIC Y Y Y Y Y Y Y Y Y Y Y Y

SAVE Y Y Y Y Y Y Y Y Y Y

STATIC Y Y Y Y Y Y Y Y Y

continued

Intel Fortran Statements 10

10-3

Statements and Attributes
The remainder of this chapter describes all of the statements and attributes
that you can use in an Intel Fortran program. The statement and attribute
descriptions are listed in alphabetical order. Not described here are the
statement function (see Chapter 7, Program Units and Procedures) and the
general form of a type declaration statement (see Chapter 3, Data Types and
Data Objects). For general information about statements and attributes
(including the order in which statements are required to appear in a legal
program), refer to Chapter 2, Language Elements.

ACCEPT
Reads from standard input.

The syntax of the ACCEPT statement can take one of two forms:
• Formatted and list-directed syntax:

ACCEPT format [, input-list]

TARGET Y Y Y Y Y Y Y Y Y Y Y Y

VOLATILE Y Y Y Y Y Y Y Y Y Y Y Y Y

NOTE. AUTOMATIC, STATIC, and VOLATILE may be specified in a
statement of the same name but not as attributes in a type declaration
statement

Table 10-1 Attribute Compatibility (Y=YES) (continued)

A
L
L
O
C
A
T
A
B
L
E

A
U
T
O
M
A
T
I
C

D
I
M
E
N
S
I
O
N

E
X
T
E
R
N
A
L

In
it

ia
liz

at
io

n

I
N
T
E
N
T

I
N
T
R
I
N
S
I
C

O
P
T
I
O
N
A
L

P
A
R
A
M
E
T
E
R

P
O
I
N
T
E
R

P
R
I
V
A
T
E

P
U
B
L
I
C

S
A
V
E

S
T
A
T
I
C

T
A
R
G
E
T

V
O
L
A
T
I
L
E

10-4

10 Intel Fortran Programmer’s Reference

• Namelist-directed syntax:
ACCEPT name

format is one of the following:

• An asterisk (*), specifying list-directed I/O. For
detailed information about list-directed I/O, see
Chapter 8, I/O and File Handling.

• The label of a FORMAT statement containing the
format specification.

• An integer variable that has been assigned the label
of a FORMAT statement.

• An embedded format specification. For information
about the format specifications, see Chapter 9, I/O
Formatting.

input-list is a comma-separated list of data items. The data items
can include variables and implied-DO lists; see Chapter
8, I/O and File Handling for more detailed information.

name is the name of a namelist group, as previously defined by
a NAMELIST statement. Using this syntax, the ACCEPT
statement accepts data from standard input and
transfers it to the namelist group. To perform
namelist-directed I/O with a connected file, you must use
the READ statement and include the NML= specifier.

Description

The ACCEPT statement is an Intel Fortran extension and is provided for
compatibility with other versions of Fortran. The standard READ statement
performs the same function, and standard-conforming programs should use
it.

The ACCEPT statement transfers data from standard input to internal
storage. (Unit 5 is preconnected to the Intel standard input.) The ACCEPT
statement can be used to perform formatted, list-directed, and
namelist-directed I/O only.

To read data from a connected file, use the READ statement.

Intel Fortran Statements 10

10-5

Examples
The following example of the ACCEPT statement reads an integer and a
floating-point value from standard input, using list-directed formatting:

INTEGER :: i

REAL :: x

ACCEPT *, i, x

Related Statements
FORMAT, NAMELIST, PRINT and READ

Related Concepts
For information about I/O concepts, see Chapter 8, I/O and File Handling,
which also presents example programs performing I/O. For information
about I/O formatting, see Chapter 9, I/O Formatting.

ALLOCATABLE (Statement and Attribute)
Declares an allocatable array with
deferred shape.

The syntax of a type declaration statement with the ALLOCATABLE attribute
is:

type, attrib-list :: entity-list

type is a valid type specification (INTEGER, REAL,
LOGICAL, CHARACTER, TYPE (type-name), and so
on), as described in Chapter 3, Data Types and Data
Objects.

attrib-list is a comma-separated list of attributes including
ALLOCATABLE and optionally those attributes
compatible with it, namely:

DIMENSION PUBLIC TARGET

PRIVATE SAVE

10-6

10 Intel Fortran Programmer’s Reference

entity-list is a comma-separated list of entities. Each entity is of the
form:
array-name [(deferred-shape-spec-list)]

If (deferred-shape-spec-list) is omitted, it must be specified in
another declaration statement.

array-name is the name of an array being given the attribute
ALLOCATABLE.

deferred-shape-spec-list
is a comma-separated list of colons, each colon
representing one dimension. Thus the rank of the
array is equal to the number of colons specified.

The syntax of the ALLOCATABLE statement is:

ALLOCATABLE [::] array-name
[(deferred-shape-spec-list)]

 [,array-name [(deferred-shape-spec-list)]]...

If (deferred-shape-spec-list) is omitted from the ALLOCATABLE
statement, it must be specified in another declaration statement, such as a
type or DIMENSION statement.

The ALLOCATED intrinsic inquiry function can be used to determine whether
an allocatable array is currently allocated.

Description

The ALLOCATABLE attribute or statement is used to declare an array whose
extents in all its dimensions will be specified when an ALLOCATE statement
is executed at run-time; for this reason it is known as “deferred-shape”.
When an allocatable array is declared, only its name and rank are given.

Examples

The following statements declare a rank-one deferred-shape array and
illustrate its use with different extents.

! mls is deferred shape.

INTEGER, ALLOCATABLE :: mls(:)

ALLOCATE (mls (3)) ! Allocate 3 elements.

Intel Fortran Statements 10

10-7

DEALLOCATE (mls) ! mls is no longer

 ! allocated.

ALLOCATE (mls (-n:n)) ! Allocate with

 ! different extent.

Related Statements

ALLOCATE and DEALLOCATE

Related Concepts

See Chapter 4, Arrays for a full description of ALLOCATABLE arrays and
the conditions applying to their use.

Array pointers provide a more general mechanism for the manipulation of
deferred-shape arrays; see Chapter 4, Arrays.

ALLOCATE
Provides storage space for allocatable
arrays and pointer targets.

ALLOCATE (allocation-list
 [,STAT=scalar-integer-variable])

allocation-list is a comma-separated list of allocation.

allocation is allocate-object [(allocate-shape-
spec-list)].

allocate-object is variable-name or
structure-component. Each
allocate-object must be an allocatable array
or a pointer.

allocate-shape-spec-list
is a comma-separated list of allocate-shape-spec.

10-8

10 Intel Fortran Programmer’s Reference

allocate-shape-spec
is [lower-bound :] upper-bound. The
bounds in an allocate-shape-spec must be scalar
integer expressions.

STAT=scalar-integer-variable

returns the error status after the statement executes. If given, it is set to a
positive value if an error is detected, and to zero otherwise. If there is no
status variable, the occurrence of an error causes the program to terminate.

Description

The ALLOCATE statement creates space for allocatable arrays and targets
for variables (scalars or arrays) with the POINTER attribute. The
ALLOCATE and DEALLOCATE statements give the user the ability to
manage space dynamically at execution time.

For allocatable arrays, an error occurs when an attempt is made to allocate
an already allocated array or to deallocate an array that is not allocated. The
ALLOCATED intrinsic function may be used to determine whether an
allocatable array is allocated.

A pointer can be associated with a target, either with the pointer assignment
statement or by use of the ALLOCATE statement. It is not an error to allocate
an already associated pointer; its old target connection is replaced by a
connection to the newly allocated space. However, if the previous target
was allocated and no other pointer became associated with it, the space is no
longer accessible.

Examples

In the following example, a complex array with the POINTER attribute is
declared. Target space is allocated to it at run-time, the amount being
determined by two integer values read in. Later in the program, the space is
recovered by use of the DEALLOCATE statement.

COMPLEX, POINTER :: hermitian (:, :)

READ *, m, n

ALLOCATE (hermitian (m, n))

DEALLOCATE (hermitian, STAT = ierr)

Intel Fortran Statements 10

10-9

In the next example, a real allocatable array is
declared. The amount of space allocated to it depends
on how much is available.

REAL, ALLOCATABLE :: intense(:,:)

! Rank-2 allocatable array

CALL init_i_j(i, j)

DO

 ALLOCATE (intense(i, j), STAT = ierr4)

 ! ierr4 will be positive if there is not

 ! enough space to allocate this array.

 IF (ierr4 == 0) EXIT

 i = i/2; j = j/2

END DO

The derived type node in the next example is the basis of a binary tree
structure. It consists of a real value component (val) and two pointer
components, left and right, both of type node. The variable top (of
type node) is declared, and space is allocated for targets for the pointers
top%left and top%right.

The ALLOCATE and DEALLOCATE statements and pointer variables of type
NODE make it possible to allocate space for nodes in such a tree structure,
traverse it as required, and then recover the space when it is no longer
needed.

TYPE node

 REAL val

 TYPE(node), POINTER :: left, right

 ! Pointer components.

END TYPE node

TYPE(node) top

ALLOCATE (top % left, top % right)

In the final example, two CHARACTER arrays, para and key, are declared
with the POINTER attribute. para is allocated space; key is made to point
at a section of para.

CHARACTER, POINTER :: para(:), key(:)

! Pointers to char arrays.

CALL init_k_m(k, m)

10-10

10 Intel Fortran Programmer’s Reference

ALLOCATE (para(1000))

key => para (k : k + m)

Related Statements

ALLOCATABLE (statement and attribute), DEALLOCATE, NULLIFY, and
POINTER (statement and attribute)

Related Concepts

The intrinsic inquiry functions ALLOCATED and ASSOCIATED are
described in the Intel Fortran Compiler User’s Guide. See Chapter 3, Data
Types and Data Objects for information about pointers.

ASSIGN
Assigns statement label to integer
variable.

ASSIGN stmt-label TO integer-variable

stmt-label is the statement label for an executable statement
or a FORMAT statement in the same scoping unit
as the ASSIGN statement.

integer-variable is a scalar variable of the default integer type. It
cannot be a field of a derived type or record, or an
array element.

Description

Once a variable is defined by an ASSIGN statement, it can be used in an
assigned GO TO statement or as a format specifier in an input/output
statement. It should not be used in any other way.

A variable that has been assigned a statement label can be reassigned
another label or an integer value. If integer-variable is subsequently
assigned an integer value, it no longer refers to a label.

Intel Fortran Statements 10

10-11

Examples
 ASSIGN 20 TO LAST1

 GO TO LAST1

 ! ASSIGN used with FORMAT statement

 ASSIGN 10 TO FORM1

10 FORMAT(F6.1,2X,I5/F6.1

 READ(5,FORM1)SUM,K1,AVE1

20 ...

Related Statements

GO TO, READ, and WRITE

Related Concepts

Statement labels are described in Chapter 2, Language Elements. The
assigned GO TO statement is described later in this chapter as well as in
Chapter 6, Execution Control.

AT
Identifies the beginning of a debug
packet and indicates the point in the
program where debugging is to begin.

AT stmt-label

stmt-label is the number of an executable statement in the
program at which debugging is to begin.

Description

The Intel Fortran compiler permits execution of debugging operations
specified within a debug packet before the execution of the statement
indicated by the stmt-label. However, you must adhere to the following
guidelines:
• You cannot specify the stmt-label in another debug packet.

10-12

10 Intel Fortran Programmer’s Reference

• You must have an AT statement for each debug packet, but you can
have many debug packets for one program or subprogram.

• If you do not specify a stmt-label, the AT statement identifies the
beginning of a debug packet and the end of a preceding packet if any
exists. However, if the AT alone statement identifies the last debug
packet, then you must specify the end of the debug packet with an END
DEBUG statement.

AUTOMATIC
Makes procedure variables and arrays
automatic.

AUTOMATIC var-name-list

var-name-list is a comma-separated list of names of variables and
arrays to be declared as automatic. Array names may be
followed by an optional explicit-shape-spec.

Description

The AUTOMATIC statement is provided as an Intel Fortran extension.

If a variable or array declared within a procedure is declared as automatic,
then there is one copy of it for each invocation of the procedure. Space is
allocated on entry to the procedure and deallocated on exit. This is also the
default for variables that do not have the SAVE or STATIC attribute, unless
the /Qsave option has been specified (see the Intel Fortran Compiler User’s
Guide for information about this option).

If it is required to have the same copy of a variable available to each
invocation of the routine (for example, to keep a record of the depth of
recursion), then the variable should have the SAVE attribute.

Note the following:
• The AUTOMATIC statement may only be used within a procedure.
• Local variables are AUTOMATIC by default.
• Arguments and function values are AUTOMATIC.
• Automatic variables may not appear in EQUIVALENCE, DATA or SAVE

statements.

Intel Fortran Statements 10

10-13

• The AUTOMATIC attribute is not the same as automatic arrays and
automatic character strings.

Example
AUTOMATIC r, s, u, v, w(10)

Related Statements
SAVE and STATIC

Related Concepts

Automatic and static variables are described in Chapter 3, Data Types and
Data Objects.

BACKSPACE
Positions file at preceding record.

The syntax of the BACKSPACE statement can take one of two forms:

• Short form:
BACKSPACE integer-expression

• Long form:
BACKSPACE (io-specifier-list)

integer-expressionis the number of the unit connected to a sequential
file.

io-specifier-list is a list of the following comma-separated I/O
specifiers:

[UNIT=] unit specifies the unit connected to an external file
opened for sequential access. unit must be an
integer expression that evaluates to a number
greater than 0. If the optional keyword UNIT= is
omitted, unit must be the first item in
io-specifier-list.

10-14

10 Intel Fortran Programmer’s Reference

ERR=stmt-label specifies the label of an executable statement to
which control passes if an error occurs during
statement execution.

IOSTAT=integer- returns the I/O status after the statement executes.
 variable If the statement executes successfully,

integer-variable is set to zero. If an error
occurs, it is set to a positive integer that indicates
which error occurred.

Description

The BACKSPACE statement causes the external file connected to unit to be
positioned just before the preceding record of the file. The file must be
connected for sequential access.

Examples

The following statement causes the file connected to unit 10 to be
positioned just before the preceding record:

BACKSPACE 10

The following statement causes the file connected to unit 17 to be
positioned just before the preceding record. If an error occurs during the
execution of the statement, control passes to the statement at label 99, and
the error code is returned in ios:

BACKSPACE (17, ERR=99, IOSTAT=ios)

Related Statements

ENDFILE, OPEN, and REWIND

Related Concepts

For information about I/O concepts, see Chapter 8, I/O and File Handling,
which also gives example programs that perform I/O. For information about
I/O formatting, see Chapter 9, I/O Formatting.

Intel Fortran Statements 10

10-15

BLOCK DATA
Introduces a BLOCK DATA program
unit.

BLOCK DATA [block-data-name]

block-data-name is an optional name. If a name is given in the END
BLOCK DATA statement terminating a block data
program unit, it must be the same as the
block-data-name given in the BLOCK DATA
statement introducing the program unit.

Description

A block data program unit is used to give initial values to variables in a
named common blocks by means of DATA statements and must start with a
BLOCK DATA statement. The block data program unit is an obsolescent
feature of Fortran 95 and is effectively superseded by the module facility
(described in Chapter 7, Program Units and Procedures).

As an extension, Intel Fortran allows unnamed common blocks to be
initialized.

Examples

The following block data program unit gives initial values to some variables
in the common blocks cb1 and cb2. All variables in each common block
are specified completely.

BLOCK DATA

 REAL b(4) DOUBLE PRECISION z(3)

 COMPLEX c

 COMMON /cb1/c,a,b /cb2/z,y

 DATA b, z, c /1.0, 1.2 ,2*1.3, &

 3*7.654321D0, (2.4,3.76)/

END

10-16

10 Intel Fortran Programmer’s Reference

Related Statements

COMMON, DATA, and END

Related Concepts

The initialization of variables is discussed in Chapter 3, Data Types and
Data Objects.

BYTE
Declares entities of type integer.

BYTE [[, attrib-list] ::] entity-list

attrib-list is a comma-separated list of one or more of the following
attributes:

For information about each of the attributes, see the corresponding
statement in this chapter.

entity-list is a list of entities, separated by commas. Each entity
takes the form:

name [(array-spec)] [= initialization-expr]

where name is the name of a variable or function

array-spec is a comma-separated list of dimension bounds

initialization-expr
is the initial value for the entity.

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

Intel Fortran Statements 10

10-17

Description

The BYTE statement is an Intel Fortran extension that is used to declare the
properties of entities. The entities can take values that are whole numbers
and can be represented in one byte. It is equivalent to the
INTEGER(KIND=1) statement. Note that the BYTE statement does not
have a KIND parameter.

The BYTE statement is constrained by the rules for all type declaration
statements, including the requirement that it precede all executable
statements.

Explicitly declaring an entity with the BYTE statement overrides any implicit
typing rules in effect.

An array specification included with an entity in entity-list overrides
any specification made with the DIMENSION attribute.

If attrib-list or initialization-expr appear in the declaration,
entity-list must be preceded by the double colon.

Initialization

initialization-expr must be a constant integer expression that can
be evaluated at compile time.

The following entities may not be initialized:
• Dummy arguments
• Function results
• Allocatable arrays
• Pointers
• External names
• Intrinsic names
• Automatic objects

If attrib-list includes the PARAMETER attribute, every entity in
entity-list must be accompanied by an initialization expression.

Initializing an entity implies the SAVE attribute.

To initialize an array in a BYTE statement, you may use an array constructor,
as in the following example:

BYTE, DIMENSION(4) :: bvec=(/1,2,3,4/)

When initializing an array, all items in the array must be initialized.
Implied-DO loops cannot be used to initialize an array in a type declaration
statement.

10-18

10 Intel Fortran Programmer’s Reference

As an extension, an initializer may appear between slashes in a type
declaration statement, as in the following example:

BYTE b/12/, bb/27/

The double colon (::) may not be used with this initialization format.

Example
The following are valid declarations:

BYTE i, j

BYTE :: k

BYTE, PARAMETER :: limit=120

BYTE val /253/

Related Statements

INTEGER

Related Concepts
The following are discussed elsewhere in this manual:
• Implicit typing rules: Chapter 3, Data Types and Data Objects
• Data representation models: Chapter 3, Data Types and Data Objects
• Storage classes for variables: Chapter 3, Data Types and Data Objects
• Automatic objects: Chapter 3, Data Types and Data Objects
• Arrays: Chapter 4, Arrays
• Expressions: Chapter 5, Expressions and Assignment
• Initialization expressions: Chapter 5, Expressions and Assignment

CALL
Invokes a subroutine.

CALL subr-name[([subr-act-arg-spec-list])]

subr-name is the name of the subroutine being invoked.

subr-act-arg- is a comma-separated list of subr-act-arg-spec.
 spec-list

Intel Fortran Statements 10

10-19

subr-act-arg- is [keyword =]subr-act-arg.
 spec

subr-act-arg is one of the following:

• expression
• variable
• procedure-name
• *label

keyword is one of the dummy argument names of the subroutine
being invoked. If any keyword is specified, the
subroutine interface must be explicit.

Description

A CALL statement is used to invoke (call) a subroutine, and to specify actual
arguments, if any. Execution of the subroutine begins with the first
executable statement. The sequence of events when a CALL statement is
executed is as follows:

1. Actual arguments that are expressions are evaluated.
2. The actual arguments are associated with the corresponding dummy

arguments.
3. Control transfers to the subroutine being called, and the subroutine

executes.
4. Control returns from the subroutine, normally to the statement

following the CALL statement, or to a statement label indicated by an
alternate return specifier argument (of the form * label).

The correspondence between actual and dummy arguments is primarily by
position: the first actual argument corresponds to the first dummy argument,
the second to the second, and so on. The positional correspondence may be
overridden by argument keywords, where a keyword name attached to an
actual argument specifies a correspondence to the dummy argument of the
same name. The following conditions govern the use of argument
keywords:

• If an argument keyword is used, all subsequent arguments in the CALL
statement must also be accompanied by keywords.

• If an optional argument is omitted, the keyword form is required for
any following arguments.

10-20

10 Intel Fortran Programmer’s Reference

• If an argument keyword is used, the procedure interface must be
explicit; that is, the procedure must be an intrinsic procedure, an
internal procedure, a module procedure, or an external procedure with
an interface block accessible to the program unit making the call.

A subroutine can call itself, directly or indirectly; in this case the keyword
RECURSIVE must be added to the SUBROUTINE statement of the
subroutine definition.

The %VAL and %REF built-in functions are provided as Intel Fortran
extensions. These allow cross-calling between languages by enabling
arguments to be passed by value and by reference, respectively. %VAL
causes its argument to be passed by value, as if to a C function; it is
sign-extended to a 32-bit value if it is less than 32 bits. %REF causes its
argument to be passed by reference, similar to the default Fortran 95
behavior, except that the hidden length parameter of a CHARACTER string is
not passed.

The only subroutine invocation other than by the CALL statement in Fortran
95 is through “defined assignment”, where a defined type assignment
operator that has been defined by means of a subroutine is used. See the
INTERFACE statement in this chapter for more information.

Examples
! Interface for subroutine draw

INTERFACE

 SUBROUTINE draw (x_start, y_start, x_end, &

 y_end, form, scale)

 REAL x_start, y_start, x_end, y_end

 CHARACTER (LEN = 6), OPTIONAL :: form

 REAL, OPTIONAL :: scale

 END SUBROUTINE draw

END INTERFACE

! References to draw

CALL draw (5., -4., 2., .6, "DASHED")

! Arguments given by position.

! Optional argument scale omitted.

CALL draw (scale=.4, x_end=0., y_end=0., &

 x_start=.5, y_start=3.)

Intel Fortran Statements 10

10-21

! Arguments given by keyword.

! Optional argument form omitted.

Related Statements

INTERFACE and SUBROUTINE

Related Concepts

The correspondence between the dummy arguments of a subroutine and the
actual arguments specified in its invocation (“Argument association”) is
discussed in detail in Chapter 7, Program Units and Procedures, as are the
other methods of association between a program unit and a subroutine
called by it.

CASE
Marks start of statement block in a
CASE construct.

CASE (case-selector) [construct-name]

case-selector is a comma-separated list of ranges of values that
are candidates for matching against the case index
specified by the SELECT CASE statement. Each
item in the list can take one of the following
forms:

• case-value
• low:
• :high

• low:high
• DEFAULT

where case-value, are scalar initialization expressions of type

10-22

10 Intel Fortran Programmer’s Reference

 low, and high integer, character, or logical; and DEFAULT
indicates the statement block to execute if none of
the other CASE statements in the CASE construct
produces a match.

construct-name is the name given to the CASE construct.

Description

The CASE statement is used in a CASE construct to mark the start of a
statement block. The CASE construct can consist of multiple blocks; at
most, one is selected for execution. Selection is determined by comparing
the case index produced by the SELECT CASE statement to the
case-selector in each CASE statement. If a match is found, the
statement block under the matching case-selector executes. A match
between the case index (c) and case-selector is determined for each
form of case-selector, as follows:

case-value For integer and character types, a match occurs if c
.EQ. case-value. For logical types, a match occurs if
c .EQV. case-value.

low: For integer and character types, a match occurs if c
.GE. low.

:high For integer and character types, a match occurs if c
.LE. high.

low : high For integer and character types, a match occurs if c
.GE. low .AND. c .LE. high.

DEFAULT For integer, character, and logical types, a match occurs
if no match is found with any other case-selector
and DEFAULT is specified as a case-selector.

If CASE DEFAULT is not present and no match is found with any of the
other CASE statements, none of the statement blocks within the CASE
construct executes and execution resumes with the first executable
statement following the END SELECT statement.

At most only one DEFAULT selector can appear within a CASE construct.

Intel Fortran Statements 10

10-23

Each CASE statement must specify a unique value or range of values within
a particular CASE construct. Only one match can occur, and only one
statement block can execute.

All case-selectors and the case index within a particular CASE
construct must be of the same type: integer, character, or logical. However,
the lengths of character types can differ.

The colon forms— low:, :high, or low:high—are not permitted for a
logical type.

Although putting the CASE statements in order according to range may
improve readability, it is not necessary for correct or optimal execution of
the CASE construct. In particular, DEFAULT can appear anywhere among
the CASE statements and need not be the last.

CASE statements inside a named CASE construct need not specify
construct-name; but if they do, the name they specify must match that
of the SELECT CASE.

A CASE statement can have an empty statement block.

Example

The following example considers a person’s credits and debits and prints a
message indicating whether a resulting account balance will be overdrawn,
empty, uncomfortably small, or sufficient:

INTEGER :: credits, debits

SELECT CASE (credits - debits)

CASE (:-1)

 PRINT *, ’OVERDRAWN’

 CALL TRANSFERFUNDS

CASE (0)

 PRINT *, ’NO MONEY LEFT’

CASE (1:50)

 PRINT *, ’BALANCE LOW’

CASE (51:)

 PRINT *, ’BALANCE OKAY’

END SELECT

10-24

10 Intel Fortran Programmer’s Reference

Related Statements

SELECT CASE and END (construct)

Related Concepts

The CASE construct is described in Chapter 6, Execution Control.

CHARACTER
Declares entities of type character.

CHARACTER [char-selector] [[, attrib-list] ::]
 entity-list

char-selector specifies the length and kind of the character variable. It
takes one of the following forms:

• ([LEN=]len-param[,
KIND=kind-param])

• (len-param, [KIND=]kind-param)

• (KIND=kind-param[, LEN=len-param])

• *char-len [,]

• *(len-param) [,]

where kind-param (if present) must be 1 (the default), len-param is
either an asterisk (*) or a specification expression, and char-len is an
integer constant. In the last form, len-param is enclosed in parentheses,
and the optional comma may be included only if the double colon does not
appear in the type declaration statement. If len-param evaluates to a
negative value, a zero-length string is declared. If len-param is
unspecified, the default is 1.

attrib-list is a list of one or more of the following attributes,
separated by commas:

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

Intel Fortran Statements 10

10-25

For information about each of the attributes, see the corresponding
statement in this chapter.

entity-list is a list of entities, separated by commas. Each entity
takes the form:

name [(array-spec)] [* len-param]
 [= initialization-expr]

where name is the name of a variable or function, array-spec is a
comma-separated list of dimension bounds, len-param is either an
asterisk (*) or a specification expression, and initialization-expr is
the initial value for the entity.

Description

The CHARACTER statement is used to declare the length and properties of
character data.

The CHARACTER statement is constrained by the rules for all type
declaration statements, including the requirement that it precede all
executable statements.

Explicitly declaring an entity with the CHARACTER statement overrides any
implicit typing rules in effect.

An array specification included with each entity in entity-list
overrides any specification made with the DIMENSION attribute.

Initializing an entity implies the SAVE attribute.

If attrib-list or initialization-expr appears in the declaration,
entity-list must be preceded by the double colon.

Assumed Character Length Parameter

To indicate that the length of a character can vary, you may use an assumed
character length parameter by specifying an asterisk (*) for len-param.
The asterisk may only be used to do the following:

• Declare the type of a function. The function must not be an
internal or module function, nor must it be array-valued,
pointer-valued, or recursive.

• Declare a dummy argument of a procedure.
• Declare a named constant (see the PARAMETER statement).

10-26

10 Intel Fortran Programmer’s Reference

Automatic Character Variables

Automatic character variables are allowed within procedures, but only as
local objects, not dummy arguments. For example,

CHARACTER(LEN=arg) :: name

declares an automatic character variable of the nonconstant length arg
within a procedure. The value of arg is known only at entry to the
procedure. Such character variables and character dummy arguments
specified with a length of * are the only character entities whose length may
vary. Automatic character variables cannot be initialized in a type
declaration statement or appear in a DATA statement.

Initialization

initialization-expr must be a constant character expression that can
be evaluated at compile time.

The following entities may not be initialized:

• Dummy arguments
• Function results
• Allocatable arrays
• Pointers
• External names
• Intrinsic names
• Automatic objects

If attrib-list includes the PARAMETER attribute, each entity in
entity-list must include an initialization expression; see Chapter 5,
Expressions and Assignment for information about initialization
expressions.

Initializing an entity implies the SAVE attribute.

The following is an example of character array initialization using array
constructor syntax:

CHARACTER(4) :: response(3) = (/"Yes.", &

 "No!!", "Huh?"/)

Intel Fortran Statements 10

10-27

As shown in the example, all items in the array must be initialized, and all
of the character constants must be of the same length. Implied-DO loops
cannot be used to initialize an array in a type declaration statement.

As an extension, an initializer may appear between slashes in a type
declaration statement. However, the double colon separator (::) may not be
used with this format.

Examples

The following are valid declarations:

CHARACTER c1, c2

CHARACTER(LEN=80) :: text(0:25)

CHARACTER(2, 1), PARAMETER :: limit=’ZZ’

The following are valid uses of the assumed length parameter:

CHARACTER(*) dummy_arg_name

CHARACTER(*), PARAMETER :: hello="Hi Sam"

CHARACTER(LEN=*), PARAMETER :: hello="Hi Sam"

Assuming that c is an ordinary variable and not the dummy argument to a
procedure, the following declaration is an illegal use of the assumed length
parameter:

CHARACTER*(*) c ! illegal

Related Concepts

The following related concepts are discussed elsewhere in this manual:

• Implicit typing rules: Chapter 3, Data Types and Data Objects

• Data representation models: Chapter 3, Data Types and Data
Objects

• Storage classes for variables: Chapter 3, Data Types and Data
Objects

• Automatic objects: Chapter 3, Data Types and Data Objects

• Arrays: Chapter 4, Arrays
• Expressions: Chapter 5, Expressions and Assignment

• Initialization expressions: Chapter 5, Expressions and Assignment

10-28

10 Intel Fortran Programmer’s Reference

CLOSE
Terminates file connection.

CLOSE (io-specifier-list)

io-specifier-list is a list of the following comma-separated I/O
specifiers:

[UNIT=]unit specifies the unit connected to an external file.
unit must be a positive integer-valued
expression. If the optional keyword UNIT= is
omitted, unit must be the first item in
io-specifier-list.

ERR=stmt-label specifies the label of the executable statement to
which control passes if an error occurs during
statement execution. If neither IOSTAT= or ERR=
is specified and an error occurs, the program
aborts and a system error message is issued.
stmt-label must be in the same scoping unit as
the CLOSE statement with the ERR= specifier.

IOSTAT= returns the I/O status after the statement executes.
 integer-variable If the statement executes successfully,

integer-variable is set to zero. If an error
occurs, it is set to a positive integer that indicates
which error occurred. If neither IOSTAT= or
ERR= is specified and an error occurs, the
program aborts and a system error message is
issued.

Intel Fortran Statements 10

10-29

STATUS=character- specifies the state of the file after it is closed.
 expression character-expression can be one of the

following arguments:

The STATUS= specifier is ignored if the file was opened as a scratch
file; see the OPEN statement in this chapter.

Description

The CLOSE statement closes the file whose unit number was obtained from
an OPEN statement. A CLOSE statement must contain a unit number and at
most one each of the other I/O specifiers.

A CLOSE statement need not be in the same program unit as the OPEN
statement that connected the file to the specified unit. If a CLOSE statement
specifies a unit that does not exist or has no file connected to it, no action
occurs.

Examples

The following examples illustrate different uses of the CLOSE statement. In
the first example, the CLOSE statement closes the file connected to unit 10;
after it is closed, the file will continue to exist, unless it was opened with the
STATUS=’SCRATCH’ specifier:

CLOSE (10)

In the next example, after the file connected to unit 9 is closed, it will cease
to exist:

CLOSE(UNIT=9,STATUS=’DELETE’)

The following code produces the same results as the previous example:

CHARACTER(LEN=6) cstat

cstat=’delete’

CLOSE(UNIT=9,STATUS=cstat)

’KEEP’ Preserve the file after
it is closed (default).

’DELETE’ Do not preserve the file
after it is closed.

10-30

10 Intel Fortran Programmer’s Reference

The following example closes the file connected to unit 8. If an error occurs,
control is transferred to the executable statement labeled 100, and the error
code is stored in the variable ios:

CLOSE(8,IOSTAT=ios,ERR=100)

Related Statements

OPEN

Related Concepts

For information about I/O concepts, see Chapter 8, I/O and File Handling,
which also lists example programs performing I/O.

COMMON
Specifies common blocks.

COMMON [/[[common-block-name]]/] object-list

 [[,]/ [common-block-name] / object-list]...

common-block-name
is the name of a labeled common block.

object-list is a comma-separated list of scalar variables, arrays,
records, and structures. If an array is specified, it may be
followed by an explicit-shape specification expression.

Description

The COMMON statement defines one or more named or unnamed storage
areas to be shared by different program units. It also identifies the
objects—that is, variables, arrays, records, and structures—to be stored in
those areas. Objects in common that are shared by different program units
are made accessible by storage association.

Intel Fortran Statements 10

10-31

Each object following a common-block name is declared to be in that
common block. If /common-block-name/ is omitted, all objects in the
corresponding object-list are specified to be in blank common. It is
also possible to declare variables in blank common by specifying two
slashes without common-block-name. Consider the following examples:

!Declare variables a, b, c in blank common.

COMMON a, b, c

!Declare pay and time in blank common,

! and red in the named common block color.

COMMON pay, time, /color/red

!Variables a1 and a2 are in common block a;

! array x and variable y are in blank common;

! and variable d is in common block c

COMMON/a/a1,a2,//x(10),y,/c/d

Any common block name or blank common specification can appear more
than once in one or more COMMON statements within the same program unit.
The variable list following each successive appearance of the same common
block name is treated as a continuation of the list for that common block
name. For example, the following COMMON statements:

COMMON a,b,c /x/y,x,d //w,r

COMMON /cap/hat,visor, //tax, /x/o,t

are equivalent to:

COMMON a,b,c,w,r,tax

COMMON /x/y,x,d,o,t

COMMON /cap/hat,visor

Unlike named common blocks, blank common can differ in size in different
scoping units. However, blank common cannot be initialized.

Intel Fortran allows you to mix CHARACTER and numeric data types in
COMMON. This may create undesirable alignment, however, and is not
recommended. As an extension, Intel Fortran saves all common blocks in
static memory unless you use the name of a named COMMON block in the
dynamic common command-line switch; see the Intel Fortran Compiler
User’s Guide.

10-32

10 Intel Fortran Programmer’s Reference

Restrictions on Common Block Usage

All common block names must be distinct from subprogram names.

The size of a named common block must be the same in all program units
where it is declared. Note, however, that the size of blank common can
differ.

The following data items must not appear in a COMMON statement:

• Dummy arguments in a subprogram
• Functions, subroutines, or intrinsic functions
• Pointees declared by Cray-style pointers
• Variables accessible by use association
• Automatic entities, including automatic character strings
• Allocatable arrays

A variable can only appear in one COMMON statement within a program unit.

Zero-sized common blocks are allowed. Zero-sized common blocks with
the same name are storage associated.

Array bounds in a COMMON statement must be constant specification
expressions.

Structures in common must be of sequence type.

A pointer may appear in a common block. When it does, it must have the
same type, type parameter, and rank in every instance of that common
block.

Initializing Common Blocks

As an extension to the Standard, Intel Fortran allows common blocks to be
initialized outside of a block data program unit; for example, in a
subroutine. However, note that all data initialization for a given common
block must occur in the same compilation unit.

Intel Fortran also allows blank common to be initialized.

Intel Fortran Statements 10

10-33

Common Block Size

The size of a common block is determined by the number and type of the
variables it contains. In the following example, the common block
my_block takes 20 bytes of storage: b uses 8 (2 bytes per element) and
arr uses 12 (4 bytes per element):

INTEGER(2) b(4)

INTEGER(4) arr(3)

COMMON /cb/b, arr

Data space within the common area for arrays b and arr shown in this
example is allocated as follows:

Allocation of Common Block Storage

Common block storage is allocated at link time. It is not local to any one
program unit.

Each program unit that uses the common block must include a COMMON
statement that contains the block name, if a name was specified. Variables
assigned to the common block by the program unit need not correspond by
name, type, or number of elements with those of any other program unit.
The only consideration is the size of the common blocks referenced by the
different program units. Correspondence between objects in different
instances of the same common block is established by storage association.

Note the following Intel Fortran: when types with different alignment
restrictions are mixed in a common block, the compiler may insert padding
bytes as necessary. (For exact data type alignment rules, see Chapter 3,
Data Types and Data Objects.)

Bytes Common Block Variables

0, 1, 2, 3 b(1), b(2)

4, 5, 6, 7 b(3), b(4)

8, 9, 10, 11 arr(1)

12, 13, 14, 15 arr(2)

16, 17, 18, 19 arr(3)

10-34

10 Intel Fortran Programmer’s Reference

Example

The following example illustrates how the same common block can be
declared in different program units with different variables but the same
size:

! common declaration for program unit 1

INTEGER i, j, k

COMMON /my_block/ i, j, k

! common declaration for program unit 2

INTEGER n(3)

COMMON /my_block/ n(3)

The variables i, j, and k in program unit 1 share the same storage with the
array n in program unit 2: i in program unit 1 matches up with n(1) in
program unit 2, j with n(2), and k with n(3).

Related Statements
EQUIVALENCE

Related Concepts

For additional information about storage association and alignment, see
Chapter 3, Data Types and Data Objects.

COMPLEX
Declares entities of type complex.

COMPLEX [kind-spec] [[, attrib-list] ::] entity-list

Intel Fortran Statements 10

10-35

kind-spec is the kind type parameter that specifies the range and
precision of the entities in entity-list. kind-spec
takes the form:

([KIND=] kind-param)
where kind-param represents the kind of both the real and imaginary
parts of the complex number. It can be a named constant or a constant
expression that has the integer value of 4 or 8. The size of the default
type is 4.
As an extension, kind-spec can take the form:
* len-param

where len-param is the integer 8 or 16 (default = 8), which
represents the size of the whole complex entity.

attrib-list is a list of one or more of the following attributes,
separated by commas:

For information about each of the attributes, see the corresponding
statement in this chapter.

entity-list is a list of entities, separated by commas. Each entity
takes the form:

name [(array-spec)] [= initialization-expr]

where name is the name of a variable or function, array-spec is a
comma-separated list of dimension bounds, and
initialization-expr is the initial value for the
entity.

Description

The COMPLEX statement is used to declare the length and properties of data
that are approximations to the mathematical complex numbers. A complex
number consists of a real part and an imaginary part. A kind parameter (if
specified) indicates the representation method.

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

10-36

10 Intel Fortran Programmer’s Reference

The COMPLEX statement is constrained by the rules for type declaration
statements, including the requirement that it precede all executable
statements.

Explicitly declaring an entity with the COMPLEX statement overrides any
implicit typing rules in effect.

If attrib-list or initialization-expr appear in the declaration,
entity-list must be preceded by the double colon.

If array-spec is specified for an entity, it overrides any DIMENSION
attribute.

Initialization

initialization-expr must be a constant complex expression that can
be evaluated at compile time.

The following entities may not be initialized:

• Dummy arguments
• Function results
• Allocatable arrays
• Pointers
• External names
• Intrinsic names
• Automatic objects

If attrib-list includes the PARAMETER attribute, each entity in
entity-list must include an initialization expression.

To initialize an array in a COMPLEX statement, you must use an array
constructor, as in the following example:

COMPLEX, DIMENSION(2) :: &

 cvec=(/(2.294, 6.288E-2), (-1.0096E7, 0)/)

If an array is initialized, all items in the array must be initialized.
Implied-DO loops cannot be used to initialize an array in a type declaration
statement.

As an Intel Fortran extension, an initializer may appear between slashes in a
type declaration statement, as follows:

COMPLEX cx/(2.294, 6.288E-2)/

The double colon (::) may not be used with this initialization format.

Intel Fortran Statements 10

10-37

Length Specification Extension

As a portability extension, Intel Fortran allows the following syntax for
specifying the length of an entity:

name [*len] [(array-spec)] [= initialization-expr]

If array-spec is specified, *len may appear on either side of
array-spec.

If name appears with *len, it overrides the length specified by
kind-spec. For example, the following statements are equivalent
declarations of x:

COMPLEX(KIND = 8) x

COMPLEX(8) x*16

Examples

The following are valid declarations:

COMPLEX x, y

COMPLEX(KIND=8) :: z

COMPLEX,PARAMETER :: t1(2)=(/(3.2, 0), &

 (.04, -1.1)/)

Related Statements
DOUBLE COMPLEX

Related Concepts

The following are discussed elsewhere in this manual:

• Implicit typing rules: Chapter 3, Data Types and Data Objects

• Data representation models: Chapter 3, Data Types and Data Objects

• Storage classes for variables: Chapter 3, Data Types and Data Objects

• Automatic objects: Chapter 3, Data Types and Data Objects

• Arrays: Chapter 4, Arrays
• Expressions: Chapter 5, Expressions and Assignment

• Initialization expressions: Chapter 5, Expressions and Assignment

10-38

10 Intel Fortran Programmer’s Reference

CONTAINS
Introduces an internal procedure or a
module procedure.

CONTAINS

Description

The CONTAINS statement introduces an internal procedure or a module
procedure, separating it from the program unit that contains it. The
statement can be used in:

• A main program, external subprogram, or module subprogram; in each
case, it precedes one or more internal procedures.

• A module, where it precedes any module procedures.

When a CONTAINS statement is present, at least one subprogram must
follow it.

Examples

The first example illustrates CONTAINS introducing an internal subroutine.
It also illustrates how the internal subroutine mechanism can provide an
alternative to the FORTRAN 77 statement function mechanism.

PRINT *, double_real(6.6)

CONTAINS

 FUNCTION double_real (x); REAL x

 double_real = 2.0 * x

 END FUNCTION

END

The next example illustrates a main program with an internal procedure
part.

PROGRAM electric ! Program header

 REAL current ! Specification part

 current = 100.5 ! Execution part begins

Intel Fortran Statements 10

10-39

 CALL compute_resistance(voltage, current, &
 resistance)

 CONTAINS ! Internal procedure part

 SUBROUTINE compute_resistance(v, i, r)

 REAL i

 r = v / i

 END SUBROUTINE

END PROGRAM electric

The third example is of a module that contains a module subprogram, which
in turn contains an internal subprogram.

MODULE one

 CONTAINS

 SUBROUTINE two(x) ! Module subprogram

 CONTAINS

 LOGICAL FUNCTION three(y)

 !Internal subprogram

 END FUNCTION three

 END SUBROUTINE two

END MODULE one

Related Statements

SUBROUTINE and FUNCTION

Related Concepts

The following are discussed in Chapter 7, Program Units and Procedures:

• Program units
• Internal subprograms
• Module subprograms

10-40

10 Intel Fortran Programmer’s Reference

CONTINUE
Establishes reference point within a
program unit.

CONTINUE

Description

The CONTINUE statement has no effect on program execution. Control
passes to the next executable statement. The CONTINUE statement is
generally used to mark a place for a statement label, especially when it
occurs as the terminal statement of a FORTRAN 77-style DO loop.

CONTINUE is obsolescent in Fortran 95.

Example
count = 0

DO 20 i = 1, 10

 count = count + i

20 CONTINUE

PRINT *, count

Related Statements
DO

Related Concepts

Flow control statements are described in Chapter 5, Expressions and
Assignment.

Intel Fortran Statements 10

10-41

CYCLE
Interrupts current iteration of a DO
loop.

CYCLE [do-construct-name]

do-construct-name

is the name of a DO construct that must contain this CYCLE statement.

Description

The CYCLE statement is used to control the execution of a DO loop. When it
executes, it interrupts a currently executing loop iteration and passes control
to the next iteration, making the appropriate adjustments to the loop index.
It may be used with either the DO construct or the FORTRAN 77-style DO
loop.

A CYCLE statement belongs to a particular DO loop. If
do-construct-name is not given, the CYCLE statement resumes the
immediately enclosing DO loop. If do-construct-name is given, the
CYCLE statement resumes an enclosing named DO loop with the same name.

Example

The following example uses the CYCLE statement to control a bubble sort:

LOGICAL :: swap

INTEGER :: i, j

outer: DO i = 1, n-1

 swap = .FALSE.

 inner: DO j = n, i+1, -1

 IF (a(j) >= a(j-1)) CYCLE inner

 swap = .TRUE.

 atmp = a(j)

 a(j) = a(j-1)

 a(j-1) = atmp

 END DO inner

10-42

10 Intel Fortran Programmer’s Reference

 IF (.NOT. swap) EXIT outer

END DO outer

Related Statements

DO and EXIT

Related Concepts

The DO construct and flow control are discussed in Chapter 5, Expressions
and Assignment.

DATA
Initializes program variables.

DATA var-list1 / value-list1 / [[,]var-list2 /
 value-list2 /]...

var-list is a comma-separated list of entities, including the following:

• A variable name
• An array name
• An array triplet section; for example:

points(1:10:2)

• An array element reference; for example:
scores(0)

• A substring name; for example:
name(1:10)

• An implied-DO loop; for example:
((matrix(i,j),i=0,5),j=5,10)

• For information about implied-DO loops, see Chapter 8, I/O and File
Handling.

• An object of a derived type
• A component of a derived-type object

Intel Fortran Statements 10

10-43

The following cannot appear in var-list:

• Pointer-based variables
• Records and record field references. However, you can initialize a

record’s fields in the record’s structure definition; see the RECORD
statement in this chapter.

• Automatic objects, including automatic character strings
• Dummy arguments
• Allocatable arrays: that is, arrays declared with a specified rank, but no

specified bounds within each dimension
• The result variable of a function
• Objects made available by use or host association
• Procedure names

value-list is a list of constant values, separated by commas. Each
constant in the list represents a value to be assigned to
the corresponding variable in var-list. A constant
value can be optionally repeated by preceding the
constant with a repetition factor. The syntax of a
repeated constant is:

r*val

where r is a positive integer specifying the number of times that
val, the constant value, is to be specified.

Description

The DATA statement initializes variables local to a program unit before the
program unit begins execution. Initialization occurs as follows:

The var-list is expanded to form a sequence of scalar variables, and the
value-list is expanded to form a sequence of scalar constants. The number
of items in each expanded sequence must be the same, and there must be a
one-to-one correspondence between the items in the two expanded lists.
The variables in the expanded sequence of var-list are initialized on the
basis of the correspondence.

If var-list contains an array name, the expanded sequence of constants
must contain a constant for every element in the array.

10-44

10 Intel Fortran Programmer’s Reference

A zero-sized array or an implied-DO list with an iteration count of zero in
var-list contributes no variables to the expanded sequence of variables.
However, a zero-length character variable does contribute a variable to the
list.

If a constant is of any numeric or logical type, the corresponding variable
can be of any numeric type. If an object is of derived type, the
corresponding constant must be of the same type. If the type of the constant
does not agree with the type of the variable, type conversion is performed,
according to the rules described in Chapter 5, Expressions and Assignment.

Variables can be initialized with binary, octal, or hexadecimal constants.

A variable or array element must not appear in a DATA statement more than
once. If two variables share the same storage space through an
EQUIVALENCE statement, only one can appear in a DATA statement. If a
substring of a character variable or other array element appears in a DATA
statement, no overlapping substring (including the entire variable or array
element) can appear in any DATA statement.

The length of a character constant and the declared length of its
corresponding character variable need not be the same. If the constant is
shorter than the variable, blank characters are placed in the remaining
positions. If the constant is longer than the variable, the constant is
truncated from the right until it is the same length as the variable

If a subscripted array element appears in var-list, then the subscript
must be a specification expression.

DATA statements can be interspersed among executable statements.
However, they initialize prior to runtime and, therefore, cannot be used as
executable assignment statements.

Extensions to Fortran 95

A variable of type other than integer may be initialized with a binary, octal, or
hexadecimal constant. The data type for a constant is determined from the
type of the corresponding variable. The size (in bytes) of the variable
determines how many digits of the octal or hexadecimal constant are used.
If the constant lacks enough digits, the value is padded on the left with
zeros. If the constant has too many digits, it is truncated on the left.

Intel Fortran Statements 10

10-45

An integer, binary, octal, or hexadecimal constant can initialize a character
variable of length one, as long as the value of the constant is in the range 0
to 255.

Examples

The following DATA statement initializes integer, logical, and character
variables:

INTEGER i

LOGICAL done

CHARACTER(LEN=5) prompt

DATA i, done, prompt/10, .FALSE., ’Next?’/

The next DATA statement specifies a repetition factor of 3 to assign the
value of 2 to all three elements of array i:

INTEGER, DIMENSION(3) :: i

DATA i/3*2/

The next DATA statement uses two nested implied-DO loops to assign the
literal value X to each element of an array of 50 elements, k(10,5); for
detailed information about implied-DO loops, see Chapter 8, I/O and File
Handling:

CHARACTER, DIMENSION(10,5) :: k

DATA ((k(i,j),i=1,10),j=1,5)/50*’X’/

Related Statements

BYTE, CHARACTER, COMPLEX, DOUBLE COMPLEX, DOUBLE
PRECISION, INTEGER, LOGICAL, and REAL

Related Concepts

The following are discussed elsewhere in this manual:

• Initialization: Chapter 3, Data Types and Data Objects

• Assignment: Chapter 5, Expressions and Assignment

• Implied-DO loops: Chapter 8, I/O and File Handling

10-46

10 Intel Fortran Programmer’s Reference

DEALLOCATE
Deallocates allocatable arrays and
pointer targets.

DEALLOCATE (alloc-obj-list[, STAT=scalar-int-var])

alloc-obj-list is a comma-separated list of pointers or
allocatable arrays.

STAT=scalar-int-var
returns the error status after the statement
executes. If given, it is set to a positive value if an
error is detected, and to zero otherwise. If there is
no status variable, the occurrence of an error
causes the program to terminate.

Description

The DEALLOCATE statement deallocates allocatable arrays and pointer
targets, making the memory available for reuse. A specified allocatable
array then becomes not allocated (as reported by the ALLOCATED intrinsic),
while a specified pointer becomes disassociated (as reported by the
ASSOCIATED intrinsic).

An error occurs if an attempt is made to deallocate an allocatable array that
is not currently allocated or a pointer that is not associated. Errors in the
operation of DEALLOCATE can be reported by means of the optional STAT=
specifier.

You can deallocate an allocatable array by specifying the name of the array
with the DEALLOCATE statement. You cannot deallocate a pointer that
points to an object that was not allocated.

Some or all of a target associated with a pointer by means of the ALLOCATE
statement can also be associated subsequently with other pointers. However,
it is not permitted to deallocate a pointer that is not currently associated with
the whole of an allocated target object.

Intel Fortran Statements 10

10-47

Deallocation of a pointer target causes the association status of any other
pointer associated with all or part of the target to become undefined. When
a pointer is deallocated, its association status becomes disassociated, as if a
NULLIFY statement had been executed.

Examples

The following example declares a complex array with the POINTER
attribute. The ALLOCATE statement allocates target space to the array at
run-time; the amount is determined by the input values to the READ
statement. Later in the program, the DEALLOCATE statement will recover
the space.

COMPLEX, POINTER :: hermitian (:, :)

...

READ *, m, n

ALLOCATE (hermitian (m, n))

...

DEALLOCATE (hermitian, STAT=ierr)

Related Statements

ALLOCATABLE, ALLOCATE, NULLIFY, and POINTER

Related Concepts

Pointers are discussed in Chapter 3, Data Types and Data Objects, Chapter
4, Arrays, and Chapter 5, Expressions and Assignment. The intrinsic
inquiry functions ALLOCATED and ASSOCIATED are described in
the Intel Fortran Compiler User’s Guide.

10-48

10 Intel Fortran Programmer’s Reference

DEBUG
Sets the conditions for operation of the
debugging tool.

DEBUG option1 [[,]option2 ...]

An option can be any of the following:

UNIT(un) un is an integer constant that specifies a unit number.
This is the debug output file in which the system will
place the debug output. If you do not specify this option,
the system uses the default debug output file. You must
use the same unit for all unit definitions within an
executable program.

SUBCHK (a1, a2,..., an)

a specifies the array name. The system compares the
subscript combination with the array size to validate the
named arrays. If the subscript value exceeds the size of
the array, you will get a message in the debug file. The
program executes using the incorrect subscript If you
omit the list of array names, the program checks for valid
subscript usage. If you omit the option, no arrays are
checked for valid subscripts.

TRACE Displays the program flow by statement label. You must
specify this statement in the DEBUG statement of each
program that you want to trace. You must also use the
TRACE ON statement in the first debug packet that you
want to trace.

INIT (i1, i2,..., in)

i specifies an array name or variable with an assigned
value that you want displayed in the debug output file. If i
is a variable name, the name and value are displayed
whenever it is assigned a new value in an assignment or
in a READ, or ASSIGN statement.

Intel Fortran Statements 10

10-49

SUBTRACE Specifies to display the name of the subprogram when it
is entered. When the subprogram completes, the
message RETURN is displayed.

Description

You can supply the options in the DEBUG statement in any order, providing
that you separate them with commas. You must place all debugging
statements before the first statement of the program that you are debugging.

In a subroutine, you must place the debug statements immediately before
the SUBROUTINE statement. In a function subprogram, you must place the
debug statements immediately before the FUNCTION statement.

The following is the required statement sequence:
1. DEBUG statement
2. Debug packets
3. END DEBUG statement
4. First of the source statements of a program to be debugged

You must specify a debug packet with an AT statement and end it with
another AT statement or an END DEBUG statement. You can write debug
statements in fixed or free form and follow the same rule as other Fortran 95
programs. You can also use TRACE ON, TRACE OFF, and DISPLAY in the
debug statement.

Guidelines for Using DEBUG
Use the following guidelines when you set up a debug packet:

You must contain within the DEBUG packet all DO loops, IF, ELSE IF, and
ELSE statements.
• You must use unique statement labels within a debug packet and within

a program.
• Do not correct errors in debug packets because the error will remain in

the program when you remove the debug packet.
• Do not include specification statements nor any of the following

statements in a debug packet:

BLOCK DATA
ENTRY
FUNCTION
PROGRAM
statement function
SUBROUTINE

10-50

10 Intel Fortran Programmer’s Reference

You cannot transfer control to any statement label in a debug packet.
However, you can return control from a packet to any point in the program.
In addition, a debug packet cannot refer to a label in another debug packet.
A debug packet can contain a RETURN, STOP, or CALL statement.

The SUBCHK function of DEBUG checks array subscripts if, and only if, the
array has one dimension with a lower bound of 1. If the lower bound is not 1
and an error is detected, the message defaults to assign the element a
lower bound of 1. If you check multi-dimensional arrays for valid subscripts,
the array defaults to a single-dimension array with the correct number of
elements. The resulting check indicates whether you are referencing an
element within the range of the array, but not whether the subscript is
invalid. Individual subscripts are not checked for a valid range.

Therefore, if array A has the dimensions A(5,6) and a reference is made
to A(K, 2), where K is 7, the SUBCHK function does not flag this because
the subscript value yields an element within array A. The values of the first
and second subscripts are not checked for having values of 1 to 5 or 1 to 6
respectively.

Examples
The following example program illustrates the DEBUG statement:

Example 1:

DEBUG UNIT(7),SUBCHK

END DEBUG

PROGRAM TEST

.

.

.
END

This checks all arrays for valid subscripts.

Example 2:

DEBUG UNIT(7),

AT 13

write(6, 21) W, Y, Z

21 FORMAT(1X, ‘W=’, I12, ‘Y=’, I12, ‘Z=’, I12)

END DEBUG

.

.

.

Intel Fortran Statements 10

10-51

INTEGER A, B, C

.

.

.

12 Y=W* SQRT(FLOAT(C))

13 IF(Y) 35, 45, 55

.

.

.

The values of W, Y, and Z are examined as they were at the completion of
the arithmetic operation in statement 13. Therefore, the statement label
specified in the AT statement is 13. The values of W, Y, and Z are written to
the file connected to unit 7.

Example 3:

DEBUG TRACE, UNIT(7)

AT 13

TRACE ON

AT 35

TRACE OFF

AT 45

DISPLAY z

TRACE ON

END DEBUG

.

.

.
13 X=3.0

18 L=1

22 Y = X + 1.5

35 DO 30 I = 1,5

.

.

.
40 CONTINUE

45 Z = Y + 3.415

50 W=Z**2

10-52

10 Intel Fortran Programmer’s Reference

55 CALL SUB1(W, L, R)

STOP

END

DEBUG SUBTRACE, TRACE

AT 8

TRACE ON

END DEBUG

SUBROUTINE SUB1(A, I, B)

.

.

.

8 Y=FUNC1 (A-INT(A))

WRITE(6, *) B

.

.

.

RETURN

END

DEBUG SUBTRACE, TRACE

AT 100

TRACE ON

END DEBUG

FUNCTION FUNC1(C)

.

.

.

100FUNC1 = COS(C) + SIN(C)

.

.

.

RETURN.

END

Intel Fortran Statements 10

10-53

Tracing begins when statement 13 is encountered as specified by the
TRACE ON statement in the first debug packet. Tracing stops at statement
35 as specified by TRACE OFF. Tracing begins again at statement 45 and
the value of Z is written to the output file as specified in the third debug
packet.

Related Concepts
For information about statements related to DEBUG see TRACE ON, TRACE
OFF, AT, and END DEBUG.

DECODE
Inputs formatted data from internal
storage.

DECODE (count, format, unit, io-specifier-list)
 [in-list]

count is an integer expression that specifies the number of
characters (bytes) to translate from character format to
internal (binary) format. count must precede format.

format specifies the format specification for formatting the data.
format can be one of the following:
• The label of a FORMAT statement containing the

format specification.
• An integer variable that has been assigned the label

of a FORMAT statement.

• An embedded format specification. For information
about embedded format specifications, see Chapter
9, I/O Formatting.

format must be the second of the parenthesized items,
immediately following count. Note that the keyword
FMT= is not used.

10-54

10 Intel Fortran Programmer’s Reference

unit is the internal storage designator. It must be a scalar
variable or array name. Assumed-size and
adjustable-size arrays are not permitted. Note that
char-var-name is not a unit number and that the keyword
UNIT= is not used.

unit must be the third of the parenthesized items,
immediately following format.

io-specifier- is a comma-separated list of I/O specifiers. Note that the
 list unit and format specifiers are required; the other I/O

specifiers are optional. The arguments that can appear
in io-specifier-list as I/O specifiers are:
ERR=stmt-label
IOSTAT=integer-variable
in-list

ERR=stmt-label specifies the label of the executable statement to
which control passes if an error occurs during statement
execution.

IOSTAT=integer-variable
returns the I/O status after the statement executes. If
the statement successfully executes,
integer-variable is set to zero. If an end-of-file
record is encountered without an error condition, it is set
to a negative integer. If an error occurs,
integer-variable is set to a positive integer that
indicates which error occurred.

in-list is a comma-separated list of data items for input. The
data items can include expressions and implied-DO lists
(see Chapter 8, I/O and File Handling).

Description

The DECODE statement is a nonstandard feature of Intel Fortran and is
provided for compatibility with other versions of Fortran. The internal-I/O
capabilities of the standard READ statement provide similar functionality and
should be used to ensure portability.

The DECODE statement translates formatted character data into its binary
(internal) representation.

Intel Fortran Statements 10

10-55

Examples
The following example program illustrates the DECODE statement:

PROGRAM decode_example

 CHARACTER(LEN=20) :: buf

 INTEGER i, j, k

 buf = ’XX1234 45 -12XXXXXX’

 DECODE (15,’(2X,3I4,1X)’, buf) i, j, k

 ! The equivalent READ statement is:

 ! READ (buf, ’(2X,3I4,1X)’) i, j, k

 PRINT *, i, j, k

END

When compiled and executed, this program produces the following output:

 1234 45 -12

Related Statements
ENCODE and READ

Related Concepts
For information about I/O concepts, see Chapter 8, I/O and File Handling,
which also presents example programs performing I/O. For information
about I/O formatting, see Chapter 9, I/O Formatting.

DIMENSION (Statement and Attribute)
Declares a variable to be an array.

A type declaration statement with the DIMENSION attribute is:

type, DIMENSION (array-spec) [[, attrib-list]::]
 entity-list

type is a valid type specification (INTEGER, REAL,
LOGICAL, CHARACTER, TYPE(type-name), etc.),
as described in Chapter 3, Data Types and Data Objects.

10-56

10 Intel Fortran Programmer’s Reference

array-spec is one of the following:

• explicit-shape-spec-list
• assumed-shape-spec-list
• deferred-shape-spec-list
• assumed-size-spec

explicit-shape-spec

[lower-bound :] upper-bound

lower-bound

specification-expr

upper-bound

specification-expr

assumed-shape-spec

[lower-bound] :

deferred-shape-spec

:

assumed-size-spec

[explicit-shape-spec-list ,] [lower-bound :] *

That is, assumed-size-spec is explicit-shape-spec-list
with the final upper bound given as *.

attrib-list is a comma-separated list of attributes including
DIMENSION and optionally those attributes compatible
with it, namely:

entity-list

object-name [(array-spec)]

If (array-spec) is present, it overrides the (array-spec) given
with the DIMENSION keyword in attribute-list; see the example
below.

ALLOCATABLE PARAMETER PUBLIC

INTENT POINTER SAVE

OPTIONAL PRIVATE TARGET

Intel Fortran Statements 10

10-57

The syntax of the DIMENSION statement is:

DIMENSION [::] array-name (array-spec)

 [, array-name (array-spec)]...

Description

An array consists of a set of objects called the array elements, all of the
same type and type parameters, arranged in a pattern involving columns,
and possibly rows, planes, and higher dimensioned configurations. The type
of the array elements may be intrinsic or user-defined. In Intel Fortran, an
array may have up to seven dimensions. The number of dimensions is called
the rank of the array and is fixed when the array is declared. Each
dimension has an extent that is the size in that dimension (upper bound
minus lower bound plus one). The size of an array is the product of its
extents. The shape of an array is the vector of its extents in each dimension.
Two arrays that have the same shape are said to be conformable.

It is not necessary for the keyword DIMENSION to appear in the declaration
of a variable to give it the DIMENSION attribute. This attribute, as well as
the rank, and possibly the extents and the bounds of an array, may be
specified in the entity declaration part of any of the following statements:

• type declaration
• DIMENSION
• ALLOCATABLE
• COMMON
• POINTER

• TARGET

The array-spec (see Syntax, above) determines the category of the array
being declared. As fully described in Chapter 4, Arrays, these categories
are:

• Explicit-shape array
• Assumed-shape array
• Assumed-size array
• Deferred-shape array

10-58

10 Intel Fortran Programmer’s Reference

Examples
REAL a (20,2), b (20,2), c (20,2)

REAL, DIMENSION (20,2) :: a, b, c

! These 2 declaration statements are equivalent.

DIMENSION x(100), y(100)

! x and y are 1-dimensional.

INTEGER jj (0:100, -1:1)

! Lower bounds are specified for jj.

! (If not given, they default to 1.)

LOGICAL l

ALLOCATABLE l(:,:,:,:)

! l is a 4-dimensional, allocatable,

! deferred shape logical array.

COMPLEX s ! s has explicit shape and

TARGET :: s(10,2) ! has the target attribute.

DOUBLE PRECISION d

COMMON /stuff/ d(2,3,5,9,8)

! d has 5 dimensions and is declared in common.

SUBROUTINE calc(arr1, ib1, ib2)

REAL, DIMENSION (ib1, ib2) :: arr1, arr2

! arr1 is an adjustable array.

! arr2 is an automatic array.

REAL, POINTER, DIMENSION(:,:) :: arr3

! arr3 is a deferred-shape array with the

! pointer attribute.

LOGICAL, DIMENSION(10,20) :: ta, tb(10,10), tc

! All three arrays have explicit shape.

! The array specifier (10,10) overrides the

Intel Fortran Statements 10

10-59

! (10,20) specifier for the declaration of

! tb only.

Related Statements

ALLOCATABLE, COMMON, POINTER, TARGET, TYPE, and the type
declaration statements

Related Concepts

See Chapter 4, Arrays for a detailed description of Fortran 95 arrays.

The following intrinsic functions relate to array properties:

• LBOUND
• RESHAPE
• SHAPE
• SIZE
• UBOUND

DISPLAY
Displays data in an output format.

DISPLAY list

list a comma-separated list of array and variable names.

Description
Displays the results of a debugging operation and places it in the debug
output file without the need for FORMAT, NAMELIST, or WRITE.

The effect of a DISPLAY list statement is the same as the following source
language statements:

NAMELIST / name / list

WRITE (un, name)

10-60

10 Intel Fortran Programmer’s Reference

where name is the same in both statements:

Array elements, dummy arguments, and substring references cannot
appear in the list.

Related Concepts
See the example section “DEBUG” for a demonstration of how to use
DISPLAY.

DO
Controls execution of DO loop.

[construct-name :] DO [label] [loop-control]

construct-name
is the name given to the DO construct. If construct-name
is specified, an END DO statement must appear at the
end of the DO construct and have the same
construct-name.

label is the label of an executable statement that terminates
the DO loop. If you specify label, you can terminate the
DO loop either with an END DO statement or with an
executable statement; the terminating statement must
include label. If you do not specify label, you must
terminate the DO loop with the END DO statement.

loop-control is information used by the DO statement to control the
loop. It can take one of the following forms:

• index = init, limit [, step]

• WHILE (logical-expression)

• loop-control

In the first form, index is a scalar variable of type integer or real;
init, limit, and step are scalar expressions of type integer or real.
In the second form, logical-expression is a scalar logical

Intel Fortran Statements 10

10-61

expression. In the third form, loop-control is omitted. If you use
the second or third form, you must terminate the DO loop with the END
DO statement.

Description

The syntax of the DO statement allows for the following types of DO loops:

• Counter-controlled loop: a loop count is calculated that controls the
number of times the block is executed, unless a prior exit occurs. A
loop variable is incremented or decremented after each execution.

• While loop: a condition (logical-expression) is tested before
each execution of the block; when it is false, execution ceases. An exit
may occur at any time.

• Infinite loop: there is no loop-control; repeated execution of the
block ceases only when an exit from the loop occurs.

For more information about the different types of DO loops, see Chapter 6,
Execution Control, “DO construct”.

When label is present in the DO statement, it specifies the label of the
terminating statement of the DO loop. The terminating statement cannot be
any of the following statements:

• GO TO (unconditional)
• GO TO (assigned)
• IF (arithmetic)
• IF (block)
• ELSE or ELSE IF
• END, END IF, END SELECT, or END WHERE
• RETURN
• STOP
• DO

10-62

10 Intel Fortran Programmer’s Reference

• Any nonexecutable statement
Note, however, that the terminating statement can be an IF (logical) or
an END DO statement.
To maintain compatibility with some older versions of Fortran, you can
use the +onetrip command-line option to ensure that every
counter-controlled DO loop in the program executes at least once. For
more information about this option, see the Intel Fortran Compiler
User’s Guide.

Extended-range DO Loops

Extended-range DO loops—a compatibility extension—allow a program to
transfer control outside the DO loop’s range and then back into the DO loop.
Extended-range DO loops work as follows: if a control statement inside a DO
loop transfers control to a statement outside the DO loop, then any
subsequent statement can transfer control back into the body of the DO loop.

For example, in the following code, the range of the DO loop is extended to
include the statement GOTO 20, which transfers control back to the body of
the DO loop:

 DO 50 i = 1, 10

20 n = n + 1

 IF (n > 10) GOTO 60

50 CONTINUE ! normally, the range ends here

60 n = n + 100 ! this is the extended range,

 GOTO 20 ! which extends down to this line

Examples

The following DO construct displays the integers 1 through 10:

DO i = 1, 10

 WRITE (*, *) i

END DO

The next example is a FORTRAN 77-style DO loop that does the same as
the preceding example:

 DO 50 i = 1, 10

 WRITE (*, *) i

50 CONTINUE

Intel Fortran Statements 10

10-63

The following DO construct iterates 5 times, decrementing the loop index
from 10 to 2:

DO i = 10, 1, -2

END DO

The following is an example of a DO WHILE loop:

DO WHILE (sum < 100.0)

 sum = sum + get_num(unit)

END DO

The following example illustrates the use of the EXIT statement to exit
from a nested DO loop. The loops are named to control which loop is exited.
Note that loop-control is missing from both the inner and outer loops,
which therefore can be exited only by the execution of the EXIT statements:

outer:DO

 READ *, val

 new_val = 0

 inner:DO

 new_val = new_val + proc_val(val)

 IF (new_val >= max_val) EXIT inner

 IF (new_val == 0) EXIT outer

 END DO inner

END DO outer

The next DO construct never executes:

DO i = 10, 1, -2

END DO

Related Statements

CONTINUE, CYCLE, END (construct), and EXIT

Related Concepts

For information about the DO construct (including examples), see
Chapter 6, Execution Control.

10-64

10 Intel Fortran Programmer’s Reference

DOUBLE COMPLEX
Declares entities of type double
complex.

DOUBLE COMPLEX [[, attrib-list] ::] entity-list

attrib-list is a list of one or more of the following attributes,
separated by commas:

entity-list is a list of entities, separated by commas. Each entity
takes the form:

name [(array-spec)] [= initialization-expr]

where
name is the name of a variable or function

array-spec is a comma-separated list of dimension bounds

initialization-expr
is the initial value for the entity.

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

NOTE. DOUBLE COMPLEX is equivalent to COMPLEX*16 and
COMPLEX(KIND=16).

Intel Fortran Statements 10

10-65

Description

The DOUBLE COMPLEX statement is an Intel Fortran extension that
declares the properties of complex data that has greater precision than data
of default type complex. The two parts of a double complex value are each a
double precision value. Note that the DOUBLE COMPLEX statement does
not have a kind parameter.

The DOUBLE COMPLEX statement is constrained by the rules for type
declaration statements, including the requirement that it precede all
executable statements.

Explicitly declaring an entity with the DOUBLE COMPLEX statement
overrides any implicit typing rules in effect.

If attrib-list or initialization-expr appear in the
declaration, entity-list must be preceded by the double colon.

If array-spec is specified for an entity, it overrides any DIMENSION
attribute.

Initialization

initialization-expr must be a constant complex typed expression
that can be evaluated at compile time.

The following entities may not be initialized:
• Dummy arguments
• Function results
• Allocatable arrays
• Pointers
• External names
• Intrinsic names
• Automatic objects

If attrib-list includes the PARAMETER attribute, each entity in
entity-list must include an initialization expression.

To initialize an array in a DOUBLE COMPLEX statement, you must use an
array constructor, as in the following example:

DOUBLE COMPLEX, DIMENSION(2) :: dc_vec = &

 (/(2.294D-8, 6.288D-4), (-4.817D4, 0)/)

If an array is initialized, all items in the array must be initialized. Implied-DO
loops cannot be used to initialize an array in a type declaration statement.

10-66

10 Intel Fortran Programmer’s Reference

As an extension, an initializer may appear between slashes in a type
declaration statement, as follows:

DOUBLE COMPLEX dcx/(2.294D-8, 6.288D-4)/

The double colon (::) may not be used with this initialization format.

Example
The following are valid declarations:

DOUBLE COMPLEX x, y

DOUBLE COMPLEX, PARAMETER :: t1(2)=(/(1.2, 0), &

 (-1.01, 0.0009)/)

Related Statements
COMPLEX

Related Concepts
The following are discussed elsewhere in this manual:
• Implicit typing rules: Chapter 3, Data Types and Data Objects
• Data representation models: Chapter 3, Data Types and Data Objects
• Storage classes for variables: Chapter 3, Data Types and Data Objects
• Automatic objects: Chapter 3, Data Types and Data Objects
• Arrays: Chapter 4, Arrays
• Expressions: Chapter 5, Expressions and Assignment
• Initialization expressions: Chapter 5, Expressions and Assignment

Intel Fortran Statements 10

10-67

DOUBLE PRECISION
Declares entities of type double
precision.

DOUBLE PRECISION [[, attrib-list] ::] entity-list

attrib-list is a list of one or more of the following attributes,
separated by commas:

For information about each of the attributes, see the corresponding
statement in this chapter.

entity-list is a list of entities, separated by commas. Each entity
takes the form:

name [(array-spec)] [= initialization-expr]

where name is the name of a variable or function, array-spec is a
comma-separated list of dimension bounds, and
initialization-expr is the initial value for the
entity.

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

NOTE. DOUBLE PRECISION is equivalent to REAL*8 and
REAL(KIND=8).

10-68

10 Intel Fortran Programmer’s Reference

Description

The DOUBLE PRECISION statement is used to declare the properties of
real data that has greater precision than data of default type real. By default,
the DOUBLE PRECISION statement is equivalent to the REAL(KIND=8)
statement. Note that the DOUBLE PRECISION statement does not have a
kind parameter.

The DOUBLE PRECISION statement is constrained by the rules for type
declaration statements, including the requirement that it precede all
executable statements.

Explicitly declaring an entity with the DOUBLE PRECISION statement
overrides any implicit typing rules in effect.

If attrib-list or initialization-expr appears in the declaration,
entity-list must be preceded by the double colon.

If array-spec is specified for an entity, it overrides any DIMENSION
attribute.

Initialization

initialization-expr must be a constant expression that can be
evaluated at compile time.

The following entities may not be initialized:

• Dummy arguments
• Function results
• Allocatable arrays
• Pointers
• External names
• Intrinsic names
• Automatic objects

If attrib-list includes the PARAMETER attribute, each entity in
entity-list must include an initialization expression.

To initialize an array in a DOUBLE PRECISION statement, you must use an
array constructor, as in the following example:

DOUBLE PRECISION, DIMENSION(4) :: dp_vec= &

 (/4.7D0, 5.2D0, 3.3D0, 2.9D0/)

Intel Fortran Statements 10

10-69

If an array is initialized, all items in the array must be initialized.
Implied-DO loops cannot be used to initialize an array in a type declaration
statement.

As an extension, an initializer may appear between slashes in a type
declaration statement, as follows:

DOUBLE PRECISION dp1/5.28D0/, dp2/72.3D0/

The double colon (::) may not be used with this initialization format.

Example

The following are valid declarations:

DOUBLE PRECISION x, y

DOUBLE PRECISION, PARAMETER :: pi=3.1415927D0

Related Statements
REAL

Related Concepts

The following are discussed elsewhere in this manual:

• Implicit typing rules: Chapter 3, Data Types and Data Objects

• Data representation models: Chapter 3, Data Types and Data Objects

• Storage classes for variables: Chapter 3, Data Types and Data Objects

• Automatic objects: Chapter 3, Data Types and Data Objects

• Arrays: Chapter 4, Arrays
• Expressions: Chapter 5, Expressions and Assignment

• Initialization expressions: Chapter 5, Expressions and Assignment

EJECT
Starts a new full page of the source
listing.

EJECT

10-70

10 Intel Fortran Programmer’s Reference

Description
The EJECT statement is a compiler directive that starts a new page of the
source listing. You cannot CONTINUE an EJECT statement.

ELSE
Provides a default path of execution for
IF construct.

ELSE [construct-name]

construct-name
is the name given to the IF construct. If construct-name
is specified, the same name must also appear in the IF
statement and in the END IF statement.

Description

The ELSE statement is used in an IF construct to provide a statement block
for execution if none of the logical expressions in the IF and ELSE IF
statements in the IF construct evaluates to true.

An IF construct may contain (at most) one ELSE statement. If present, it
must follow all ELSE IF statements within the IF construct.

Example
IF (a > b) THEN

 max = a

ELSE IF (b > max) THEN

 max = b

ELSE

 PRINT *, ’The two numbers are equal.’

 STOP ’Done’

END IF

Intel Fortran Statements 10

10-71

Related Statements

ELSE IF, END IF, and IF (construct)

Related Concepts

For information about the IF construct, see Chapter 6, Execution Control.

ELSE IF
Provides alternate path of execution for
IF construct.

ELSE IF (logical-expression) THEN [construct-name]

logical-expressionis a scalar logical expression.

construct-name
is the name given to the IF construct. If construct-name
is specified, the same name must also appear in the IF
statement and in the END IF statement.

Description

The ELSE IF statement executes the immediately following statement
block, if the following conditions are met:

• None of the logical expressions in the IF statement and any previous
ELSE IF statements evaluates to true.

• logical-expression evaluates to true.

Branching to an ELSE IF statement is illegal.

Example
INTEGER temperature

INTEGER, PARAMETER :: hot=1, cold=2

IF (temperature == hot) THEN

 PRINT *, ’Turn down your thermostat.’

ELSE IF (temperature == cold) THEN

10-72

10 Intel Fortran Programmer’s Reference

 PRINT *, ’Turn up your thermostat.’

ELSE

 PRINT *, ’Your thermostat is working OK.’

END IF

Related Statements

ELSE, END IF, and IF (construct)

Related Concepts

For information about the IF construct, see Chapter 6, Execution Control.

ELSEWHERE
Introduces optional ELSEWHERE block
within a WHERE construct.

ELSEWHERE

Description

The ELSEWHERE statement introduces an ELSEWHERE block, which is an
optional component of the WHERE construct. The ELSEWHERE statement
executes on the complement of the WHERE condition. For additional
information, see the WHERE statement in this chapter.

Example
WHERE(b .GE. 0.0)

 sqrt_b = SQRT(b)

 ! Assign to sqrt_b only where logical array b

 ! is zero or positive.

ELSEWHERE

 sqrt_b = 0.0

 ! Assign sqrt_b where b is negative.

END WHERE

Intel Fortran Statements 10

10-73

Related Statements

WHERE and END WHERE

Related Concepts

The WHERE construct is described in Chapter 5, Expressions and
Assignment.

ENCODE
Outputs formatted data to internal
storage.

ENCODE
(count, format, unit, io-specifier-list) [out-list]

count is an integer expression that specifies the number of
characters (bytes) to translate from character format to
internal (binary) format. count must precede format.

format specifies the format specification for formatting the data.
format can be one of the following:

• The label of a FORMAT statement containing the
format specification.

• An integer variable that has been assigned the label
of a FORMAT statement.

• An embedded format specification. For information
about embedded format specifications, see Chapter
9, I/O Formatting.

format must be the second of the parenthesized items, immediately
following count. Note that the keyword FMT= is not used.

unit is the internal storage designator. It must be a scalar
variable or array name. Assumed-size and
adjustable-size arrays are not permitted. Note that
char-var-name is not a unit number and that the
keyword UNIT= is not used.

10-74

10 Intel Fortran Programmer’s Reference

unit must be the third of the parenthesized items,
immediately following format.

io-specifier- is a comma-separated list of I/O specifiers. Note that the
list unit and format specifiers are required; the other I/O

specifiers are optional. The following I/O specifiers can
appear in io-specifier-list:

ERR=stmt-label
specifies the label of the executable statement to which
control passes if an error occurs during statement
execution.

IOSTAT=integer-variable
returns the I/O status after the statement executes. If
the statement successfully executes,
integer-variable is set to zero. If an end-of-file
record is encountered without an error condition, it is set
to a negative integer. If an error occurs,
integer-variable is set to a positive integer that
indicates which error occurred.

out-list is a comma-separated list of data items for output. The
data items can include expressions and implied-DO lists
(see Chapter 8, I/O and File Handling).

Description

The ENCODE statement is a nonstandard feature of Intel Fortran and is
provided for compatibility with other versions of Fortran. The internal-I/O
capabilities of the standard WRITE statement provide similar functionality
and should be used to ensure portability.

The ENCODE statement translates data from its internal (binary)
representation into formatted character data.

Examples
The following example program uses the ENCODE statement to write to an
internal file:

PROGRAM encode_example

 CHARACTER(LEN=20) :: buf

 ENCODE (LEN(buf), ’(2X, 3I4, 1X)’, buf) &

Intel Fortran Statements 10

10-75

 1234, 45, -12

 PRINT *, buf

END

When compiled and executed, this program outputs the following (where b
represents the blank character):
bb1234bb45b-12bbbbbb

Related Statements
DECODE and WRITE

Related Concepts
For information about I/O concepts, see Chapter 8, I/O and File Handling,
which also gives example programs using different kinds of I/O. For
information about I/O formatting, see Chapter 9, I/O Formatting.

END
Marks the end of a program unit or
procedure.

END [keyword [name]]

keyword is one of the keywords BLOCK DATA, FUNCTION,
MODULE, PROGRAM, or SUBROUTINE. When the END
statement is used for an internal procedure or module
procedure, the FUNCTION or SUBROUTINE keyword is
required.

name is the name given to the program unit. If name is
specified, keyword must also be specified.

Description

The END statement is the last statement of a program unit (that is, a main
program, function, subroutine, module, or block data subprogram), an
internal procedure, or a module procedure. It is the only statement that is
required within a program unit.

10-76

10 Intel Fortran Programmer’s Reference

Examples

The following example illustrates the use of the END statement to indicate
the end of a main program. Notice that, even though the main program unit
is given a name, the END PROGRAM statement does not require it:

PROGRAM main_prog

END PROGRAM

In the next example, the END statement marks the end of an internal
function and must therefore specify the keyword FUNCTION. However, it is
not required that the name, get_args, be also specified:

FUNCTION get_args (arg1, arg2)

END FUNCTION get_args

The following example uses the END statement to indicate the end of a
block data subprogram. Because the END statement specifies the program
unit name, it must also specify the keyword BLOCK DATA:

BLOCK DATA main_data

END BLOCK DATA main_data

Related Statements

BLOCK DATA, FUNCTION, MODULE, PROGRAM, and SUBROUTINE

Related Concepts

For information about program units, see Chapter 7, Program Units and
Procedures.

END (Construct)
Terminates a CASE, DO, IF, or WHERE
construct.

END construct-keyword [construct-name]

construct-keyword is one of the keywords DO, IF, SELECT, or
WHERE.

Intel Fortran Statements 10

10-77

construct-name is the name given to the construct terminated by
this statement.

Description

The END (construct) statement terminates a CASE, DO, IF, or WHERE
construct. If construct-name appears in the statement that introduces
the construct, the same name must also appear in the END statement. If no
construct-name is given in the introducing statement, none must appear
in the END statement.

Example

For examples of each of the END (construct) statement, see the descriptions
of the DO, IF, SELECT, or WHERE statements in this chapter.

Related Statements

DO, IF, SELECT, and WHERE

Related Concepts

The CASE, DO, and IF constructs are discussed in Chapter 6, Execution
Control; the WHERE construct is discussed in Chapter 5, Expressions and
Assignment.

END (Structure Definition)
Terminates the definition of a structure
or union.

END record-keyword

record-keyword
is one of the keywords MAP, STRUCTURE, or UNION.

10-78

10 Intel Fortran Programmer’s Reference

Description
The END (record definition) statement is an Intel Fortran extension that is
used to delimit the definition of a structure (END STRUCTURE) or a union
within a structure (END UNION and END MAP). For more information, refer
to the description of the STRUCTURE statement in this chapter.

END INTERFACE
Terminates a procedure interface block.

END INTERFACE

Description

In Fortran 95, external procedures may be given explicit interfaces by
means of procedure interface blocks. Such a block is always terminated by
the END INTERFACE statement.

Example

The following makes the interface of function r_ave explicit, giving it the
generic name g_ave.

INTERFACE g_ave

 FUNCTION r_ave(x)

 ! Get the size of array x from

 ! module ave_stuff.

 USE ave_stuff, ONLY: n

 REAL r_ave, x(n)

 END FUNCTION r_ave

END INTERFACE

Related Statements
INTERFACE

Intel Fortran Statements 10

10-79

Related Concepts

Interface blocks are described in Chapter 7, Program Units and Procedures.

END DEBUG
Terminates the last debug packet for the
program.

END DEBUG

Description
Place the END DEBUG statement after the other debug statements and just
before the first statement of the program being debugged. You can use only
one END DEBUG statement per program unit.

An IF construct may contain (at most) one ELSE statement. If present, it
must follow all ELSE IF statements within the IF construct.

Related Concepts
For details on debugging, see “DEBUG” .

END TYPE
Terminates a derived type definition.

END TYPE [type-name]

type-name is the name of the derived type being defined. type-name
is optional. If given, it must be the same as the
type-name specified in the TYPE statement introducing
the derived type definition.

Description

The END TYPE statement terminates the definition of a derived type.

10-80

10 Intel Fortran Programmer’s Reference

Example

The following is a simple example of a derived type with two components,
high and low:

TYPE temp_range

 INTEGER high, low

END TYPE temp_range

Related Statements

TYPE (definition)

Related Concepts

Derived types are described in Chapter 3, Data Types and Data Objects.

ENDFILE
Writes end-of-file record to file.

The syntax of the ENDFILE statement can take one of the following forms:

• Short form:
ENDFILE integer-expression

• Long form:
ENDFILE (io-specifier-list)

integer-expression is the number of the unit connected to a sequential
file.

io-specifier-list is a list of the following comma-separated I/O
specifiers:

[UNIT=]unit specifies the unit connected to a device or external
file opened for sequential access. unit must be
an integer expression that evaluates to a
non-negative number. If the optional keyword
UNIT= is omitted, unit must be the first item in
io-specifier-list.

Intel Fortran Statements 10

10-81

ERR=stmt-label specifies the label of the executable statement to
which control passes if an error occurs during
statement execution.

IOSTAT=integer- returns the I/O status after the statement executes.
 variable If the statement executes successfully,

integer-variable is set to zero. If an error occurs, it
is set to a positive integer that indicates which
error occurred.

Description

The ENDFILE statement writes an end-of-file record to the file or device
connected to the specified unit at the current position and positions the file
after the end-of-file record.

An end-of-file record can occur only as the last record of a disk file. After
execution of an ENDFILE statement, the file is positioned beyond the
end-of-file record; any records beyond the current position are lost—that is,
the file is truncated.

Some devices (for example, magnetic tape units) can have multiple
end-of-file records, with or without intervening data records.

An end-of-file record can be written to a sequential file only.

Examples

The following statement writes an end-of-file record to the file connected to
unit 10:

ENDFILE 10

The following statement writes an end-of-file record to the file connected to
unit 17. If an error occurs during the execution of the statement, control
passes to the statement at label 99, and the error code is returned in ios:

INTEGER :: ios

...

ENDFILE (17, ERR=99, IOSTAT=ios)

Related Statements

BACKSPACE, OPEN, and REWIND

10-82

10 Intel Fortran Programmer’s Reference

Related Concepts

For information about I/O concepts, see Chapter 8, I/O and File Handling,
which also presents example programs performing I/O. For information
about I/O formatting, see Chapter 9, I/O Formatting.

ENTRY
Provides an additional external or
module subprogram entry point.

ENTRY entry-name [([dummy-arg-list])

 [RESULT (result-name)]]

entry-name is the name of the entry point (subroutine or function)
defined by the ENTRY statement. It must differ from the
original subroutine or function name, and from other
ENTRY statement entry-names specified in the
subprogram in which it appears.

dummy-arg-list
is a comma-separated list of dummy arguments for the
subroutine or function defined by the ENTRY statement.
The same rules and restrictions apply as for subroutine
dummy arguments or function dummy arguments, as
appropriate.

result-name is the result variable for a function defined by an ENTRY
statement. result-name is optional; if not specified,
the result variable is entry-name.

The RESULT (result-name) clause can only be specified when the
ENTRY statement is included in a function subprogram.

Description

When an ENTRY statement appears in a function subprogram, it effectively
provides an additional FUNCTION statement in the subprogram: execution
starts from the ENTRY statement when the entry-name is invoked (by

Intel Fortran Statements 10

10-83

being used). Similarly, an ENTRY statement in a subroutine subprogram
effectively provides an additional SUBROUTINE statement in the
subprogram, and execution starts from the ENTRY statement when the
entry-name is called.

The following restrictions apply to the ENTRY statement:

• The ENTRY statement can appear in an external subprogram or a
module subprogram; it may not appear in an internal subprogram. If the
ENTRY statement appears in a function subprogram, it defines an
additional function; if it appears in a subroutine subprogram, it defines
an additional subroutine. The entry points thus defined can be
referenced in the same way as for a normal function name or
subroutine name, as appropriate. Execution starts at the ENTRY
statement, and continues in the normal manner, ignoring any ENTRY
statements subsequently encountered, until a RETURN statement or the
end of the procedure is reached.

• The RESULT (result-name) clause can only be specified when the
ENTRY statement is included in a function subprogram. If specified,
result-name must differ from entry-name, and entry-name
must not appear in any specification statement in the scoping unit of
the function subprogram; entry-name assumes all the attributes of
result-name. The RESULT clause in an ENTRY statement has the
same syntax and semantics as in a FUNCTION statement.

• If the ENTRY statement appears in a function, the result variable is that
specified in the FUNCTION statement; if none is specified, the result
variable is entry-name.

• If the characteristics of the result variable specified in the ENTRY
statement are the same as those of the result variable specified in the
FUNCTION statement, then the result variable is the same, even though
the names are different. If the characteristics are different, then the
result variables must be:
— Nonpointer scalars of intrinsic type
— Storage associated
— If any is of character type, they must all be of character type and

must all have the same length. If any is of noncharacter type, they
must all be of noncharacter type.

10-84

10 Intel Fortran Programmer’s Reference

• The result variable may not appear in a COMMON, DATA, or
EQUIVALENCE statement. Also, the result variable may not have the
ALLOCATABLE, INTENT, OPTIONAL, PARAMETER, or SAVE attribute.

• If RECURSIVE is specified on the FUNCTION statement at the start of a
function subprogram, and RESULT is specified on an ENTRY statement
within the subprogram, then the interface of the function defined by the
ENTRY statement is explicit within the function subprogram; the
function can thus be invoked recursively. (Note that the keyword
RECURSIVE is not given on the ENTRY statement, but only on the
FUNCTION statement.)

• If RECURSIVE is specified on the SUBROUTINE statement at the start
of a subroutine subprogram, the interface of the subroutine defined by
an ENTRY statement within the subprogram is explicit within the
subprogram; the subroutine can thus be called recursively.

• A dummy argument in an ENTRY statement must not appear in an
executable statement preceding the ENTRY statement, unless it also
appears in a FUNCTION, SUBROUTINE, or ENTRY statement preceding
the executable statement.

• If a dummy argument in a subprogram—that is, as specified in a
FUNCTION or SUBROUTINE statement at the start of the subprogram
or in any ENTRY statements within the subprogram—is used in an
executable statement, then the statement may only be executed if the
dummy argument appears in the dummy argument list of the procedure
name actually referenced in the current call. The same restrictions
apply when you use a dummy argument in a specification expression to
specify an array bound or character length.

• A procedure defined by an ENTRY statement may be given an explicit
interface by use of an INTERFACE block. The procedure header in the
interface body must be a FUNCTION statement for an entry to a
function subprogram, and a SUBROUTINE statement for an entry to a
subroutine subprogram.

The ENTRY statement was often used in FORTRAN 77 programs in
situations where a set of subroutines or functions had slightly different
dummy argument lists but entailed computations involving identical data
and code. In Fortran 95 the use of the ENTRY statement in such situations
can be replaced by the use of optional arguments.

Intel Fortran Statements 10

10-85

Examples

The following example defines a subroutine subprogram with two dummy
arguments. The subprogram also contains an ENTRY statement that takes
only the first dummy argument specified in the SUBROUTINE statement.

SUBROUTINE Full_Name (First_Name, Surname)

CHARACTER(20) :: First_Name, Surname

...

ENTRY Part_Name (First_Name)

The following example creates a stack. It shows the use of ENTRY to group
the definition of a data structure together with the code that accesses it, a
technique known as encapsulation. (This example could alternatively be
programmed as a module, which would be preferable in that it does not rely
on storage association.)

SUBROUTINE manipulate_stack

 IMPLICIT NONE

 INTEGER size, top /0/, value

 PARAMETER (size = 100)

 INTEGER, DIMENSION(size) :: stack

 SAVE stack, top

C Push value onto the stack

 ENTRY push(value)

 IF (top == size) STOP ’Stack Overflow’

 top = top + 1

 stack(top) = value

 RETURN

C Pop the top of the stack and place in Value

 ENTRY pop(value)

 IF (top == 0) STOP ’Stack Underflow’

 value = stack(top)

 top = top - 1

 RETURN

 END

10-86

10 Intel Fortran Programmer’s Reference

Here are examples of CALL statements associated with the preceding
example:

CALL push(10)

CALL push(15)

CALL pop(I)

CALL pop(J)

Related Statements

FUNCTION, SUBROUTINE, and CALL

Related Concepts

Subprograms and entry points are discussed in Chapter 7, Program Units
and Procedures, as are dummy arguments and recursion.

EQUIVALENCE
Associates different objects with same
storage area.

EQUIVALENCE (equivalence-list1)
 [, (equivalence-list2)]...

equivalence-list is a comma-separated list of two or more object
names to be storage associated. Objects can
include simple variables, array elements, array
names, and character substrings.

Description

All objects in each equivalence-list share the same storage area. Such
objects become storage associated and are equivalenced to each other.
Equivalencing may also cause other objects to become storage associated.

The following items must not appear in equivalence-list:

• Automatic objects, including character variables whose length is
specified with a nonconstant

Intel Fortran Statements 10

10-87

• Allocatable arrays
• Function names, result names, or entry names
• Dummy arguments
• Records or record field references
• Nonsequence derived type objects
• Structure components
• Pointers or structures containing pointers
• Named constants

The following restrictions apply to objects that can appear in an
EQUIVALENCE statement:

• Objects in the same equivalence-list must be explicitly or
implicitly declared in the same scoping unit.

• The name of an equivalenced object must not be made available by use
association.

The Fortran 95 standard imposes the following type restrictions on
equivalenced objects:

• If one of the objects in equivalence-list is of type default integer,
default real, double precision real, default complex, double complex,
default logical, or numeric sequence type, then all objects in
equivalence-list must be one of these types.
Intel Fortran relaxes this restriction and allows character and
noncharacter items to be equivalenced. Note, however, that use of this
extension can impact portability.

• If one of the objects in equivalence-list is of derived type that is
not a numeric sequence or character sequence type, then all objects in
equivalence-list must be of the same type.

• If one of the objects in equivalence-list is of intrinsic type other
than default integer, default real, double precision real, default
complex, double complex, default logical, or default character, then all
objects in equivalence-list must be of the same type with the
same kind type parameter value.
Intel Fortran relaxes this restriction.

10-88

10 Intel Fortran Programmer’s Reference

The EQUIVALENCE statement does not cause type conversion or imply
mathematical equivalence. If an array and a scalar share the same storage
space through the EQUIVALENCE statement, the array does not have the
characteristics of a scalar and the scalar does not have the characteristics of
an array. They only share the same storage space.

Care should be taken when data types of different sizes share the same
storage space, because the EQUIVALENCE statement specifies that each
data item in equivalence-list has the same first storage unit. For
example, if a 4-byte integer variable and a double-precision variable are
equivalenced, the integer variable shares the same space as the 4 most
significant bytes of the 8-byte double-precision variable.

Proper alignment of data types is always enforced. The compiler will issue a
diagnostic if incorrect alignment is forced through an EQUIVALENCE
statement. For data type alignment rules, see Chapter 3, Data Types and
Data Objects.

The lengths of the equivalenced objects need not be the same.

Equivalencing Character Data

An EQUIVALENCE statement specifies that the storage sequences of
character data items whose names are specified in equivalence-list
have the same first character storage unit. This causes the association of the
data items in equivalence-list and can cause association of other data
items as well. Consider the following example:

CHARACTER(LEN=4) :: a, b

CHARACTER(LEN=3) :: c(2)

EQUIVALENCE (a, c(1)), (b, c(2))

As a result of this EQUIVALENCE statement, the fourth character in a, the
first character in b, and the first character in c(2) share the same storage.

Strings of the same or different lengths can be equivalenced to start on the
first element, and you can use substring notation to specify other
associations, as in the following:

CHARACTER (10) :: s1, s2

EQUIVALENCE (s1(2:2), s2(3:3)

Intel Fortran Statements 10

10-89

Substring subscripts must be integer initialization expressions, and the
substring length must be nonzero.

Equivalencing Arrays

To determine equivalence between arrays with different dimensions, Intel
Fortran views all elements of an array in linear sequence. Each array is
stored as if it were a one-dimensional array. Array elements are stored in
ascending sequential, column-major order; for information about how
arrays are laid out in memory, see Chapter 4, Arrays.

Array elements can be equivalenced with elements of a different array or
with scalars. No equivalence occurs outside the bounds of any of the
equivalenced arrays.

If equivalenced arrays are not of the same type, they may not line up
element by element.

If an array name appears without subscripts in an EQUIVALENCE statement,
it has the same effect as specifying an array name with the subscript of its
first element.

It is illegal to equivalence different elements of the same array to the same
storage area. For example, the following is illegal:

INTEGER :: a(2), b

EQUIVALENCE (a(1), b), (a(2), b)

Likewise, it is illegal to use the EQUIVALENCE statement to force
consecutive array elements to be noncontiguous, as in the following
example:

REAL :: a(2), r(3)

EQUIVALENCE (a(1), r(1)), (a(2), r(3))

Array subscripts must be integer initialization expressions.

Equivalence in Common Blocks

An EQUIVALENCE statement must not cause two common blocks to be
associated.

You can use the EQUIVALENCE statement to place objects in common by
equivalencing them to objects already in common. If one element of an
array is equivalenced to an object in common, the whole array is placed in

10-90

10 Intel Fortran Programmer’s Reference

common with equivalence maintained for storage units preceding and
following the data element in common. The common block is always
extended when it is necessary to fit an array that shares storage space in the
common block. It may be extended after the last entry, but not before the
first.

Consider the following example, which puts array i in blank common and
equivalences array element j(2) to i(3):

INTEGER :: i(6), j(6)

COMMON i

EQUIVALENCE (i(3), j(2))

The effect of the EQUIVALENCE statement is to extend blank common to
include element j(6). This is entirely legal because the extension occurs at
the end of the common block.

But if the EQUIVALENCE statement were changed as follows:

EQUIVALENCE (i(1), j(2)) ! illegal

it would result in an illegal equivalence, because storage would have to be
inserted in front of the block in order to accommodate element j(1).

Example

In the following example, the variables a, b, and c share the same storage
space; array elements d(2) and e(5) share the same storage space;
variables f, g, and h share the same storage:

INTEGER :: a, b, c, d(20), e(30), f, g, h

EQUIVALENCE (a, b, c), (d(2), e(5)), (f, g, h)

Related Statements
COMMON

NOTE. You cannot equivalence items in dynamic COMMON.

Intel Fortran Statements 10

10-91

Related Concepts

The following are discussed elsewhere in this manual:

• Storage association: Chapter 3, Data Types and Data Objects

• Arrays: Chapter 4, Arrays

EXIT
Terminates a DO loop.

EXIT [do-construct-name]

do-construct-name is the name given to the DO construct. If
do-construct-name is specified, it must be the
name of a DO construct that contains the EXIT
statement.

Description

If you do not specify do-construct-name, the EXIT statement
terminates the immediately enclosing DO loop. If you do specify it, the
EXIT statement terminates the enclosing DO loop with the same name.

Example
DO i = 1, 20

 n(i) = 0

 READ *, j

 IF (j < 0) EXIT

 n(i) = j

END DO

Related Statements

CYCLE and DO

10-92

10 Intel Fortran Programmer’s Reference

Related Concepts

For information about the DO construct and flow control statements, see
Chapter 6, Execution Control.

EXTERNAL (Statement and Attribute)
Declares a name to be external.

A type declaration statement with the EXTERNAL attribute is:

type , attrib-list :: function-name-list

type is a valid type specification (INTEGER, REAL,
LOGICAL, CHARACTER, TYPE (name), etc.), as
described in Chapter 3, Data Types and Data Objects.

attrib-list is a comma-separated list of attributes including
EXTERNAL and optionally those attributes compatible
with it, namely:

function-name-is a comma-separated list of function names to be
 list designated EXTERNAL.

The syntax of the EXTERNAL statement is:

EXTERNAL external-name-list

Note that the syntax of the EXTERNAL statement does not permit optional
colons.

Description

An EXTERNAL attribute or statement specifies that a name may be used as
an actual argument in subroutine calls and function references. The name is
either an external procedure, a dummy procedure, or a block data program
unit.

OPTIONAL PRIVATE PUBLIC

Intel Fortran Statements 10

10-93

A name that appears in a type statement specifying the EXTERNAL attribute
must be the name of an external procedure or of a dummy argument that is a
procedure.

The following rules and restrictions apply:

• A name can appear once in an EXTERNAL statement, in a declaration
statement with an EXTERNAL attribute, or in an interface body, but not
in more than one of these.

• If the name is a dummy argument, an EXTERNAL statement declares it
to be a dummy procedure.

• If a user intrinsic procedure has the same name as an external
procedure, then it must either be declared to have the EXTERNAL
attribute or have an explicit interface. The named intrinsic procedure is
then no longer available in such program units.

• The INTRINSIC and EXTERNAL attributes are mutually exclusive.

Examples
SUBROUTINE sub (fourier)

! fourier is a dummy procedure. The actual

! argument corresponding to fourier could be

! an external, an intrinsic, or a module

! procedure.

 REAL fourier

 EXTERNAL fourier

REAL, EXTERNAL :: SIN, COS, TAN

! The preceding statement means that SIN, COS, and
! TAN are no longer intrinsic procedures.

! Functions with these names must be defined in the
! program.

...

END SUBROUTINE sub

SUBROUTINE gratx (x, y)

EXTERNAL init_block_a

! Specify init_block_a as the block data sub-

! program that initializes common block a.

COMMON /a/ temp, pressure

10-94

10 Intel Fortran Programmer’s Reference

! Common block available in subroutine gratx.

END SUBROUTINE gratx

BLOCK DATA init_block_a

COMMON /a/ temp, pressure

! init_block_a initializes the objects in

! common block a.

DATA temp, pressure/ 98.6, 15.5 /

END BLOCK DATA init_block_a

Related Statements
INTRINSIC

Related Concepts

Module procedures, interfaces, and interface blocks are described in
Chapter 7, Program Units and Procedures.

FORMAT
Describes how I/O data is to be
formatted.

label FORMAT (format-list)

label is a statement label.

format-list is a comma-separated list of format items, where each
item in the list can be either one of the edit descriptors
described in Chapter 9, I/O Formatting or (format-list).
If format-list is one of the list items, it may be optionally
preceded by a repeat specification—a positive integer
that specifies how may times format-list is to be
repeated. Many of the edit descriptors may also be
repeated; see Chapter 9, I/O Formatting for more
information.

Intel Fortran Statements 10

10-95

Description

The FORMAT statement holds the format specification that indicates how
data in formatted I/O is to be translated between internal (binary)
representation and formatted (ASCII) representation. The translation makes
it possible to represent data in a humanly readable format.

Although a format specification can be embedded within a data transfer
statement, the point to using a FORMAT statement is to make it available to
any number of data transfer statements. Several data transfer statements
can use the same format specification contained in a FORMAT statement by
referencing label.

Another advantage of the FORMAT statement over the use of embedded
format specifications is that it is "pre-compiled", reducing the runtime
overhead of processing the format specification and providing compile-time
error checking of the FMT= specifier.

Examples
 PROGRAM format_example

 WRITE (15,FMT=20) 1234, 45, -12

20 FORMAT (I6, 2I4)

 END

When compiled and executed, this program outputs the following (where b
represents the blank character):

bb1234bb45b -12

Related Statements

READ and WRITE

Related Concepts

Statement labels are described in Chapter 2, Language Elements. For
information about I/O formatting, see Chapter 9, I/O Formatting.

10-96

10 Intel Fortran Programmer’s Reference

FUNCTION
Introduces a function subprogram.

[RECURSIVE] [type-spec] FUNCTION

 function-name ([dummy-arg-name-list])

 [RESULT (result-name)]

RECURSIVE is a keyword that must be specified in the FUNCTION
statement if the function is either directly or indirectly
recursive. The RECURSIVE clause can appear at most
once, either before or after type-spec. It is not an
error to specify RECURSIVE for a nonrecursive
function.

A recursive function that calls itself directly must also
have the RESULT clause specified (see result-name,
below).

type-spec is a valid type specification (INTEGER, REAL,
LOGICAL, CHARACTER, TYPE (name), etc.), as
described in Chapter 3, Data Types and Data Objects.
The type and type parameters of the function result can
be specified by type-spec or by declaring the result
variable within the function subprogram, but not by
both. The implicit typing rules apply if the function is
not typed explicitly.

If the function result is array-valued or a pointer, the
appropriate attributes for the result variable (which is
function-name, or result-name if specified) must
be specified within the function subprogram.

function-name is the name of the function subprogram being defined.

dummy-arg-name-list
is a comma-separated list of dummy argument names

 for the function.

Intel Fortran Statements 10

10-97

result-name is the result variable. If the RESULT clause is not
specified, function-name becomes the result variable. If
result-name is given, it must differ from function-name,
and function-name must not then be declared within the
function subprogram.

As noted above, a recursive function that calls itself
directly must have the RESULT clause specified. Other
functions may have a RESULT clause.

Description

A FUNCTION statement introduces an external, module, or internal function
subprogram.

Example
PROGRAM p

CONTAINS

 ! f is an internal function. In FORTRAN 77

 ! this could have been a statement function

 ! (also valid in Fortran 95).

 FUNCTION f(x)

 f = 2*x + 3

 END FUNCTION f

 RECURSIVE INTEGER FUNCTION factorial (n) &

 RESULT (factorial_value)

 ! A recursive function, which must

 ! therefore specify a RESULT clause.

 IMPLICIT INTEGER (a-z)

 IF (n <= 0) THEN

 factorial_value = 1

 ELSE

 factorial_value = n * factorial (n-1)

 END IF

 END FUNCTION factorial

END PROGRAM p

10-98

10 Intel Fortran Programmer’s Reference

Related Statements

END, INTENT, INTERFACE, OPTIONAL, and the type declaration
statements

Related Concepts

The following are described elsewhere in this manual:

• Data types: Chapter 3, Data Types and Data Objects.
• Defined operators: Chapter 3, Data Types and Data Objects.
• Expressions (a function reference is a primary in an expression):

Chapter 5, Expressions and Assignment.
• External functions, module function, internal functions, recursive

functions, and function invocation: Chapter 7, Program Units and
Procedures.

GO TO (Assigned)
Transfers control to a variable that was
assigned a label.

GO TO integer-variable [[,] (label-list)]

integer-variable is a scalar variable of default type integer.

label-list is a list of statement labels, separated by commas.

Description

The assigned GO TO statement transfers control to the statement whose
label was most recently assigned to a variable with the ASSIGN statement.

integer-variable must be given a label value of an executable
statement through an ASSIGN statement prior to execution of the GO TO
statement. When the assigned GO TO statement is executed, control is
transferred to the statement whose label matches the label value of
integer-variable.

label-list is a list of labels that integer-variable might assume.

Intel Fortran Statements 10

10-99

integer-variable must not be an array element or an integer
component of a structure.

The use of this statement can hinder the ability of the compiler to optimize
the program in which it occurs.

Example
ASSIGN 10 TO out

GO TO out

Related Statements

ASSIGN, GO TO (computed), and GO TO (unconditional)

Related Concepts

For additional information about the assigned GO TO and other flow control
statements, see Chapter 6, Execution Control.

GO TO (Computed)
Transfers control to one of several
labels.

GO TO (label-list) [,] arithmetic-expression

label-list is a list of statement labels, separated by
commas.

arithmetic-expression is a scalar integer expression. As an
extension, Intel Fortran also allows the
expression to be of type real or double
precision.

Description

The computed GO TO statement transfers control to one of several labeled
statements, depending on the value of arithmetic-expression. After
arithmetic-expression is evaluated (and, if necessary, truncated to

10-100

10 Intel Fortran Programmer’s Reference

an integer value), control transfers to the statement label whose position in
label-list corresponds to the truncated value of
arithmetic-expression.

If the value of arithmetic-expression is less than 1 or greater than
the total number of labels in label-list, control transfers to the
executable statement immediately following the computed GO TO
statement.

Example
index = 3

GO TO (10, 20, 30, 40) index

! Branch made to the statement labeled 30.

Related Statements

SELECT CASE, GO TO (assigned), and GO TO (unconditional)

Related Concepts

For more information about the computed GO TO statement and other flow
control statements, see Chapter 6, Execution Control.

GO TO (Unconditional)
Transfers control to a specified label.

GO TO label

label is the label of an executable statement.

Description

The unconditional GO TO statement transfers control directly to the
statement at the specified label. The executable statement with label can
occur before or after the GO TO statement, but it must be within the same
scoping unit.

Intel Fortran Statements 10

10-101

Example
 GO TO 30

30 CONTINUE

Related Statements

GO TO (assigned) and GO TO (computed)

Related Concepts

For more information about the unconditional GO TO statement and other
flow control statements, see Chapter 6, Execution Control.

IF (Arithmetic)
Transfers control to one of three labels.

IF (arithmetic-expression) labelN, labelZ, labelP

arithmetic-expression is an arithmetic expression of any
numeric type except complex and double
complex.

label is a label of an executable statement.

Description

The arithmetic IF statement transfers control to the statement whose label
is determined by arithmetic-expression. If
arithmetic-expression evaluates to a negative value, control
transfers to labelN; if it evaluates to 0, control transfers to labelZ; and if
it evaluates to a positive value, control transfers to labelP.

The same label may appear more than once in the same arithmetic IF
statement.

Each label must be that of an executable statement in the same scoping unit
as the arithmetic IF.

10-102

10 Intel Fortran Programmer’s Reference

Example
i = -1

IF (i) 10, 20, 30

! Branch made to the statement labeled 10.

Related Statements

IF (construct) and IF (logical)

Related Concepts

For more information about the arithmetic IF statement and other flow
control statements, see Chapter 6, Execution Control.

IF (Block)
Begins an IF construct.

[construct-name :] IF (logical-expression) THEN

construct-name is the name given to the IF construct. If
construct-name is specified, the same name must
also appear in the END IF statement.

logical-expressionis a scalar logical expression.

Description

The IF statement executes the immediately following statement block if
logical-expression evaluates to true.

The IF construct, which the IF statement begins, may include ELSE IF
statements and an ELSE statement to provide alternate statement blocks for
execution.

The block following the IF statement may be empty.

As an extension, Intel Fortran allows the transfer of control into an IF
construct from outside the construct.

Intel Fortran Statements 10

10-103

Example
IF (x <= 0.0 .AND. y > 1.0) THEN

 CALL fix_coord(x, y)

END IF

Related Statements

ELSE, ELSE IF, IF (arithmetic), IF (logical), and END (construct)

Related Concepts

For more information about the IF construct, see Chapter 6, Execution
Control.

IF (Logical)
Conditionally executes a statement.

IF (logical-expression) statement

logical-expressionis a logical expression.

statement is any executable statement other than the
following:

• A statement used to begin a construct
• Any END statement
• Any IF statement

Description

The logical IF statement is a two-way decision maker. If
logical-expression evaluates to is true, statement executes and
control passes to the next statement. If logical-expression evaluates
to false, statement does not execute and control passes to the next
statement in the program.

Example
IF (a .EQ. b) PRINT *, ’They are equal.’

10-104

10 Intel Fortran Programmer’s Reference

Related Statements

IF (arithmetic) and IF (construct)

Related Concepts

For more information about the logical IF statement and other flow control
statements, see Chapter 6, Execution Control.

IMPLICIT
Changes or voids default typing rules.

The IMPLICIT statement can take either of the following forms:

IMPLICIT type (range-list) [, type (range-list) ,]...

IMPLICIT NONE

type is the data type to be associated with the corresponding
letters in range-list.

range-list is a comma-separated list of letters or ranges of letters
(for example, A-Z or I-N) to be associated with type.
Writing a range of letters has the same effect as writing a
list of single letters.

Description

The IMPLICIT statement can be used either to change or void the default
typing rules, depending on which of the two forms the statement takes.

First Form

This form of the IMPLICIT statement specifies type as the data type for
all variables, arrays, named constants, function subprograms, ENTRY names
in function subprograms, and statement functions that begin with any letter
in range-list and that are not explicitly given a type.

Intel Fortran Statements 10

10-105

Within the specification statements of a program unit, IMPLICIT
statements must precede all other specification statements, except possibly
the DATA and PARAMETER statements.

The same letter must not appear as a single letter or be included in a range
of letters, more than once in all of the IMPLICIT statements in a scoping
unit.

For information on how the IMPLICIT and PARAMETER statements
interact, refer to the description of the PARAMETER in this chapter.

Second Form

The IMPLICIT NONE statement disables the default typing rules for all
variables, arrays, named constants, function subprograms, ENTRY names,
and statement functions (but not intrinsic functions). All such objects must
be explicitly typed. The IMPLICIT NONE statement must be the only
IMPLICIT statement in the scoping unit, and it must precede any
PARAMETER statement. Types of intrinsic functions are not affected.

You can also use the -implicit_none command-line option to void the
default typing rules. A program compiled with this option may include
IMPLICIT statements, which the compiler will honor. For additional
information about the -implicit_none option, see the Intel Fortran
Compiler User’s Guide.

Example

The following statement causes all variables and function names beginning
with I, J, or K to be of type complex, and all data items beginning with A,
B, or C to be of type integer:

IMPLICIT COMPLEX (I, J, K), INTEGER (A-C)

Related Concepts

The default typing rules and the behavior of the IMPLICIT and IMPLICIT
NONE statements are discussed in Chapter 3, Data Types and Data Objects.
The -implicit_none command-line option is described in the Intel
Fortran Compiler User’s Guide.

10-106

10 Intel Fortran Programmer’s Reference

IMPLICIT AUTOMATIC
Defaults typing to automatic variable.

The IMPLICIT AUTOMATIC statement takes the following form:

IMPLICIT AUTOMATIC (range-list) [, type (range-list)
,]...

range-list is a comma-separated list of letters or ranges of letters
(for example, A-Z or I-N) to be associated with type.
Writing a range of letters has the same effect as writing a
list of single letters.

Description
The IMPLICIT AUTOMATIC statement is used to make the type variable
automatic, that is, a copy is generated each time you invoke the procedure.

Related Concepts
The default typing rules and the behavior of the IMPLICIT are discussed in
Chapter 3, Data Types and Data Objects. The -implicit_none
command-line option is described in the Intel Fortran Compiler User’s
Guide. Also, for a general description, see the “IMPLICIT”. Also see
“AUTOMATIC”.

IMPLICIT STATIC
Defaults typing to a static variable.

The IMPLICIT STATIC statement takes the following form:

IMPLICIT STATIC (range-list) [, type (range-list)
,]...

Intel Fortran Statements 10

10-107

range-list is a comma-separated list of letters or ranges of letters
(for example, A-Z or I-N) to be associated with type.
Writing a range of letters has the same effect as writing a
list of single letters.

Description
The IMPLICIT STATIC statement is used to make the type variable
static, that is, a one and only one copy of the data is kept regardless of the
number of times a procedure is called.

Related Concepts
The default typing rules and the behavior of the IMPLICIT statements are
discussed in Chapter 3, Data Types and Data Objects. The
-implicit_none command-line option is described in the Intel Fortran
Compiler User’s Guide. Also, for a general description, see the “IMPLICIT”.
Also see “STATIC (Statement and Attribute)”.

INCLUDE
Imports text from a specified file.

INCLUDE character-literal-constant

character-literal-constantis the name of the file to include.

Description

The keyword INCLUDE and character-literal-constant form an
INCLUDE line, which is used to insert text into a program prior to
compilation. The inserted text replaces the INCLUDE line; the INCLUDE
line should therefore appear in your program where you want the inserted
text. When the end of an included file is reached, the compiler continues
processing with the line following the INCLUDE line.

character-literal-constant can be either a file name or a device
name. It must not have a kind parameter that is a named constant.

10-108

10 Intel Fortran Programmer’s Reference

The INCLUDE line must appear on one line with no other text except
possibly a trailing comment. It must not have a statement label. Thus, you
cannot branch to it, and it cannot be an action statement that is part of a
Fortran 95 IF statement. You cannot use the “;” operator to add a second
INCLUDE line, nor can you use the “&” operator to continue it over another
line.

The compiler searches directories for the named include files in the
following order:

1. The current directory
2. Directories specified by the /I command-line option, in the order

specified
3. The directories specified with the INCLUDE environment variable

See the Intel Fortran Compiler User’s Guide for information about the /I
option.

INCLUDE lines can be nested to a maximum of ten levels. However, they
must be nested nonrecursively. That is, inserted text must not specify an
INCLUDE line that was encountered at an earlier level of nesting.

Line numbering within the listing of an included file begins at 1. When the
included file listing ends, the include level decreases appropriately, and the
previous line numbering resumes.

Example
INCLUDE ’my_common_blocks’

INCLUDE "/my_stuff/declarations.h"

INQUIRE
Returns information about file
properties.

The syntax of the INQUIRE statement has two forms:

• Inquiry by output list:
INQUIRE (IOLENGTH= integer-variable) output-list

Intel Fortran Statements 10

10-109

• Inquiry by unit or file:
INQUIRE (io-specifier-list)

integer-variable is the length of the unformatted record that would
result from writing output-list to a direct-access
file. The value returned in integer-variable can be
used with the RECL= specifier in an OPEN
statement to specify the length of each record in
an unformatted direct-access file that will hold the
data in output-list.

output-list is a comma-separated list of data items, similar to
what would be included with the WRITE or
PRINT statement. The data items can include
variables and implied-DO lists; see Chapter 8, I/O
and File Handling for more information.

io-specifier-list is a list of comma-separated I/O specifiers. As
noted in the following descriptions, most of the
specifiers return information about the specified
unit or file. io-specifier-list must include
either the UNIT= or FILE= specifier, but not
both. The following paragraphs describe all the
I/O specifiers that can appear in io-specifier-list:

[UNIT=]unit specifies the unit connected to an external file.
unit must be an integer expression that evaluates
to a number greater than 0. If the optional
keyword UNIT= is omitted, unit must be the
first item in io-specifier-list. If unit
appears in io-specifier-list, the FILE=
specifier must not be used.

ACCESS=character- returns the following values, indicating the
 variable method of access:

’SEQUENTIAL’ File is connected for sequential
access.

’DIRECT’ File is connected for direct
access.

’UNDEFINED’ File is not connected.

10-110

10 Intel Fortran Programmer’s Reference

ACTION=character- returns the following values, indicating the
 variable direction of the transfer:

BINARY=bin bin is a scalar default CHARACTER variable that
is assigned one of the following values:

BLANK=character- returns the type of blank control that is in effect.
 variable For information about blank control, see the

BLANK= specifier for the OPEN statement. The
values returned by the BLANK= specifier are:

BLOCKSIZE=integer-indicates the physical I/O transfer size for the file.

 expression If the value is non-zero, it should be rounded up to
a multiple of 512. If it is zero or not specified, it
defaults to system default, generally 512.

CARRIAGECONTROL= indicates the type of carriage control used when a

’READ’ File is connected for reading only.

’WRITE’ File is connected for writing only.

’READWRITE’ File is connected for reading and
writing.

’UNDEFINED’ File is not connected.

’YES’ File is connected to a binary
file.

’NO’ File is not connected to a binary
file.

’UNKNOWN’ It cannot be determined
whether or not file is connected
to a binary file.

’NULL’ Null blank control is in effect.

’ZERO’ Zero blank control is in effect.

’UNDEFINED’ File is not connected for
formatted I/O.

Intel Fortran Statements 10

10-111

 string file is displayed on a terminal device. The string
values are:

DELIM=character- returns the following values, indicating the

 expression character to use (if any) to delimit character
values in list-directed and namelist formatting:

DIRECT=character- returns the following values, indicating whether
 variable or not the file is connected for direct access:

ERR=stmt-label specifies the label of the executable statement to
which control passes if an error occurs during
statement execution.

EXIST=logical- returns the following values, indicating whether
variable or not the file or unit exists:

’FORTRAN’ Default for Fortran interpretation of the
first character.

’LIST’ Default for formatted file.

’NONE’ Default for binary and unformatted file.

’APOSTROPHE’ An apostrophe is used as the delimiter.

’QUOTE’ The double quotation mark is used as
the delimiter.

’NONE’ There is no delimiting character.

’UNDEFINED’ File is not connected for formatted I/O.

’YES’ File is connected for direct access.

’NO’ File is not connected for direct
access.

’UNKNOWN’ It cannot be determined whether or
not file is connected for direct
access.

.TRUE. File exists or unit is connected.

.FALSE. File does not exist or unit is not
connected.

10-112

10 Intel Fortran Programmer’s Reference

FILE=character- specifies the name of a file for inquiry. The file
 expression does not have to be connected or even exist. If the

FILE= specifier appears in
io-specifier-list, the UNIT= specifier
must not be used.

FORM=character- returns the following values, indicating whether
 variable the file is connected for formatted or unformatted

I/O:

FORMATTED=character-variable
returns the following values, indicating

 whether or not the file is connected for formatted
I/O:

IOFOCUS=logical-variable
returns the following values indicating whether the
specified UNIT is the current active window:

’FORMATTED’ File is connected for formatted
I/O.

’UNFORMATTED’ File is connected for unformatted
I/O.

’UNDEFINED’ File is not connected.

’BINARY’ File is connected for binary
transfer.

’YES’ File is connected for formatted I/O.

’NO’ File is not connected for formatted I/O.

’UNKNOWN’ It cannot be determined whether or not
file is connected for formatted I/O.

.TRUE. Specified UNIT is the current active
window in a QuickWin application.

.FALSE. Specified UNIT is not the current
active window.

Intel Fortran Statements 10

10-113

IOSTAT=integer- returns the I/O status after the statement executes.
 variable If the statement successfully executes,

integer-variable is set to zero. If an error
occurs, it is set to a positive integer that indicates
which error occurred.

NAME=character- returns the name of file connected to the specified
 variable unit. If the file has no name or is not connected,

NAME= returns the string UNDEFINED.

NAMED=logical- returns the following values, indicating whether
 variable or not the file has a name:

NEXTREC=integer- returns the number of the next record to be read or
 variable written in a file connected for direct access. The

value is the last record read or written +1. A value
of 1 indicates that no records have been
processed. If the file is not connected or it is a
device file or its status cannot be determined,
integer-variable is undefined.

NUMBER=integer- returns the unit number that is connected to the
 variable specified file. If no unit is connected to the named

file, integer-variable is undefined.

OPENED=logical- returns the following values, indicating whether
 variable or not the file has been opened (that is, is

connected):

.TRUE. File has a name.

.FALSE. File does not have a name.

.TRUE. File is connected.

.FALSE. File is not connected.

10-114

10 Intel Fortran Programmer’s Reference

ORGANIZATION=scalar-charatcer
returns a scalar character variable indicating the
following record access types:

PAD=character- returns a value indicating whether or not input
 variable records are padded with blanks. For more

information about padding, see the PAD=
specifier for the OPEN statement. The return
values are:

POSITION=character-variable
returns the following values, indicating the file
position:

’SEQUENTIAL’ File is connected for a sequential
access, records are accessed in
order.

’RELATIVE’ File is connected for a direct
access, records can be accessed
in any order.

’UNKNOWN’ It cannot be determined whether
the file is connected for sequential
or relative access.

’YES’ File or unit is connected with
PAD=’YES’ in OPEN
statement.

’NO’ File or unit is connected with
PAD=’NO’ in OPEN statement.

’REWIND’ File is connected with its position at
the start of the first record.

’APPEND’ File is connected with its position at
the end-of-file record.

’ASIS’ File is connected without changing
its position.

’UNDEFINED’ File is not connected or is connected
for direct access.

Intel Fortran Statements 10

10-115

READ=character- returns the following values, indicating whether
 variable or not reading is an allowed action for the file:

READWRITE=character-variable
returns the following values, indicating

 whether or not reading and writing are allowed
actions for the file:

RECL=integer- returns the record length of the specified unit or
 variable file, measured in bytes. The file must be a

direct-access file. If the file is not a direct-access
file or does not exist, integer-variable is
undefined.

RECORDTYPE=scalar-character-expression

returns a scalar default variable rtype of default
CHARACTER type with one of the following values:

’YES’ Reading is allowed for file.

’NO’ Reading is not allowed for file.

’UNKNOWN’ It cannot be determined whether or
not reading is allowed for file.

’YES’ Both reading and writing are allowed
for file.

’NO’ Reading and writing are not both
allowed for file.

’UNKNOWN’ It cannot be determined whether or not
reading and writing are both allowed
for file.

’FIXED’ File is connected for a fixed-length
record.

’VARIABLE’ File is connected for a
variable-length record.

’SEGMENTED’ File is connected for unformatted
sequential access with segmented
records.

10-116

10 Intel Fortran Programmer’s Reference

SEQUENTIAL=character-variable
returns the following values, indicating
whether or not the file is connected for direct
access:

SHARE=character- indicates whether the file locking is applied while

 variable the unit is open. The following values are used:

’STREAM’ File is connected without record
termination.

’STREAM_CR’ File is connected with its records
terminated with carriage return.

’STREAM_LF’ File is connected with its records
terminated with line feed.

’UNKNOWN’ File is not connected.

’YES File is connected for sequential
access.

’NO’ File is not connected for sequential
access.

’UNKNOWN’ It cannot be determined whether or
not file is connected for sequential
access.

’DENYRW’ Deny-read/write mode. No process
can open this file.

’DENYWR’ Deny-write mode. No process can
open the file with write access.

’DENYRD’ Deny-read mode. No process can
open the file with read access.

’DENYNONE’ Deny-none mode. Any process can
open the file in any mode. This is
the default value.

’UNDEFINED’ The access mode is undefined.

Intel Fortran Statements 10

10-117

UNFORMATTED=character variable
returns the following values, indicating whether

 or not the file is connected for formatted I/O:

WRITE=character- returns the following values, indicating whether
 variable or not writing is an allowed action for the file:

Description

The INQUIRE statement returns selected properties of a specified file or
unit number. (It is illegal to include both the UNIT= specifier and the
FILE= specifier in the same INQUIRE statement.) Inquiring by unit
number should be used on connected files; inquiring by filename is
typically used on unconnected files.

In addition, the INQUIRE statement can also be used to determine the
record length of a new or existing file. That is, you can use INQUIRE to
obtain the record length before creating the file and then use the return value
as the argument to the RECL= specifier in an OPEN statement.

Examples

The examples in this section illustrate different uses of the INQUIRE
statement.

’YES’ File is connected for unformatted
I/O.

’NO’ File is not connected for
unformatted I/O.

’UNKNOWN’ It cannot be determined whether or
not file is connected for
unformatted I/O.

’YES’ Writing is allowed for file.

’NO’ Writing is not allowed for file.

’UNKNOWN’ It cannot be determined whether or
not writing is allowed for file.

10-118

10 Intel Fortran Programmer’s Reference

Inquiry by File

The following statement returns the following information about the file
named my_file:

• Is it connected?
• Is it connected for direct access?
• Can it be read and written?
LOGICAL :: exist

CHARACTER(LEN=9) :: dir_acc, rw_sts

INQUIRE (FILE=’my_file’, EXIST=exist, &

 DIRECT=dir_acc, READWRITE=rw_sts)

Inquiry by Unit

The following INQUIRE statement returns the following information about
the file connected to the unit in u_num:

• Is there a file connected to u_num?
• Is it named file or a scratch file?
• What is the name?
LOGICAL :: opened, named

INTEGER :: u_num

CHARACTER(LEN=80) :: fname

.

.

.

INQUIRE (UNIT=u_num, NAMED=named, &

 OPENED=opened, NAME=fname)

Inquiry by Output List

When using the OPEN statement to create a direct-access file, you must
specify the record length for the file with the RECL= specifier. Previous to
Fortran 95, you had to resort to a nonportable strategy to determine record
length. The Fortran 95 INQUIRE statement provides a portable solution:
use the INQUIRE statement to inquire by output list, and specify the return
value from the INQUIRE statement as the argument to the OPEN statement.

Intel Fortran Statements 10

10-119

The following is an example:

INTEGER :: rec_len, ios

INQUIRE (IOLENGTH=rec_len) x, y, i, j

OPEN (UNIT=32, FILE=’new_file’, IOSTAT=ios, &

 ACCESS=’DIRECT’, RECL=rec_len)

Related Statements
OPEN

Related Concepts

For information about I/O concepts, see Chapter 8, I/O and File Handling.

INTEGER
Declares entities of type integer.

INTEGER [kind-spec] [[, attrib-list] ::] entity-list

kind-spec is the kind type parameter that specifies the range
of the entities in entity-list. kind-spec takes the
form:

([KIND=] kind-param)

where kind-param can be a named constant or a constant expression
that has the integer value of 1, 2, 4, or 8. The size
of the default type is 4.

As an extension, kind-spec can take the form:
*len-param

where len-param is the integer 1, 2, 4, or 8 (default = 4).
attrib-list is a list of one or more of the following attributes,

separated by commas:

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

10-120

10 Intel Fortran Programmer’s Reference

For information about each of the attributes, see the corresponding
statement in this chapter.

entity-list is a list of entities, separated by commas. Each
entity takes the form:

name [(array-spec)] [= initialization-expr]

where name is the name of a variable or function,
array-spec is a comma-separated list of
dimension bounds, and
initialization-expr is the initial value for
the entity.

Description

The INTEGER statement is used to declare the length and properties of data
that are whole numbers. A kind parameter (if present) indicates the
representation method.

The INTEGER statement is constrained by the rules for all type declaration
statements, including the requirement that it precede all executable
statements.

Explicitly declaring an entity with the INTEGER statement overrides any
implicit typing rules in effect.

If attrib-list or initialization-expr appear in the declaration,
entity-list must be preceded by the double colon.

If array-spec is specified for an entity, it overrides any DIMENSION
attribute.

Initialization

initialization-expr must be a constant integer expression that can
be evaluated at compile time.

The following entities may not be initialized:

• Dummy arguments
• Function results

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

Intel Fortran Statements 10

10-121

• Allocatable arrays
• Pointers
• External names
• Intrinsic names
• Automatic objects

If attrib-list includes the PARAMETER attribute, each entity in
entity-list must include an initialization expression.

To initialize an array in an INTEGER statement, you must use an array
constructor, as in the following example:

INTEGER, DIMENSION(4) :: ivec=(/1,2,3,4/)

If an array is initialized, all items in the array must be initialized.
Implied-DO loops cannot be used to initialize an array in a type declaration
statement.

As an extension, an initializer may appear between slashes in a type
declaration statement, as follows:

INTEGER i/-1/, j/-2/, k/-7/

The double colon (::) may not be used with this initialization format.

Length Specification Extension
As a portability extension, Intel Fortran allows the following syntax for
specifying the length of an entity:
name [*len] [(array-spec)] [= initialization-expr]

If (array-spec) is specified, *len may appear on either side of
(array-spec).

If name appears with *len, it overrides the length specified by
INTEGER*size. For example, the following statements are equivalent
declarations of int1:

INTEGER (KIND = 8) int1
INTEGER*4 int1*8

Example

The following are valid declarations:

INTEGER i, j

INTEGER(KIND=2) :: k

INTEGER(2), PARAMETER :: limit=420

10-122

10 Intel Fortran Programmer’s Reference

Related Statements
BYTE

Related Concepts

The following are discussed elsewhere in this manual:

• Implicit typing rules: Chapter 3, Data Types and Data Objects

• Data representation models: Chapter 3, Data Types and Data Objects

• Storage classes for variables: Chapter 3, Data Types and Data Objects

• Automatic objects: Chapter 3, Data Types and Data Objects

• Arrays: Chapter 4, Arrays
• Expressions: Chapter 5, Expressions and Assignment

• Initialization expressions: Chapter 5, Expressions and Assignment

INTENT (Statement and Attribute)
Specifies the intended use of dummy
arguments.

A type declaration statement with the INTENT attribute is:

type , attrib-list :: dummy-arg-name-list

type is a valid type specification (INTEGER, REAL,
LOGICAL, CHARACTER, TYPE (name), etc.), as
described in Chapter 3, Data Types and Data
Objects.

attrib-list is a comma-separated list of attributes including
INTENT (intent-spec) and optionally those
attributes compatible with it, namely:

intent-spec is one of IN, OUT, or INOUT. (The form IN OUT
is valid.)

DIMENSION OPTIONAL TARGET

Intel Fortran Statements 10

10-123

dummy-arg-name-list
is a comma-separated list of subprogram dummy
arguments to which intent-spec is to apply.

The syntax of the INTENT statement is:

INTENT (intent-spec) [::] dummy-arg-name-list

Description

The INTENT attribute declares whether a dummy argument is intended for
transferring a value into a procedure, or out of it, or both. The INTENT
attribute helps detect the use of arguments inconsistent with their intended
use, and may also assist the compiler in generating more efficient code.

If a dummy argument has intent IN, the procedure must not change it or
cause it to become undefined. If the actual argument is defined, this value is
passed in as the value of the dummy argument.

If a dummy argument has intent OUT, the corresponding actual argument
must be definable; that is, it cannot be a constant. When execution of the
procedure begins, the dummy argument is undefined; thus it must be given
a value before it is referenced. The dummy argument need not be given a
value by the procedure.

If a dummy argument has intent INOUT, the corresponding actual argument
must be definable. If the actual argument is defined, this value is passed in
as the value of the dummy argument. The dummy argument need not be
given a value by the procedure.

The following points should also be noted:

• Intent specifications apply only to dummy arguments and may only
appear in the specification part of a subprogram or interface body.

• If there is no intent specified for an argument in a subprogram, the
limitations imposed by the actual argument apply to the dummy
argument. For example, if the actual argument is an expression that is
not a variable, the dummy argument must not redefine its value.

• The intent of a pointer dummy argument must not be specified.

10-124

10 Intel Fortran Programmer’s Reference

Examples
SUBROUTINE electric (x, y, z)

! x, y, and z are dummy arguments.

 REAL, INTENT (IN) :: x, y

 ! x and y are used only for input.

 COMPLEX, INTENT (INOUT), TARGET :: z(1000)

 ! z is used for input and output.

SUBROUTINE pressure (true, tape, a, b)

 USE a_module

 TYPE(ace), INTENT(IN) :: a, b

 ! a and b are only for input.

 INTENT (OUT) true, tape

 ! true and tape are only for output.

SUBROUTINE lab_ten (degrees, x, y, z)

 COMPLEX, INTENT(INOUT) :: degrees

 REAL, INTENT(IN), OPTIONAL :: x, y

 INTENT(IN) z

PROGRAM pxx

 CALL electric (a+1, h*c, d)

 ! First subroutine defined above.

 CALL lab_ten (dg, e, f, g+1.0)

END PROGRAM pxx

Related Statements

FUNCTION and SUBROUTINE

Related Concepts

Procedure arguments—including argument association and argument
keywords—are discussed in Chapter 7, Program Units and Procedures.

Intel Fortran Statements 10

10-125

INTERFACE
Introduces an interface block.

INTERFACE [generic-spec]

generic-spec is one of:

• generic-name

• OPERATOR(defined-operator)

• ASSIGNMENT(=)

generic-name is the name of a generic procedure.

defined-operator is one of:

• An intrinsic operator
• .operator., where operator is a

user-defined name

Description

The INTERFACE statement is the first statement of an interface block.
Interface blocks constitute the mechanism by which external procedures
may be given explicit interfaces and also provide additional functionality, as
described below.

The INTERFACE generic-name form defines a generic interface for the
procedures in the interface block.

The INTERFACE OPERATOR (defined-operator) form is used to
define a new operator or to extend the meaning of an existing operator.

The INTERFACE ASSIGNMENT(=) form is used to extend the definition
of the assignment operator to new combinations of data types, or to redefine
the assignment operator for user-defined types.

Examples

The following examples illustrate various forms of interface block:

! Make explicit the interfaces of

! external function spline and external

! subroutine sp2.

10-126

10 Intel Fortran Programmer’s Reference

INTERFACE

 REAL FUNCTION spline(x,y,z)

 END FUNCTION spline

 SUBROUTINE sp2(x,z)

 END SUBROUTINE sp2

END INTERFACE

! Make the interface of function r_ave

! explicit, and give it the generic name

! g_ave.

INTERFACE g_ave

 FUNCTION r_ave(x)

 ! Get the size of x from the module

 ! ave_stuff.

 USE ave_stuff, ONLY: n

 REAL r_ave, x(n)

 END FUNCTION r_ave

END INTERFACE

! Make the interface of external function b_or

! explicit, and use it to extend the +

! operator.

INTERFACE OPERATOR (+)

 FUNCTION b_or(p, q)

 LOGICAL b_or, p, q

 INTENT (IN) p, q

 END FUNCTION b_or

END INTERFACE

Related Statements

END INTERFACE, FUNCTION, and SUBROUTINE

Intel Fortran Statements 10

10-127

Related Concepts

The following are discussed elsewhere in this manual:

• Derived types: Chapter 3, Data Types and Data Objects

• Assignment: Chapter 5, Expressions and Assignment

• Procedures, generic procedures, procedure interfaces, and user defined
operators: Chapter 7, Program Units and Procedures

INTERFACE TO
A block to identify a subprogram
before it is actually referenced.

INTERFACE TO routine-declaration

(formal-argument-declaration(s))

formal-argument- Fortran type argument declarations. Optionally,

declaration(s) each argument can contain attributes.

Description

This block identifies a subprogram and its actual arguments before it is
actually referenced or called.

The routine-declaration defines a function or subroutine depending
on whether one of those needs to be identified

Example
Consider calling a C function that has this prototype:

extern void Foo (int i);

The INTERFACE TO block to declare the Fortran call to this function is as
follows:

INTERFACE TO SUBROUTINE Foo [C.ALIAS: ‘_Foo’] (I)

INTEGER*4 I

END

10-128

10 Intel Fortran Programmer’s Reference

INTRINSIC (Statement and Attribute)
Identifies an intrinsic procedure.

The syntax of the type declaration statement with the INTRINSIC attribute
is:

type , attrib-list :: intrinsic-function-name-list

type is a valid type specification (INTEGER, REAL,
LOGICAL, CHARACTER, TYPE(name), etc.), as
described in Chapter 3, Data Types and Data
Objects.

attrib-list is a comma-separated list of attributes including
INTRINSIC and optionally those attributes
compatible with it, namely:

intrinsic-function-name-list
is a comma-separated list of

 intrinsic-function-names. (Note that subroutine
names cannot appear in type statements, so that
intrinsic subroutine names can only be identified
as such by use of the INTRINSIC statement,
described below.)

The syntax of the INTRINSIC statement is:

INTRINSIC intrinsic-procedure-name-list

intrinsic-procedure-is a comma-separated list of procedure names.
 name-list

PRIVATE PUBLIC

NOTE. Like the EXTERNAL statement, the INTRINSIC statement does
not have optional colons.

Intel Fortran Statements 10

10-129

Description

The INTRINSIC statement and attribute identifies a specific or generic
name as that of an intrinsic procedure, enabling it to be used as an actual
argument. The INTRINSIC statement is necessary to inform the compiler
that a name is intrinsic and is not the name of a variable. Whenever an
intrinsic name is passed as an actual argument and no other appearance of
the name in the same scoping unit indicates that it is a procedure, it must be
specified by the calling program in an INTRINSIC statement, or (if a
function name) in a type declaration statement that includes the
INTRINSIC attribute.

Each name can appear only once in an INTRINSIC statement and in at
most one INTRINSIC statement within the same scoping unit. Also, a
name cannot appear in both an EXTERNAL and an INTRINSIC statement
within the same scoping unit.

Examples

The following INTRINSIC statement informs the compiler that sin and
tan are intrinsics, enabling them to be passed to the subroutine MATH:

INTRINSIC sin, tan

CALL math(sin, tan)

The following REAL statement does the same thing, using the INTRINSIC
attribute to inform the compiler that sin and tan are intrinsics:

REAL, INTRINSIC :: sin, tan

Related Statements
EXTERNAL

Related Concepts

10-130

10 Intel Fortran Programmer’s Reference

LOGICAL
Declares entities of type logical.

LOGICAL [kind-spec] [[, attrib-list] ::] entity-list

kind-spec specifies the size of the logical entity in bytes.
kind-spec takes the form:

([KIND=] kind-param)

where kind-param can be a named constant or a constant expression
that has the integer value of 1, 2, 4, or 8. The size
of the default type is 4.

As an extension, kind-spec can take the form:

*len-param

where len-param is the integer 1, 2, 4, or 8 (default = 4).
 attrib-list is a list of one or more of the following attributes,

separated by commas:

For information about each of the attributes, see the corresponding
statement in this chapter.

entity-list is a list of entities, separated by commas. Each
entity takes the form:

name [(array-spec)] [= initialization-expr]

where name is the name of a variable or function,
array-spec is a comma-separated list of
dimension bounds, and
initialization-expr is the initial value for
the entity.

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

Intel Fortran Statements 10

10-131

Description

The LOGICAL statement is constrained by the rules for type declaration
statements, including the requirement that it precede all executable
statements.

Explicitly declaring an entity with the LOGICAL statement overrides any
implicit typing rules in effect.

If attrib-list or initialization-expr appears in the declaration,
entity-list must be preceded by the double colon.

If array-spec is specified for an entity, it overrides any DIMENSION
attribute.

Initialization

initialization-expr must be a constant logical expression that can
be evaluated at compile time.

The following entities may not be initialized:

• Dummy arguments
• Function results
• Allocatable arrays
• Pointers
• External names
• Intrinsic names
• Automatic objects

If attrib-list includes the PARAMETER attribute, each entity in
entity-list must include an initialization expression.

To initialize an array in a LOGICAL statement, you must use an array
constructor, as in the following example:

LOGICAL, DIMENSION(2) :: lvec=(/.TRUE.,.FALSE./)

If an array is initialized, all items in the array must be initialized.
Implied-DO loops cannot be used to initialize an array in a type declaration
statement.

As an extension, an initializer may appear between slashes in a type
declaration statement, as follows:

LOGICAL log1/.TRUE./, log2/.FALSE./

10-132

10 Intel Fortran Programmer’s Reference

The double colon (::) may not be used with this initialization format.

Length Specification Extension

As a portability extension, Intel Fortran allows the following syntax for
specifying the length of an entity:

name [*len] [(array-spec)] [= initialization-expr]

If (array-spec) is specified, *len may appear on either side of
(array-spec).

If name appears with *len, it overrides the length specified by
LOGICAL*size. For example, the following statements are equivalent
declarations of log:

LOGICAL (KIND = 8) log8

LOGICAL*4 log8*8

Example

The following are valid declarations:

LOGICAL log1, log2

LOGICAL(KIND=2) :: log3

LOGICAL(2), PARAMETER :: test=.TRUE.

Related Statements

See the statement form of each of the attributes that can be specified for the
LOGICAL statement.

Related Concepts

The following are discussed elsewhere in this manual:

• Implicit typing rules: Chapter 3, Data Types and Data Objects

• Expressions: Chapter 5, Expressions and Assignment

• Initialization expressions: Chapter 5, Expressions and Assignment

• Data representation models: Chapter 3, Data Types and Data Objects

• Storage classes for variables: Chapter 3, Data Types and Data Objects

• Automatic objects: Chapter 3, Data Types and Data Objects

• Arrays: Chapter 4, Arrays

Intel Fortran Statements 10

10-133

MAP
Defines a union within a structure.

MAP

 field-def

 .
 .
 .
END MAP

field-def

is one of the following:
• A type declaration statement
• Another nested structure
• A nested record
• A union definition

Description
The MAP statement is an Intel Fortran extension that is used with the UNION
statement to define a union within a structure. For detailed information about
the MAP and UNION statements, see the description of the STRUCTURE
statement in this chapter.

MODULE
Introduces a module.

MODULE module-name

module-name is a unique module name.

10-134

10 Intel Fortran Programmer’s Reference

Description

Modules are nonexecutable program units that can contain type definitions,
object declarations, procedure definitions (module procedures), external
procedure interfaces, user-defined generic names, and user-defined
operators and assignments. Any such definitions not specified to be private
to the module containing them are available to those program units that
specify the module in a USE statement. Modules provide a convenient
sharing and encapsulation mechanism for data, types, procedures, and
procedure interfaces.

Examples
! Make data objects and a data type

! shareable via a module.

MODULE shared

 COMPLEX gtx (100, 6)

 REAL, ALLOCATABLE :: y(:), z(:,:)

 TYPE peak_item

 REAL peak_val, energy

 TYPE(peak_item), POINTER :: next

 END TYPE peak_item

END MODULE shared

! Define a data abstraction for rational

! arithmetic via a module.

MODULE rational_arithmetic

 TYPE rational

 PRIVATE

 INTEGER numerator, denominator

 END TYPE rational ! Generic extension of =

 INTERFACE ASSIGNMENT (=)

 MODULE PROCEDURE eqrr, eqri, eqir

 END INTERFACE

 ! Generic extension of +

 INTERFACE OPERATOR (+)

 MODULE PROCEDURE addrr, addri, addir

 END INTERFACE

Intel Fortran Statements 10

10-135

 ...

 CONTAINS

 ! A specific definition of =

 FUNCTION eqrr (. . .)

 ...

 ! A specific definition of +

 FUNCTION addrr (. . .)

 ...

END MODULE rational_arithmetic

Related Statements

CONTAINS, END, PRIVATE, PUBLIC, and USE

Related Concepts

Use association, module procedures, program units, and encapsulation are
discussed in Chapter 7, Program Units and Procedures.

MODULE PROCEDURE
Specifies module procedures in a
generic interface.

MODULE PROCEDURE module-procedure-name-list

module-procedure- is a comma-separated list of
 name-list module-procedure-names.

Description

A MODULE PROCEDURE statement appears within an interface block. It is
used when the specification is generic and a specific procedure is defined
within the module rather than as an external procedure. The MODULE
PROCEDURE statement only names the subprograms; it does not contain the

10-136

10 Intel Fortran Programmer’s Reference

definition of the interface. The named subprograms must be defined within
the current module or within another module that is accessible by use
association.

Examples
MODULE path

! Module data environment.

! Module procedures contained in this module

! have access to this data environment.

REAL x, y, z

! Generic name substance for procedures

! air and water.

INTERFACE substance

 MODULE PROCEDURE air, water

END INTERFACE

INTERFACE OPERATOR (*)

 MODULE PROCEDURE rational_multiply

END INTERFACE

...

! Module procedures are preceded by CONTAINS.

CONTAINS

 SUBROUTINE air (contents)

 ...

 END SUBROUTINE air

 SUBROUTINE water (x, a, z)

 a = x + y

 ! x is a dummy argument.

 ! y is from the module data environment.

 ...

 END SUBROUTINE water

Intel Fortran Statements 10

10-137

 FUNCTION rational_multiply (x, y)

 TYPE (rational) :: rational_multiply

 TYPE (rational), INTENT (IN) :: x, y

 rational_multiply = ...

 ...

 END FUNCTION rational_multiply

END MODULE path

Related Statements

FUNCTION, SUBROUTINE, and INTERFACE

Related Concepts

Modules and procedure interfaces are discussed in Chapter 7, Program
Units and Procedures.

NAMELIST
Names a group of variables for I/O
processing.

NAMELIST /grp-name/var-list [[,]/grp-name/
 var-list]...

grp-name is a unique namelist group name.

var-list is a comma-separated list of scalar and array variable
names.

Description

The NAMELIST statement declares var-list as a namelist group and
associates the group with grp-name.

10-138

10 Intel Fortran Programmer’s Reference

Variables appearing in var-list may be of any type, including objects of
derived types or their components, saved variables, variables on the local
stack, and subroutine parameters. The following, however, are not allowed:

• Record or composite references
• Pointers or their targets
• Automatic objects
• Allocatable array
• Character substrings
• Assumed-size array parameters
• Adjustable-size array parameters
• Assumed-size character parameters
• Individual components of a derived type object

The var-list explicitly defines which items may be read or written in a
namelist-directed I/O statement. It is not necessary for every item in
var-list to be defined in namelist-directed input, but every input item
must belong to the namelist group. The order of items in var-list
determines the order of the values written in namelist-directed output.

More than one NAMELIST statement with the same grp-name may appear
within the same scoping unit. Each successive var-list in multiple
NAMELIST statements with the same grp-name is treated as a
continuation of the list for grp-name.

The same variable name may appear in different NAMELIST statements
within the same scoping unit.

Examples
PROGRAM

 INTEGER i, j(10)

 CHARACTER*10 c

 NAMELIST /n1/ i, j, c

 ! Define the namelist group n1.

 READ (UNIT=5,NML=n1)

 WRITE (6, n1)

END

Intel Fortran Statements 10

10-139

When this program is compiled and executed with the following input
record:

&n1

j(8) = 6, 7, 8

i = 5

c = 'xxxxxxxxx'’

j = 5*0, -1, 2

c(2:6) = 'abcde'

/

its output is:

 &n1

 I = 5

 J = 0 0 0 0 0 -1 2 6 7 8

 C ='xabcdexxx'

 /

Related Statements

ACCEPT, OPEN, INQUIRE, PRINT, READ, and WRITE

Related Concepts

Namelist-directed I/O is described in Chapter 8, I/O and File Handling.

NULLIFY
Disassociates a pointer from a target.

NULLIFY (pointer-object-list)

pointer-object-list
is a comma-separated list of variable names and
derived-type components.

10-140

10 Intel Fortran Programmer’s Reference

Description

The NULLIFY statement disassociates a pointer from any target. A
NULLIFY statement is also used to change the status of a pointer from
undefined to disassociated.

Examples

The following example shows the declaration and use of a variable with the
pointer attribute:

REAL, TARGET :: value ! value can be a target

REAL, POINTER :: pt ! for the pointer pt.pt => value
! Associate pt with value.

NULLIFY (pt) ! Disassociate pt.

IF (.NOT.ASSOCIATED(pt)) pt => x

! The ASSOCIATED intrinsic is valid here if (and

! only if) pt has been previously allocated,

! assigned (as above) or nullified (as above).

The next example shows how a derived type can be used
in list processing applications:

TYPE list_node

 INTEGER value

 TYPE (list_node), POINTER :: next

END TYPE list_node

TYPE (list_node), POINTER :: list

ALLOCATE (list) ! Create new list node.

list % value = 28 ! Initialize data field.

nullify (list % next) ! Nullify pointer to the

 ! next node.

Related Statements

ALLOCATE, DEALLOCATE, POINTER, and TARGET

Related Concepts

Pointers and pointer association are discussed in Chapter 3, Data Types and
Data Objects .

Intel Fortran Statements 10

10-141

OPEN
Connects file to a unit.

OPEN (io-specifier-list)

io-specifier-list is a list of the following comma-separated I/O
specifiers:

[UNIT=]unit specifies the unit to connect to an external file.
unit must be an integer expression that evaluates
to a number greater than 0. If the optional
keyword UNIT= is omitted, unit must be the
first item in io-specifier-list.

ACCESS=character- specifies the method of file access.
 expression character-expression can be one of the

following arguments:

To open a file for append (that is, to position the file just before the
end-of-file record), use POSITION=APPEND. For information about file
access methods, see Chapter 8, I/O and File Handling.

ACTION=character- specifies the allowed data-transfer operations.
 expression character-expression can be one of the

following arguments:

’DIRECT’ Open file for direct access.

’SEQUENTIAL’ Open file for sequential access
(default).

’APPEND’ Open existing file to append to end
of file.

’READ’ Do not allow WRITE and
ENDFILE statements.

’WRITE’ Do not allow READ statements.

’READWRITE’ Allow any data transfer statement
(default).

10-142

10 Intel Fortran Programmer’s Reference

ASSOCIATEVARIABLE=integer-variable
indicates a variable that is updated after each
direct access I/O operation; this variable contains
the record number of the next sequential record in
the file. The restriction is that this variable cannot
be a dummy argument to the routine in which the
OPEN statement appears. It is valid only for direct
access, in all other access modes, it is ignored.

For information about data transfer operations, see the READ, PRINT, and
WRITE statements in this chapter; see also Chapter 8, I/O and File
Handling.

BLANK=character- specifies treatment of blanks within numeric data
 expression on input. This specifier is applicable to formatted

input only. character-expression can be
one of the following arguments:

BLOCKSIZE=integer- indicates the physical I/O transfer size for the file.

 expression If the value is non-zero, it should be rounded up to
a multiple of 512. If it is zero or not specified, it
defaults to system default, generally 512.

CARRIAGECONTROL= indicates the type of carriage control used when a

 string file is displayed on a terminal device. The string
values are:

BUFFERCOUNT=integer expression
specifies the number of buffers associated with

 the unit for multibuffered I/O. If zero or not
specified or, assumes system default.

’NULL’ Ignore blanks (default).

’ZERO’ Substitute zeroes for blanks.

’FORTRAN’ Default for code files.

’LIST’ Default for formatted file.

’NONE’ Default for binary and
unformatted file.

Intel Fortran Statements 10

10-143

DEFAULTFILE=character-expression
indicates a default file specification string.

Supplies the missing components of a file
specification. If not specified, Fortran uses the
default value FORT.n, where n is the UNIT
number with leading zeros. You can indicate the
following file specification components: a device,
a directory, a file name, and a file type.

DELIM=character- specifies the delimiter to use (if any) when
 expression delimiting character constants in list-directed and

namelist-directed formatting. This specifier is
applicable to formatted output only.
character-expression can be one of the
following arguments:

ERR=stmt-label specifies the label of the executable statement to
which control passes if an error occurs during
statement execution.

’APOSTROPHE’ Use the apostrophe to delimit
character constants in list-directed
and namelist-directed formatting.

’QUOTE’ Use double-quotation marks to
delimit character constants in
list-directed and namelist-directed
formatting.

’NONE’ Use no delimiter to delimit
character constants in list-directed
and namelist-directed formatting
(default).

10-144

10 Intel Fortran Programmer’s Reference

FILE=character- specifies the name of the file to be connected to
 expression unit. character-expression can also be

or NAME the ASCII representation of a device file. If this
specifier does not appear in the OPEN statement, a
temporary scratch file is created.

DISPOSE or DISP=integer-expression

returns the status of the file after the unit is closed.
The default is ’KEEP’ except for a scratch file
which cannot be saved, printed or submitted. The
default for scratch file is ’DELETE’.

integer-expression can be one of the
following arguments:

FORM=character- specifies whether the file is connected for
 expression formatted or unformatted I/O.

character-expression can be one of the
following arguments:

’KEEP or SAVE’ Keeps the file after the unit closes.

’DELETE’ Deletes the file after the unit closes

’PRINT’ Submits the file to the system line
printer spooler and keeps it. Note
that this specifier can be used on
sequential files only.

’PRINT/DELETE’ Submits the file to the system line
printer spooler and then deletes it

’SUBMIT’ Submits the file to the batch job
queue and keeps it.

’SUBMIT/DELETE
’

Submits the file to the batch job
queue and then deletes it.

’FORMATTED’ Specify formatted I/O. If the file is
to be opened for sequential access,
this is the default.

’UNFORMATTED’ Specify unformatted I/O. If the file
is to be opened for direct access,
this is the default.

Intel Fortran Statements 10

10-145

IOFOCUS=logical-variable

returns the following values indicating whether the
specified UNIT is the current active window:

IOSTAT=integer- returns the I/O status after the statement executes.
 variable If the statement successfully executes,

integer-variable is set to zero. If an error
occurs, it is set to a positive integer that indicates
which error occurred.

MAXREC=integer- specifies the maximum number of records that

 expression can be transferred from or to a direct access file
while the file is connected. The default is an
unlimited number of records.

ORGANIZATION=scalar-charatcer
returns a scalar character variable indicating the
following record access types:

.TRUE. Specified UNIT is the current active
window in a Quickwin application.

.FALSE. Specified UNIT is not the current
active
window.

’SEQUENTIAL’ File is connected for a sequential
access, records are accessed in
order.

’RELATIVE’ File is connected for a direct access,
records can be accessed in any
order.

’UNKNOWN’ It cannot be determined whether the
file is connected for sequential or
relative access.

10-146

10 Intel Fortran Programmer’s Reference

PAD=character- specifies whether or not to pad the input record
 expression with blanks if the record contains fewer characters

than required by the format specification. This
specifier is applicable to formatted input only.
character-expression can be one of the
following arguments:

POSITION=character-expression
specifies the position of an existing file to be
opened for sequential access.
character-expression can be one of the
following arguments:

If the file to be opened does not exist, this specifier is ignored. New files are
always positioned at their start.

READONLY indicates that only READ statements can refer to
this connection. This specifier is similar to
ACTION=’READ’ but READONLY prevents
deletion of the file if it is closed with
STATUS=’DELETE’ in effect. The Fortran I/O
system’s default file access is READWRITE. If
access is denied, the I/O system automatically
retries accessing the file for READ access.

’YES’ Pad input records with blanks (if necessary)
to fill it out to length required by format
specification (default).

’NO’ Do not pad input record with blanks if it is
not as long as record specified by format
specification.

’ASIS’ Leave file position unchanged (default).

’REWIND’ Position the file at its start.

’APPEND’ Position the file just before the
end-of-file record.

Intel Fortran Statements 10

10-147

RECL=integer- specifies the length of each record in a file to be

 expression opened for direct access. The length is measured

or RECORDSIZE in characters (bytes). This specifier must be
present when a file is opened for direct access and
is ignored if file is opened for sequential access.

RECORDTYPE=character-expression
specifies a scalar default variable rtype of
default CHARACTER type with one of the following
values:

When you open a file, the default record types are as follows:

A segmented record is a logical record consisting
of segments that are physical records. Use
segmented records only for unformatted

’FIXED’ Indicates fixed-length records.

’VARIABLE’ Indicates variable-length records.

’SEGMENTED’ Indicates segmented records.

’STREAM’ Indicates stream-type
variable-length records.

’STREAM_CR’ Indicates stream-type
variable-length records terminated
with a carriage return.

’STREAM_LF’ Indicates stream-type
variable-length records terminated
with a line feed.

’UNKNOWN’ File is not connected.

’FIXED’ For relative files

’FIXED’ For direct access sequential files

’STREAM_LF’ For formatted sequential access
files

’VARIABLE’ For unformatted sequential access
files

10-148

10 Intel Fortran Programmer’s Reference

sequential access to disk or raw magnetic tape
files because the length of a segmented record
can be greater than 65,535 bytes.

If an output statement does not specify a full
record for a file containing fixed-length records,
the following occurs:

• In formatted files, the record is filled with
blanks.

• In unformatted files the record is filled with
zeros.

SHARE=character- indicates whether the file locking is applied while

 variable the unit is open. The following values are used:

SHARED indicates that the file is connected for shared
access by more than one program executing
simultaneously. SHARED access is the default for
Fortran I/O system.

STATUS=character- specifies the state of the file when it is opened.
 expression character-expression can be one of the

following arguments:

’DENYRW’ Deny-read/write mode. No process
can open this file.

’DENYWR’ Deny-write mode. No process can
open the file with write access.

’DENYRD’ Deny-read mode. No process can
open the file with read access.

’DENYNONE’ Deny-none mode. Any process can
open the file in any mode. This is
the default value.

’UNDEFINED’ The access mode is undefined.

’OLD’ Open an existing file. FILE= must also
be specified and the named file must
exist.

’NEW’ Create a new file. FILE= must also be
specified and the named file must not exist.

Intel Fortran Statements 10

10-149

TITLE=character indicates the name of a child window in a
 expression QuickWin application.

Specifying TITLE in a non-QuickWin application
causes a run-time error.

USEROPEN=function- indicates a user-written external function name
 name that controls the opening of the file.

The function must be declared in a previous
EXTERNAL statement; if it has a type, the type
should be INTEGER(4) (INTEGER*4). This
specifier allows you to use features of the
operating system additionally to Fortran.

Description

The OPEN statement connects a unit to a file so that data can be read from or
written to that file. Once a file is connected to a unit, the unit can be
referenced by any program unit in the program.

I/O specifiers do not have to appear in any specific order in the OPEN
statement. However, if the optional keyword UNIT= is omitted, unit must
be the first item in the list.

Only one unit can be connected to a file at a time unless the file is opened
SHARED. That is, the same file cannot be connected to two different units.
Attempting to open a file that is connected to a different unit will produce
undefined results.

’UNKNOWN’ If the file named in FILE= exists, open it
with the status of OLD; if it does not exist,
open it with the status of NEW. This is the
default status.

’REPLACE’ If the file does not exist, create it with a
status of OLD; if it does exist, delete it and
open it with a status of NEW. If
STATUS=’REPLACE’ is specified,
FILE= must also be specified.

’SCRATCH’ Create a scratch file. FILE= specifier
must not be specified. For information
about scratch files, see Chapter 8, I/O
and File Handling.

10-150

10 Intel Fortran Programmer’s Reference

However, multiple OPENs can be performed on the same unit. In other
words, if a unit is connected to a file that exists, it is permissible to execute
another OPEN statement for the same unit. If FILE= specifies a different
file, the previously opened file is automatically closed before the second file
is connected to the unit. If FILE= specifies the same file, the file remains
connected in the same position; the values of the BLANK=, DELIM=, PAD=,
ERR=, and IOSTAT= specifiers can be changed, but attempts to change the
values of any of the other specifiers will be ignored.

Examples

The examples in this section illustrate different uses of the OPEN statement.

The following OPEN statement connects the existing file inv to unit 10 and
opens it (by default) for sequential access. Only READ statements are
permitted to perform data transfers. If an error occurs, control passes to the
executable statement labeled 100 and the error code is placed in the
variable ios:

OPEN(10, FILE=’inv’, ERR=100, I0STAT=ios, &

 ACTION=’READ’, STATUS=’OLD’)

The following OPEN statement opens the file whose name is contained in the
variable next1, connecting it to unit 4 as a formatted, direct-access file
with a record length of 50 characters:

OPEN(ACCESS="DIRECT", UNIT=4, RECL=50, &

 FORM="FORMATTED", FILE=next1)

The following two OPEN statements produce the same results. Both open a
scratch file that is connected to unit 19 (if the FILE=name specifier had
appeared in the first statement, the named file would have been opened
instead):

OPEN (UNIT=19)

OPEN (UNIT=19, STATUS="SCRATCH")

Because the I/O specifiers that can be used in an OPEN statement do not
have to appear in any specific order, the following three OPEN statements
are all equivalent:

OPEN(UNIT=3, STATUS=’NEW’, FILE=’OUT.DAT’)

OPEN(3, STATUS=’NEW’, FILE=’OUT.DAT’)

OPEN(STATUS=’NEW’, FILE=’OUT.DAT’, UNIT=3)

Intel Fortran Statements 10

10-151

Note, however, that in the second OPEN statement 3 must appear first
because of the omission of the optional keyword UNIT=. Thus, the
following OPEN statement is illegal:

OPEN(STATUS=’NEW’, 3, FILE=’OUT.DAT’) ! illegal

Related Statements

CLOSE, INQUIRE, READ, and WRITE

Related Concepts

For information about I/O concepts and examples of programs that perform
I/O, see Chapter 8, I/O and File Handling. For information about I/O
formatting, see Chapter 9, I/O Formatting.

OPTIONAL (Statement and Attribute)
Identifies optional arguments for
procedures.

The syntax of the type declaration statement with the OPTIONAL attribute
is:

type , attrib-list :: dummy-argument-name-list

type is a valid type specification (INTEGER, REAL,
LOGICAL, CHARACTER, TYPE (name), etc.), as
described in Chapter 3, Data Types and Data Objects.

attrib-list is a comma-separated list of attributes including
OPTIONAL and optionally those attributes compatible
with it, namely:

dummy-argument-name-list
is a comma-separated list of

DIMENSION INTENT TARGET

EXTERNAL POINTER VOLATILE

10-152

10 Intel Fortran Programmer’s Reference

 dummy-argument-names.

The syntax of the OPTIONAL statement is:

OPTIONAL [::] dummy-argument-name-list

Description

If a dummy argument has the OPTIONAL attribute, the corresponding actual
argument need not appear in a procedure reference. In cases where there are
arguments that generally do not change from one reference to another, it is
convenient to specify that the arguments are optional and provide default
values for them. They can then be omitted from references in these general
cases. The presence of an optional argument in a procedure may be
determined by using the PRESENT intrinsic function.

Many uses of the ENTRY statement in FORTRAN 77 programs can be
replaced by the use of optional arguments.

Rules and Restrictions
• The OPTIONAL attribute may be specified only for dummy arguments.

It may occur in a subprogram and in any corresponding interface body.
• An optional dummy argument whose actual argument is not present

may not be referenced or defined (or invoked if it is a dummy
procedure), except that it may be passed to another procedure as an
optional argument and will be considered not present.

• When an argument is omitted in a procedure reference, all arguments
that follow it must use the keyword form.

• If a procedure has an optional argument, the procedure interface must
be explicit.

Examples

The following are two examples of the OPTIONAL statement. In the first
example, the call to the subroutine trip can legally omit the path argument
because it has the OPTIONAL attribute:

CALL TRIP (distance = 17.0) ! path is omitted.

SUBROUTINE trip (distance, path)

 OPTIONAL distance, path

Intel Fortran Statements 10

10-153

In the next example, the subroutine plot uses the PRESENT function to
determine whether or not to execute code that depends on the presence of
arguments that have the OPTIONAL attribute:

SUBROUTINE plot (pts, o_xaxis, o_yaxis, smooth)

 TYPE (point) pts

 REAL, OPTIONAL :: o_xaxis, o_yaxis

 ! Origin - default (0.,0.)

 LOGICAL, OPTIONAL :: smooth

 REAL ox, oy

 IF (PRESENT (o_xaxis)) THEN

 ox = o_xaxis

 ELSE

 ox = 0.

 ! Note that the o_xaxis dummy argument

 ! cannot be referenced if the actual

 ! argument is not present. The same

 ! applies to o_yaxis (below).

 END IF

 IF (PRESENT (o_yaxis)) THEN

 oy = o_yaxis

 ELSE

 oy = 0.

 END IF

 IF (PRESENT(smooth)) THEN

 IF (smooth) THEN

 ... ! Smooth algorithm

 RETURN

 END IF

 END IF

 ... ! Plot points

END SUBROUTINE plot

! Some valid calls to plot.

CALL plot (points)

CALL plot (observed, o_xaxis = 100., &
 o_yaxis = 1000.)

CALL plot (random_pts, smooth = .TRUE.)

10-154

10 Intel Fortran Programmer’s Reference

Related Statements

SUBROUTINE and FUNCTION

Related Concepts

Procedures, argument association, argument keywords are discussed in
Chapter 7, Program Units and Procedures.

OPTIONS
Overrides or confirms the compiler
options for a unit.

OPTIONS option [option...]

option can be one of the following:

/CHECK=ALL, [NO]BOUNDS,
[NO]OVERFLOW, NONE

/NOCHECK
/[NO]EXTEND_SOURCE
/[NO]F77
/[NO]I4
/[NO]RECURSIVE

Some options of the OPTIONS statement are
equivalent to the compiler options.

Description
The OPTIONS statement overrides or confirms the compiler options in effect
for a program unit.

When using the OPTIONS statement, follow these rules:

NOTE. An option must be always preceded by a slash (/).

Intel Fortran Statements 10

10-155

• The OPTIONS statement must be the first statement in a program unit,
preceding the PROGRAM, SUBROUTINE, FUNCTION, MODULE, and
BLOCK DATA statements.

• The options of the OPTIONS statement override compiler options, but
only until the end of the program unit for which they are defined.

Examples
OPTIONS /CHECK=ALL/F77

OPTIONS /I4

PARAMETER (Statement and Attribute)
Specifies a named constant.

A type declaration statement with the PARAMETER attribute is:

type , attrib-list :: cname1 = cexpr
 [, cname2 = cexpr] ...

type is a valid type specification (INTEGER, REAL,
LOGICAL, CHARACTER, TYPE (name), etc.), as
described in Chapter 3, Data Types and Data Objects.

attrib-list is a comma-separated list of attributes including
PARAMETER and optionally those attributes compatible
with it, namely:

Specifying the SAVE attribute in a PARAMETER statement has no effect.

cname is the name that will represent the constant.

DIMENSION PUBLIC

PRIVATE SAVE

10-156

10 Intel Fortran Programmer’s Reference

cexpr is an initialization expression that evaluates to the
constant represented by cname. In the case of an array
constant, cexpr must be an array constructor. In the
case of a derived type constant, cexpr must be a
structure constructor.

The syntax of the PARAMETER statement is:

PARAMETER (cname1 = cexpr1 [, cname2 = cexpr2]...)

Description

The PARAMETER statement associates a symbolic name with a constant. A
symbolic name defined in a PARAMETER statement is known as a named
constant. A named constant must not become defined more than once in a
program unit. Once defined, it can be used only as a named constant. This
means that a named constant cannot be assigned a value like a variable.

When the PARAMETER attribute is used, the value of the named constant
must be provided by the initialization part of the statement in which the
PARAMETER attribute appears.

The type of a named constant is determined by the implicit typing rules,
unless its type is specified by a type declaration statement prior to its first
appearance in a PARAMETER statement or by a type declaration statement
that includes PARAMETER as one of its attributes. If a PARAMETER
statement declares and implicitly types a named constant, the named
constant may appear in a subsequent type declaration or IMPLICIT
statement, but only to confirm the type of the named constant.

When the type of the symbolic name and the constant do not agree, the
value of the named constant is assigned in accordance with assignment
statement type-conversion rules, as given in Chapter 5, Expressions and
Assignment.

The following rules apply to type agreement between the constant and the
symbolic name:

• If cname is of numeric type, cexpr must be an arithmetic constant
expression.

• If cname is of type character, the corresponding cexpr must be a
character constant expression.

Intel Fortran Statements 10

10-157

• If cname is of type logical, the corresponding cexpr may be either an
arithmetic or logical constant expression.

Any symbolic name of a constant that appears in cexpr must have been
defined previously in the same or a different PARAMETER statement in the
same program unit. For example, the expression in the second PARAMETER
statement below is built from the expression in the first PARAMETER
statement, and is legal:

PARAMETER (limit = 1000)

PARAMETER (limit_plus_1 = limit + 1)

The logical operators (.EQ., .NE., .LT., .LE., .GT., and
.GE.), as well as the following intrinsic functions, can appear in the
PARAMETER statement:

If these intrinsic functions are used in a PARAMETER statement, their
arguments must be constants.

If the named constant is of type character and its length is not specified, the
length must be specified in a type declaration statement or IMPLICIT
statement prior to the first appearance of the named constant. Its type and/or
length must not be changed by subsequent statements, including IMPLICIT
statements. If a symbolic name of type CHARACTER*(*) is defined in a
PARAMETER statement, its length becomes the length of the expression
assigned to it.

If the named constant is an array, the bounds must be explicit and
determined by an initialization expression.

Once such a symbolic name is defined, that name can appear in any
subsequent statement of the defining program unit as a constant in an
expression or DATA statement.

ABS IAND IXOR MAX

CHAR ICHAR LEN MIN

CMPLX IEOR LGE MOD

CONJB IMAG LGT NINT

DIM IOR LLE NOT

DPROD ISHFT LLT

10-158

10 Intel Fortran Programmer’s Reference

Example
! PARAMETER used in a type declaration

! statement as an attribute.

REAL, DIMENSION(4), PARAMETER :: const = &

 (/1.2, 1.45, 0.9, 24.3/)

! PARAMETER used as a statement.

INTEGER year

PARAMETER year = 1996

! Type declaration statement declaring a

! derived-type constant.

TYPE (postal_info), PARAMETER :: package = &

 postal_info (9.5, (/10.0, 5.5, 2.25/))

Related Concepts

For information about data types and objects, see Chapter 3, Data Types
and Data Objects.

PAUSE
Temporarily stops program execution.

PAUSE pause-code

pause-code is a character constant or a list of up to 5 digits.

Description

The PAUSE statement suspends program execution and prints a message,
depending on whether digits, characters, or nothing has been specified in
the PAUSE statement:

• If digits, the message “PAUSE digits” is written to standard error.

Intel Fortran Statements 10

10-159

• If a character expression, the message “PAUSE
character-expression” is written to standard error.

• If nothing appears after PAUSE, the word “PAUSE” is written to
standard error.

After displaying the appropriate message, the PAUSE statement writes to
standard output one of two messages that give information on resuming the
program. If the standard input device is a terminal, the message is:

To resume program execution, type GO.

At this point the program is suspended and remains so until the operator
types the word GO and presses the Return key. The program will terminate if
anything other than GO is entered.

If the standard input device is other than a terminal, the message is:

To resume execution, execute a kill -15 pid &

command where pid is the unique process identification number
of the suspended program. This command can be issued
at any terminal at which the user is logged in.

Examples
! Write "PAUSE 7777" to standard error

PAUSE 7777

! Write "PAUSE MOUNT TAPE" to standard error

PAUSE ’MOUNT TAPE’

! Write "PAUSE" to standard error

PAUSE

Related Statements
STOP

Related Concepts

For information about the PAUSE statement and other flow control
statements, see Chapter 6, Execution Control.

10-160

10 Intel Fortran Programmer’s Reference

POINTER (Cray-style)
Declares Cray-style pointers and their
objects. (Extension)

POINTER (pointer1, pointee1) [, (pointer2,
pointee2)]...

pointer is a pointer.

pointee is a variable name or array declarator.

Description

Intel Fortran supports both the standard Fortran 95 POINTER statement as
well as the Cray-style POINTER statement. The Cray-style POINTER
statement is supported for compatibility with older, FORTRAN 77 programs.
The following information applies only to the Cray-style POINTER
statement; the Fortran 95 POINTER statement is described elsewhere in
this chapter.

The following restrictions apply to pointer:
• It should be of type INTEGER(4). If it is not, the compiler interprets its

type as INTEGER(4) regardless of other implicit or explicit type
declarations.

• It cannot be declared of any other data type.
• Another pointer cannot point to it.
• It cannot appear in a PARAMETER or DATA statement.
• It cannot be in a derived type object.

pointee may be of any type, including an array, a derived type, a
structure, or a character string.

The following restrictions apply to the pointee:

NOTE. PAUSE is obsolescent in Fortran 95 and later.

Intel Fortran Statements 10

10-161

• It cannot be a dummy argument, function name, function value,
common block element, automatic object, generic interface block
name, or derived type.

• It cannot be used in a COMMON, DATA, EQUIVALENCE, or NAMELIST
statement.

• It cannot have any of the following attributes: ALLOCATABLE,
EXTERNAL, INTENT, INTRINSIC, OPTIONAL, PARAMETER,
POINTER, SAVE, and TARGET.

• Pointees that are arrays with nonconstant bounds can be used only in
subroutines and functions, not in main programs.

• Variables used in an array-bound expression that appears in a
POINTER statement must be either subprogram formal arguments or
common block variables. The value of the expression cannot change
after subprogram entry.

You associate memory with a pointer by assigning it the address of an
object. Typically, this is done with the function, LOC. The LOC function
returns the address of its argument, which can be assigned to a pointer. The
following example assigns 0 to the pointee i:

INTEGER i, j

POINTER (p, i)

p = LOC(j)

j = 0

You can also use the MALLOC intrinsic to allocate memory from the heap
and assign its return value to a pointer. Once you are done with the
allocated memory, you should use the FREE intrinsic to release the memory
so that it is available for reuse.
If you are using the pointer to manipulate a device that resides at a fixed
address, you can assign the address to the pointer, using either an integer
constant or integer expression.
Under certain circumstances, Cray-style pointers can cause erratic program
behavior—especially if the program has been optimized. To ensure correct
behavior, observe the following:
• Subroutines and functions must not save the address of any of their

arguments between calls.
• A function must not return the address of any of its arguments.
• Only those variables whose addresses are explicitly taken with the LOC

function must be referenced through a pointer.

10-162

10 Intel Fortran Programmer’s Reference

Example
In the following example, the function MALLOC returns either the address of
the block of memory it allocated or 0 if MALLOC was unable to allocate
enough memory. The formal argument nelem contains the number of array
elements and is multiplied by 4 to obtain the number of bytes that MALLOC is
to allocate. The FREE intrinsic returns memory to the heap for reuse.

SUBROUTINE print_iarr(nelem)

POINTER (p, iarr(nelem))

p = MALLOC(4*nelem)

IF (p.EQ.0) THEN

 PRINT *, ’MALLOC failed.’

ELSE

 DO i = 1,nelem

 iarr(i) = i

 END DO

 PRINT *, (iarr(i),i=1,nelem)

 CALL FREE(p)ENDIF

ENDIF

RETURN

END

Intel Fortran Statements 10

10-163

Related Statements
POINTER (standard Fortran 95)

Related Concepts
For more information about pointers, see Chapter 3, Data Types and Data
Objects.

POINTER (Statement and Attribute)
Specifies variables with the POINTER
attribute.

The syntax of a type declaration statement with the POINTER attribute is:

type, attrib-list :: dummy-argument-name-list

type is a valid type specification (INTEGER, REAL,
LOGICAL, CHARACTER, TYPE (name), etc.), as
described in Chapter 3, Data Types and Data
Objects.

NOTE. Pointers can be different sizes on different architectures.
EQUIVALENCE of pointers may have unpredictable results.

NOTE. Using Cray pointers with LOC or IADDR to initialize them is
discouraged. It has detrimental effects on performance. Use Fortran 95
style pointers instead.

10-164

10 Intel Fortran Programmer’s Reference

attrib-list is a comma-separated list of attributes including
POINTER and optionally those attributes
compatible with it, namely:

dummy-argument-nameis a comma-separated list of
 list dummy-argument-names.

The syntax of the POINTER statement is:

POINTER [::] object-name [(deferred-shape-spec-list)]

 [,object-name [(deferred-shape-spec-list)]]...

object-name is a data object or function result.

deferred-shape-spec-list
is a comma-separated list of colons.

Description

A POINTER attribute or statement specifies that the named variables may
be pointers to some target object. Pointers provide a capability for creating
dynamic objects, such as dynamic-sized arrays and linked lists. An object
with a pointer attribute initially has no space reserved for its target. A
pointer is assigned space for its target when an ALLOCATE statement is
executed or when it is assigned to point to a target using a pointer
assignment statement.

Examples

In the first example, two array pointers are declared and used.

REAL, POINTER :: weight (:,:,:)

REAL, POINTER :: w_reg (:,:,:)

! Extents are not specified; they are

! determined during execution.

READ *, i, j, k

ALLOCATE (weight (i, j, k))

! weight is created.

w_reg => weight (3:i-2, 3:j-2, 3:k-2)

DIMENSION PRIVATE SAVE

OPTIONAL PUBLIC

Intel Fortran Statements 10

10-165

! w_reg is an alias for an array section.

avg_w = sum (w_reg) / ((i-4) * (j-4) * (k-4))

DEALLOCATE (weight)

! weight is no longer needed.

The next example illustrates the use of pointers in a list-processing
application.

TYPE link

 REAL value

 TYPE (link), POINTER :: next

END TYPE link

TYPE(link), POINTER :: list, save_list

NULLIFY (list) ! Initialize list.

DO

 READ (*, *, IOSTAT=no_more) value

 IF (no_more /= 0) EXIT

 save_list => list

 ALLOCATE (list) ! Add link to head of list.

 list % value = value

 list % next => save_list

END DO

! Linked list removed when no longer needed.

DO

 IF (.NOT.ASSOCIATED (list)) EXIT

 save_list => list % next

 DEALLOCATE (list)

 list => save_list

END DO

Related Statements

ALLOCATE, DEALLOCATE, NULLIFY and TARGET

10-166

10 Intel Fortran Programmer’s Reference

Related Concepts

The elements of the Fortran 95 pointer facility are:

• The POINTER and TARGET attributes: see “POINTER (Statement and
Attribute)”

• The ALLOCATE, DEALLOCATE, and NULLIFY statements: see
 “ALLOCATE”

The following topics related to pointers are discussed elsewhere in this
manual:

• Declaring pointers: Chapter 3, Data Types and Data Objects

• Pointer arrays: Chapter 4, Arrays
• Pointer assignment: Chapter 5, Expressions and Assignment

PRINT
Writes to standard output.

The syntax of the PRINT statement can take one of two forms:

• Formatted and list-directed syntax:
PRINT format [, output-list]

• Namelist-directed syntax:
PRINT name

format is one of the following:

• An asterisk (*), specifying list-directed I/O. For
information about list-directed I/O, see Chapter 8,
I/O and File Handling.

• The label of a FORMAT statement containing the
format specification.

• An integer variable that has been assigned the label
of a FORMAT statement.

• An embedded format specification. For information
about format specifications, see Chapter 9, I/O
Formatting.

Intel Fortran Statements 10

10-167

name is the name of a namelist group, as previously defined
by a NAMELIST statement. Using the namelist-directed
syntax, the PRINT statement sends data in the namelist
group to standard output. To direct output to a connected
file, you must use the WRITE statement and include the
NML= specifier.

output-list is a comma-separated list of data items for output. The
data items can include expressions and implied-DO lists;
see Chapter 8, I/O and File Handling for more detailed
information.

Description

The PRINT statement transfers data from memory to standard output.
 The PRINT statement can be used to perform formatted, list-directed, and
namelist-directed I/O only.

To direct output to a connected file, use the WRITE statement.

Examples

The examples in this section illustrate different uses of the PRINT
statement.

Formatted Output

The following statement writes the contents of the variables num and des
to standard output, using the format specification in the FORMAT statement
at label 10:

PRINT 10, num, des

List-directed Output

The following statement uses list-directed formatting to print the literal
string x= and the value of the variable x:

PRINT *, ’x=’, x

Embedded Format Specification

The following statement uses an embedded format specification to print the
same output:

10-168

10 Intel Fortran Programmer’s Reference

PRINT ’(A2, F8.2)’, ’x=’, x

Namelist-directed Output

The following statement prints all variables in the namelist group coord,
using namelist-directed formatting:

PRINT coord

Related Statements
WRITE

Related Concepts

For information about I/O concepts, see Chapter 8, I/O and File Handling,
which also gives example programs that perform I/O. For information about
I/O formatting, see Chapter 9, I/O Formatting.

PRIVATE (Statement and Attribute)
Prevents access to module entities by
use association.

The syntax of a type declaration statement with the PRIVATE attribute is:

type, attrib-list :: access-id-list

type is a valid type specification (INTEGER, REAL,
LOGICAL, CHARACTER, TYPE (name), etc.), as
described in Chapter 3, Data Types and Data Objects.

Intel Fortran Statements 10

10-169

attrib-list is a comma-separated list of attributes including
PRIVATE and optionally those attributes compatible
with it, namely:

access-id-listis a comma-separated list of one or more of the
following:

• constant-name
• variable-name
• procedure-name
• defined-type-name
• namelist-group-name
• OPERATOR (operator)
• ASSIGNMENT (=)

The syntax of the PRIVATE statement is:

PRIVATE [[::] access-id-list]

Description

The PRIVATE attribute may appear only in the specification part of a
module. The default accessibility in a module is PUBLIC; it can be changed
to PRIVATE using a statement without a list. However, only one PRIVATE
accessibility statement without a list is permitted in a module.

The PRIVATE attribute in a type statement or in an accessibility statement
restricts the accessibility of entities such as module variables, type
definitions, functions, and named constants. USE statements may restrict
accessibility further.

A derived type may contain a PRIVATE attribute or an internal PRIVATE
statement, if it is defined in a module. The internal PRIVATE statement in a
type definition makes the components unavailable outside the module even
though the type itself might be available.

The PRIVATE statement may also be used to restrict access to subroutines,
generic specifiers, and namelist groups.

ALLOCATABLE INTRINSIC SAVE

DIMENSION PARAMETER TARGET

EXTERNAL POINTER

10-170

10 Intel Fortran Programmer’s Reference

The PRIVATE specification for a generic name, operator, or assignment
does not apply to any specific name unless the specific name is the same as
the generic name.

Examples
MODULE fourier

 PUBLIC

 ! PUBLIC unless explicitly PRIVATE

 COMPLEX, PRIVATE :: fft

 ! FFT is accessible only in module.

 TYPE (structure_name), PRIVATE :: &

 structure_a, structure_b

 PRIVATE a, b, c

 ! a, b and c are accessible only within

 ! this module.

 PUBLIC r, s, t

 ! r, s, and t are accessible outside the

 ! module.

END MODULE fourier

MODULE place

 PRIVATE

 ! Change default accessibility to PRIVATE.

 INTERFACE OPERATOR (.st.)

 MODULE PROCEDURE xst

 END INTERFACE

 PUBLIC OPERATOR (.st.)

 ! This makes .st. public; everything else is

 ! private.

 LOGICAL, DIMENSION (100) :: lt

 CHARACTER(20) :: name

 INTEGER ix, iy

END MODULE place

Intel Fortran Statements 10

10-171

Related Statements

PUBLIC and USE

Related Concepts

The following are discussed elsewhere in this manual:

• Derived types: Chapter 3, Data Types and Data Objects
• Modules: Chapter 7, Program Units and Procedures
• Use association: Chapter 7, Program Units and Procedures
• Interface blocks: Chapter 7, Program Units and Procedures
• OPERATOR and ASSIGNMENT clauses: Chapter 7, Program Units and

Procedures

PROGRAM
Identifies the main program unit.

PROGRAM name

name is the name of the program.

Description

The optional PROGRAM statement assigns a name to the main program unit.
name does not have to match the main program’s filename. However, if the
corresponding END PROGRAM statement specifies a name, it must match
name.

If the PROGRAM statement is specified, it must be the first statement in the
main program unit.

Example
! A program with a name.

PROGRAM main_program

PRINT *, ’This program doesn’’t do much.’
END PROGRAM main_program

10-172

10 Intel Fortran Programmer’s Reference

Related Statements
END

Related Concepts

For information about the main program unit, see Chapter 7, Program Units
and Procedures.

PUBLIC (Statement and Attribute)
Enables access to module entities by use
association.

The syntax of a type declaration statement with the PUBLIC attribute is:

type, attrib-list :: access-id-list

type is a valid type specification (INTEGER, REAL,
LOGICAL, CHARACTER, TYPE (name), etc.), as
described in Chapter 3, Data Types and Data Objects.

attrib-list is a comma-separated list of attributes including
PUBLIC and optionally those attributes compatible with
it, namely:

access-id-list is a comma-separated list of one or more of the following:

• constant-name
• variable-name
• procedure-name
• defined-type-name
• namelist-group-name
• OPERATOR (operator)
• ASSIGNMENT (=)

ALLOCATABLE INTRINSIC SAVE

DIMENSION PARAMETER TARGET

EXTERNAL POINTER VOLATILE

Intel Fortran Statements 10

10-173

The syntax of the PUBLIC statement is:

PUBLIC [[::] access-id-list]

Description

The PUBLIC attribute may appear only in the specification part of a
module. The default accessibility in a module is PUBLIC; it can be
reaffirmed using a PUBLIC statement without a list. However, only one
PUBLIC accessibility statement without a list is permitted in a module.

The PUBLIC attribute in a type statement or in an accessibility statement
permits access to entities such as module variables, type definitions,
functions, and named constants. USE statements may control accessibility
further.

A derived type may contain a PUBLIC attribute or an internal PUBLIC
statement, if it is defined in a module.

The PUBLIC statement may also be used to permit access to subroutines,
generic specifiers, and namelist groups.

The PUBLIC specification for a generic name, operator, or assignment does
not apply to any specific name unless the specific name is the same as the
generic name.

Examples
MODULE fourier

 PUBLIC

 ! PUBLIC unless explicitly PRIVATE.

 COMPLEX, PRIVATE :: fft

 ! fft is accessible only in the module.

 PRIVATE a, b, c

 PUBLIC r, s, t

 ! a, b, and c are accessible only in the

 ! module. r, s, and t are accessible

 ! outside the module.

END MODULE fourier

10-174

10 Intel Fortran Programmer’s Reference

MODULE place

 PRIVATE

 ! Change default accessibility to PRIVATE.

 INTERFACE OPERATOR (.st.)

 MODULE PROCEDURE xst

 END INTERFACE

 PUBLIC OPERATOR (.st.)

 ! This makes .st. public; everything else is

 ! private.

 LOGICAL, DIMENSION (100) :: lt

 CHARACTER(20) :: name

 INTEGER ix, iy

END MODULE PLACE

Related Statements

PRIVATE and USE

Related Concepts

The following are discussed elsewhere in this manual:

• Derived types: Chapter 3, Data Types and Data Objects
• Modules: Chapter 7, Program Units and Procedures
• Use association: Chapter 7, Program Units and Procedures
• Interface blocks: Chapter 7, Program Units and Procedures
• OPERATOR and ASSIGNMENT clauses: Chapter 7, Program Units and

Procedures

Intel Fortran Statements 10

10-175

READ
Inputs data from external and internal
files.

The syntax of the READ statement can take one of the following forms:

• Long form (for use when reading from a connected file):
• READ (io-specifier-list) [input-list]

• Short form (for use when reading from standard input):
• READ format [, input-list]

• Short namelist-directed form (for use when reading from standard
input into a namelist group):

• READ name

format is one of the following:

• An asterisk (*), specifying list-directed I/O. For
information about list-directed I/O, see Chapter 8,
I/O and File Handling.

• The label of a FORMAT statement containing the
format specification.

• An integer variable that has been assigned the label
of a FORMAT statement.

• An embedded format specification. For information
about embedded format specifications, see Chapter
9, I/O Formatting.

name is the name of a namelist group, as previously defined
by a NAMELIST statement. Using the namelist-directed
syntax, the READ statement takes its input from standard
input. To read from a connected file, you must use the
NML= specifier with the full syntax form, as described
below.

input-list is a comma-separated list of data items for input. The
data items can include variables and implied-DO lists;
see Chapter 8, I/O and File Handling for more
information.

10-176

10 Intel Fortran Programmer’s Reference

io-specifier- is a list of the following comma-separated I/O
 list specifiers:

[UNIT=]unit specifies the unit connected to the input file. unit can
be one of the following:

• The name of a character variable, indicating an
internal file

• An integer expression that evaluates to the unit
connected to an external file

• An asterisk, indicating a pre-connection to unit 5
(standard input)

If the optional keyword UNIT= is omitted, unit must be the first item in
io-specifier-list.

[FMT=]format specifies the format specification for formatting the
data. format can be one of the following:

• An asterisk (*), specifying list-directed I/O. For
detailed information about list-directed I/O, see
Chapter 8, I/O and File Handling.

• The label of a FORMAT statement containing the
format specification.

• An integer variable that has been assigned the label
of a FORMAT statement.

• A character expression that provides the format
specification. For detailed information about format
specifications, see Chapter 9, I/O Formatting.

If the optional keyword FMT= is omitted, format must be the second item
in io-specifier-list.

[NML=]name specifies the name of a namelist group for
namelist-directed input. name must have been
defined in a NAMELIST statement. If the optional
keyword NML= is omitted, name must be the

NOTE. The NML= and FMT= specifier may not appear in the same
io-specifier-list.

Intel Fortran Statements 10

10-177

second item in the list. The first item must be the
unit specifier without the optional keyword
UNIT=.

The NML= and FMT= specifier may not both
appear in the same io-specifier-list.

ADVANCE=character- specifies whether to use advancing I/O for this
 expression statement. character-expression can be

one of the following arguments:

If the ADVANCE= specifier appears in io-specifier-list, unit must
be connected to an external file opened for formatted sequential I/O. Also,
ADVANCE=’NO’ must be specified if the EOR= or SIZE= specifier appear
in the list. Nonadvancing I/O is incompatible with list-directed and namelist
I/O.

For more information about nonadvancing I/O, see Chapter 8, I/O and File
Handling.

END=stmt-label
specifies the label of the executable statement to which
control passes if an end-of-file record is encountered.
This specifier is only valid for reading files opened for
sequential access.

EOR=stmt-label
specifies the label of the executable statement to which
control passes if an end-of-record condition is
encountered. This specifier may appear in
io-specifier-list only if ADVANCE=’NO’ also
appears in the list.

IOSTAT=integer-variable
returns the I/O status after the statement executes. If

 the statement successfully executes,
integer-variable is set to zero. If an end-of-file
record is encountered without an error condition, it is set

’YES’ Use advancing formatted sequential I/O
(default).

’NO’ Use nonadvancing formatted sequential I/O.

10-178

10 Intel Fortran Programmer’s Reference

to a negative integer. If an error occurs,
integer-variable is set to a positive integer that
indicates which error occurred.

REC=integer- specifies the number of the record to be read from a file
 expression connected for direct access. This specifier cannot appear

in io-specifier-list with the NML=, ADVANCE=,
SIZE=, and EOR= specifiers, nor with FMT=* (for
list-directed I/O).

SIZE=integer- returns the number of characters that have been read by
 variable this READ statement. This specifier may appear in

io-specifier-list only if ADVANCE=’NO’ also
appears in the list.

Description

The READ statement transfers data from an external or internal file to
internal storage. An external file can be opened for sequential access or
direct access. If it is opened for sequential access, the READ statement can
perform the following types of I/O:

• Formatted
• Unformatted
• List-directed
• Namelist-directed

If the file is opened for direct access, the READ statement can perform
formatted or unformatted I/O.

READ statements operating on internal files can perform formatted or
list-directed I/O.

Examples

The examples in this section illustrate different uses of the READ statement.

Intel Fortran Statements 10

10-179

Formatted Sequential I/O

The following READ statement reads 10 formatted records from a file
opened for sequential access, using an implied-DO list to read the data into
the array x_array. If the end-of-file record is encountered before the array
is filled, execution control passes to the statement at label 99.

READ (41, ’(F10.2)’, END=99) (x_array(i),i=1,10)

Nonadvancing I/O

The following READ statement takes its input from a file that was opened
for sequential access and is connected to unit 9. It uses nonadvancing I/O to
read an integer into the variable key. If the statement encounters the
end-of-record condition before it can complete execution, control will pass
to the executable statement at label 100. After the statement executes, the
number of characters that have been read will be stored in cnt.

INTEGER :: key

READ (UNIT=9, ’(I4)’, ADVANCE=’NO’, SIZE=cnt, &

 EOR=100) key

Internal File

The following statement inputs a string of characters from the internal file
cfile, uses an embedded format specification to perform format
conversion, and stores the results in the variables i and x:

READ (cfile, FMT=’(I5, F10.5)’) i, x

Namelist-directed I/O

Each of the four READ statements in the next example uses a different style
of syntax to do exactly the same thing:

NAMELIST /nl/ a, b, c

READ (UNIT=5, NML=nl) ! 5 = standard input

READ (5, nl)

READ (*, NML=nl) ! * = standard input

READ nl ! assume standard input

10-180

10 Intel Fortran Programmer’s Reference

List-directed I/O

The following statement takes its data from standard input, storing the
converted value in int_var. The format conversion is based on the type of
int_var.

READ *, int_var

If you knew the format, you could substitute for the asterisk one of the
following:

• The label of the FORMAT statement with the format specification, as in
the following:
— READ 100, int_var

— 100 FORMAT(I4)

• An embedded format specification, as in the following:
— READ '(I4)', int_var

Unformatted Direct-access I/O

The following statement takes its input from the file connected to unit 31.
The REC= specifier indicates that the file has been opened for direct access
and that this statement will read the record whose number is stored in the
variable rec_num . If an I/O error occurs during the execution of the
statement, an error number will be stored in ios , and execution control will
branch to the executable statement at label 99.

READ (31, REC=rec_num, ERR=99, IOSTAT=ios) a, b

Related Statements

CLOSE, OPEN, and WRITE.

Related Concepts

For more about I/O concepts, including information about files and different
types of I/O, see Chapter 8, I/O and File Handling. This chapter also gives
example programs using different types of I/O. For information about I/O
formatting, see Chapter 9, I/O Formatting.

Intel Fortran Statements 10

10-181

REAL
Declares entities of type real.

REAL [kind-spec] [[, attrib-list] ::] entity-list

kind-spec is the kind type parameter that specifies the range and
precision of the entities in entity-list. kind-spec takes the
form:

([KIND=]kind-param)

where kind-param can be a named constant or a
constant expression that has the integer value of 4, 8, or
16. The size of the default type is 4.

As an extension, kind-spec can take the form:

* len-param

where len-param is the integer 4, 8, or 16 (default = 4).

attrib-list is a list of one or more of the following attributes,
separated by commas:

For information about each of the attributes, see the
corresponding statement in this chapter.

entity-list is a list of entities, separated by commas. Each entity
takes the form:

name [(array-spec)] [= initialization-expr]

where name is the name of a variable or function, array-spec is a
comma-separated list of dimension bounds, and
initialization-expr is the initial value for the
entity.

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

10-182

10 Intel Fortran Programmer’s Reference

Description

The REAL statement is used to declare the length and properties of data that
approximate the mathematical real numbers. A kind parameter (if present)
indicates the representation method.

The REAL statement is constrained by the rules for all type declaration
statements, including the requirement that it precede all executable
statements.

Explicitly declaring an entity with the REAL statement overrides any
implicit typing rules in effect.

If attrib-list or initialization-expr appear in the declaration,
entity-list must be preceded by the double colon.

If array-spec is specified for an entity, it overrides any DIMENSION
attribute.

Initialization

initialization-expr must be a constant expression that can be
evaluated at compile time.

The following entities may not be initialized:

• Dummy arguments
• Function results
• Allocatable arrays
• Pointers
• External names
• Intrinsic names
• Automatic objects

If attrib-list includes the PARAMETER attribute, each entity in
entity-list must include an initialization expression.

To initialize an array in a REAL statement, you must use an array
constructor, as in the following example:

REAL, DIMENSION(4) :: rvec=(/ 1.1,2.2,3.3,4.4 /)

If an array is initialized, all items in the array must be initialized.
Implied-DO loops cannot be used to initialize an array in a type declaration
statement.

Intel Fortran Statements 10

10-183

As an extension, an initializer may appear between slashes in a type
declaration statement, as follows:

REAL x/2.87/, y/93.34/, z/13.99/

The double colon (::) may not be used with this initialization format.

Length Specification Extension

As a portability extension, Intel Fortran allows the following syntax for
specifying the length of an entity:

name [*len] [(array-spec)] [= initialization-expr]

If (array-spec) is specified, *len may appear on either side of
(array-spec).

If name appears with *len, it overrides the length specified by
REAL*size. For example, the following statements are equivalent
declarations of x:

REAL (KIND = 8)::x

REAL*4 x*8

Example

The following are valid declarations:

REAL, TARGET :: x, y

REAL(KIND=16) :: z

REAL(4), PARAMETER :: pi=3.14

Related Statements
DOUBLE PRECISION

Related Concepts

The following are discussed elsewhere in this manual:

• Implicit typing rules: Chapter 3, Data Types and Data Objects

• Data representation models: Chapter 3, Data Types and Data Objects

• Storage classes for variables: Chapter 3, Data Types and Data Objects

• Automatic objects: Chapter 3, Data Types and Data Objects

• Arrays: Chapter 4, Arrays
• Expressions: Chapter 5, Expressions and Assignment

• Initialization expressions: Chapter 5, Expressions and Assignment

10-184

10 Intel Fortran Programmer’s Reference

RECORD
Declares a record of a previously
defined structure.

RECORD /struct-name/rec-name [, rec-name]...
 [/struct-name/rec-name [, rec-name]]...

struct-name is the name of a structure declared in a previous
structure definition.

rec-name is a record name.

Description
Intel Fortran supports the RECORD statement as a compatibility extension.
New programs should use the derived type, a standard feature of Fortran
95. For more information about derived types, see Chapter 3, Data Types
and Data Objects and the TYPE statement in this chapter.

The RECORD statement declares a record variable of a structure that has
been previously defined by a STRUCTURE statement. A record variable can
consist of multiple data items, called fields. The STRUCTURE statement
is described separately in this chapter.

Referencing Record Fields
The syntax for referencing a field in a record depends on whether the field
itself is another record (a composite reference) or not (a simple reference).
Composite references have the following syntax:

rec-name [. substruct-fieldname]...

Simple references have the following syntax:

rec-name [. substruct-fieldname]... simple-fieldname

rec-name is the name of the record in which a composite or
simple field is being referenced.

substruct-field- is the name of a nested structure or nested record
 name field name, if applicable.
simple-field-name is the name of a lowest-level field, defined with a

type declaration statement. As indicated by the
syntax, the field could be part of a nested structure
or nested record.

Intel Fortran Statements 10

10-185

Given the following structure definition and record declarations:

STRUCTURE /abc/

 REAL a, b, c(5)

 STRUCTURE /xyz/ xyz, xyzs(5)

 INTEGER x, y, z(3)

 END STRUCTURE

END STRUCTURE

RECORD /abc/ abc, abcs(100)

RECORD /xyz/ xyz

the following are composite references:

abc !composite record references

abcs(1)

xyz

abcs(idx)

abc.xyz !composite field references

abc.xyzs(3)

and the following are simple references:

abc.a

abc.c(1)

xyz.x

xyz.z(1)

abc.xyz.x

abcs(idx).xyz.y(1)

abcs(2).xyzs(3).z(1)

Composite references can be either to an entire record or to a record field
that is itself a structure or record.

Rules for Record Field
Arrays of records can be created as follows:

RECORD /student/ students(1000)

or

RECORD /student/ students

DIMENSION students (1000)

10-186

10 Intel Fortran Programmer’s Reference

In either case a 1000-record array called students of structure student
is declared.

Records can be placed in common blocks. The following code places the
students array (declared above) in the common block frosh, along with
variables a, b, and c:

COMMON /frosh/ a, b, c, students

Simple field references can appear wherever a variable can appear. The
following assigns values to the fields of record r of structure struct:

STRUCTURE /struct/

 INTEGER i

 REAL a

END STRUCTURE

RECORD /struct/ r

r.i = r.i + 1

r.a = FLOAT(r.i) - 2.7

Composite assignment is allowed for two records or two composite fields of
the same structure—that is, the record declaration statements for both
records must have specified the same struct-name. For example, the
following is legal:

STRUCTURE /string/ BYTE len

 CHARACTER*1 str(254)

END STRUCTURE

RECORD /string/ str1, str2

str1 = str2

The following example is also valid and uses composite assignment to
assign the value of the record edate of structure date to a field of the
same structure (when) in the record event:

STRUCTURE /event/

 CHARACTER*20 desc

 STRUCTURE /date/ when

 BYTE month, day

 INTEGER*2 year

 END STRUCTURE

END STRUCTURE

Intel Fortran Statements 10

10-187

RECORD /date/ edate

RECORD /event/ event

edate.month = 1

edate.day = 6edate.year = 62

event.desc = ’Party for Joanne’

! composite assignment of record to field

! of record--both have same structure

event.when = edate

Even though the following records are of identical structures—that is, the
fields of both structures have the same type, size, and format—the code is
invalid because the structures have a different name:

STRUCTURE /intarray/

 BYTE elem_count

 INTEGER arr(100)

END STRUCTURE

STRUCTURE /iarray/

 BYTE elem_count

 INTEGER arr(100)

END STRUCTURE

RECORD /intarray/ iarray1

RECORD /iarray/ iarray2

! The next assignment won’t work. The two

! records are not of the same structure.

iarray1 = iarray2 ! Invalid

When performing I/O on structures and records, composite record and field
references can appear only in unformatted I/O statements. They are not
allowed in formatted, list-directed, or namelist-directed I/O statements.
However, simple field references can appear in all types of I/O statements.
(For information about formatted and unformatted I/O, see Chapter 9, I/O
Formatting.)

10-188

10 Intel Fortran Programmer’s Reference

A record name or composite field reference can appear as either a formal or
an actual argument to a subroutine or function. Formal and actual
arguments must have the same size as well as the same number, type, and
order of fields. (For information about procedure arguments, see
Chapter 7, Program Units and Procedures.)

Composite record and field arguments to subroutines and functions are
passed by reference, just like other Intel Fortran arguments.

Adjustable arrays are allowed in RECORD statements that declare formal
arguments.

Do not name a field with any of the following:
• Logical constants, .TRUE. and .FALSE.
• Logical operators, such as .OR., .AND., and .NOT.
• Relational operators, such as .EQ., .LT., and .NEQV.
• The name of a defined operator

Related Statements
STRUCTURE and TYPE

Related Concepts
For information about derived types, see Chapter 3, Data Types and Data
Objects.

RETURN
Returns control from a subprogram.

RETURN [scalar-integer-expression]

scalar-integer- is an optional scalar integer expression that is
 expression evaluated when the RETURN statement is

executed. It determines which alternate return is
used.

Description

A RETURN statement can appear only in a subprogram.

Intel Fortran Statements 10

10-189

An expression may appear in a RETURN statement only if alternate returns
(one or more asterisks) are specified as dummy arguments in the relevant
FUNCTION, SUBROUTINE, or ENTRY statement of the subprogram. An
expression with a value i in the range will return to the ith asterisk
argument (specified as *label) in the actual argument list. A normal
return is executed if i is not in the range 1 to n, where n is the number of
dummy argument alternate returns specified.

Example
SUBROUTINE calc (y, z)

! Subroutine calc checks the range of y. If

! it exceeds the permitted range, it calls

! an error handler and stops the program.

 IF (y > ymax) GO TO 303

 RETURN

! It returns to the caller of calc if the

! calculation proceeds to normal completion.

303 CALL err (3, "OUT OF RANGE")

 STOP 303

END

Related Statements

SUBROUTINE and FUNCTION

Related Concepts

Procedures are described in Chapter 7, Program Units and Procedures.

10-190

10 Intel Fortran Programmer’s Reference

REWIND
Positions file at its initial point.

The syntax of the REWIND statement can take one of the following forms:

• Short form:
REWIND integer-expression

• Long form:
REWIND (io-specifier-list)

integer-expressionis the unit connected to a sequential file or device.

io-specifier-list is a list of the following comma-separated I/O
specifiers:

[UNIT=]unit specifies the unit connected to an external file
opened for sequential access. unit must be an
integer expression that evaluates to a number
greater than 0. If the optional keyword UNIT= is
omitted, unit must be the first item in
io-specifier-list.

ERR=stmt-label specifies the label of the executable statement to
which control passes if an error occurs during
statement execution.

IOSTAT=integer- returns the I/O status after the statement executes.
 variable If the statement executes successfully,

integer-variable is set to zero. If an error
occurs, it is set to a positive integer that indicates
which error occurred.

Description

The REWIND statement repositions the file connected to the specified unit at
the start of the first record. If the file is already at its starting point or if the
unit is not connected to a file, the REWIND statement has no effect.

Intel Fortran Statements 10

10-191

Examples

The following example of the REWIND statement repositions the file
connected to unit 10 to its initial point:

REWIND 10

The next example repositions to its initial point the file connected to unit 21.
If an error occurs during the execution of the statement, control passes to
the statement at label 99, and the error code is returned in ios:

REWIND (21, ERR=99, IOSTAT=ios)

Related Statements

BACKSPACE, ENDFILE, and OPEN

Related Concepts

For information about I/O concepts, see Chapter 8, I/O and File Handling.
This chapter also gives example programs performing I/O.

SAVE (Statement and Attribute)
Stores variables in static memory.

A type declaration statement with the SAVE attribute is:

type , attrib-list :: save-list

type is a valid type specification (INTEGER, REAL,
LOGICAL, CHARACTER, TYPE (name), etc.), as
described in Chapter 3, Data Types and Data Objects.

attrib-list A comma-separated list of attributes including SAVE and
optionally those attributes compatible with it, namely:

save-list is a comma-separated list of names of objects to save.

ALLOCATABLE PRIVATE TARGET

DIMENSION PUBLIC

POINTER STATIC

10-192

10 Intel Fortran Programmer’s Reference

The syntax of the SAVE statement is:

SAVE [[::] save-list]

Description

The SAVE statement and attribute cause objects in a subroutine or function
to be stored in static memory, instead of being dynamically allocated
whenever the procedure is invoked (the default case). A saved object retains
its value and definition, association, and allocation status between
invocations of the program unit in which the saved object is declared.

If save-list is omitted, everything in the scoping unit that can be saved
is saved. No other explicit occurrences of the SAVE attribute or the SAVE
statement are allowed.

The names of the following may appear in save-list:

• Scalar variables
• Arrays
• Named common blocks
• Derived type objects
• Records

If the name of a common block appears in save-list, it must be
delimited by slashes (for example, /my_block/); all variables in the
named common block are saved. If a common block is saved in one
program unit, it must be saved in all program units (except main) where it
appears.

Intel Fortran always saves all common blocks unless they appear in a
dynamic COMMON command-liner switch.

The following must not appear in save-list:

• Formal argument names
• Procedure names
• Selected items in a common block
• Variables declared with the AUTOMATIC statement or attribute
• Function results
• Automatic data objects (such as automatic arrays, allocatable arrays,

automatic character strings, and Fortran 95 pointers)

Intel Fortran Statements 10

10-193

Initializing a variable in a DATA statement or in a type declaration statement
implies that the variable has the SAVE attribute, unless the variable is in a
named common block in a block data subprogram.

A SAVE statement in a main program unit has no effect.

Example

The SAVE statement in the following example saves the variables a, b, and
c, as well as the variables in the common block dot:

SUBROUTINE matrix

SAVE a, b, c, /dot/

RETURN

The SAVE statement in the next example saves the values of all of the
variables in the subroutine fixit:

SUBROUTINE fixit

SAVE

RETURN

Related Statements

AUTOMATIC and STATIC

Related Concepts

Storage classes are described in Chapter 3, Data Types and Data Objects,
and recursion is described in Chapter 7, Program Units and Procedures.

NOTE. SAVE, used on variables that are often used in your program, is
likely to have a negative impact on your program’s performance. It is
better to make sure early in the routine that you assign a value to often
used variables or declare them in COMMON and use a temporary copy of
the COMMON variable for USEs in a routine.

10-194

10 Intel Fortran Programmer’s Reference

SELECT CASE
Begins CASE construct.

[construct-name :] SELECT CASE (case-expr)

construct-nameis the name given to the CASE construct.

case-expr is a scalar expression of type integer, character, or
logical.

Description

The SELECT CASE statement, the first statement of a CASE construct,
causes case-expr to be evaluated, resulting in the case index. The CASE
construct uses the case index to determine which of its statement blocks to
execute.

If construct-name is specified, it must also appear in the END SELECT
statement.

Example

For an example of the SELECT CASE statement, see the CASE statement in
this chapter.

Related Statements

CASE and END (construct)

Related Concepts

For information about the CASE construct, see Chapter 6, Execution
Control.

Intel Fortran Statements 10

10-195

SEQUENCE
Imposes storage sequence on
components of derived type object.

SEQUENCE

Description

The SEQUENCE statement can appear once within any derived type
definition; its presence specifies that the storage sequence of the elements is
the same as their definition order. The derived type then becomes a
sequence derived type. The SEQUENCE statement is used:

• To allow objects of this type to be storage associated, or
• To allow actual and dummy arguments to have the same type without

use or host association.

Points to note:

• If a component of a sequence derived type is a derived type, then it
must also be a sequence derived type.

• The storage association statements COMMON and EQUIVALENCE can be
applied to structures when sequencing is imposed on their type
definitions.

• The corresponding actual and dummy arguments of derived types are
of the same derived type if the structures refer to the same type
definition. Alternatively, they are of the same type if all of the
following conditions are true:
— They refer to different type definitions with the same name.
— They have the SEQUENCE statement in their definitions.
— The components have the same names and types and are in the

same order.
— None of the components is of a private type or of a type that has

private access.

10-196

10 Intel Fortran Programmer’s Reference

Examples
TYPE weather

! weather is a sequence derived type with two

! character components & two integer components.

 SEQUENCE

 CHARACTER(LEN=32) place

 INTEGER high_temp, low_temp

 CHARACTER(LEN=16) conditions

END TYPE weather

Related Statements

TYPE, COMMON, and EQUIVALENCE

Related Concepts

Storage association is discussed in Chapter 3, Data Types and Data Objects,
and argument association in Chapter 7, Program Units and Procedures.

STATIC (Statement and Attribute)
Gives variables and arrays static
storage. (Extension)

The syntax of a type declaration statement with the STATIC attribute is:

type, attribute-list :: entity-list

type is a valid type specification (INTEGER, REAL, LOGICAL,
CHARACTER, TYPE (name), etc.), as described in
Chapter 3, Data Types and Data Objects.

Intel Fortran Statements 10

10-197

attribute-list is a comma-separated list of attributes including
STATIC and optionally those attributes compatible with
it, namely:

entity-list is a comma-separated list of variables and arrays.

The syntax of the STATIC statement is:

STATIC [::] entity-list

Description

The STATIC statement and attribute is a Intel Fortran extension. Variables
possessing the STATIC attribute retain their storage location for the
duration of the program. A STATIC variable declared within a procedure will
therefore retain its value between calls of the procedure.

Examples
SUBROUTINE work_out(first_call)

 LOGICAL first_call

 INTEGER, STATIC :: ncalls

 IF (first_call) ncalls = 0

 ncalls = ncalls + 1

 ! Record the number of times the subroutine

 ! has been called.

Related Statements
AUTOMATIC and SAVE

Related Concepts
Storage classes for variables are discussed in Chapter 3, Data Types and
Data Objects.

ALLOCATABLE PRIVATE VOLATILE

DIMENSION SAVE

POINTER TARGET

10-198

10 Intel Fortran Programmer’s Reference

STOP
Terminates program execution.

STOP [stop-code]

stop-code is a character constant, a named constant, or a list of up
to 5 digits.

Description

The STOP statement terminates program execution and optionally prints a
message to standard error or standard list.

STOP also sends a message to standard error, dependent on whether digits,
characters, or nothing was specified with the STOP statement:

• If digits are specified, the message “STOP digits” is written to
standard error.

• If a character expression is specified, the message “STOP
character-expression” is written.

• If nothing appears after STOP, nothing is written.

Example
IF (b .LT. c) STOP ’BAD VALUE!’

Related Statements
PAUSE

Related Concepts

For information about the STOP statement and other flow control
statements, see Chapter 5, Expressions and Assignment.

Intel Fortran Statements 10

10-199

STRUCTURE
Defines a named structure.

STRUCTURE /struct-name/

field-def

.

.

.
END STRUCTURE

struct-name is the structure’s name, delimited by slashes.
struct-name can be used later to declare a record.

field-def is a field definition.

Description

Intel Fortran supports the STRUCTURE statement as a compatibility
extension. New programs should use the derived type, a standard feature of
Fortran 95; derived types provide the same functionality as named
structures. For more information about derived types, see Chapter 3, Data
Types and Data Objects and the TYPE (declaration) statement in this
chapter.

The STRUCTURE statement defines the type, size, and layout of a
structure’s fields, and assigns a name to the structure. Once a structure is
defined, you can declare records of that structure using the RECORD
statement and can manipulate the record’s fields.

A structure definition pertains only to the program unit in which it is defined.
For example, you cannot define a structure in the main program unit and
then declare a record of that structure in a subprogram unit. Instead, the
structure must be explicitly defined again in the subprogram unit.

field-def can be any of the following:
• A type declaration statement
• A nested structure definition
• A nested record declaration
• A union definition

Each type of field definition is described in the remaining sections.

10-200

10 Intel Fortran Programmer’s Reference

Field Definition as Type Declaration
At the simplest level, field-def can be a type declaration statement. As
such, field-def has the same syntax as a standard Fortran 95 type
declaration statement, except that the only attribute that can be specified is
the DIMENSION attribute. A variable defined with a type declaration
statement is called a field.

The following code uses simple type declaration statements to define a
structure named date with three fields: month and day of type BYTE, and
year of type INTEGER(KIND=2):

STRUCTURE /date/

 BYTE :: month, day

 INTEGER(KIND=2) :: year

END STRUCTURE

A type declaration statement in a structure definition can optionally define
initial values for the fields. For example:

STRUCTURE /xyz/

 REAL :: x = 1.0, y = 2.0, z = 3.0

END STRUCTURE

Thereafter, any record declared of structure xyz will have its x, y, and z
fields initially set to 1.0, 2.0, and 3.0 respectively. Consider the following:

RECORD /xyz/ xyz

PRINT *, xyz.x, xyz.y, xyz.z

Even though no values have been assigned to the fields of xyz with an
assignment statement, the above code will display:

 1.0 2.0 3.0

Implicit typing is not allowed in a structure definition. For example, the
following code would cause a compile error:

STRUCTURE /dimensions/

 x, y, z ! illegal

END STRUCTURE

A correct way to code this would be:

STRUCTURE /dimensions/

 REAL(KIND=8) :: x, y, z ! legal

END STRUCTURE

A field type declaration statement can also define an
array, as in the following:

Intel Fortran Statements 10

10-201

STRUCTURE /foo_bar/

 INTEGER foo(10)

END STRUCTURE

or, using Fortran 95 syntax:

STRUCTURE /foo_bar/

 REAL, DIMENSION(30, 50) :: bar

END STRUCTURE

The array’s dimensions must in any case appear in the type statement. The
DIMENSION statement (but not the DIMENSION attribute) is illegal in a
structure definition. The following code defines the structure, string,
which uses a type declaration statement to define an array field str of type
CHARACTER(LEN=1), containing 254 elements:

STRUCTURE /string/

 CHARACTER(LEN=1) :: str(254)! Contains string

 INTEGER :: length ! string’s length

END STRUCTURE

As mentioned, the DIMENSION statement cannot be used in a structure
definition. For example, the following code would cause a compile error:

STRUCTURE /real_array/

 REAL :: rarray

 DIMENSION arr(100) ! illegal example

END STRUCTURE

A correct way to code this would be:

STRUCTURE /real_array/

 REAL :: rarray(100)

END STRUCTURE

or

STRUCTURE /real_array/

 REAL, DIMENSION(100) :: arr

END STRUCTURE

Assumed-size and adjustable arrays are also illegal in structure definitions.
For example, the following is illegal:

STRUCTURE /assumed_size/ ! illegal example

 CHARACTER*(*) :: carray

END STRUCTURE

10-202

10 Intel Fortran Programmer’s Reference

The following is also illegal:

STRUCTURE /adj_array/ ! illegal example

 INTEGER :: size

 REAL :: iarray(size)

END STRUCTURE

For alignment purposes, Intel Fortran provides the %FILL field name. It
enables the programmer to pad a record to ensure proper alignment. The
padding does not have a name and is therefore not accessible. For
example, the following structure, sixbytes, creates a 6-byte structure, of
which 4 bytes are inaccessible filler bytes:

STRUCTURE /sixbytes/

 INTEGER(KIND=2) :: twobytes

 CHARACTER(LEN=4) :: %FILL

END STRUCTURE

%FILL can be of any type and may appear more than once in a structure.

%FILL should not be needed in normal usage. The compiler automatically
adds padding to ensure proper alignment.

Nested Structures
A field-def can itself be a structure definition, known as a nested
structure. The syntax of a nested structure definition is:

STRUCTURE /struct-name/struct-field-list

field-def

.

.

.

END STRUCTURE

struct-name is the structure’s name (delimited by slashes), which can
be used later to declare a record.

struct-field- is a list of one or more names of nested structure field
 list names separated by commas.

field-def can be one of the following regular field definitions
(defined in the same way as an unnested structure field):

• A type declaration statement
• Another nested structure

Intel Fortran Statements 10

10-203

• A nested record
• A union definition

Note that a structure definition allows multiple levels of nesting.

A nested structure definition is the same as an unnested structure definition,
with two exceptions:
• /struct-name/ is optional in a nested structure.
• A nested structure definition must include a list of one or more structure

field names (struct-field-list).

If /struct-name/ is present in a nested structure definition, the structure
struct-name can also be used in subsequent record declarations. For
example, the following code defines a structure named person, which
contains a nested structure named name. The structure’s field name is nm
and contains three CHARACTER*10 fields: last, first, and mid.

STRUCTURE /person/

 INTEGER :: person_id

 ! Define the nested structure ’name’ with the

 ! field name ’nm’.

 STRUCTURE /name/ nm

 CHARACTER(LEN=10) :: last, first, mid

 END STRUCTURE

END STRUCTURE

Given this definition, the following code defines the record p of structure
person and the record n of structure name:

RECORD /person/p

RECORD /name/n

If /struct-name/ is not present, then the structure can be used only in
this declaration. For example, we could redefine the person structure so
that the nested structure no longer has a name:

STRUCTURE /person/

 INTEGER :: person_id

 STRUCTURE nm

 CHARACTER(LEN=10) :: last, first, mid

 END STRUCTURE

END STRUCTURE

There is no way to declare a separate record of the nested structure
because it has no name. Note, however, that the nested structure still has a
field name, nm. The field name is required.

10-204

10 Intel Fortran Programmer’s Reference

To declare an array of nested structures, simply specify a dimension
declarator with the structure’s field name. For example, the following
structure definition contains a nested, 3-element array of structures with field
name phones of structure phone:

STRUCTURE /person/

 INTEGER :: person_id

 ! Define the nested structure ’name’ with the

 ! field name ’nm’.

 STRUCTURE /name/ nm

 CHARACTER(LEN=10) :: last, first, mid

 END STRUCTURE

 ! Nested array of structures.

 STRUCTURE /phone/ phones(3)

 INTEGER(KIND=2) :: area_code

 INTEGER :: number

 END STRUCTURE

END STRUCTURE

Nested Records
A field-def can be a record declaration, known as a nested record.
(See the RECORD statement in this chapter for information about record
declarations.) A nested record declaration must use a structure that has
already been defined. The following code first defines the structure date. It
then declares the structure event, which contains the nested record when
of structure date:

STRUCTURE /date/

 BYTE :: month, day

 INTEGER :: year

END STRUCTURE

STRUCTURE /event/

 CHARACTER :: what, where

 RECORD /date/ when

END STRUCTURE

Intel Fortran Statements 10

10-205

A structure definition can also declare an array of nested records. For
example, the following code defines the structure calendar, which
contains a 100-element array of records of structure event:

STRUCTURE /calendar/

 ! number of events

 INTEGER(KIND=2) :: event_count

 ! array of event records

 RECORD /event/ events(100)

END STRUCTURE

Unions
A field-def can be a union—a form of nested structure in which two or
more map blocks share memory space. The UNION and MAP statements
together define a union. The syntax of a union definition is:

UNION

 map-block

 map-block

 .
 .
 .
END UNION

where map-block is defined by a MAP statement and one or more field
definitions. All map blocks within the enclosing UNION statement share the
same memory space in a record. The syntax for defining a map block is:

MAP

 field-def

 .
 .
 .
END MAP

where field-def can be one of the following:
• A type declaration statement
• Another nested structure

10-206

10 Intel Fortran Programmer’s Reference

• A nested record
• A union definition

Note that a structure definition allows multiple levels of nesting.
For programmers who are familiar with C or Pascal, Intel Fortran unions are
similar to unions in C and variant records in Pascal. Intel Fortran unions
differ from C unions in that they must be defined inside a structure definition.
The structure below contains a union with two map blocks. The first contains
the integer field int; the second contains the real field float.

STRUCTURE /var/

 INTEGER :: type ! 1=INTEGER, 2=REAL

 UNION

 MAP

 INTEGER :: int

 END MAP

 MAP

 REAL :: float

 END MAP

 END UNION

END STRUCTURE

To declare a record of this structure named v, use the following RECORD
statement:

RECORD /var/ v

The declaration of the record v reserves 8 bytes of storage: 4 bytes for the
type field and 4 bytes to be shared by int and float. If you use the int
field to access the 4 bytes, they will be interpreted as an integer; if you use
the float field, they will be interpreted as a real.

It is the programmer’s responsibility to ensure that appropriate values are
assigned to each field in a union. For instance, given the previous
declaration of v, the following assignments make sense:

v.type =1 ! set the type to integer

! access the storage shared by ’int’ and ’float’

! as an integer

v.int = 3

In contrast, the following code would yield unexpected results, although it
would compile without errors:

Intel Fortran Statements 10

10-207

v.type = 1 ! set the type to integer

! the next statement contradicts the previous

! statement

v.float = 3.14

Once a value is assigned to a map block, all other map blocks become
undefined. The reason is that all map blocks share memory space within a
union; therefore, the values of one map block may become altered if you
assign a value to a field in another map block. Consider the following
definition of a structure called struct and the declaration of a record called
rec:

STRUCTURE /struct/

 UNION

 MAP

 CHARACTER*8 :: s

 END MAP

 MAP

 CHARACTER*1 :: c(8)

 END MAP

 END UNION

END STRUCTURE

RECORD /struct/ rec

If we made the following assignment to the s field:

rec.s = ’ABCDEFGH’

 and then executed the next two PRINT statements:

PRINT *, rec.s

PRINT *, rec.c

the output would be:

ABCDEFGH

ABCDEFGH

Now, if we set values in the c field and display both fields again

rec.c(1) = ’1’

rec.c(8) = ’8’

PRINT *, rec.s

PRINT *, rec.c

10-208

10 Intel Fortran Programmer’s Reference

the output would be:

1BCDEFG8

1BCDEFG8

Note how the s field has changed, even though it was not directly assigned
any new values. This is a result of the s and c field sharing the same
storage space in the union. Although this is valid coding—that is, it will not
cause a compiler or runtime error—it may cause unexpected results.

However, you can also use shared memory mapping to your benefit. The
fact that map blocks share space within a union makes unions useful for
equivalencing data within a record. For example, the following structure
could be used to mask off individual bytes in a 4-byte word:

STRUCTURE /wordmask/

 UNION

 MAP

 INTEGER(KIND=4) :: word

 END MAP

 MAP

 BYTE :: byte0, byte1, byte2, byte3

 END MAP END UNION

END STRUCTURE

RECORD /wordmask/ maskrec

If we assign a value to the word field of maskrec, we can then get the
individual values of all four bytes in maskrec by looking at the fields
byte0, byte1, byte2, and byte3. To see how the integer variable word
maps onto the byte variables byte0, byte1, byte2, and byte3, use the
following statements:

 maskrec.word = 32767

 WRITE(*, fmt=100) ’word = ’, maskrec.word

 WRITE(*, 200) ’byte 0 = ’, maskrec.byte0

 WRITE(*, 200) ’byte 1 = ’, maskrec.byte1

 WRITE(*, 200) ’byte 2 = ’, maskrec.byte2

 WRITE(*, 200) “byte 3 = ', maskrec.byte3

100 FORMAT(A, Z8.8)

200 FORMAT(A, Z2.2)

Intel Fortran Statements 10

10-209

This code displays the following output:

word = 00007FFF

byte 0 = 00

byte 1 = 00

byte 2 = 7F

byte 3 = FF

Such code, depending as it does on a specific word size, is inherently
nonportable.

Related Statements
RECORD and TYPE

Related Concepts
Derived Types are described in Chapter 3, Data Types and Data Objects.

SUBROUTINE
Begins the definition of a subroutine
subprogram.

[RECURSIVE] SUBROUTINE subr-name [([dummy-arg-list])]

dummy-arg-listis a comma-separated list of zero or more of the
following:

• dummy-arg-name

• *

As indicated by the syntax, the parentheses surrounding the dummy
arguments may be omitted if there are no dummy arguments.

Description

The SUBROUTINE statement is the first statement of a subroutine
subprogram.

10-210

10 Intel Fortran Programmer’s Reference

Points to note:

• A subroutine subprogram is either an external, module, or internal
subprogram.

• If a subroutine calls itself directly or indirectly, the word RECURSIVE
must appear in the SUBROUTINE statement. If the keyword
RECURSIVE is specified, the subroutine interface is explicit within the
subprogram.

• The keyword SUBROUTINE must appear on the END statement if the
subroutine is a module or internal procedure.

• An asterisk in a subroutine dummy argument list designates an
alternate return.

• The interface of an internal subroutine is explicit in its host. The
interface of a module subroutine is explicit within the module, and if it
is public, it is explicit in all program units using the module. The
interface of an external subroutine is implicit, but may be made explicit
by the use of an interface block.

Examples

Consider the following subroutines:

SUBROUTINE exchange (x, y)

 ! A subroutine definition with two arguments.

 temp = x; x = y; y = temp

END SUBROUTINE exchange

SUBROUTINE altitude (*, long, lat)

 ! An alternate return

 IMPLICIT NONE

 INTEGER, OPTIONAL :: long, lat

 RETURN 1

END SUBROUTINE altitude

The preceding subroutines may be referenced with the CALL statement, as
in the following program:

PROGRAM reject

 ! A subroutine reference.

 CALL exchange (a,t)

 !

Intel Fortran Statements 10

10-211

 !A subroutine reference, including an

 ! alternate return label, missing optional

 ! argument, and an argument keyword

 CALL altitude (*90, lat = 49)

END PROGRAM reject

Following are some other examples of subroutine statements:

SUBROUTINE PRESSURE_SURFACE ! No arguments

SUBROUTINE TAFFY () ! Also no arguments

RECURSIVE SUBROUTINE FACT (N,X)

Related Statements

CALL, END, ENTRY, FUNCTION, and RETURN

Related Concepts

Module procedure, internal procedure, generic procedure, defined
assignment, recursion, argument association, and scope are all covered in
Chapter 7, Program Units and Procedures.

TARGET (Statement and Attribute)
Allows variables and arrays to be
pointer targets.

The syntax of a type declaration statement with the TARGET attribute is:

type, attrib-list :: entity-list

type is a valid type specification (INTEGER, REAL,
LOGICAL, CHARACTER, TYPE (name), etc.), as
described in Chapter 3, Data Types and Data Objects.

10-212

10 Intel Fortran Programmer’s Reference

attrib-list is a comma-separated list of attributes including
TARGET and optionally those attributes compatible with
it, namely:

entity-list is a comma-separated list of entities. Each entity is of
the form:

array-name [(deferred-shape-spec-list)]

If (deferred-shape-spec-list) is omitted, it must be specified in
another declaration statement.

array-name is the name of an array being given the attribute
ALLOCATABLE.

deferred-shape-spec-list
is a comma-separated list of colons, each colon

 representing one dimension. Thus the rank of the array
is equal to the number of colons specified.

The syntax of the TARGET statement is:

TARGET [::] object-name [(array-spec)]

 [, object-name [(array-spec)]]...

array-spec is one of the following:

• explicit-shape-spec
• assumed-shape-spec
• deferred-shape-spec
• assumed-size-spec

explicit-shape-specis [lower-bound :] upper-bound

assumed-shape-specis [lower-bound] :

deferred-shape-specis :

assumed-size-spec is [explicit-shape-spec-list ,]

 [lower-bound :] *

That is, an assumed-size-spec is an explicit-shape-spec-list
with the final upper bound given as *.

ALLOCATABLE OPTIONAL SAVE

DIMENSION PRIVATE

INTENT PUBLIC

Intel Fortran Statements 10

10-213

Description

The TARGET attribute or statement specifies that name is a target that may
be pointed at by a pointer. A target may be either a scalar or an array.

The TARGET attribute allows the compiler to generate efficient code
because only those objects specified with the TARGET or POINTER
attribute can be dynamically aliased.

If the target in a pointer assignment is a variable, then one of the following
must be true:

• It must have the TARGET attribute.
• It must be the component of a structure, the element of an array

variable, or the substring of a character variable that has the TARGET
attribute.

• It must have the POINTER attribute.

If the target of a pointer assignment is an array section, the array must have
either the TARGET or the POINTER attribute.

Examples
INTEGER, POINTER, DIMENSION(:,:) :: p

! p is a pointer array.

INTEGER, TARGET :: t(10, 20, 30)

! t is an array with the TARGET attribute.

p => t(10,1:10,2:5)

! p points to a rank-2 section of t.

REAL, POINTER :: nootka(:), talk(:)

REAL, ALLOCATABLE, TARGET :: x(:)

ALLOCATE (x(1:100), STAT=is)

nootka => x(51:100) ! Pointer assignment

talk => x(1:50) ! statements

REAL r, p1, p2

TARGET r

POINTER p1, p2

r = 4.7

10-214

10 Intel Fortran Programmer’s Reference

p1 => r ! p1 and p2 are both

p2 => p1 ! aliases of r.

...

ALLOCATE (p1)

p1 = 9.4

Related Statements

POINTER, ALLOCATE, DEALLOCATE, and NULLIFY

Related Concepts

For more information about pointer association and pointer assignment, see
Chapter 3, Data Types and Data Objects.

TRACE OFF
Stops the display of program flow by
statement label.

TRACE OFF

Description
TRACE OFF can appear anywhere within a debug packet. After a TRACE
ON statement, tracing continues until a TRACE OFF statement is
encountered.

Related Concepts
See “DEBUG” for a detailed description of using TRACE OFF in
debugging.

Intel Fortran Statements 10

10-215

TRACE ON
Initiates the display of program flow by
statement label.

 TRACE ON

Description
TRACE ON is active only when the TRACE option appears in a DEBUG
packet. Tracing continues until a TRACE OFF statement is encountered.
TRACE ON remains active through any level of subprogram CALL or
RETURN statement. However, if a TRACE ON statement is active and
control is given to a program in which the TRACE option is not specified, the
statement labels in that program are not traced.

TRACE ON makes a record of the statement label on the debug output file
each time that it encounters a statement with an external statement label.

The TRACE ON statement takes effect immediately before the execution of
the statement specified in the AT statement.

Related Concepts
See “DEBUG” for a detailed description of using TRACE ON in debugging

TYPE (Declaration)
Declares a variable of derived type.

TYPE (type-name) [[, attrib-list] ::] entity-list

type-name is the name of a previously defined derived type.

10-216

10 Intel Fortran Programmer’s Reference

attrib-list is a comma-separated list of one or more of the
following attributes:

For information about the attributes, see the corresponding statements in
this chapter.

Description

The TYPE declaration statement specifies the type and attributes of
derived-type objects, sometimes called structured objects or simply
structures. (Note that, as used here, structures is not to be confused with the
structure defined by the Intel Fortran STRUCTURE statement.) A
derived-type object may be an array, which may be deferred shape (pointer
or allocatable), assumed shape (dummy argument), or assumed size
(dummy argument).

Assignment is intrinsically defined for each derived type but may be
redefined by the user. Operators appropriate to a derived type may be
defined by procedures with the appropriate interfaces.

When a derived-type object is used as a procedure argument, the types of
the associated actual and dummy arguments must be the same. For sequence
derived types different physical type definitions may be used for the actual
and dummy arguments, as long as both type definitions specify identical
type names, components, and component order. For nonsequenced types the
same physical type definition must be used, typically accessed via host or
use association, for both the actual and dummy arguments.

Examples
! Weather is a simple derived type with two

! character components and two integer

! components.

TYPE Weather

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

Intel Fortran Statements 10

10-217

 CHARACTER(LEN=32) Place

 INTEGER High_temp, Low_temp

 CHARACTER(LEN=16) Conditions

END TYPE Weather

TYPE (Weather) July(num_ws, 31)

! A two-dimensional Weather array for July.

July(:,:) % Low_temp = -40

! Initialize all low temps in July.

TYPE Polar

! Polar is a derived type with two real

! components that cannot be directly accessed

! in Polar objects outside the module.

 PRIVATE

 REAL rho, theta

END TYPE Polar

! Point is a derived type with three

! components, one of which is itself

! of derived type.

TYPE Point

 REAL x, y

 TYPE (Polar) p

END TYPE Point

TYPE (Polar) r, q(500)

! Two variables of type Polar.

TYPE (Point) a, b, t(100,100)

! Three variables of type Point.

b = Point(0.,0.,Polar(0.,0.))

! Use of nested structure constructors.

Related Statements

INTERFACE, PRIVATE, PUBLIC, SEQUENCE, and TYPE (definition)

10-218

10 Intel Fortran Programmer’s Reference

Related Concepts

See Chapter 3, Data Types and Data Objects for information about derived
types.

TYPE (Definition)
The first statement of a derived type
definition.

TYPE [[, access-spec] ::] derived-type-name

access-spec is the keyword PUBLIC or PRIVATE.

derived-type-name is a legal Fortran 95 name.

Description

This statement introduces the definition of a derived type. A derived type
name may be any legal Fortran 95 name, as long as it is not the same as an
intrinsic type name or another local name (except component names and
actual argument keyword names) in that scoping unit.

A derived type may contain an access specification (PUBLIC or PRIVATE
attribute) or an internal PRIVATE statement only if it is in a module.

Examples
! This is a simple example of a derived type

! with two components, high and low.

TYPE temp_range

 INTEGER high, low

END TYPE temp_range

! This type uses the previous definition for one

! of its components.

TYPE temp_record

 CHARACTER(LEN=40) city

 TYPE (temp_range) extremes(1950:2050)

Intel Fortran Statements 10

10-219

END TYPE temp_record

! This type has a pointer component to provide

! links to other objects of the same type,

! thus providing linked lists.

TYPE linked_list

 REAL value

 TYPE(linked_list),POINTER :: next

END TYPE linked_list

! This is a public type whose components

! are private; defined operations

! provide all functionality.

TYPE, PUBLIC :: set; PRIVATE

 INTEGER cardinality

 INTEGER element (max_set_size)

END TYPE set

! Declare scalar and array structures of type

! set.

TYPE (set) :: baker, fox(1:size(hh))

Related Statements

INTERFACE, PRIVATE, PUBLIC, SEQUENCE, and TYPE (declaration)

Related Concepts

See Chapter 3, Data Types and Data Objects for information about derived
types.

10-220

10 Intel Fortran Programmer’s Reference

TYPE (I/O)
Writes to standard output.

Description

The TYPE statement is a synonym for the PRINT statement and has the
same functionality and syntax. It is provided as an Intel Fortran extension for
compatibility with earlier versions of Fortran. For more information, see the
description of “PRINT”.

UNION
Defines a union within a structure.

UNION

 map-block

 map-block

 .
 .
 .
END UNION

NOTE. The TYPE statement as an I/O statement cannot appear as the
first executable statement in a program unit. It must be preceded by at
least one other executable statement. There are cases where the syntax
permitted for TYPE as an executable statement conflicts with the TYPE
statement used to declare a derived type. Placing some other executable
statement first in the program unit after all declarations causes the
compiler to be able to determine what kind of statement TYPE is.

Intel Fortran Statements 10

10-221

map-block is one or more of the following:

•A TYPE(I/O) declaration statement
•Another nested STRUCTURE
•A nested RECORD
•A UNION definition

Description

The UNION statement is an Intel Fortran extension that is used with the
MAP statement to define a union within a structure. For detailed information
about the MAP and UNION statements, see the description of the
STRUCTURE statement in this chapter.

USE
Provides controlled access to module
entities.

A USE statement has one of the following forms:

• USE module-name
• USE module-name, rename-list
• USE module-name, ONLY : access-list

rename-list is a comma-separated list of rename

rename is local-name => module-entity-name

access-list is a comma-separated list of the following:
• [local-name =>] module-entity-name
• OPERATOR (operator)

• ASSIGNMENT (=)

Description

The USE statement provides access to a module’s public specifications and
definitions. These include declared variables, named constants,
derived-type definitions, procedure interfaces, procedures, generic

10-222

10 Intel Fortran Programmer’s Reference

identifiers, and namelist groups. The method of access is called use
association. Such access may be limited by an ONLY clause on the USE
statement, or the accessed entities may be renamed.

All USE statements must appear after the program unit header statement and
before any other statements. More than one USE statement may be present,
including more than one referring to the same module.

Modules may contain USE statements referring to other modules; however,
references must not directly or indirectly be recursive.

The local-name in a renaming operation is not declared: it assumes the
attributes of the module entity being renamed.

The first two forms of the USE statement make available by use association
all publicly accessible entities in the module, except that the USE statement
may rename some module entities. The third form makes available only
those entities specified in access-list, with possible renaming of some
module entities.

Entities made accessible by a USE statement include public entities from
other modules referenced by USE statements within the referenced module.

The same name or specifier may be made accessible by means of two or
more USE statements. Such an entity must not be referenced in the scoping
unit containing the USE statements, except where specific procedures can
be distinguished by the overload rules. A rename or ONLY clause may be
used to restrict access to one name or to rename one entity so that both are
accessible.

Examples
MODULE rat_arith

 TYPE rat

 INTEGER n, d

 END TYPE

 TYPE(rat), PRIVATE, PARAMETER :: &

 zero = rat(0,1)

 ! All entities are public except zero.

 TYPE(rat), PUBLIC, PARAMETER :: &

 one = rat(1,1)

Intel Fortran Statements 10

10-223

 TYPE(rat) r1, r2

 NAMELIST /nml_rat/ r1, r2

 INTERFACE OPERATOR(+)

 MODULE PROCEDURE rat_plus_rat, int_plus_rat

 END INTERFACE

CONTAINS

 FUNCTION rat_plus_rat(l, r)

 END FUNCTION

END MODULE

PROGRAM Mine

 ! From the module rat_arith, access only the

 ! entities rat, one, r1, r2, nml_rat but

 ! use the name one_rat for the rational

 ! value one.

 USE rat_arith, ONLY: rat, one_rat => one, &

 r1, r2, nml_rat

 ! The OPERATOR + for rationals and the

 ! procedures rat_plus_rat and int_plus_rat

 ! are not available because of the ONLY

 ! clause.

 READ *, r2; r1 = one_rat

 WRITE(*, NML = nml_rat)

END PROGRAM

Related Statements
MODULE

Related Concepts

Modules, scope, and association are discussed in Chapter 7, Program Units
and Procedures.

10-224

10 Intel Fortran Programmer’s Reference

VIRTUAL
Declares an array.

VIRTUAL array-declarator-list

array-declarator-list is a comma-separated list of array
declarators.

Description

The VIRTUAL statement is provided as an extension in Intel Fortran for
compatibility with earlier versions of Fortran. It is an alternative to the
DIMENSION statement. VIRTUAL cannot be used as an attribute in type
declaration statements.

Example
VIRTUAL A(10), B(1:5,2:6)

Related Statements
DIMENSION

Related Concepts
Arrays are discussed in Chapter 4, Arrays.

VOLATILE
Provides for data sharing between
asynchronous processes.

VOLATILE [::] object-name-list

object-name-list is a comma-separated list of the following:

• variable-name
• array-name
• common-block-name

Intel Fortran Statements 10

10-225

Description

It is only necessary to declare an object as VOLATILE when its value may
be altered by an independent asynchronous process or event (for example,
a signal handler). All optimization processes are inhibited for objects with
the VOLATILE attribute. Data objects declared as VOLATILE will be
addressable by otherwise independent processes.

If an array or common block is declared as VOLATILE then all of the array
elements or common block variables are considered VOLATILE. Similarly,
use of EQUIVALENCE with a VOLATILE object implies that any associated
object is also volatile.

Examples
INTEGER alarm, trem

EXTERNAL wakeup

COMMON/FLAGS/ialarm

VOLATILE ialarm

! Set an alarm to execute in 60 seconds.

trem = ALARM(60,wakeup)

wakeup

IALARM = 0

DO

 IF (ialarm.NE.0) EXIT

END DO

SUBROUTINE wakeup

 COMMON/flags/ialarm

 VOLATILE ialarm

 ialarm=1

END

10-226

10 Intel Fortran Programmer’s Reference

WHERE (Statement and Construct)
Performs masked array assignments.

WHERE (array-logical-expr)
[array-assignment-statement]

If the optional array-assignment clause is present, the WHERE statement is
syntactically complete and does not require the END WHERE statement.

If the array-assignment clause is not present, the WHERE statement is the
first statement of a WHERE construct. The syntax of the WHERE construct is:

WHERE (array-logical-expr)

 array-assignment-statement

 ...

[ELSEWHERE

 array-assignment-statement

 ...]
END WHERE

array-logical-expris a logical array expression.

array-assignment- is an array assignment statement.
 statement

Description

Certain array elements can be selected by a mask and assigned in
array-assignment statements using the WHERE statement or WHERE
construct. array-logical-expr establishes the mask.

For any elemental operation in the array assignments, only the elements
selected by the mask participate in the computation. The elemental
operations include the usual intrinsic operations and the elemental intrinsic
functions such as ABS. Masked array assignments are useful when certain
elemental operations involving arrays need to be avoided because of
program exceptions.

Intel Fortran Statements 10

10-227

The following rules and restrictions apply:

• The shape of the result of array-logical-expr and the arrays in
each array-assignment-statement must be the same; they may
be of size zero.

• array-assignment-statement must be an intrinsic array
assignment statement; no defined assignment statements are permitted.

• Each elemental operation in array-assignment-statement is
masked by the array logical expression.

• The elements of the arrays that are used in the WHERE part (the
assignments after the WHERE keyword) are those corresponding to the
true elements of the array logical expression. The elements of the
arrays that are used in the ELSEWHERE part (the assignments after the
ELSEWHERE keyword and before the END WHERE keywords) are those
corresponding to the false elements of the array logical expression.

• Each array-assignment-statement executes in the order in
which it appears in both the WHERE and ELSEWHERE part of the WHERE
construct.

• In a WHERE construct, only the WHERE statement may be a branch
target statement.

Examples
REAL, DIMENSION(150) :: a, recip_a

REAL(DOUBLE), DIMENSION(10,20,30) :: b, sqrt_b

! Assign 1.0/a to recip_a only where a is

! nonzero.

WHERE(a /= 0.0) recip_a = 1.0 / a

WHERE(b .GE. 0.0) ! Assign to sqrt_b only

 ! where b is nonnegative.

 sqrt_b = SQRT(b)

ELSEWHERE ! Set sqrt_b to 0.0 where b is -ve.

 sqrt_b = 0.0

END WHERE

INTEGER, DIMENSION(no_of_tests, student):: score

CHARACTER, DIMENSION(no_of_tests, student) &
 :: letter_grade

! Assign letter grades for numeric scores.

10-228

10 Intel Fortran Programmer’s Reference

WHERE(score >= 92) letter_grade = ’A’

WHERE(score >= 82 .AND. score <= 91) &

 letter_grade = ’B’

WHERE(score >= 72 .AND. score <= 81) &

 letter_grade = ’C’

WHERE(score >= 62 .AND. score <= 71) &

 letter_grade = ’D’

WHERE(score >= 0 .AND. score <= 61) &

 letter_grade = ’E’

In the next example, the arrays values, delta, and count must all be of
the same shape:

WHERE (ABS(values) .LT. 10.0)

 values = ABS(values) + delta

 count = count + 1

ELSEWHERE

 values = 0

 count = count + 1

ENDWHERE

The first two assignment statements are processed for elements
corresponding to true elements of the mask. The second two assignment
statements are processed for elements corresponding to false elements of
the mask. Unlike the ELSE clause of an IF statement, the assignment
statements in both the WHERE and ELSEWHERE parts are processed.

Note the different behavior of the calls to ABS. In evaluating the mask
expression, the entire VALUES array is passed to ABS, producing an array
result whose elements are then compared to 10. In the assignment
statement, however, ABS is only invoked for those particular elements of
VALUES corresponding to true elements of the mask. Also, note the mixed
use of arrays and scalars in the assignment statement expressions.

The mask expression must have the same shape as the arrays in the
assignment statements, but it might involve completely separate arrays. In
the following example, A, B, and C can be independent of D and E, as long
as they are all conformable:

WHERE (a+b .EQ. c) d = SIN(e)

Intel Fortran Statements 10

10-229

The following example illustrates why the order of processing is important
for dependency reasons:

REAL a(100)

REAL b(100)

EQUIVALENCE b,a

WHERE(a(1:20:1) .GT. 0) a(20:1:-1) = -1.0

WHERE(a(61:100:2) .LT. 1) &

 b(20:1:-1) = a(1:20:1) * 100.0

In the first WHERE statement, changing elements of a in the assignment
might be thought to affect the mask expression. However, because the mask
is evaluated before the assignment is processed, the behavior of WHERE
statement is well defined. A similar situation arises in the second WHERE
statement. Assignment values to elements of the assignment variable b alter
the elements of the assignment expression a * 100.0. Because the
assignment expression is evaluated for all true elements of the mask before
any transfer of values to B, the behavior is again well defined.

It is important to note that assignment statements in a WHERE construct are
processed sequentially. In the next example, the second assignment is not
processed until the first is completely finished. This means that the values
of b used in the second assignment have been modified by the first
statement:

WHERE (SQRT(ABS(a)) .gt. 3.0)

 b = SIN(a)

 c = SQRT(b)

ENDWHERE

Related Statements

END WHERE and ELSEWHERE

A WHERE statement may be nested within a FORALL construct, or a
FORALL construct may be nested within a WHERE construct.

Related Concepts

Elemental intrinsic functions, conformable arrays, and array language are
described in Chapter 4, Arrays.

10-230

10 Intel Fortran Programmer’s Reference

WRITE
Outputs data to external and internal
files.

WRITE (io-specifier-list) [output-list]

output-list is a list of comma-separated data items for output.
The data items can include expressions and
implied-DO lists; see Chapter 8, I/O and File
Handling for more detailed information.

io-specifier-list is a list of the following comma-separated I/O
specifiers:

[UNIT=]unit

specifies the unit connected to the output file.
unit can be one of the following:

• The name of a character variable, indicating
an internal file

• An integer expression that evaluates to the
unit connected to an external file

• An asterisk, indicating the preconnected unit
6 (standard output)

If the optional keyword UNIT= is omitted, unit must be the first item in
io-specifier-list. This is the only specifier required in
io-specifier-list.

[FMT=] format specifies the format specification for formatting
the data. format can be one of the following:

• An asterisk (*), specifying list-directed I/O.
For detailed information about list-directed
I/O, see Chapter 8, I/O and File Handling.

• The label of a FORMAT statement containing
the format specification.

• An integer variable that has been assigned
the label of a FORMAT statement.

Intel Fortran Statements 10

10-231

• An embedded format specification. For
information about embedded format
specifications, see Chapter 9, I/O Formatting.

If the optional keyword FMT= is omitted, format must be the second item
in io-specifier-list.

[NML=]name specifies the name of a namelist group for
namelist-directed output. name must have been
defined in a NAMELIST statement. If the optional
keyword NML= is omitted, name must be the
second item in the list. The first item must be the
unit specifier without the optional keyword
UNIT=.

The NML= and FMT= specifier may not both appear in the same
io-specifier-list.

ADVANCE=character-specifies whether to use advancing I/O for this
 expression statement. character-expression can be

one of the following arguments:

If the ADVANCE= specifier appears in io-specifier-list, unit must
be connected to an external file opened for formatted sequential I/O.
Nonadvancing I/O is incompatible with list-directed and namelist I/O.

For more information about nonadvancing I/O, see Chapter 8, I/O and File
Handling.

NOTE. The NML= and FMT= specifier may not appear in the same
io-specifier-list.

’YES’ Use advancing formatted sequential I/O
default.

’NO’ Use nonadvancing formatted sequential I/O.

10-232

10 Intel Fortran Programmer’s Reference

ERR=stmt-label specifies the label of the executable statement to
which control passes if an error occurs during
statement execution.

IOSTAT=integer- returns the I/O status after the statement executes.
 variable If the statement executes successfully,

integer-variable is set to zero. If an error
occurs, it is set to a positive integer that indicates
which error occurred.

REC=integer- specifies the number of the record to be written to
 expression the file connected for direct access. This specifier

cannot appear in io-specifier-list with
the NML= and ADVANCE= specifiers, nor with
FMT=* (for list-directed I/O).

Description

The WRITE statement transfers data from internal storage to an external or
internal file. An external file can be opened for sequential access or direct
access I/O. If it is opened for sequential access, the WRITE statement can
perform the following types of I/O:

• Formatted
• Unformatted
• List-directed
• Namelist-directed

If the file is opened for direct access, the WRITE statement can perform
formatted or unformatted I/O.

WRITE statements operating on internal files can perform formatted or
list-directed I/O.

For detailed information about files and different types of I/O, see
Chapter 8, I/O and File Handling.

Examples

The examples in this section illustrate different uses of the WRITE
statement.

Intel Fortran Statements 10

10-233

Nonadvancing I/O
CHARACTER(LEN=80) :: prompt

WRITE (6, ’(I4)’, ADVANCE=’NO’) prompt

The WRITE statement outputs to the file connected to unit 6, which is
preconnected to standard output. The ADVANCE=’NO’ specifier indicates
the following:

The file has been opened for formatted sequential I/O.

The statement uses nonadvancing I/O to write an integer formatted as four
characters from the variable prompt.

The effect of the nonadvancing WRITE is to output the character string in
prompt to standard output without a terminating newline. This means that
anything subsequently entered by the user will appear on the same line.

Internal File
CHARACTER(LEN=80) :: cfile

WRITE (cfile, ’(I5, F10.5)’) i, x

The statement writes a string of characters into the internal file cfile,
using the embedded format specification to perform the format conversion.

Namelist-directed I/O

In the next example, each of the four WRITE statements following the
NAMELIST statement uses a different style of syntax to do exactly the same
thing:

NAMELIST /nl/ a, b, c

WRITE (UNIT=6, NML=nl) ! 6 = standard output

WRITE (6, nl)

WRITE (*, NML=nl) ! * = standard output

WRITE nl ! assume standard output

List-directed I/O
WRITE (6, *) int_var

10-234

10 Intel Fortran Programmer’s Reference

This statement converts the value of int_var to character format and
outputs the character string to standard output. The format conversion is
based on the type of int_var. If you knew the format, you could substitute
for the asterisk one of the following:

• The label of the FORMAT statement with the format specification, as in:
 WRITE (6, 100) int_var

 100 FORMAT(I4)

• An embedded format specification itself, as in:
 WRITE (6, ’(I4)’) int_var

Unformatted Direct-access I/O
WRITE (31, REC=rec_num, ERR=99, IOSTAT=ios) a, b

This statement outputs to the file connected to unit 31. The REC= specifier
indicates that the file has been opened for direct access and that this
statement will output to the record whose number is stored in the variable
rec_num. If an I/O error occurs during the execution of the statement, an
error number will be stored in ios, and execution control will branch to the
executable statement at label 99.

Related Statements

CLOSE, OPEN, PRINT, and READ

Related Concepts

For information about I/O concepts, see Chapter 8, I/O and File Handling,
which also gives example programs that perform I/O. For information about
I/O formatting, see Chapter 9, I/O Formatting.

string constants, comments, and file names

• Dollar sign ($) accepted as alphabetical character in names

• Tab formatting in fixed format source files
A
Intel Fortran Extensions
This appendix lists all of the Intel Fortran extensions to the Fortran 95
Standard. It does not include nonstandard features that are enabled by
command-line options (see the Intel Fortran Compiler User’s Guide for the
command-line options).

The following sections are organized according to the chapters in which
each extension is described. If an extension is described in more than one
place, additional references are included.

Language Elements
The following extensions are described in Chapter 2, Language Elements:

• Symbolic names exceeding 31 characters in length
• Up to 99 continuation lines
• Extended Unix Character (EUC) encoding for multibyte characters in

NOTE. Most of the extensions provide compatibility with features found
in other implementations of Fortran. If it is important that your program
have maximum portability, you should avoid using the extensions. By
default, the compiler will issue warnings for all non-standard features in
your program. If you want to suppress these warnings, use /w90 and /cm
options.
A-1

A-2

A Intel Fortran Programmer’s Reference
• D debug lines in fixed format source files

• Use of pound (#) character in column 1 to denote comment

• Alternative statement continuation, using an ampersand (&) in fixed
format

Data Types and Objects
The following are the extensions presented in Chapter 3, Data Types and
Data Objects, and detailed in Chapter 10, Intel Fortran Statements:

• BYTE statement

• DOUBLE COMPLEX statement

• REAL*16 statement

• POINTER (Cray-style) statement

• VAX structures (see also the STRUCTURE statement in Chapter 10)
• Alternate form for initializing data: (variable-declaration / constant-list /

• Byte length notation (*n) in type declaration; for example, INTEGER*8

• AUTOMATIC, STATIC (Statement and Attribute), VIRTUAL, and
VOLATILE statements

• Use of Q exponent for quadruple-precision real constants
• CHARACTER and noncharacter items in the same common block
• COMMON always saved
• Alignment of variables in common blocks

• Equivalencing of character and noncharacter data (see also the
EQUIVALENCE statement in Chapter 10)

• Alternate syntax for binary, octal, and hexadecimal constants
• Initialization of character variables with unsigned integers

• Structures and records (see also the STRUCTURE and RECORD
statements in Chapter 10)

Array Concepts
The following extensions are described in Chapter 4, Arrays:

• Alternate array constructor syntax ([])
• Array subscripts of type real

Intel Fortran Extensions A

Expressions

The following extensions are described in Chapter 5, Expressions and
Assignment:
• Allow a**-b
• Use of binary, octal and hexadecimal constants in expressions; type

can be other than integer, as determined by context (see also typeless
constants in Chapter 3, Data Types and Data Objects)

• Use of Holleriths in expressions with type determined by context (see
also Hollerith constants in Chapter 3, Data Types and Data Objects)

• Use of noninteger expressions as array subscripts
• Logical operations on integers
• Integer operations on logicals
• The .XOR. operator (equivalent to .NEQV.)

Execution Control
The following extensions are described in Chapter 6, Execution Control:
• Branches into statement block of DO, CASE, or IF constructs
• Extended-range DO loops (see also the DO statement in Chapter 10,

Intel Fortran Statements)

Scope, Program Units, and Procedures
The following extensions are described in Chapter 7, Program Units and
Procedures:

• %VAL, %LOC, and %REF built-in functions (see also the CALL statement
in Chapter 10, Intel Fortran Statements.

• Alternate return labels preceded by ampersand (&) character
• Initialization of blank common in a BLOCK DATA subprogram (see also

BLOCK DATA statement in Chapter 10, Intel Fortran Statements).
A-3

A-4

A Intel Fortran Programmer’s Reference
Attributes
To specify additional information about a variable, variable types, and
subprograms and their formal arguments, you can use a set of directives
called attributes. Attributes allow you to do the following:
• Pass arguments by reference or value
• Use segmented or unsegmented addresses
• Use calling conventions of Microsoft C or Pascal
• Specify the span of a formal argument beyond one segment
• Specify and external name for a subprogram or common block.

You can use attributes in subroutine function definitions, type declarations,
and with the INTERFACE, INTERFACE TO and ENTRY statements. The
syntax of an attribute is as follows:

!MS$ATTRIBUTES [attribute-option] :: variable-list

For example:

INTERFACE
SUBROUTINE FOO(X)

!MS$ATTRIBUTES C :: FOO
END SUBROUTINE FOO

END INTERFACE

In the preceding example, the subroutine FOO has been given the C
attribute. This ensures that calling procedure will use the Microsoft C calling
convention to call FOO.

A synonym to !MS$ATTRIBUTES [attribute-option] is
!DEC$ATTRIBUTES. The functionality of both attributes is the same.
Restriction
When using the !MS$ATTRIBUTES directives, some of them affect the
declaration of a variable, array or procedure name used in the directive. For
this type of the compiler directive, Intel Fortran Compiler enforces a
restriction that the directive must appear before the first executable
statement in the procedure that contains the directive.
Correct usage:
FUNCTION MYFUNC ()

IMPLICIT NONE
!MS$ATTRIBUTES DLLEXPORT:: MYFUNC
CHARACTER*8 MYFUNC
MYFUNC=’XXXXXXXX’

RETURN
END

Intel Fortran Extensions A

Incorrect usage:

FUNCTION MYFUNC ()
IMPLICIT NONE
CHARACTER*8 MYFUNC
MYFUNC=’XXXXXXXX’
RETURN
!MS$ATTRIBUTES DLLEXPORT:: MYFUNC

END

The first executable statement in the example is MYFUNC=’XXXXXXXX’.
Placing the DLLEXPORT declarative directive before the executable
statement permits successful compilation.

Compatibility with Microsoft Attributes
The following attributes are Intel Fortran extensions that are provided for
Compatibility with Microsoft Attributes:

Table A-1 Attributes and Associated Objects

Attribute

Declarations in
Variables and
Arrays

EXTERNAL
Statements and
Subprogram
Specifications

Common
Block Names

ALIAS Yes Yes Yes

ALLOCATABLE Yes (arrays only) No No

C Yes Yes Yes

DLLEXPORT Yes Yes Yes

DLLIMPORT Yes Yes Yes

EXTERN Yes Yes Yes

FAR Yes Yes Yes

HUGE Yes No No

IVDEP Yes Yes No

LOADDS No Yes No

NEAR Yes Yes Yes

PASCAL Yes Yes Yes

REFERENCE Yes Yes Yes

STDCALL No No No
A-5

A-6

A Intel Fortran Programmer’s Reference
Each of these attributes is described in detail in the following sections.

ALIAS
Specifies an external name for a subroutine.

Syntax
ALIAS : string

where string is a character constant.

Example

SUBROUTINE OldName [ALIAS:’NewName’]

In the preceding example, the NewName is given to the subroutine
OldName.

Description

Within the source file you can only refer to a subprogram by its name given
in the declaration. ALIAS overrides the C attribute. If you use the C attribute
on a subprogram along with the ALIAS attribute, the subprogram will be
given the C calling convention but not the C naming convention.
Consequently, it will receive the ALIAS name with no modifications. This
means that the new name is case sensitive, which is useful when you
interface with case-sensitive language like C.

VALUE Yes Yes Yes

VARYING No No Yes

NOTE. In all cases, the DLLEXPORT and DLLIMPORT attributes must
appear in an INTERFACE block.

Table A-1 Attributes and Associated Objects (continued)

Attribute

Declarations in
Variables and
Arrays

EXTERNAL
Statements and
Subprogram
Specifications

Common
Block Names

Intel Fortran Extensions A

ALLOCATABLE

The Microsoft attribute ALLOCATABLE is provided for compatability with
older programs that use this attribute. It permits you to delay allocation of
storage for a particular declared entity until some point at run time when
you explicitly call a storage allocation routine. The routine ensures that
storage for that entity is dynamically allocated. In general, you should use
the standard FORTRAN ALLOCATABLE statement and attribute instead (see
Chapter 3, Attributes). The Microsoft attribute is declared as:

DIMENSION A[allocatable](:)

END

An entity declared with the ALLOCATABLE attribute must have a
deferred-shape.

You can allocate storage for the array as follows:

DIMENSION A[allocatable](:)

ALLOCATE(A(10))

END

C Attribute
Defines the subprogram as having the same calling conventions as a
Microsoft C procedure.

Syntax
INTEGER[c] : argument

where INTEGER[c] is a character constant.

Description
Arguments to subprograms with the C attribute are passed by value unless
you specify the formal argument with the REFERENCE attribute.
Subprograms that use the C attribute are modified automatically so that you
can more easily match the naming conventions used in C. External names
are matched to lowercase and start with an underscore (_).

When you assign an integer variable the C attribute, it becomes a C variable
and assumes the default size according to the microprocessor on the
system.
A-7

A-8

A Intel Fortran Programmer’s Reference
DLLEXPORT, DLLIMPORT

These Microsoft attributes allow you to import symbols to dynamic link
libraries (DLLs) and to create FORTRAN DLLs that export symbols to other
programs. You can use the DLLIMPORT and DLLEXPORT attributes on both
data objects and routines.

When you use the DLLEXPORT attribute, you are asking for the identifier
associated with the attribute to be exported to other programs or DLLs. The
advantage to allowing other programs to access a routine in your DLL is that
the routine doesn’t have to actually be linked into the program, allowing the
executable to be smaller.

To create a FORTRAN DLL, follow these steps as an example:

ifl /c test_dll.f90

ifl /LD add_dll.f90

ifl /Fetest_dll.exe test_dll.obj add_dll.lib

where test_dll.f90 is:

PROGRAM TEST_DLL

INTERFACE

 SUBROUTINE ADD (A,B)

 !MS$ATTRIBUTES DLLIMPORT :: ADD

 INTEGER A, B

 END SUBROUTINE ADD

END INTERFACE

!INTEGER P, Q

!P = 1

!Q = 2

CALL ADD (1, 2)

END PROGRAM TEST_DLL

And add_dll.f90 is:

 SUBROUTINE ADD (A,B)

 !MS$ATTRIBUTES DLLEXPORT :: ADD

 INTEGER A, B

 PRINT *, "Value of A = ", A

 PRINT *, "Value of B = ", B

Intel Fortran Extensions A

 PRINT *, "Sum of A + B = ", A+B

END SUBROUTINE ADD

The /LD switch to ifl is a linker switch that tells the compiler driver to
execute a link step to create the DLL.

EXTERN
Indicates that a variable is allocated in another source file.You must use
EXTERN when you are accessing variables used in other languages. You
cannot apply EXTERN in formal arguments.

FAR
Use the FAR attribute to specify that the argument is to be passed using a
segment address. When used with variables, it specifies that the variable is
allocated in far data areas.

HUGE
Use HUGE to specify that a formal argument or an allocatable array can
span more than one segment. You can also use the $LARGE metacommand
to specify the same thing. For example, the following two statements
provide the same result:

FUNCTION Func (a(HUGE))
DIMENSION a(300)

$Large: a
FUNCTION Func (a)
DIMENSION A(300)

NOTE. The compiler does not ensure that HUGE is specified for all
arguments that span more than one segment.
A-9

A-10

A Intel Fortran Programmer’s Reference
IVDEP
Use this directive immediately preceding a counted loop to instruct the
compiler to vectorize the loop, regardless of any apparent dependences that
would otherwise prevent vectorization.

The format of this directive is:

!MS$ IVDEP

The synonyms to !MS$ IVDEP are:

!DIR$ IVDEP
!DEC$ IVDEP

Use this directive when you know that the assumed loop dependences are
safe to ignore. For example, the following loop:

DO WHILE (I .LE. N)
 A(I) = A(I+K) * C
......
will not vectorize with the IVDEP directive, since the value of K is not known
(vectorization would be illegal if K<0).

For more information on compiler vectorization, refer to the Intel¨ Fortran
Compiler User’s Guide.

LOADDS

Use the LOADDS attribute to direct the compiler to create a separate data
segment for the data within that procedure. The base address (DGROUP) of
this new segment is automatically loaded into DS when the procedure is
called. The separate data segment allows the procedureÕs data to be called
with 16-bit NEAR references rather than 32-bit FAR references in order to
speed up data references.You can only apply this attribute to separately
compiled subprograms or functions. The default data segment for the
program is automatically reloaded when execution of the procedure
terminates.

Use the LOADDS attribute for user-written routines that are to be included in
an OS/2 dynamic linking library (DLL). You do not need it for procedures that
run in DOS programs because the command-line option /ND (name data
segment) automatically ensures that the new data segmentÕs base address
is loaded. The following is an example of the LOADDS attribute:

REAL*8 FUNCTION [LOADDS] GetNewData

Intel Fortran Extensions A

NEAR

Use the NEAR attribute to specify that the actual argument is in the default
data segment and that only its offset is passed to the subprogram. This
attribute can also be used with common blocks. Common blocks that have
the near attribute are mapped into the default data segment.

The syntax for the NEAR statement is as follows:

COMMON [/[name][NEAR]/]...

The parameter name is the name of the common block. When no name is
specified, all blank common blocks are put in the default data segment. You
must specify NEAR for at least the first definition of the common block in the
source file. You can also specify NEAR for any COMMON statement in a
subprogram.

To make a common block near, try to specify NEAR for all definitions of the
common block. However, if you are modifying an existing program, it is
easier to add a subroutine at the beginning of your source file to make
common blocks near in the remainder of the program.

The advantage to having common blocks at the beginning of your program
is that you can specify addresses with offsets only. This generates smaller,
more efficient, code. If you do not specify NEAR, the compiler uses
segmented addresses to refer to everything in common blocks.

If you specify a common block near one compiland but not in another, it will
be mapped into the default data segment. The compiland that recognizes it
as near will use short addresses, and the other will use long addresses.

Actual arguments passed to a near formal argument must be in the default
data segment. You cannot pass any of the following to a near argument.
• Data in common blocks that are not specified using the NEAR attribute
• Arrays specified using the HUGE attribute
• Arrays defined while the $LARGE metacommand is active
• Variable named in a $LARGE metacommand

PASCAL
Use the PASCAL attribute to identify a subprogram as having the following
characteristics of Microsoft PASCAL:
• The argument or the subprogram arguments are passed by value

(unless the REFERENCE attribute is specified).
• Microsoft FORTRANÕs calling conventions are still used
A-11

A-12

A Intel Fortran Programmer’s Reference
• You can only use the PASCAL attributes with subprograms, common
blocks, and formal argument type declarations (but not on formal
arguments in the formal arguments list).

REFERENCE
Passes an argument by ÒreferenceÓ rather than by value. This means that
the address (memory location) is passed to the subroutine rather than the
argumentÕs actual value. This is similar to obtaining values using a pointer
instead of copying the value and then passing it.

STDCALL

The STDCALL attribute allows you to call external routines written in C that
have been compiled with the STDCALL option. To determine how to
compile your C routines with STDCALL, consult your C compiler
documentation. STDCALL changes the name of the external symbol that the
Fortran compiler emits for your routine, unless you also have an ALIAS
attribute specified. Most Win32* API functions assume that you will call
them using STDCALL.

When you compile with the /Gz compiler command line option, all of the
routines in the source file compiled with that option are compiled for
STDCALL. You can also declare that a given routine should be compiled for
STDCALL using Microsoft attributes.

Example
INTERFACE

INTEGER(4) FUNCTION CREATEEVENT(lpEventAttributes,
bManualReset, bInitialState,& lpName)

TYPE SECURITY_ATTRIBUTES

 SEQUENCE

 INTEGER(4) NLENGTH

 INTEGER(4), POINTER :: LPSECURITYDESCRIPTOR

 LOGICAL(4) BINHERITHANDLE

 END TYPE

TYPE (SECURITY_ATTRIBUTES), POINTER ::
lpEventAttributes

Intel Fortran Extensions A

 LOGICAL(4) bManualReset

 LOGICAL(4) bInitialState

 INTEGER(1), POINTER :: lpName

 !MS$ATTRIBUTES STDCALL, ALIAS:’_CreateEventA@16’
:: CREATEEVENT

 END FUNCTION

END INTERFACE

Usage

When you compile a routine for STDCALL, parameters are passed to the
routine by value. Normally, Fortran routines have their parameters passed
by reference, that is, the address of each parameter is passed, rather than its
value. For this reason, it usually is not advisable to try to compile a Fortran
routine for STDCALL, and attempt to call it from Fortran. Arrays and
CHARACTER variables are still passed by reference. You must exercise some
care when calling a routine that is compiled for STDCALL from Fortran and
passing a CHARACTER argument.

STDCALL will pass only the address of the CHARACTER argument, just as if
your routine were written in C, and you were passing a char *v argument.
Usually Fortran passes both the address and the length of a CHARACTER
variable. The C routine that you are calling will expect that it is receiving a
null-terminated string. Fortran normally pads strings with blanks.

You can declare a null-terminated CHARACTER constant in Fortran by
placing a C after the constant. For example:

“This is a null terminated string” C

This facility, which can be used in assignment or data statements, allows
you to set up the string correctly for passing it to C. You must be careful to
allow for the extra unseen null character when you declare a length for a
CHARACTER variable to hold the constant. For example, the string above is
32-characters long. To place it in a CHARACTER variable, the CHARACTER
variable must be declared CHARACTER*33. You can also add null
characters to Fortran CHARACTER strings by using explicit escape
characters:

“This is a null terminated string, too\0”
A-13

A-14

A Intel Fortran Programmer’s Reference
Compiling a routine for STDCALL changes the name of the external symbol
that the compiler emits for the call. An underscore (_) is added as a prefix of
the name, and a suffix of @n is added to the end of the name, where n is the
total length in bytes of parameters passed to the routine. The external
symbol name is also changed to all lower-case letters. Note that in the
example above, the ALIAS attribute is also used, so the prefix and suffix
must be made explicit in the ALIAS – the compiler will not add them
automatically when the ALIAS attribute is used.

Some other compilers, such as Compaq* Visual Fortran*, use a calling
convention as their default which causes the names of external symbols to
be changed in a manner similar to the STDCALL calling convention, but still
passes parameters by reference. This is not the same as STDCALL, and is not
supported in Intel Fortran Compiler.

You can only use the STDCALL on routine names. You can use STDCALL
with FORTRAN-77-style syntax as follows:

EXTERNAL BAR

!MS$ATTRIBUTES STDCALL :: BAR

CALL BAR

END

This results in a call to the external symbol _bar@0.

VALUE
Specifies that the argumentÕs value is to be passed rather than a reference
to its memory location address. In either C or Pascal, the attribute is
specified on the subprogram definition, and all arguments are assumed to
be passed by value because this is the default.

If you specify VALUE and your argument is of a different type, a type
conversion is required and it you must perform it before the call.

NOTE. The STDCALL attribute can only be used on Win32* with IA-32
systems.

Intel Fortran Extensions A

In C, arrays always pass by a reference to the memory location rather than
by value. If you specify the C attribute and your subprogram has an array
argument, the array is passed as a Struct (a C aggregate type). To pass
an array so that it is handled as an array instead of a Struct you must do
one of the following:
• Use the REFERENCE attribute on the formal argument.
• Pass the address returned by the LOC, LOCNEAR, or LOCFAR functions

by value.

Example

SUBROUTINE SubFoo (x[VALUE])

INTEGER x[VALUE]

Integer X is passed by value from SubFoo.

VARYING

In FORTRAN, you must define a formal argument for each actual argument.
Languages like C let you have arguments without having you specify formal
arguments for them. The actual arguments are implicitly passed by value
without automatic data-type conversion. You can specify VARYING when
you specify the C attribute and this lets the actual number of arguments
differ from the formal number.

However, actual arguments must still follow the type rules of the formal
arguments. When you are writing a Fortran procedure with VARYING, use
only arguments that you actually passed or your results will be undefined.

The VARYING attribute has no effect unless you have also specified the C
attribute on the subprogram.

I/O and File Handling
The following extensions are described in Chapter 8, I/O and File Handling:

• Unit numbers can exceed 99
• ACCEPT, TYPE (as synonym for PRINT), ENCODE, and DECODE

statements (see also Chapter 10, Intel Fortran Statements)
• Auto-opening of files
• Alternate form for namelist-directed input records
• Use of integer or real array as internal file
A-15

A-16

A Intel Fortran Programmer’s Reference
I/O Formatting
The following extensions are described in Chapter 9, I/O Formatting:
• R and Q edit descriptors
• Use of $ edit descriptor to suppress newline
• Default field widths for data edit descriptors
• Omission of comma between edit descriptors
• Use of A edit descriptor for any type
• Relaxation of rules governing data types that may be edited by certain

repeatable edit descriptors
• Use of integer array to contain format specification

Statements
The following statements and attributes are extensions and are described in
Chapter 10, Intel Fortran Statements:

• ACCEPT
• AUTOMATIC
• BYTE
• DECODE
• DOUBLE COMPLEX
• ENCODE
• MAP
• POINTER (Cray-style)
• RECORD
• STATIC
• STRUCTURE
• TYPE (I/O)
• UNION
• VIRTUAL
• VOLATILE

Intrinsic Procedures
Nonstandard intrinsic procedures provided in Intel Fortran are listed and
described in Intel Fortran Compiler User’s Guide.

Intel Fortran Extensions A

Miscellaneous

The following extensions are described in the referenced chapters:
• Output from fpp is accepted (see the description of the /fpp option in

the Intel Fortran Compiler User’s Guide).
• Compiler directives (see the Intel Fortran Compiler User’s Guide).
• Shift-JIS encoding for multibyte characters.
• Use of the DATA statement for variables in common outside BLOCK

DATA subprogram (see DATA statement in Chapter 10, Intel Fortran
Statements).
A-17

Glossary-1

Glossary
actual argument A value, variable, or procedure that is passed by a

call to a procedure (function or subroutine). The
actual argument appears in the source of the
calling procedure. See also dummy argument.

allocatable array A named array with the ALLOCATABLE attribute
whose rank is specified at compile time, but
whose bounds are determined at run time. Storage
for the array must be explicitly allocated before
the array may be referenced.

argument (1) A variable, declared in the argument list of a
procedure or ENTRY statement, that receives a
value when the procedure is called (a dummy
argument).

(2) The variable, expression, or procedure that is
passed by a call to a procedure (an actual
argument).

argument association The correspondence between an actual argument
and a dummy argument during execution of a
procedure reference.

argument keyword A dummy argument name. Argument keywords
can be used to pass actual arguments to a
procedure in any order if the procedure has an
explicit interface.

Glossary-2

Intel® Fortran Programmer’s Reference

array A rectangular pattern of elements of the same data
type. The properties of an array include its rank,
shape, extent, and data type. See also bounds and
dimension.

array constructor A rank-one array represented as a sequence of
scalar or array values that may be constant or
variable.

array element An individual, scalar component of an array that
is specified by the array name and, in parenthesis,
one or more subscripts that identify the element’s
position in the array.

array section A subset of an array specified by a subscript
triplet or vector subscript in one or more
dimensions. For an array a(4,4),
a(2:4:2,2:4:2) is an array section containing
only the evenly indexed elements a(2,2),
a(4,2), a(2,4), and a(4,4).

array-valued Having the property of being an array.

assumed-shape array An array that is a dummy argument to a procedure
and whose shape is assumed (taken) from that of
the associated actual argument. An
assumed-shape array’s upper bound in each
dimension is represented by a colon (:). See also
assumed-size array.

assumed-size array An older FORTRAN 77 feature. An array that is a
dummy argument to a procedure and whose size
(but not necessarily its shape) is assumed (taken)
from that of the associated actual argument. The
upper bound of an assumed-size array’s last
dimension is specified by an asterisk (*). See also
assumed-shape array.

attribute A property of a constant or variable that may be
specified in a type declaration statement. Most
attributes may alternately be specified in a
separate statement. For instance, the

Glossary

Glossary-3

ALLOCATABLE statement has the same meaning
as the ALLOCATABLE attribute, which appears in a
type declaration statement.

automatic array An explicit-shape array that is local to a procedure
and is not a dummy argument. One or more of an
automatic array’s bounds is determined upon
entry to the procedure, allowing automatic arrays
to have a different size and shape each time the
procedure is invoked.

automatic data object A data object declared in a subprogram whose
storage space is dynamically allocated when the
subprogram is invoked; its storage is released on
return from the subprogram.

bit A binary digit, either 1 or 0. See also byte.

blank common A common block that is not associated with a
name.

block A series of consecutive statements that are treated
as a complete unit and are within a SELECT
CASE, DO, IF, or WHERE construct.

block data subprogram A procedure that establishes initial values for
variables in named common blocks and contains
no executable statements. A block data
subprogram begins with a BLOCK DATA
statement.

bounds The minimum and maximum values permitted as
a subscript of an array for each dimension.

byte A group of 8 contiguous bits starting on an
addressable boundary. See also gigabyte,
kilobyte, megabyte, and terabyte.

character A digit, letter, or other symbol in the character set.

character string A sequence of zero or more consecutive
characters.

Glossary-4

Intel® Fortran Programmer’s Reference

column-major order The default storage method for arrays in
Fortran 95.

Memory representation of an array is such that the
columns are stored contiguously. For example, in
the array a(3,4) element a(1,2) follows
a(3,1), which follows a(2,1) in memory.

See also row-major order.

common block A block of memory for storing variables. A
common block is a global entity that may be
referenced by one or more program units.

command-line option A flag that can be specified with the f90
command line to override the default actions of
the Intel Fortran compiler.

compiler directive A specially-formatted comment within a source
program that affects how the program is
compiled. Compiler directives are not part of the
Fortran 95 Standard. In Intel Fortran, compiler
directives provide control over source listing,
optimization, and other features.

complete executable An executable program that is created using only
archive libraries and thus contains its own copy of
the library routines referenced in the program. See
also incomplete executable.

component A constituent that is part of a derived type. A
derived type may consist of one or more
components. For example, time%hour refers to
the hour component of time (and time is a
variable whose data type is a derived type defined
in the program).

conformable Two arrays are conformable if both arrays have
the same rank (number of dimensions) and the
same extent (number of elements for each
dimension). A scalar is conformable with any
array.

Glossary

Glossary-5

connected (1) A unit is connected if it refers to an external
file.

(2) An external file is connected if a unit refers
to it.

In both cases, connection is established either by
the OPEN statement or by preconnection. See also
preconnected.

constant A data object that retains the same value during a
program’s execution. A constant’s value is
established when a program is compiled. A
constant is either a literal constant or a named
constant.

constant expression An expression whose value does not vary during
the program’s execution. A constant expression’s
operands are all constants.

construct A series of statements that begins with a SELECT
CASE, DO, IF, or WHERE statement and ends with a
corresponding END SELECT, END DO, END IF,
or ENDWHERE statement.

data type A named category of data that has a set of values,
a way to denote its values, and a set of operations
for interpreting and manipulating the values.
Fortran 95 intrinsic data types include character,
complex, double precision, integer, logical, and
real. Intel Fortran also provides the byte and

double complex data types as extensions. See also
derived type.

deferred-shape array An allocatable array or a pointer array (an array
with the ALLOCATABLE or POINTER attribute).

defined assignment A non-intrinsic assignment statement that is
defined by an ASSIGNMENT(=) interface block and
a subroutine.

Glossary-6

Intel® Fortran Programmer’s Reference

defined operator An operator that is present in an INTERFACE
statement and has its operation implemented by
one or more user-defined functions.

definable A variable is definable if its value may be
changed by its name or designator appearing in an
assignment context (for example, in a READ
statement or on the left-hand side of an
assignment statement).

demand-loadable A process is demand-loadable if its pages are
brought into physical memory only when they are
accessed.

derived type A user-defined (non-intrinsic) data type that
consists of one or more components. Each
component of a derived type is either an intrinsic
data type or another derived type.

designator A name that references a part of a data object that
can be defined and referenced separately from
other parts of the data object. A designator may be
a derived type component, array section, array
element, substring, or actual argument with
INTENT(INOUT) or INTENT(OUT).

dimension Each subscript of an array corresponds to a
dimension of the array; arrays may have from one
to seven dimensions. The number of dimensions
is an array’s rank. See also extent.

directive See compiler directive.

disassociated A pointer that is disassociated points to no target.
A pointer becomes disassociated following a
DEALLOCATE or NULLIFY statement involving
the pointer or by the pointer being associated with
(pointing to) a disassociated pointer.

Glossary

Glossary-7

dummy argument An entity whose name appears in the argument
list of a procedure or ENTRY statement. It is
associated with an actual argument when the
procedure is called. The dummy argument
appears in the source of the called procedure.

dusty deck program An older, pre-FORTRAN 77 program.
Presumably called a “dusty deck” program
because it was stored on punched cards and has
not been changed since. Such programs generally
rely on nonstructured programming techniques
such as the GOTO statement.

element See array element.

elemental To be elemental, an intrinsic operation, procedure,
or assignment must apply independently to every
element of an array or apply independently to the
corresponding elements of a set of conformable
arrays and scalars

equivalencing The process of sharing storage units among two or
more data objects by means of the EQUIVALENCE
statement.

executable program A set of program units, including one main
program, that can be run as a self-contained
program.

executable statement An instruction that causes the program to perform
one or more computational or branching actions.

explicit-shape array An array with explicitly-declared bounds for each
dimension.

explicit interface A procedure interface whose properties (including
the name and attributes of the procedure and the
order and attributes of its arguments) are known
by the calling program unit. A procedure may
have an explicit interface in a scoping unit if it:

• is described by an interface block, or
• is an INTERNAL procedure, or
• is a MODULE procedure

Glossary-8

Intel® Fortran Programmer’s Reference

expression A series of operands and (optionally) operators
and parentheses that forms either a data reference
or a computation.

extended operator See defined operator.

extent The number of elements in one dimension of an
array.

external file A file that is stored on a medium external to the
executing program.

external procedure A procedure that is not contained in a main
program, module, or another subprogram.

file A sequence of records (characters or values
processed as a unit).

See also external file and internal file.

function A procedure that returns a value (the function
result) and that can be referenced in an
expression.

function result The data object returned from a call to a function.

generic procedure A procedure in which at least one actual argument
may have more than one data type. Generic
procedures may be intrinsic or user-defined.

gigabyte 1073741824 bytes (230 bytes). See also byte.

global entity A program unit, common block, or external
procedure whose scope is the entire executable
program.

host A program unit or subprogram that contains an
internal procedure or module.

host association The process by which an internal procedure,
module procedure, or derived type definition
accesses the entities of its host.

incomplete executable An executable program that is created using at
least one shared library. Copies of shared library
routines are not present in an incomplete

Glossary

Glossary-9

executable; instead, the executable has a linkage
table that lists the routines’ addresses in the
shared library. See also complete executable.

inquiry function An intrinsic function whose return value provides
information based on the principal arguments’
properties and not the arguments’ values.

intent An attribute of a dummy argument that indicates
whether the argument is used for transferring data
into the procedure, out of the procedure, or both.

internal file A variable that is used as a file storage medium
for formatted I/O. Internal files are stored in
memory and typically are used to convert data
from a machine representation to a character
representation by use of edit descriptors.

internal procedure A procedure contained in a main program or
another subprogram.

intrinsic Assignment statements, data types, operations,
and procedures are intrinsic if they are defined in
the Fortran 95 Standard and may be used, without
being defined, in any scoping unit.

keyword See argument keyword and statement keyword.

kilobyte 1024 bytes (210 bytes). See also byte.

kind type parameter An integer parameter whose value determines the
range for an intrinsic data type; for example
INTEGER(KIND=2). The kind type parameter
also determines the precision for complex and real
data types.

label An integer, one to five digits long, that precedes a
statement and identifies it with a unique number.
A statement’s label provides a way to transfer
control to the statement or to reference it as a
FORMAT statement.

Glossary-10

Intel® Fortran Programmer’s Reference

library A file that contains object code for subroutines
and data that can be used by programs written in
Fortran 95, among other languages. See also
linker.

literal constant A constant that does not have a name. A literal
constant’s value is written directly into a program.
See also named constant.

linker The linker resolves references in a program’s
source to routines that are not in the source file
being compiled. The linker matches each
reference, if possible, to the corresponding library
routine.

loader A loader takes an executable file, the output of a
linker, and loads it into physical memory. While
doing so, it changes the virtual address to the
physical address and prepares the executable file
for running by the operating system.

main program The first program unit that starts executing when a
program is run. The first statement of a main
program usually is the PROGRAM statement.

megabyte 1048576 bytes (220 bytes). See also byte.

module A program unit that contains definitions of
derived types, procedures, name lists, and
variables that are made accessible to other
program units. A module begins with the
MODULE statement and its public definitions are
made available to other program units by means
of the USE statement.

module procedure A procedure that is contained in a module and is
not an internal procedure.

name A letter followed by up to 254 alphanumeric
characters (letters, digits, underscores, and $) that
identifies an entity in an Intel Fortran program
unit, such as a common block, dummy argument,
procedure, program unit, or variable.

Glossary

Glossary-11

named constant A constant that has a name. See also literal
constant.

numeric type A complex, double precision, integer, or real data
type.

obsolescent feature A feature defined in the FORTRAN 77 Standard
that still is in common use but is considered to be
redundant, such as the arithmetic IF statement.

The use of obsolescent features is discouraged.
The Fortran 95 Standard summarizes the
obsolescent features.

operand An expression that precedes or follows an
operator. For example, in a + b, both a and b are
operands.

operation A computation performed on one or two
operands.

operator A sequence of one or more characters in an
expression that specifies an operation. For
example, in a + b, + is an operator.

option See command-line option.

optional argument A dummy argument that does not require a
corresponding actual argument to be supplied
when its procedure is invoked.

pointer A variable that has the POINTER attribute, which
enables it to reference (point to) variables of a
specified data type (rather than storing the data
itself).

pointer association The process by which a pointer becomes
associated with the storage space of its target.
Pointer association occurs during pointer
assignment or a valid ALLOCATE statement.

Glossary-12

Intel® Fortran Programmer’s Reference

preconnected Three input/output units are preconnected to files
by the operating system and need not be
connected by the OPEN statement. The
preconnected units are:

• Unit 5 (standard input)
• Unit 6 (standard output)
• Unit 0 (standard error)

present An optional dummy argument is present in an
instance of a procedure if it is associated with an
actual argument passed by the invoking
procedure.

procedure A unit of program code that may be invoked. A
procedure can be either a function or a subroutine.

program A sequence of instructions for execution by a
computer to perform a specific task. See also
executable program.

program unit A main program, a module, an external
procedure, or a block data subprogram.

rank The number of dimensions of an array. Scalars
have a rank of zero.

record A sequence of values treated as a whole within a
file.

return value See function result.

row-major order The default storage method for arrays in C.
Memory representation is such that the rows of an
array are stored contiguously. For example, for
the array a[3][4], the element a[1][0]
immediately follows a[0][3]. See also
column-major order.

scalar A data item that has a rank of zero and therefore is
not an array.

scope The part of an executable program in which a
name or declaration has a single interpretation.

Glossary

Glossary-13

scoping unit A derived-type definition, an interface body
(excluding derived-type definitions or interface
bodies it contains), or a program unit or
subprogram (excluding any derived-type
definitions, interface bodies, or subprograms it
contains).

shape An array’s extent (number of elements) in each
dimension and rank (number of dimensions).

size The total number of elements in an array; the
product of all its extents.

specific procedure A procedure for which each actual argument must
be of a specific data type. See also generic
procedure.

statement A sequence of characters that represents an
instruction or step in a program. A single
statement usually, but not always, occupies one
line of a program.

A statement may consist of multiple lines by
using the ampersand (&) continuation character.
Similarly, multiple statements may appear on a
single line separated by semicolons (;).

statement function A function that returns a scalar value and is
defined by a single scalar expression.

statement keyword A word that is part of a statement’s syntax, such
as CHARACTER, DO, ELSE, or FORMAT.

statement label See label.

stride The increment that may optionally be specified in
a subscript triplet. If it is not specified, the stride
has a value of one.

structure A data object that is scalar and is of derived type.

structure component See component.

subprogram See procedure.

Glossary-14

Intel® Fortran Programmer’s Reference

subroutine A procedure that is referenced by a CALL
statement; values returned by a subroutine are
usually provided through the subroutine’s
arguments.

subscript A scalar value within the bounds of one
dimension of an array. To specify a single array
element, a subscript must be specified for each of
the array’s dimensions.

subscript triplet An array section specification that consists of a
starting element, an ending element, and
(optionally) a stride separated by colons (:).

substring A contiguous segment of a scalar character string.
Note that a substring is not an array section.

target A named data object that may be associated with a
pointer. A target is specified in a TARGET
statement or in a type declaration statement that
has the TARGET attribute.

terabyte 1099511627776 bytes (240 bytes). See also byte.

type See data type.

type declaration A statement that specifies the data type and,
statement optionally, attributes for one or more constants,

functions, or variables.

unit number A logical number that can be connected to a file to
provide a means for referring to the file in
input/output statements.

use association The association of names among different scoping
units as specified by a USE statement. See also
module.

user-defined operator See defined operator.

user-defined assignment See defined assignment.

Glossary

Glossary-15

variable A data object whose value may be defined and
redefined during a program’s execution. For
example, array elements or array sections, named
data objects, structure components, and substrings
all can be variables.

vector subscript A method of referencing multiple, possibly
discontinuous elements of an array by using a
rank-one array of integer values as a subscript.

zero-size array An array with at least one dimension that has at
least one extent of zero. A zero-sized array has a
size of zero and contains no elements.

Index
A
+autodbl option, 3-5, 3-9

+autodbl4 option, 3-9

A edit descriptor, 9-10

ACCEPT statement, 10-3
data list items, 8-26

access to entities, limiting, 10-169, 10-173

ACCESS= specifier
INQUIRE statement, 10-109
OPEN statement, 10-141

accessing files, 8-7
direct, 8-15
examples, 8-34
list-directed, 8-8
namelist I/O, 8-12
sequential, 8-7

ACTION= specifier
INQUIRE statement, 10-110
OPEN statement, 10-141

actual argument, 7-5, 10-123
defined, Glossary-1

ADVANCE= specifier
READ statement, 10-177
WRITE statement, 10-231

allocatable arrays, 4-13, 10-6, 10-7, 10-8, 10-46
defined, Glossary-1

ALLOCATABLE statement and attribute, 4-13,
10-5

ALLOCATE statement, 5-10, 10-8
assigning space to pointers, 4-12, 10-164

allocating objects, 10-8

alternate return, 10-188, 10-210

arguments
actual, 10-123
array, 7-20
association, 7-3, 10-19, Glossary-1
correspondence, 7-19
defined, Glossary-1
derived-type, 7-21
dummy, 10-123, 10-152
keyword, 10-19, Glossary-1
optional, 10-19
pointer, 7-22
presence, 10-152
procedure, 7-22
subprogram, 7-18

arithmetic IF statement, 6-21, 10-101

arithmetic operators and logical operands, 5-15

array sections
Index-1

alignment
%FILL field name, 10-202
rules, 3-25
storage association, 3-25

defined, Glossary-2
subscript triplet, 4-21
vector subscript, 4-23

Intel Fortran

Index-2
Programmer’s Reference

arrays, 10-57
adjustable, 4-8
allocatable, 3-27, 10-6, 10-7, 10-46
assignment, masked, 10-226
assumed-shape, 4-9
assumed-size, 4-15
automatic, 4-8
bounds, 4-3, 10-57
constructors, 4-27, Glossary-2
deallocating, 10-46
declaration, 4-4
deferred-shape, 4-12
defined, Glossary-2
dummy, 4-8
element, 10-57, Glossary-2
element ordering, 4-6
element storage order, 4-6
explicit-shape, 4-7
extensions, A-3
extent, 4-3
I/O restrictions, 8-27
intrinsic functions, 4-2
lower bound, 4-3
masked array assignment, 4-2, 5-21
operands, 5-14
parent, 4-20
pointer, 4-12
properties, 4-3
rank, 4-3
scalar, 4-17
sections, 4-20
shape, 4-4
size, 4-3
specification expressions, 4-8
stride, 4-21
substring, 4-2
upper bound, 4-3
VOLATILE statement, 10-225
WHERE construct, 10-226
whole array processing, 4-1

ASA carriage control, 8-29
asa command, 8-30
blanks, 8-11

ASSIGN statement, 10-10, 10-11

assigned GO TO statement, 6-18, 10-98

assigning space to pointers, 10-164

assignment, 7-31
masked array, 5-21
pointer, 3-27, 4-12, 4-23, 5-10, 5-20
statement, 3-4, 5-1, 5-17, 5-23, 7-14, 7-17,

7-43
user-defined, 7-25

ASSIGNMENT clause, 10-169, 10-172

ASSIGNMENT option, 7-31

associated, 4-12

association
argument, 7-3, 10-19
duplicated, 7-23
host, 7-3, 10-195, 10-216
pointer, 7-3, 10-47
scope, 7-3
sequence, 7-20
status, 10-47
storage, 3-25, 7-23, 10-30, 10-86, 10-195
use, 7-30, 10-135, 10-169, 10-173, 10-195,

10-216, 10-221

assumed-shape arrays, 4-9, Glossary-2

assumed-size arrays, Glossary-2

asynchronous process and VOLATILE
statement, 10-225

attributes
ALLOCATABLE, 4-12, 10-5
compatibility, 10-2
defined, Glossary-2
DIMENSION, 4-3, 10-55
extensions, A-11
EXTERNAL, 10-92
INTENT, 10-123
zero size, 4-3

array-valued, 4-1, 4-34, Glossary-2
INTRINSIC, 10-129
OPTIONAL, 10-151
PARAMETER, 10-155
POINTER, 015, 3-27, 4-12, 5-20, 10-164

Index
attributes (continued)
PRIVATE, 7-35, 10-168, 10-218
PUBLIC, 7-35, 10-172, 10-218
SAVE, 10-192
STATIC, 10-197
TARGET, 10-211
type declarations, 3-10
VOLATILE, 10-225

automatic arrays, Glossary-3

automatic objects, 3-28, 10-13, Glossary-3

AUTOMATIC statement and attribute, 10-12

automatically opened unit numbers, 8-6

auxiliary I/O statements, 8-16

B
B edit descriptor, 9-12

backslash as escape character, 3-15

BACKSPACE statement, 10-13

binary constants, 3-12

binary edit descriptor, 9-12

bit manipulation intrinsics, 5-16

bit, defined, Glossary-3

blank common, defined, Glossary-3

blank edit descriptor, 9-14

BLANK= specifier, 9-30
B edit descriptor, 9-13
BN and BZ edit descriptors, 9-14
INQUIRE statement, 10-110
OPEN statement, 10-142

block data program unit, 10-92

BLOCK DATA statement, 10-15

block data subprogram, defined, Glossary-3

block IF statement, 10-102

block, defined, Glossary-3

block, statement, 6-1

BOZ constants, 3-12, 5-17
extended use, 3-17

branching, 6-18

built-in functions
%REF, 7-9, 10-20
%VAL, 10-20

BYTE statement, 10-17

byte, defined, Glossary-3

bytes-remaining edit descriptor, 9-28

BZ edit descriptor, 9-14

C
CALL statement, 7-5, 10-19

carriage control and ASA, 8-29

CASE construct, 013, 6-3
CASE statement, 10-22
END SELECT statement, 10-77
SELECT CASE statement, 10-194

CASE statement, 10-22

categories
arrays, 4-1
intrinsic functions, 7-6
statements, 2-4

character, Glossary-3
blank, 2-10
CHARACTER statement, 10-24
concatenation, 5-13
constants, 3-14
edit descriptor, 9-7
escape, 3-15
list-directed I/O, 8-9, 8-10
special, 2-2
string, 3-15, 3-18, 3-19, 3-28, Glossary-3
substrings, 3-19

character edit descriptor (A and R), 9-10

CHARACTER statement, 10-24
Index-3

BN edit descriptor, 9-14

bounds, Glossary-3
array, 4-5, 4-7, 4-8, 4-12, 4-22, 4-36, 10-57
upper, 4-31, 4-36

character string edit descriptor, 9-7

Intel Fortran

Index-4
Programmer’s Reference

clauses
ASSIGNMENT, 10-169, 10-172
DEFAULT, 10-21
IN, 10-122
INOUT, 10-122
ONLY, 10-222
OPERATOR, 10-169, 10-172
OUT, 10-122
RECURSIVE, 10-84, 10-96, 10-210
RESULT, 10-82, 10-97
WHILE, 10-60

CLOSE statement, 10-28

colon edit descriptor, 9-9

column-major order, defined, Glossary-4

comment, 2-12
comment line, 2-10

common blocks, Glossary-4
and sequencing, 10-195
BLOCK DATA statement, 10-15
COMMON statement, 10-30
dummy arguments, 10-32
equivalencing, 10-86
initializing, 10-15
pointers, 10-161
record extension, 10-186
result variables, 10-84
SAVE statement, 10-192
saved variables, 10-192
VOLATILE statement, 10-225

COMMON statement, 10-30

compatibility, attributes, 10-2

compile-line options
+onetrip, 6-6, 7-43
+save, 10-12
-I, 2-15, 10-108

compiler directives, Glossary-4

complete executable, Glossary-4

complex

COMPLEX statement, 10-34

component of derived type, Glossary-4

composite record references, 10-184

computation, 7-6

computed GO TO statement, 6-19, 10-99

concatenation, 5-13

conformable, 4-31, 10-57, Glossary-4

connecting files for I/O, 8-4, Glossary-5

constants
binary, 3-12
BOZ, 3-17, 5-17
character, 3-14
complex, 3-14
defined, Glossary-5
expressions, 5-7, Glossary-5
hexadecimal, 3-16
Hollerith, 3-18, 5-17
integer, 3-11
literal, 3-11
named, 3-1
octal, 3-12
real, 3-13
truncation, 3-17
typeless, 3-16, 5-17
unsigned, 3-12

constructs, 6-1
CASE, 6-3, 10-194
defined, Glossary-5
DO, 6-5, 10-59, 10-61
END DO, 10-77
END IF, 10-77
END SELECT, 10-77
END WHERE, 10-77
IF, 6-14, 10-102
WHERE, 10-226

CONTAINS statement, 10-38

continuation line
fixed format, 2-9
COMPLEX statement, 10-34
DOUBLE COMPLEX statement, 10-65
list-directed I/O, 8-9, 8-10
variable, 5-19

free format, 2-12

CONTINUE statement, 6-16, 10-40

Index
control constructs, 6-1, 6-5
CASE, 6-3
DO, 6-5
IF, 6-14
nested, 6-1

cpp, man page, A-11

Cray-style pointer, 3-27, 10-160
precautions when using, 10-161

creating dynamic objects and linked lists, 10-164

CYCLE statement, 6-16, 10-41

D
+dlines option, 2-10

D edit descriptor, 9-15

data declaration statements
BYTE, 3-5, 10-17
CHARACTER, 3-5, 10-24
COMPLEX, 3-5, 10-34
DOUBLE COMPLEX, 3-5, 10-65
DOUBLE PRECISION, 3-11, 10-68
INTEGER, 3-5, 10-119
LOGICAL, 3-11, 10-130
REAL, 3-5, 10-181

data initialization, 3-24
BLOCK DATA statement, 10-15
DATA statement, 10-42

data initialization. See also initialization., 10-15

data list, I/O, 8-25

DATA statement, 3-9, 3-12, 3-24, 10-42
statement order, 2-6

data transfer statements, 8-16
ACCEPT, 10-3
DECODE, 10-48, 10-53, 10-59
ENCODE, 10-73
FORMAT, 10-95
NAMELIST, 10-137
PRINT, 10-166

data types
BYTE statement, 10-17
CHARACTER, 3-2
CHARACTER statement, 10-24
COMPLEX, 3-2
complex, 3-2, 10-34
COMPLEX statement, 10-34
defined, Glossary-5
derived types, 3-1
DOUBLE COMPLEX statement, 10-65
DOUBLE PRECISION statement, 10-68
extensions, A-2
INTEGER, 3-2
INTEGER statement, 10-119
intrinsic, 3-4, 3-11
LOGICAL, 3-2
LOGICAL statement, 10-130
nonnumeric, 3-1
numeric, 3-1
REAL, 3-2
real, 3-2
REAL statement, 10-181

DEALLOCATE statement, 10-46

deallocating objects, 10-46

declaring data
BYTE statement, 3-5, 10-17
CHARACTER statement, 3-5, 10-24
COMPLEX statement, 3-5, 10-34
DOUBLE COMPLEX statement, 3-5, 10-65
DOUBLE PRECISION statement, 3-5,

10-68
INTEGER statement, 3-5, 10-119
LOGICAL statement, 3-5, 10-130
REAL statement, 3-5, 10-181

DECODE statement, 10-48, 10-53, 10-59

DEFAULT clause, 10-21

deferred-shape arrays, 4-12, Glossary-5

definable, Glossary-6
Index-5

READ, 10-175
WRITE, 10-230

data transfer. See input/output., 8-1

defined assignment, 7-26, Glossary-5

defined operator, Glossary-6

Intel Fortran

Index-6
Programmer’s Reference

DELIM= specifier
INQUIRE statement, 10-111
list-directed output, 8-10
OPEN statement, 10-143

demand-loadable process, Glossary-6

derived types, 3-4, Glossary-6
declaration, 3-5, 10-216
defining, 10-218
definition, 3-20
naming, 10-218
PRIVATE attribute, 10-218
PRIVATE statement, 10-169
PUBLIC attribute, 10-218
PUBLIC statement, 10-173
sequence, 3-20, 10-195
SEQUENCE statement, 10-195
structure constructor, 3-22

determining record length, 10-117

dimension, 4-3, Glossary-6

DIMENSION statement and attribute, 4-3, 10-55

direct access, 8-15
example, 8-34
REC= specifier, 8-15

DIRECT= specifier and INQUIRE statement,
10-111

disassociated, 4-12, Glossary-6
status, 10-47

disassociating a pointer, 4-12, 10-140

DO loops, 6-5
conditional, 6-7
CONTINUE statement, 10-40
counter-controlled, 6-5
CYCLE statement, 10-41
DO statement syntax, 10-60
END DO statement, 10-77
EXIT statement, 10-91
extended range, 10-62
FORTRAN77-style, 6-5, 6-16, 10-40, 10-41,

terminal statement, 6-7
WHILE clause, 10-60

DO statement, 10-59, 10-61

double complex
DOUBLE COMPLEX statement, 10-65
list-directed I/O, 8-9, 8-10

DOUBLE COMPLEX statement, 10-65

double precision
changing default size, 3-9
DOUBLE PRECISION statement, 10-68

DOUBLE PRECISION statement, 10-68

dummy argument, 10-123, 10-152, Glossary-7
array, 7-20
automatic character variables, 10-26
CALL statement, 10-19
character length and asterisk (*), 10-25
COMMON statement, 10-32
DATA statement, 10-43
derived type, 10-216
derived-type, 7-21
ENTRY statement, 10-82
EQUIVALENCE statement, 10-86
EXTERNAL attribute, 10-93
FUNCTION statement, 10-96
initialization, 10-182
INTENT statement, 10-123
OPTIONAL statement, 10-152
pointer, 7-22
POINTER (Cray-style), 10-160
procedure, 7-22
RETURN statement, 10-189
scalar, 7-19
SEQUENCE statement, 10-195
SUBROUTINE statement, 10-209

dummy procedures, 7-18, 10-92

duplicated association, 7-23

dusty deck program, Glossary-7

dynamic objects, creating, 10-164

10-62

implied, 8-27
infinite, 6-8

Index
E
+escape option, 3-15, 3-16

+extend_source option, 2-8, 2-10

E edit descriptor, 9-15

edit descriptors
A, 9-10
B, 9-12
binary, 9-12
blank, 9-14
BN, 9-14
byte remaining, 9-28
BZ, 9-14
character (A and R), 9-10
character string, 9-7
colon, 9-9
D, 9-15
E, 9-15
EN, 9-15
ES, 9-15
F, 9-15
G, 9-15
H, 9-21
hexadecimal, 9-30
Hollerith, 9-21
I, 9-22
integers, 9-22
L, 9-24
logicals, 9-24
newline, 9-8
O, 9-25
octal, 9-25
overview, 9-4
P, 9-27
plus sign, 9-29
Q, 9-28
R, 9-10
real, 9-15
repeat factor, 9-4
S, 9-29

T, 9-29
tab, 9-29
TL, 9-29
TR, 9-29
X, 9-29
Z, 9-30

element, See arrays, element., Glossary-7

elemental, defined, Glossary-7

ELSE IF statement, 10-71

ELSE statement, 10-70

ELSEWHERE statement, 10-72, 10-226

embedded format specification, 9-32
ACCEPT statement, 10-4
DECODE statement, 10-53, 10-73
FORMAT statement, 10-95
internal file, 10-179
PRINT statement, 10-166, 10-167
READ statement, 10-175, 10-179
WRITE statement, 10-231

EN edit descriptor, 9-15

ENCODE statement, 10-73

END statements
CASE construct, 10-77
constructs, 10-77
derived type definition, 10-79
DO construct, 10-77
IF construct, 10-77
interface block, 10-78
internal procedure, 10-75
map, 10-78
module procedure, 10-75
program units, 10-75
structure definition, 10-78
union, 10-78
WHERE construct, 10-77

END= specifier, READ statement, 10-177

ENDFILE statement, 8-2, 10-81

end-of-file, record, 8-2
Index-7

scale factor, 9-27
slash, 9-9
SP, 9-29
SS, 9-29

engineering notation formatting, 9-18

ENTRY statement, 7-12, 10-82

EOR= specifier, 10-177

Intel Fortran

Index-8
Programmer’s Reference

EQUIVALENCE statement, 3-25, 10-86

equivalencing, 3-21
alignment, 10-88
and sequencing, 3-25, 10-195
arrays, 3-25, 10-89
automatic variables, 10-12
character data, 10-87, 10-88
common blocks, 3-25, 10-89
DATA statement, 10-44
defined, Glossary-7
result variables, 10-84
union extension, 10-208
VOLATILE statement, 10-225

ERR= specifier
BACKSPACE statement, 10-14
CLOSE statement, 10-28
DECODE statement, 10-54, 10-74
ENDFILE statement, 10-81
INQUIRE statement, 10-111
OPEN statement, 10-143
REWIND statement, 10-190
WRITE statement, 10-232

ES edit descriptor, 9-15

escape characters, 3-15

evaluation of expressions, 5-15

example programs
direct access, 8-34
internal file, 8-30
namelist I/O, 8-12
nonadvancing I/O, 8-32
sequential access, 8-34

executable program, Glossary-7

executable statement, Glossary-7

execution control, 6-1
arithmetic IF statement, 10-101
ASSIGN statement, 10-10, 10-11
assigned GOTO statement, 10-98
block IF statement, 10-102

CYCLE statement, 6-16, 10-41
DO construct, 6-5
DO statement, 10-59, 10-61
ENTRY statement, 10-82
EXIT statement, 6-17, 10-91
extensions, A-3
FUNCTION statement, 10-96
GO TO (assigned) statement, 6-18
GO TO (computed) statement, 6-19
GO TO (unconditional) statement, 6-20
IF (arithmetic) statement, 6-21
IF (logical) statement, 6-21
IF construct, 6-14
logical IF statement, 10-103
PAUSE statement, 6-22, 10-158
RETURN statement, 10-188
SELECT CASE statement, 10-194
STOP statement, 6-23, 10-198
SUBROUTINE statement, 10-209
unconditional GOTO statement, 10-100

EXIST= specifier, 10-111

EXIT statement, 6-17, 10-63, 10-91

explicit interface, 7-8, 7-26, Glossary-7

explicit typing, 3-22

explicit-shape arrays, 4-7, Glossary-7

expressions
arrays, 5-14
constant, 5-7
defined, Glossary-8
evaluation, 5-15
extensions, A-3
formation, 5-3
initialization, 5-8
integer, 5-16
interpretation, 5-12
logical, 5-21
primary, 5-3
scalars, 5-14
special forms, 5-7
CALL statement, 10-19
CASE construct, 6-3
computed GOTO statement, 10-99
CONTINUE statement, 6-16

specification, 5-10

extended operator, See defined operator.,
Glossary-8

Index
extended range DO loop, 10-62

Extended UNIX Code, 2-2

extending source lines, 2-10

extensions, 011, A-1
$ and namelist I/O, 8-13
%REF function, 7-9, 10-20
%VAL function, 7-9, 10-20
ACCEPT statement, 2-4, 10-3
arrays, A-3
attributes, A-11
AUTOMATIC statement, 2-5, 10-12
BYTE statement, 2-5, 10-17
comment character, 2-1
control transfer, 6-2, 6-3, 10-102
Cray-style POINTER statement, 10-160
data type and objects, A-2
DECODE statement, 2-5, 10-48, 10-53,

10-59
DOUBLE COMPLEX statement, 2-5, 3-5,

10-65
ENCODE statement, 2-6, 10-73
END MAP, 2-4, 10-78
END STRUCTURE, 2-5, 10-78
END UNION, 2-5, 10-78
equivalencing character data, 10-87
execution control, A-3
expressions, A-3
extended range DO loop, 10-62
formatting, A-10
I edit descriptor and other types, 9-22
I/O list items, 9-10
initialization syntax, 10-18, 10-27, 10-36,

10-66, 10-69, 10-121, 10-131, 10-183
initializing common blocks, 7-44, 10-15,

10-32
initializing integers, 3-13, 10-44
input/output, A-10
integer array as format specification, 9-32
kind syntax, 10-35, 10-119, 10-130, 10-181

miscellaneous, A-11
newline ($) edit descriptor, 9-8
numeric array as internal file, 8-3
padding common, 10-33
POINTER (Cray-style) statement, 2-5,

10-160
PRINT and namelist I/O, 8-12
program units, A-3
Q (bytes remaining) edit descriptor, 9-28
Q (real) edit descriptor, 9-15, 9-17
R edit descriptor, 9-10
real edit descriptors and integers, 9-15
RECORD statement, 3-28, 10-184
saving common blocks, 10-31
sequential I/O statements and direct

access, 8-15
statements, A-11
STATIC statement and attribute, 2-5, 10-197
STRUCTURE statement, 2-5, 3-28, 10-199
TYPE (I/O) statement, 2-5, 10-220
UNION statement, 2-5, 10-221
unnamed common, initializing, 7-44, 10-15
VIRTUAL statement, 2-6, 10-224
VOLATILE statement, 2-6, 10-225

extent, 4-7, 10-57, Glossary-8

external files, 8-2, 8-4
defined, Glossary-8

external procedure, 7-7, Glossary-8

EXTERNAL statement and attribute, 10-92

F
%FILL field name, 10-202

F edit descriptor, 9-15

field name, %FILL, 10-202

file control statements
BACKSPACE, 10-13
CLOSE, 10-28
Index-9

language elements, A-1
length specification, 10-37, 10-121, 10-132,

10-183
MAP statement, 2-6, 10-133

ENDFILE, 10-81
INQUIRE, 10-108
OPEN, 10-141
READ, 10-175

Intel Fortran

Index-10
Programmer’s Reference

file control statements (continued)
REWIND, 10-190
WRITE, 10-230

file positioning statements
BACKSPACE, 10-13
ENDFILE, 10-81
REWIND, 10-190

FILE= specifier
INQUIRE statement, 10-112
OPEN statement, 10-144

files, 8-2
accessing, 8-7
defined, Glossary-8
external, 8-2
internal, 8-3
positioning, 8-16
scratch, 8-2

fixed source form, 2-8

flow control statements, 6-15
arithmetic IF, 6-21, 10-101
assigned GO TO, 6-18, 10-98
block IF, 10-102
CALL, 10-19
computed GO TO, 6-19, 10-99
CONTINUE, 6-16, 10-40
CYCLE, 6-16, 10-41
DO, 10-59, 10-61
EXIT, 6-17, 10-91
logical IF, 6-21, 10-103
PAUSE, 6-22, 10-158
RETURN, 10-188
SELECT CASE, 10-194
STOP, 6-23, 10-198
unconditional GO TO, 6-20, 10-100

flow of execution, 6-1

FMT= specifier
READ statement, 10-176
WRITE statement, 10-230

format rules
list-directed I/O, 8-8
namelist I/O, 8-13

format specification
character arrays, 9-33
DECODE statement, 10-53
embedded, 9-32
ENCODE statement, 10-73
FORMAT statement, 10-95
interaction with I/O list, 9-34, 9-35
nested, 9-33
PRINT statement, 10-167
READ statement, 10-176
syntax, 9-3
WRITE statement, 10-230

FORMAT statement, 9-2, 10-95
labels, 2-3
statement order, 2-6

formatted I/O
direct-access files, 8-15
edit descriptors, 9-4
format specification, 9-2
PRINT statement, 10-167
READ statement, 10-179
sequential files, 8-7, 8-8
WRITE statement, 10-232

formatted records, 8-1

FORMATTED= specifier, 10-112

formatting data
binary, 9-12
blanks, 9-14
bytes remaining, 9-28
character, 9-10
engineering notation, 9-18
extensions, A-10
FORMAT statement, 9-2
hexadecimal, 9-30
Hollerith, 9-21
integers, 9-22, 9-24
FORM= specifier

INQUIRE statement, 10-112
OPEN statement, 10-144

newline, 9-8
octal data, 9-25
plus sign, 9-29
reals, 9-15

Index
formatting data (continued)
record termination, 9-9
repeat specification, 9-35
scale factor, 9-27
scientific notation, 9-18
tab, 9-29

FORTRAN 77, 011
block data program unit, 10-15
Cray-style pointer, 10-160
DO loop, 6-5, 10-40, 10-41, 10-62
ENTRY statement, 10-84, 10-152
statement function, 7-17, 10-38, 10-97

FREE, intrinsic subroutine, 10-161

free source form, 2-10

ftnXX, 8-6

function
defined, Glossary-8
result, 7-8, Glossary-8

FUNCTION statement, 7-12, 10-96

functions, built-in
%REF, 7-9, 10-20
%VAL, 7-9, 10-20

G
G edit descriptor, 9-19

generic names, 7-34

generic procedure, 7-26, Glossary-8

generic referencing, 7-9

gigabyte, defined, Glossary-8

global entity, defined, Glossary-8

GO TO statements
assigned, 6-18, 10-98
computed, 6-19, 10-99
unconditional, 6-20, 10-100

hexadecimal
constants, 3-16
edit descriptor, 9-30
notation, 3-12

hexadecimal constants, 3-13

Hollerith
constants, 3-18
edit descriptor, 9-21

host association, 7-3, Glossary-8
arguments, 10-216
DATA statement, 10-43
SEQUENCE, 10-195

host, defined, Glossary-8

hpnls man page, A-11

I
+implicit_none option, 3-23I edit

descriptor, 9-22

-I option, 2-15, 10-108

I/O
data list, 9-34
See also input/output., 8-1

I/O specifiers, 8-19
ACCESS=, 10-109
ACTION=, 10-110, 10-141
ADVANCE=, 8-16, 10-177, 10-231
BLANK=, 9-13, 9-14, 9-30, 10-110, 10-142
DELIM=, 8-10, 10-111, 10-143
DIRECT=, 10-111
END=, 10-177
EOR=, 10-177
ERR=, 10-14, 10-28, 10-54, 10-74, 10-81,

10-111, 10-143, 10-190, 10-232
EXIST=, 10-111
FILE=, 10-112, 10-144
FMT=, 10-53, 10-176, 10-230
FORM=, 10-112, 10-144
Index-11

H
H edit descriptor, 9-21

FORMATTED=, 10-112
IOSTAT=, 10-14, 10-28, 10-54, 10-74,

10-81, 10-113, 10-145, 10-177, 10-190,
10-232

Intel Fortran

Index-12
Programmer’s Reference

I/O specifiers (continued)
NAME=, 10-113
NAMED=, 10-113
NEXTREC=, 10-113
NML=, 10-176, 10-231
NUMBER=, 10-113
OPENED=, 10-113
PAD=, 10-114, 10-146
POSITION=, 10-114, 10-146
READ=, 10-115
READWRITE=, 10-115
REC=, 8-15, 10-178, 10-232
RECL=, 10-115, 10-147
SEQUENTIAL=, 10-116
SIZE=, 10-178
STAT=, 10-8, 10-46
STATUS=, 8-3, 10-29, 10-148
UNFORMATTED=, 10-117
UNIT=, 10-13, 10-28, 10-54, 10-73, 10-80,

10-109, 10-141, 10-176, 10-190, 10-230
WRITE=, 10-117

IF construct, 6-14
ELSE IF statement, 10-71
ELSE statement, 10-70
END IF statement, 10-77
IF statement, 10-102

IF statements
arithmetic, 6-21, 10-101
block, 6-14, 10-102
logical, 6-21, 10-103

IMPLICIT NONE statement, 10-104, 10-106,
10-107

IMPLICIT statement, 3-23, 10-104, 10-106,
10-107

implicit typing, 3-22

implied-DO loops, 8-27
nested, 10-45

IN intent, 7-24, 10-122

initial line, 2-9

initialization
BLOCK DATA statement, 10-15
CHARACTER statement, 10-26
COMMON statement, 10-32
COMPLEX statement, 10-36
DATA statement, 10-42, 10-43
DOUBLE COMPLEX statement, 10-65
DOUBLE PRECISION statement, 10-68
EQUIVALENCE statement, 10-89
expression, 5-8
INTEGER statement, 10-120
LOGICAL statement, 10-131
PARAMETER statement, 10-156
REAL statement, 10-182

INOUT intent, 7-24, 10-122

input data
list-directed I/O, 8-8
namelist I/O, 8-13

input/output
accessing files, 8-7
ASA carriage control, 8-29
data list, 8-25
edit descriptors, 9-4
ENDFILE statement, 8-2
example programs, 8-30
extensions, A-10
files, 8-2
formatted, 8-8
list-directed, 8-8
namelist-directed, 8-12
nonadvancing I/O, 8-16
overview of statements, 8-16
records, 8-1
specifiers, 8-19
statement syntax, 8-18
unit number, 8-4

input/output statements
ACCEPT, 10-3
INCLUDE line, 2-14, 10-107
labels, 2-3

incomplete executable, defined, Glossary-8

infinite DO loop, 6-8

BACKSPACE, 10-13
CLOSE, 10-28
DECODE, 10-48, 10-53, 10-59
ENCODE, 10-73

Index
input/output statements (continued)
ENDFILE, 10-81
FORMAT, 10-95
INQUIRE, 10-108
NAMELIST, 10-137
OPEN, 10-141
PRINT, 10-166
READ, 10-175
REWIND, 10-190
summary, 8-16
WRITE, 10-230

INQUIRE statement, 10-108

inquiry function, Glossary-9

integer, 3-2
BYTE statement, 10-17
constants, 3-11
edit descriptor, 9-22
INTEGER statement, 10-119
list-directed I/O, 8-9
literals, 5-17
operands and operators, 5-15

INTEGER statement, 10-119

INTENT statement and attribute, 7-24, 10-123

intents
defined, Glossary-9
IN, 7-24, 10-122
INOUT, 7-24, 10-122
OUT, 7-24, 10-122

interface, 7-8

interface block, 7-26, 7-28, 10-135

interface procedure, 7-24, 10-20

INTERFACE statement, 7-30, 10-125

internal files, 8-3
connecting to unit number, 8-3
DECODE statement, 10-48, 10-53, 10-59
defined, Glossary-9
ENCODE statement, 10-73
example, 8-30

interpretation of expressions, 5-12

intersection form, 2-13

intrinsic
data types, 3-11
defined, Glossary-9
inquiry functions, 3-9
operators, 5-12
relational operators, 5-13

intrinsic assignment, 5-18

intrinsic procedures
FREE, 10-161
MALLOC, 10-161
PRESENT, 10-152

INTRINSIC statement and attribute, 10-129

IOLENGTH= specifier, 10-108, 10-118

IOSTAT= specifier
BACKSPACE statement, 10-14
CLOSE statement, 10-28
DECODE statement, 10-54, 10-74
ENDFILE statement, 10-81
INQUIRE statement, 10-113
OPEN statement, 10-145
READ statement, 10-177
REWIND statement, 10-190
WRITE statement, 10-232

K
keywords, Glossary-9

arguments, 014, 4-4, 7-19, 10-19
statement keyword, Glossary-13

kill command, 6-23

kilobyte, defined, Glossary-9

kind parameter, 3-2

kind type parameter, defined, Glossary-9

L

Index-13

READ statement, 10-179
WRITE statement, 10-233

internal procedure, 7-13, Glossary-9
alternative to statement function, 10-38

L edit descriptor, 9-24

label, defined, Glossary-9

Intel Fortran

Index-14
Programmer’s Reference

language elements, 2-1
extensions, A-1

left-justifying character data, 9-10

length, inquiring, 10-118

library, defined, Glossary-10

libU77 routines, LOC, 10-161

limiting access to entities, 10-169, 10-173

limits, 5-11
dimensions, 4-7
length of formatted record, 8-1
nested INCLUDE lines, 2-14
number of dimensions, 10-57

linked lists, creating, 10-164

linker, defined, Glossary-10

list-directed I/O, 8-8
DELIM= specifier, 8-10
format, 8-9
input, 8-8
output, 8-10
PRINT statement, 10-167
READ statement, 10-180
sequential access, 8-8
WRITE statement, 10-234

literal
complex, 5-17
constant, defined, Glossary-10
logical, 5-17
real, 5-17

loader. See linker., Glossary-10

LOC, libU77 routine, 10-161

logical, 3-2
edit descriptor, 9-24
IF statement, 6-21
list-directed I/O, 8-9
LOGICAL statement, 10-130
operands and operators, 5-15
operator precedence, 5-5

M
main program, 2-3, Glossary-10

MALLOC, intrinsic function, 10-161

man pages
C preprocessor, A-11
Shift-JIS encoding, A-11

map block, 10-133, 10-205

MAP statement, 10-133, 10-205

masked array assignment, 5-21, 10-226

megabyte, defined, Glossary-10

Microsoft Visual C++ 32-bit edition for
Windows, xxiv

miscellaneous extensions, A-11

MODULE PROCEDURE statement, 10-135

module procedures
defined, Glossary-10
use association, 7-30, 10-135

MODULE statement, 10-134

modules, 7-33, 10-134
defined, Glossary-10

multiple OPENs, 10-150

N
NAME= specifier, 10-113

named constant, 10-156
defined, Glossary-11

named DO loops, 10-63

NAMED= specifier, 10-113

NAMELIST statement, 10-137
ACCEPT statement, 10-4
PRINT statement, 10-167
READ statement, 10-175
WRITE statement, 10-231

namelist-directed I/O, 8-12
example, 8-12
operators, 5-4

variable, 5-15

LOGICAL statement, 10-130

input, 8-13
NML= specifier, 8-12
output, 8-14
PRINT statement, 10-168

Index
namelist-directed I/O (continued)
READ statement, 10-179
sequential access, 8-12
WRITE statement, 10-231, 10-233

names, 2-2
defined, Glossary-10
derived types, 10-218

nesting
DO loops, 10-63
implied-DO loops, 10-45
records, 10-184, 10-204
structures, 10-199, 10-202

new features in Fortran 90, 011

newline edit descriptor, 9-8

NEXTREC= specifier and INQUIRE
statement, 10-113

NML= specifier, 8-12
READ statement, 10-176
WRITE statement, 10-231

nonadvancing I/O, 8-16
ADVANCE= specifier, 8-16
example, 8-32
READ statement, 10-177, 10-179
WRITE statement, 10-231, 10-233

nonnumeric types, 3-1

nonsequenced types, 10-216

normal return from subprogram, 10-188

NULLIFY statement, 10-140
disassociating pointers, 10-47

NUMBER= specifier, INQUIRE
statement, 10-113

numeric types
BYTE statement, 10-17
COMPLEX statement, 10-34
defined, Glossary-11
DOUBLE COMPLEX statement, 10-65
DOUBLE PRECISION statement, 10-68

O
+onetrip option, DO loops, 6-6, 7-43

O edit descriptor, 9-25

objects, 4-3
allocating, 10-7
deallocating, 10-46

obsolescent feature, defined, Glossary-11

octal
constants, 3-12
edit descriptor, 9-25

ONLY clause, 10-222

OPEN statement, 10-141

OPENED= specifier and INQUIRE
statement, 10-113

opening files, 8-3, 8-4

operand, 5-15, 5-18

operands, Glossary-11

operation, defined, Glossary-11

OPERATOR clause, 7-30, 10-169, 10-172

operators, Glossary-11
adjacent, 5-4
and logical operands, 5-15
binary, 5-4
concatenation, 5-13
exponentiation, 5-4
integer operands, 5-15
intrinsic, 5-12
logical, 5-15
precedence, 5-5
relational, 5-4
unary, 5-4
user-defined, 5-1, 7-30

optional argument, 7-19, 10-19, Glossary-11

OPTIONAL statement and attribute, 7-19,
10-151

order of statements within program, 2-6
Index-15

edit descriptors, 9-15, 9-22
INTEGER statement, 10-119
REAL statement, 10-181

OUT intent, 7-24, 10-122

output data
list-directed I/O, 8-10
namelist I/O, 8-14

Intel Fortran

Index-16
Programmer’s Reference

P
P edit descriptor, 9-27

PAD= specifier
INQUIRE statement, 10-114
OPEN statement, 10-146

padding, %FILL field name, 10-202

PARAMETER statement and attribute, 10-155

passing, arguments, 7-9

PAUSE statement, 6-22, 10-158

permitting access, 10-173

plus sign edit descriptor, 9-29

pointer, association, defined, Glossary-11

POINTER statement (Cray-style), 10-160
precautions when using, 10-161

POINTER statement and attribute, 5-3, 10-164

pointers, 3-27, 4-12
allocating, 3-27, 10-7
arrays, 4-12, 5-3
assignment, 5-20
association, 5-19, 10-47
Cray-style, 3-27, 10-160
DEALLOCATE statement, 10-47
deallocating, 3-27, 10-46
defined, Glossary-11
Fortran 90, 10-164
object, 5-20

POSITION= specifier
INQUIRE statement, 10-114
OPEN statement, 10-146

positioning a file
BACKSPACE, 10-14
ENDFILE, 10-81
REWIND, 10-190

precedence of operators, 5-5

preconnected unit numbers, 8-5
defined, Glossary-12

PRINT statement, 10-166
data list items, 8-26
format specification, 10-167
formatted I/O, 10-167
list-directed I/O, 8-10, 10-167
namelist-directed I/O, 10-168

PRIVATE statement and attribute, 10-168,
10-218

procedure
categories of intrinsics, 7-6
defined, Glossary-12
definition, 7-8
dummy, 10-92
external, 7-7, 10-92
interface, 10-20
intrinsic, 7-6
recursive, 7-14, 10-84, 10-96
referencing, 7-9
statement function, 7-17
use, 7-33

program
defined, Glossary-12
See also program units, 2-3
structure, 2-3
subroutine, 7-7
unit, 2-3, 2-6

program execution, 6-1
pausing, 6-22
terminating, 6-24

PROGRAM statement, 7-43, 10-171

program units, 2-14
block data, 7-1, 10-92
defined, Glossary-12
extensions, A-3
function, 7-2, 10-96
main, 7-1
main program, 10-171
module, 7-1, 7-30, 10-134, 10-135
subroutine, 7-2, 10-209
present (arguments), Glossary-12

PRESENT intrinsic function, 10-152 PUBLIC statement and attribute, 10-172, 10-218

Publications, See related publications, xxiv

Index
Q
Q edit descriptor, 9-15, 9-21, 9-28

R
%REF function

ALIAS directive, 7-9
CALL statement, 7-9, 10-20

R edit descriptor, 9-10

range, extended (DO loops), 10-62

rank, 10-57, Glossary-12

READ statement, 10-175
data list items, 8-26
formatted I/O, 10-179
internal files, 10-179
list-directed I/O, 8-8, 10-180
namelist-directed I/O, 10-179
nonadvancing I/O, 8-16, 10-179
unformatted I/O, 10-180

READ= specifier, 10-115

READWRITE= specifier, 10-115

real, 3-2
constants, 3-13
DOUBLE PRECISION statement, 10-68
edit descriptors, 9-15
list-directed I/O, 8-9
REAL statement, 10-181
variable, 5-18

REAL statement, 10-181

REC= specifier
direct access, 8-15
READ statement, 10-178
WRITE statement, 10-232

RECL= specifier
INQUIRE statement, 10-115
OPEN statement, 10-147

RECORD statement, 3-28, 10-184

referencing, 10-184
restrictions on I/O, 8-27
See also structures (extension)., 10-184
simple references, 10-184
STRUCTURE statement, 10-199

records (I/O), 8-1
defined, Glossary-12
end-of-file record, 8-2
formatted, 8-1
unformatted, 8-2

RECURSIVE clause, 7-14, 10-84, 10-96, 10-210

recursive procedure, 7-14

recursive procedures, 10-96, 10-210

Related publications, xxiv

repeatable edit descriptors, 9-4

repeating format specifications, 9-35

RESULT clause, 10-82, 10-97

result variables, 7-12
ENTRY statement, 10-83
FUNCTION statement, 10-97

RETURN statement, 7-43, 10-188

return value, 7-5, Glossary-12

returning from subprogram, 7-18, 10-188

REWIND statement, 10-190

right-justifying character data, 9-10

row-major order, defined, Glossary-12

rules, typing, 3-22

S
+save option, 10-12

+source option, 012, 2-8

S edit descriptor, 9-29

SAVE statement and attribute, 10-192

saving variables, 10-192

scalar, Glossary-12
Index-17

records (extension)
composite references, 10-184
nested, 10-184, 10-204
RECORD statement, 10-184

scale factor edit descriptor, 9-27

scientific notation formatting, 9-18

scope, Glossary-12

Intel Fortran

Index-18
Programmer’s Reference

scope association, 7-3

scoping unit, 2-7, 3-23, 7-3, Glossary-13

scratch files, 8-2
closing, 10-29
opening, 10-148

search paths, include files, 10-108

SELECT CASE statement, 10-194

sequence association, 7-20

sequence derived type, 3-21, 10-195

SEQUENCE statement, 10-195

sequencing and storage association, 10-195

sequential access, 8-7
example, 8-34
formatted I/O, 8-8
list-directed I/O, 8-8
namelist I/O, 8-12

SEQUENTIAL= specifier and INQUIRE
statement, 10-116

shape, 10-57, Glossary-13
size of arrays, 4-30

Shift-JIS encoding, man page, A-11

simple record references, 10-184

size of arrays, 10-57, Glossary-13

SIZE= specifier, 10-178

slash edit descriptor, 9-9

slashes
delimiting data values, 3-9
list-directed I/O, 8-9

source lines
fixed format, 2-13
free format, 2-10

SP edit descriptor, 9-29

spaces, multiple, 2-11

special characters, 2-2

specific procedure, Glossary-13

specification expression, 5-10

standard input, 8-5

standard output, 8-5

STAT= specifier
ALLOCATE statement, 10-8
DEALLOCATE statement, 10-46

statement blocks, 6-1

statement functions, 7-17
defined, Glossary-13
internal procedure as alternative, 10-38

statement keyword, Glossary-13

statement label, 2-3, Glossary-13

statements, 9-1, 10-1, Glossary-13
ACCEPT, 10-3
ALLOCATABLE, 3-6, 4-13, 10-5
ALLOCATE, 4-13, 10-8
arithmetic IF, 6-21, 10-101
ASSIGN, 10-10, 10-11
assigned GO TO, 6-18
assignment, 3-4, 4-23, 5-17
AUTOMATIC, 10-12
BACKSPACE, 10-13
BLOCK DATA, 7-43, 7-44, 10-15
block IF, 6-14, 10-102
BYTE, 10-17
CALL, 7-9, 10-19
CASE, 5-9, 6-3, 10-22
categories, 2-4
CHARACTER, 10-24
CLOSE, 10-28
COMMON, 4-6, 7-44, 10-30
COMPLEX, 10-34
computed GO TO, 6-19
CONTAINS, 7-7, 7-43, 10-38
continuation, 2-12
CONTINUE, 6-16, 10-40
CYCLE, 013, 6-16, 10-41
DATA, 2-6, 3-12, 4-28, 5-17, 7-3, 10-42
DEALLOCATE, 4-13, 10-46
DECODE, 10-48, 10-53, 10-59
specifiers. See I/O specifiers., 8-3

SS edit descriptor, 9-29

standard error, 8-5

DIMENSION, 4-3, 10-55
DO, 013, 6-5, 10-59, 10-61
DOUBLE COMPLEX, 10-65
DOUBLE PRECISION, 10-68

Index
statements (continued)
ELSE, 10-70
ELSE IF, 10-71
ELSEWHERE, 10-72
ENCODE, 10-73
END, 10-75
END (construct), 10-77
END (structure definition), 10-78
END DO, 10-77
END IF, 10-77
END INTERFACE, 10-78
END MAP, 10-78
END SELECT, 10-77
END STRUCTURE, 10-78
END TYPE, 10-79
END UNION, 10-78
END WHERE, 10-77
ENDFILE, 8-2, 10-81
ENTRY, 7-12, 10-82
EQUIVALENCE, 10-86
EXIT, 6-17, 10-63, 10-91
extensions, A-11
EXTERNAL, 10-92
FORMAT, 2-6, 9-2, 10-95
FUNCTION, 7-34, 10-96
GO TO (assigned), 6-18, 10-98
GO TO (computed), 6-19, 10-99
GO TO (unconditional), 6-20, 10-100
IF (arithmetic), 6-21, 10-101
IF (block), 6-14, 10-102
IF (logical), 6-21, 10-103
IMPLICIT, 10-104, 10-106, 10-107
IMPLICIT NONE, 10-104, 10-106, 10-107
INCLUDE, 10-107
INQUIRE, 10-108
INTEGER, 10-119
INTENT, 7-24, 10-123
INTERFACE, 7-26, 7-28, 10-125
INTRINSIC, 10-129
labels, 2-11

MODULE PROCEDURE, 10-135
NAMELIST, 10-137
NULLIFY, 10-47, 10-140
OPEN, 10-141
OPTIONAL, 10-151
PARAMETER, 10-155
PAUSE, 6-22, 10-158
POINTER, 10-164
POINTER (Cray-style), 10-160, 10-161
PRINT, 10-166
PRIVATE, 7-35, 10-168, 10-218
PROGRAM, 7-42, 10-171
PUBLIC, 7-35, 10-172, 10-218
READ, 10-175
REAL, 10-181
RECORD, 10-184
RETURN, 7-43, 10-188
REWIND, 10-190
SAVE, 10-192
SELECT CASE, 6-3, 10-194
SEQUENCE, 10-195
STATIC, 10-197
STOP, 6-23, 10-198
STRUCTURE, 10-199
SUBROUTINE, 7-3, 10-209
TARGET, 10-211
TYPE (declaration), 10-216
TYPE (definition), 10-218
TYPE (I/O), 10-220
type declaration, 10-1, 10-17, 10-24, 10-34,

10-65, 10-68, 10-119, 10-130, 10-181,
10-184, 10-216

unconditional GO TO, 6-20
UNION, 10-205, 10-221
USE, 7-36, 10-221
VIRTUAL, 10-224
VOLATILE, 10-225
WHERE, 5-21, 10-226
WRITE, 10-230

STATIC statement, 10-197
Index-19

LOGICAL, 10-130
logical IF, 6-21, 10-103
MAP, 10-133, 10-205
MODULE, 7-27, 10-134

status, association, 10-47

Intel Fortran

Index-20
Programmer’s Reference

STATUS= specifier, 8-3
CLOSE statement, 10-29
OPEN statement, 10-148
scratch files, 8-2

STOP statement, 6-23, 10-198

storage association, 3-25
COMMON statement, 10-30
derived types, 10-195
EQUIVALENCE statement, 10-86
modules, 10-85

stride, Glossary-13

strings, 3-15
edit descriptor, 9-7

structure constructor, 3-22

STRUCTURE statement, 10-199

structures (extension)
I/O restrictions, 8-27
MAP statement, 10-205
nested, 10-199, 10-202
RECORD statement, 10-184
records, 10-184, 10-199
See also records (extension) and derived

types., 10-199
STRUCTURE statement, 10-199
UNION statement, 10-205

structures (Fortran 90)
component, 3-17, Glossary-13
constructor, 3-17
defined, Glossary-13

structures and records, 3-28

ststements, IMPLICIT, 3-23

subprogram
arguments, 7-18
referencing, 7-18

subprograms, 7-43
function, 7-2, 10-96
module procedure, 10-135
See also procedures., Glossary-13

subroutine
defined, Glossary-14
program, 7-5

SUBROUTINE statement, 10-209

subroutines, alternate returns, 10-210

subscript, Glossary-14

subscript triplet, 4-21, Glossary-14

substring, Glossary-14

syntax
statements and attributes. See

Chapter 10., 9-1, 10-1
type declaration statement, 3-5

T
T edit descriptor, 9-29

tab edit descriptor, 9-29

tab-format line, 2-10

target, 5-20, Glossary-14

Target architecture, xxiv

TARGET statement and attribute, 10-211

tempnam system routine, 8-2

terabyte, defined, Glossary-14

terminal statement for DO loop, 6-7

terminating
DO loops, 10-40, 10-61
list-directed input, 8-9
program execution, 6-24

TL edit descriptor, 9-29

TR edit descriptor, 9-29

trailing comment, 2-12

transferring control
between procedures, 7-2, 7-8
within program, 6-2

truncation, constants, 3-17

type (data). See data types., Glossary-14
See also program units, 7-5
subroutine, 7-5, 10-209

Index
type declaration statements, 3-7, 3-10, 3-24,
Glossary-14

BYTE, 3-5, 10-17
CHARACTER, 10-24
COMPLEX, 10-34
DOUBLE COMPLEX, 3-5, 10-65
DOUBLE PRECISION, 3-5, 10-68
EQUIVALENCE, 3-25
EXTERNAL, 3-6
INTEGER, 3-11, 10-119
INTENT, 3-6
INTRINSIC, 3-6
LOGICAL, 3-5, 10-130
NULLIFY, 3-27
OPTIONAL, 3-6
PUBLIC, 3-6
REAL, 3-5, 10-181
RECORD, 10-184
SAVE, 3-6
statement ordering, 2-6
syntax, 3-5
TARGET, 3-6
TYPE (definition), 10-218

type declarations, 3-5

type node, 3-21

TYPE statement
declaration, 10-216
definition, 10-218
I/O, 10-220

type, derived. See derived types., 10-218

typeless constant, 5-17

typeless entities, 5-17

types and kind parameters, 3-2

typing rules, 3-22
overriding, 10-105

U

unformatted I/O, 8-15
direct-access files, 8-15
READ statement, 10-180
sequential files, 8-7
WRITE statement, 10-234

unformatted record, 8-2

UNFORMATTED= specifier, 10-117

UNION statement, 10-205, 10-221

unions, 10-205, 10-221

unit numbers, 8-4
automatically opened, 8-6
connecting to external file, 8-4
connecting to internal file, 8-3
defined, Glossary-14
preconnected, 8-5

UNIT= specifier
BACKSPACE statement, 10-13
CLOSE statement, 10-28
ENDFILE statement, 10-80
INQUIRE statement, 10-109
OPEN statement, 10-141
READ statement, 10-176
REWIND statement, 10-190
WRITE statement, 10-230

use association
arguments, 7-3, 10-216
COMMON statement, 7-3, 10-32
DATA statement, 10-43
defined, Glossary-14
EQUIVALENCE statement, 7-3, 10-87
module procedures, 10-135
PRIVATE statement, 10-169
PUBLIC, 10-173
SEQUENCE, 10-195
USE statement, 10-221

USE statement, 7-33, 10-221
PRIVATE statement, 10-169
PUBLIC statement, 10-173
Index-21

/usr/include, 10-108

unconditional GO TO statement, 6-20, 10-100

statement order, 2-6

Intel Fortran

Index-22
Programmer’s Reference

user-defined
assignment, 7-25, Glossary-14
operator, Glossary-14
operators, 7-30

V
%VAL function

ALIAS directive, 7-9
CALL statement, 7-9, 10-20

variables
array, 3-1
complex, 5-19
defined, Glossary-15
integer, 5-18
logical, 5-15
real, 5-18
scalar, 3-1, 3-25
subobject, 3-1

vector
subscript, 4-23, Glossary-15

VIRTUAL statement, 10-224

VOLATILE statement and attribute, 10-225

W
WHERE construct, 5-21

ELSEWHERE statement, 10-72
END WHERE statement, 10-77
WHERE statement, 10-226

WHERE statement, 5-21, 10-226

WHILE clause, 10-60

whole array, 4-19
processing, 4-1
reference, 4-16

WRITE statement, 10-230
data list items, 8-26
internal files, 10-233
list-directed I/O, 8-8, 10-234
namelist-directed I/O, 10-231, 10-233
nonadvancing I/O, 8-16, 10-231, 10-233
nunformatted I/O, 10-234

WRITE= specifier, 10-117

X - Z
X edit descriptor, 9-29

Z edit descriptor, 9-30

zero-size array, 4-3, Glossary-15

	Intel ® Fortran Programmer’s Reference
	Disclaimer
	Contents
	1 Introduction to Intel ® Fortran
	New Features in Fortran 95
	Source Format
	Data Types
	Operators
	Control Constructs
	Arrays
	Procedures
	Pointers
	Modules
	Non-advancing I/O
	Namelist I/O

	2 Language Elements
	Character Set
	Lexical Tokens
	Names
	Program Structure
	Statement Labels
	Construct Names
	Statements
	Statement Order

	Source Program Forms
	Fixed Source Form
	Free Source Form
	Intersection Source Form

	INCLUDE Line

	3 Data Types and Data Objects
	Terminology
	Intrinsic Data Types
	Derived Types
	Type Declarations
	Examples of Type Declarations
	Alternative Form of Intrinsic Type Spec Declaration
	Intrinsic Inquiry Functions
	Attributes

	Representation of Literal Constants
	Integer Constants
	Real Constants
	Complex Constants
	Character Constants
	Logical Constants
	Typeless Constants

	Character Substrings
	Derived-type Definition
	Structure Constructor

	Implicit and Explicit Typing
	Data Initialization
	Storage Association and Alignment
	Storage Association Alignment Rule

	Dynamic Data Objects
	Allocatable Arrays
	Pointers
	Automatic Objects

	Records and Structures

	4 Arrays
	New Features
	Array Properties
	Array Declaration
	Syntax
	Examples of Array Specifiers
	Array Element Storage Order

	Array Categories
	Explicit-shape Arrays
	Assumed-shape Arrays
	Deferred-shape Arrays
	Assumed-size Arrays

	Whole Arrays and Array Subobjects
	Array Elements
	Whole Arrays
	Array Sections

	Array Constructors
	Syntax

	Zero-sized Arrays
	Array Expressions
	Array Functions
	Intrinsic Functions
	User-defined Functions

	Array Inquiry Functions

	5 Expressions and Assignment
	Expressions
	Formation of Expressions
	Primary
	Operators
	Precedence of Operators
	Examples
	Special Forms of Expression
	Constant Expression
	Initialization Expression
	Specification Expression

	Interpretation of Expressions
	Intrinsic Operators
	Array Operands
	Example
	Evaluation of Expressions
	Logical Operators and Integer Operands
	Arithmetic Operators and Logical Operands
	Integer and Logical Functions
	Bit Manipulation Intrinsics
	Logical Truth Values
	Typeless Entities

	Assignment
	Assignment Statement
	Intrinsic Assignment
	Examples of Intrinsic Assignment

	Pointer Assignment
	Examples of Pointer Assignment

	Masked Array Assignment
	Examples of Mask Array Assignment

	6 Execution Control
	Control Constructs and Statement Blocks
	CASE Construct
	DO Construct
	FORALL Construct and Statement
	IF Construct

	Flow Control Statements
	CONTINUE Statement
	CYCLE Statement
	EXIT Statement
	Assigned GO TO Statement
	Computed GO TO Statement
	Unconditional GO TO Statement
	Arithmetic IF Statement
	Logical IF Statement
	PAUSE Statement
	STOP Statement

	7 Program Units and Procedures
	Overview
	Program Units
	Procedures
	Scope and Association

	Procedures
	Procedure Categories
	Referencing Procedures
	Procedure Definition
	RECURSIVE Procedures
	PURE Procedures
	ELEMENTAL Procedures
	Statement Functions

	Returning to the Calling Unit
	Subprogram Arguments
	Interfaces
	INTERFACE Block
	INTERFACE TO Block
	Generic Names and Procedures
	Defined Assignment

	Modules
	Use Statement

	Main Program
	Block Data

	8 I/O and File Handling
	Records
	Formatted Records
	Unformatted Records
	End-of-file Record

	Files
	External Files
	Internal Files

	Connecting a File to a Unit
	Connecting to an External File
	Preconnected Unit Numbers
	Automatically Opened Unit Numbers

	File Access Methods
	Sequential Access
	Namelist-directed I/O
	Direct Access

	Nonadvancing I/O
	I/O Statements
	Syntax of I/O Statements
	I/O Specifiers
	I/O Data List

	ASA Carriage Control
	Example Programs
	Internal-file Example
	Nonadvancing-I/O Example
	Sequential- and Direct-access Example

	9 I/O Formatting
	FORMAT Statement
	Format Specification
	Variable Expressions in Formats
	Edit Descriptors
	Character String (’...’ or "...") Edit Descriptor
	Newline ($) Edit Descriptor
	Slash (/) Edit Descriptor
	Colon (:) Edit Descriptor
	A and R (character) Edit Descriptors
	B (binary) Edit Descriptor
	BN and BZ (blank) Edit Descriptors
	D, E, EN, ES, F, G, and Q (real) Edit Descriptors
	H (Hollerith) Edit Descriptor
	I (integer) Edit Descriptor
	L (logical) Edit Descriptor
	O (octal) Edit Descriptor
	P (scale factor) Edit Descriptor
	Q (bytes remaining) Edit Descriptor
	S, SP, and SS (plus sign) Edit Descriptors
	T, TL, TR, and X (tab) Edit Descriptors
	Z (hexadecimal) Edit Descriptor

	Embedded Format Specification
	Nested Format Specifications
	Interaction Between Format Specification and I/O Data List

	10 Intel Fortran Statements
	Attributes
	Statements and Attributes
	ACCEPT
	ALLOCATABLE (Statement and Attribute)
	ALLOCATE
	ASSIGN
	AT
	AUTOMATIC
	BACKSPACE
	BLOCK DATA
	BYTE
	CALL
	CASE
	CHARACTER
	CLOSE
	COMMON
	COMPLEX
	CONTAINS
	CONTINUE
	CYCLE
	DATA
	DEALLOCATE
	DEBUG
	DECODE
	DIMENSION (Statement and Attribute)
	DISPLAY
	DO
	DOUBLE COMPLEX
	DOUBLE PRECISION
	EJECT
	ELSE
	ELSE IF
	ELSEWHERE
	ENCODE
	END
	END (Construct)
	END (Structure Definition)
	END INTERFACE
	END DEBUG
	END TYPE
	ENDFILE
	ENTRY
	EQUIVALENCE
	EXIT
	EXTERNAL (Statement and Attribute)
	FORMAT
	FUNCTION
	GO TO (Assigned)
	GO TO (Computed)
	GO TO (Unconditional)
	IF (Arithmetic)
	IF (Block)
	IF (Logical)
	IMPLICIT
	IMPLICIT AUTOMATIC
	IMPLICIT STATIC
	INCLUDE
	INQUIRE
	INTEGER
	INTENT (Statement and Attribute)
	INTERFACE
	INTERFACE TO
	INTRINSIC (Statement and Attribute)
	LOGICAL
	MAP
	MODULE
	MODULE PROCEDURE
	NAMELIST
	NULLIFY
	OPEN
	OPTIONAL (Statement and Attribute)
	OPTIONS
	PARAMETER (Statement and Attribute)
	PAUSE
	POINTER (Cray-style)
	POINTER (Statement and Attribute)
	PRINT
	PRIVATE (Statement and Attribute)
	PROGRAM
	PUBLIC (Statement and Attribute)
	READ
	REAL
	RECORD
	RETURN
	REWIND
	SAVE (Statement and Attribute)
	SELECT CASE
	SEQUENCE
	STATIC (Statement and Attribute)
	STOP
	STRUCTURE
	SUBROUTINE
	TARGET (Statement and Attribute)
	TRACE OFF
	TRACE ON
	TYPE (Declaration)
	TYPE (Definition)
	TYPE (I/O)
	UNION
	USE
	VIRTUAL
	VOLATILE
	WHERE (Statement and Construct)
	WRITE

	Intel Fortran Extensions
	Language Elements
	Data Types and Objects
	Array Concepts
	Expressions
	Execution Control
	Scope, Program Units, and Procedures
	Attributes
	Compatibility with Microsoft Attributes
	ALIAS
	Syntax
	Example
	Description

	ALLOCATABLE
	C Attribute
	Syntax
	Description

	DLLEXPORT, DLLIMPORT
	EXTERN
	FAR
	HUGE
	IVDEP
	LOADDS
	NEAR
	PASCAL
	REFERENCE
	STDCALL
	Example
	Usage

	VALUE
	Example

	VARYING

	I/O and File Handling
	I/O Formatting
	Statements
	Intrinsic Procedures
	Miscellaneous

	Glossary
	Index

