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Abstract
Most benchmarks are smaller than actual application programs. One reason is to improve benchmark universality by
demanding resources every computer is likely to have. But users dynamically increase the size of application programs to
match the power available, whereas most benchmarks are static and of a size appropriate for computers available when
the benchmark was created; this is particularly true for parallel computers. Thus, the benchmark overstates computer
performance, since smaller problems spend more time in cache. Scalable benchmarks, such as HINT, examine the full
spectrum of performance through various memory regimes, and express a superset of the information given by any
particular fixed-size benchmark. Using 5,000 experimental measurements, we have found that performance on the NAS
Parallel Benchmarks, SPEC, LINPACK, and other benchmarks is predicted accurately by subsets of HINT performance

curve. Correlations are typically better than 0.995, and predicted ranking is often perfect.
1. Benchmarking benchmarks

The implicit purpose of all benchmarkspsrformance predictiarindividuals use readily-available
personal computer benchmark ratings prior to purchase, expecting them to predict the performance. Gov
ment agencies use simplistic benchmarks like Peak Advertised Performance as the basis for national con
puting goals (e.g., “Petaflops”); implicit is the prediction that greater rated speed will lead to the solution o
“Grand Challenge” problems. Benchmarks are used by the marketing divisions of computer manufacturer
in the belief that they predict value of the computer (real or perceived) to the customer and can be used a
factor in pricing strategies.

This paper is about benchmarking benchmarks. We compare them based on this cenWéhétsse:
the maximum predictive information that can be obtained with the least time and effort?

To analyze and predict the performance of parallel and distributed computers, one must first be able
do it for a serial computer. The approach described here has proved equally applicable to both types of
computer system.

2. Benchmarks surveyed

At any given time, there are dozens of benchmarks used to compare computers. Some are fleeting,
others might have a lifetime of more than a decade. Some are targeted at supercomputers, some at pers
computers, some at business computers. A primary source for us has been the Web page [1] maintained
A. Aburto Jr. Here are the benchmarks we survey in this paper:

HINT

This is the scalable benchmark that we conjecture may be a superset of other popular benchmarks,
since it presents the full range of memory hierarchy performance whereas other benchmarks pick a partic
lar problem size and measure execution time [6, 7]. It will be discussed in more detail below.

SPEC
Maintained by a consortium of workstation vendors, SPEC is a frequently-changing collection of
programs one might run on a workstation, plus kernels like matrix multiplication [5, 10, 11]. It is virtually
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impossible to track SPEC performance from one year to the next since the definition of the problem set is
always changing, but we select SPECint_95 and SPECfp_95 for this study.

LINPACK

This is the linear algebra library routine for solving a general dense system of equations with partial
pivoting [4]. It has countless variations, but survives mainly in its original 100 by 100 size, a 1000 by 1000
size, and a scaled version. It is discussed in more detail below.

NAS Parallel Benchmarks (NPB)

A collection of parallel algorithms related to computational fluid dynamics, formerly maintained by
NASA/Ames Research Center [2, 9, 10]. The NPB provide the main test case of our thesis for parallel
benchmarking.

Peak FLOPS
This is usually obtained by figuring the rate at which the floating-point adders and floating-point
multipliers in the hardware can fire, unfettered by any other operation.

STREAM, peak memory bandwidth

STREAM is a small collection of very simple loop operations [12]. It tries to estimate the total rate at
which all addressable memory spaces can deliver data to their respective processors, unfettered by any othe
operation. For the “peak” measure, effects such as memory refresh, input/output interrupts, or other burdens
on the memory bus, are usually ignored in favor of simply multiplying the bus width in bytes by its maxi-
mum repetition rate.

LLL
The Lawrence Livermore Loops, designed by Frank McMahon by taking excerpts from Fortran
application programs used at Lawrence Livermore National Laboratories.

Whetstone

This is the latest version of the 1976 Whetstone benchmark [3] written in C. It stresses unoptimized
scalar performance, since it is designed to defeat any effort to find concurrency. When MIPS ratings were in
favor, the Whetstone benchmark was a popular way to estimate MIPS, and one occasionally sees “WIPS”
(Whetstone Instructions Per Second) in the historical literature.

Fhourstones, Dhrystone [13], nsieve, heapsort, Hanoi, queens, flops, fft, mm

These are assorted integer and floating-point benchmarks [1] that serve mainly as examples of too-
small problems for the purpose of this study. As with peak measures, we intentionally include benchmark
approaches of dubious merit to test the hypothesis that they reveal only part of a larger picture.

3. Graphs & statistics for comparisons

One might expect correlation between benchmarks, and hope for rough correlation between a bench-
mark and an application. One hopes for an approximately linear relationship. Failing linearity, one might
hope for monotonicity. But many relationships between benchmarks and applications (or between bench-
marks and other benchmarks) fail monotonicity. It is not at all uncommon to find relationships much more
like that shown in Figure 1.

In this case, the horizontal axis represents LINPACK performance and the vertical axis represents
performance on the GAMESS computational chemistry application, both normalized to an IBM 3090 = 1.0.
This data was measured by S. Elbert at Ames Lab, circa 1989. The correlation is still positive, but that may
be faint comfort to the chemist who buys one of the computers well below the diagonal based on the bench-
mark.



The qualitative feature that has been losbisectranking. Absolute performance may not be as
important as the one-dimensional ranking. This requires that the scatter plot describe a monotonically
increasing function. It is easier to obtain a correlation close to 1.0 than to obtain perfect ranking, a
nonparametric statistic.

GAMESS Speed relative to IBM 3090
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LINPACK Speed relative to IBM 3090
Figure 1. Computation chemistry vs LINPACK.
Correlation might not even be positive. Consider this data for the crudest of all benchmarks (and als

one of the most popular), peak FLOPS rating, versus actual FLOPS measured by the first of the NAS
Parallel Benchmarks:
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Figure 2. Peak FLOPS versus EP benchmark.

The correlation is obviously negative. It is —0.692, to be precise. From this, it should be evident that
benchmarks are not equivalent within some approximate scale factor; proportionality is not even a loose
guideline. This is why benchmarking computers remains an unsolved problem.

The graph in Figure 2 shows what can happen when Peak Advertised Performance (PAP), typically
based on a register-to-register timing, is applied to a real application where the operands must come fror
some level of main memory. If one is picking a benchmark as crude as a peak rating, one would do bette
pick memory bandwidtkince it has long ago replaced floating-point speed as the bottleneck for computer
performance. Look what happens when we replace PAP with memory bandwidth as a predictor of the
performance on “EP”:
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Figure 3. Peak bandwidth versus EP benchmark.

The correlation has gone to the other extreme. For EP, at least, peak memory bandwidth is an excel-
lent predictor. The correlation coefficient is 0.9987 in this case. But of course someone had to know which
peak machine rating to use, and as scientists we seek to remove such arbitrariness in the metric.

4. Universal (and valid) criticisms
The casual critic of computer benchmarks usually says one or two (quite valid) things:

1) “The only thing that matters is how the computer performsypproblem. | don't believe in bench-
marks. They don’t test the computer the way | use it in my application.”

2) “That benchmark is just a toy problem. Why don’t they just measure full-sized applications? We used
benchmark XYZ and it didn’t correlate at all with what we actually got out of the 8 gigabyte computer.”

We use the term “casual critic” because while the problems with benchmarking are obvious, the
solutions are not at all straightforward. Few people can do as suggested by Criticism 1 when selecting a
computer to purchase. The vendor cannot supply times for every potential customer’s application mix.
Important customers can sometimes demand that a vendor port and time the applications a customer wants,
and marketing departments support divisions dedicated to this task. It is a very costly procedure, especially
if the computer architecture or environment is novel... which is also the situation where a customer is most
likely to demand a benchmark prior to purchase.

That leads to Criticism 2: Vendors or users choose a problem that is portable from one machine to
another and has a popular following. To make it fit all different computers, it is usually small and simple.

For it to have a popular following, it helps to have an easily-understood task like “matrix multiply” or
“solve linear equations,” which makes the code itself small. To be fixed in size and yet fit the memory of
every computer, it has to have small data structures. It typically does not measure input and output, since
those things are erratic and difficult to measure and also make the overall performance look much worse.
The result is, indeed, a “toy problem.” Unless designed very carefully, the simplified problem loses salient
characteristics of real applications.

Hence there is a tradeoff between the accuracy of a performance measurement (put the target applica-
tions on the target machine and see how well they run) and ease of a performance measurement (just look &
an easily-measured performance for a simplified task).



Criticisms 1 and 2 sound alike, but have subtle differences. Criticism 1 observes that every applicati
has a different feature emphasis... more conditional branches, fewer square roots, etc. Hence, it makes li
sense to use a benchmark with one feature mix to measure an application with a very different emphasis.
Criticism 2 observes that small task performance doesn’t always predict large task performance. The dom
nant reason is that memory is not flat; as problems grow in size, they use progressively slower memory
regimes: registers, primary cache, secondary cache, main memory, and mass storage.

Regarding Criticism 1, we observe that many benchmarks do not use mainstream feature emphasis
They stress processor activity (arithmetic operations) and not memory activity (data motion), which speak
ing very generally is the opposite of real-world applications. 32-bit and 64-bit floating-point performance is
often incorrectly treated as interchangeable. So are character, 16-bit, and 32-bit integer performance.

Regarding Criticism 2, we observe that most benchmarks are so small that the data structures resids
cache, whereas most applications are so large that they use most of the main memory. Memory is incorre
assumed “flat.” Conversely, a large-memory benchmark like SPEC might not represent behavior on a cac
intensive job.

5. The Blind Men and the Elephant

There is a Hindu fable of six blind men who touch different parts of an elephant and come up with
radically different descriptions of it... a tree, a wall, a snake, etc. Benchmarking is very much like this;
single benchmarks sample computer behavior at a point, and one has a tendency to overgeneralize from
sample.

To deal with this, benchmarks such as PERFECT [5] and SPEC throw in a suite of applications, thinl
ing this will test the multidimensional aspects of system behavior and give a more complete picture. Doinc
so is certainly more likely to exercise a representative mix of instruction types. The resulting suites are ve
expensive to port to different computers, especially parallel computers, and can take hours to execute onc
converted.

Unfortunately, all of these application suites remain point samples ontheespector which the
testing of a range is most importaifhey fix the size of the problemWhatever weighting they contain for
using different memory regimes, it is not variable. Since the benchmark must fit on many computers, the
size chosen is typically that of the smallest computer in the set targeted for study. The original NAS Parall
Benchmarks were all sized to the Cray X-MP system at NASA Ames Research Center [2], even though th
parallel computers had much larger memories and were designed for running much larger problems. In
wrestling with the scalability of parallel computers, they have evolved five different sizes of their bench-
marks but still have no way of comparing computers having very different memory capacities. Largely
because of this, support for the NPB has ceased.

McMahon's work with the Livermore Loop benchmarks [8] shows an early effort to explore different
problem sizes within one benchmark. Vector lengths are varied over a small range, and the user of the
benchmark is encouraged to study the statistics thus produced. However, the range is far from large enou
to span several memory regimes (a size ratio of a million to one is about right to test regimes on 1997 vin.
tage computers) and the Livermore Loops are universally quoted as single-number summaries, ignoring t
underlying structure of the test.

Also recognizing the “Blind Men and the Elephant” syndrome, Curnow and Wichmann designed the
Whetstone benchmark to have adjustable weights for different machine features such as integer math, su
routine calls, special functions, branching, and so on [3]. The user was encouraged to find the weighting
used in the target application, adjust the benchmark weights, and then use the total score as a predictor.
attempt at multidimensional reporting has also been ignored, and the weightings that come with the Whet
stone code as defaults are the ones always used for comparison.



6. Benchmarking and Moore’s law

In the U.S. economy, we assume some monetary inflation is inevitable, and attempt to correct for it
using the Consumer Price Index. The mental adjustment needed in hearing a dollar figure and a year is
something we all learn to do. We know better than to use a 1978 house assessment in figuring a reasonable
price for it today.

Moore’s law notes a performance increase of abo&b per year, far higher than U.S. inflation has
ever beenYet, we do not account for this inevitable change when designing benchmarks. Every benchmark
based on timing a fixed-size problem is doomed to look ridiculously small after only a few years

The LINPACK benchmark [4] began by specifying that the matrix to factor must be 100 by 100. As
computers got so large and fast that this problem ran in less time than it takes to press the ENTER key and
with less memory than a scratch buffer, the problem size was increased to 300 by 300. Then 1000 by 1000.
Then, at the suggestion of the first author, Jack Dongarra allowed a version “as large as will fit in memory.”
But by Moore’s law, memory goes up by a factor of four every three years. The operation count increases as
the cube of the memory, or a factor of 64. If the processing speed also follows Moore’s law and increases by
4x, the time to run “scaled LINPACK” will increase by a factor of 16 every three years! In a way, this
makes scaled LINPACK as surely doomed as fixed-size LINPACK. Benchmarking is ultimately limited by
the same thing that limits application problem size: the time people are willing to wait for an answer. Hu-
man patience is fairly constant; it does not follow Moore’s law.

The LINPACK 100 by 100 benchmark is still in use. For machines near the top of its list, it requires
less than 16 of the available memory and executes faster than a nerve signal can travel from the eye to the
brain to see the result. Evidently, most benchmarkers do not believe in Moore’s law. If they did, benchmarks
would be designed from the beginning to be exponentially scalable.

7. HINT

The HINT benchmark was created in 1995 at Ames Laboratory by the first author and Quinn Snell. It
is infinitely scalable, including precision considerations. Space does not permit a detailed discussion of its
design, but the reader is referred to [6, 7 ] for details. The salient points needed here are as follows:

» Speed is defined as answer quality improvement per second (QUIPS). “Quality” is the reciprocal of the
error, which combines precision loss and discretization error.

» Neither the task size nor the execution time are specified; speed is measured as a function of time (or, if
you prefer, as a function of the memory size of the problem).

» The problem can be run with any data type: floating point (any precision), integer (any precision), BCD
arithmetic, extended-precision arithmetic, etc. Using a lower precision may make the speed higher in the
millisecond range, but will cripple performance for longer execution times.

» While HINT provides a graph of performance, it also has a “single number” measure (the area under the
graph) that summarizes performance for simplistic rankings.

» As the size of the HINT task grows, the memory access pattern becomes more complicated in a way that
defeats caches. This is more representative of real applications than a simple loop size increase.

Figure 4 shows a pair of typical HINT curves for a workstation. The form of the HINT curves reveals
machine “personality.” The farther left the curve starts, the lower the latency of the system. Note how the
64-bit performance has several dropoffs, marking the end of primary cache, secondary cache, and main
memory. This workstation has good performance over a broad time scale. It has enough main memory to
show high speed for tasks in the several-second range. After a few seconds, it runs out of memory and
performance falls with use of disk storage.
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Figure 4. Typical HINT curves.

For the graph in Figure 4, imagine that the two curves are both for floating-point data, but from differ
ent computers. Say the dark line is for Computer A, and the light line is for Computer B. Which one is
“faster”? A benchmark that samples mainly the millisecond range will show Computer B to be faster. A
different benchmark that samples mainly the part of the graph above 1 second will show Computer A to b
much faster. This is our thesis:

Different rankings of computers at different tasks can often be traced to HINT curves that cross.

If the HINT curve for computer A is uniformly greater than that for computer B, than it should be very
difficult to find a benchmark or application that ranks B as having higher performance than A. If this conjec
ture is true, then the various benchmarks in common use are sampling the performance curves described
HINT, like the blind men sampled the shape of the elephant. Use of an application benchmark suite to der
a single performance number may give a better sampling distribution than a kernel benchmark, but it pro-
duces no more insight into why the performance is what it is, or how to predict performance of a complete
different task.

It is also useful to plot HINT graphs with bytes of storage as the horizontal axis instead of time. This
makes it easier to pick out the size of memory regimes, but harder to compare computers of very different
performance. (With time as the horizontal axis, one can easily put a very slow and a very fast processor o
the same horizontal scale; with memory as the horizontal axis, the two graphs will differ greatly in both
horizontal and vertical directions.) While we encourage the use of time as the horizontal axis, we might
more easily correlate HINT with other (fixed-sized) benchmarks if we use problem size in bytes.

7.1 Reading HINT graphs

* A jittery curve indicates a machine distracted by interrupts or other users.

* A narrow curve reveals a special-purpose computer.

* If the curve drops sharply when it falls out of cache, the computer might be surprisingly slow on large
problems.

* The left side of the curve reflects CPU clock speed; the right side of the curve shows memory bus cloc
speed.



* If it has ample memory but fades fast (like the integer line above), then it ran out of precision and
should be tested with another data type.

* If the curve for integers is much better than for floating-point, it may show the architecture is optimized
for word processing or financial tasks, not scientific computing.

7.2.1s HINT a superset of other benchmarks?

Different benchmarks sample different instruction mixes, and different memory regimes. This is a
major reason why rankings differ depending on benchmarks. Clearly, one could define a problem that de-
pended heavily on disk output and another problem that depended on floating-point multiply-add operations,
and show different rankings for business and scientific computers.

While it is obvious that the possible differences in feature emphasis are vast, we conjecture the follow-
ing:

The main difference between feature emphasis in benchmarks is the dominant data type.

Thus, graphics benchmarks operate on pixels, scientific benchmarks use floating-point numbers, business
benchmarks use integers and character data. We can select a HINT measurement that uses that dominant
data type.

The other major difference between benchmarks is the “computational intensity” or the ratio of opera-
tions to memory references. For example, matrix multiplication and LINPACK have very high computa-
tional intensity, whereas Dhrystones and STREAM are very low. But the issue may not be the ratio of
operations to references so much as the location of the data. Every operation implicitly references data, and
perusal of the code may reveal a register or memory source. But on modern architectures, the data actually
can come from registers, primary cache, secondary cache, main memory, or mass storage (virtual memory),
with performance that can range over a factor of a thousand. This leads to our second conjecture:

The main difference between “computational intensity” or “size” of a computer benchmark
is the time spent in different memory regimes.

Figures 2 and 3 can be explained by HINT graphs. Peak MFLOPS corresponds to the left extreme of
the HINT graph, with arithmetic from registers and primary cache. Peak memory bandwidth corresponds to
the right extreme of the HINT graph, where the problem is so large that memory speed becomes limiting.
We can select a part of a HINT graph that represents the size of another benchmark or application in ques-
tion.

7.3 Computer systems tested

To test these conjectures, we use a collection of Silicon Graphics computers of seven different con-
figurations, an ASA Pentium Pro PC running Linux, and a single processor of a Cray C90. We also ran
parallel systems: SGI Onyx, IBM SP-2, Cray T3D, and nCUBE 2S. (The machines do not have to be current
to test our theory.) They vary in processor count, clock speed, cache structure, and floating-point capability
relative to clock speed. Because the SGI workstations have similar product names, we name the five distinct
configurations “Indy 1,” “Indy 2,” and so on. The characteristics and HINT graphs for workstations are
shown in Table 1 and Figure 5.



Table 1
Workstation characteristics

_ Indy 1 Indy 2 Indy 3 Indy 4 Indy 5 PC
200
R4600 R4400 R4600 R4600 R4000 Pnt. Pro
Primary Cache 16 KB 16 KB 16 KB 16 KB 16 KB 16 KB
05 WE
64 VB 64 VB 64 VB 64 MB 64 MB 64 VB
Operating System IRIX 6.2 IRIX 6.2 IRIX 6.2 IRIX 6.2 IRIX 6.2 Linux
0.7 —
SGIIndy 5
0.6} Pentium Pro PC
0.5
[72) SGl Indy 4
D 041 y
> SGl Indy 1
S o3l — Y
—
SGl Indy 2
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Figure 5. HINT for workstations.

Note that the HINT graphs distinguish the memory hierarchies; a practiced eye can read the size of
primary and secondary cache (if any), available RAM, etc. as described in Section 7.1.

The range of performance here is intentionally small, so that correlation testing is sensitive to subtle
differences and not merely confirmation of gross speed differences. Of particular interest is the crossing o
the curves for the Pentium Pro PC and the fastest SGI Indy at about 16 KB. This should be reflected in
different rankings on different benchmarks. Our results confirm this.

Table 2
High-speed uniprocessor characteristics

SGI Challenge SGI Onyx Cray C90
CPU MHz 194 250
CPU Type R10000 R10000 Vector
Primary Cache 32 KB 32 KB none

Secondary Cache 0.5 MB 1.0 MB none
Main RAM 0.5GB 0.5GB 2.0 GB
Operating System IRIX 6.2 IRIX 6.2 UNICOS

Compiler Mips C Cray C
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Figure 6. HINT for high-performance computers.

For the high-speed uniprocessors in Table 2, the crossover in the HINT graphs (Figure 6) is profound.
The curve shown is for a vectorized version of HINT; an unvectorized version runs 7 times slower. The Cray
curve resembles curves for parallel processors, with a slow rise to a much higher plateau. The two SGI
computers are almost identical except for the difference in memory size.

We also will show results for four types of parallel system: IBM SP-2, nCUBE 2S, Cray T3D. and
SGI Onyx. HINT is very easy to port to any parallel computer, whether distributed or shared memory.
Though not shown in the following table, both thin and wide versions of the SP-2 were tested. Only the SGil
has a secondary cache, and it is the only parallel computer that exhibits a tiered effect in its HINT graph.

Parallel computers, especially those using explicit message passing, are low in performance in the
short time scale (below about 100 microseconds). In this respect their strengths are the opposite of the
modern RISC workstations with caches and nimble context switching. HINT curves of parallel computers
show that benchmarks that focus on small data sets and quick loop structures will misrepresent parallel
computers as slow or useless. Ames Lab maintains benchmark data for dozens of systetpd/(see
www.scl.ameslab.gov/HINT )

Table 3

Parallel system characteristics

SGI Onyx nCUBE 2S Cray T3D

Number of Processors 32, 64
CPU MHz
CPU Type Alpha EVA
PrmaryCache | 32KB | - | 32K8
SecondaryCache | 2MB | - |
Main Memory 2 GB 4 MB 64 MB 128 MB
per node per node per node

Operating System IRIX 6.2 Vertex UNICOS AIX 3

IBM SP-2
8, 16, 32, 64, 128

RS6000
256 KB

| AphaBV4 | RS6000 |
| 2KB | 2%KB |
=
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Figure 7. HINT for parallel computers.

8. Tests of HINT as a superset

For over 30 benchmarks and 30 computer systems, we filled out the table of performance as a first ¢
(about 1000 experimental measurements). HINT was also sampled at 126 (floating point) and 106 (intege
points (about 4000 experimental measurements). MATLAB was then used to compute the following:

1) Correlation coefficient with HINT as a function of the memory size where the HINT graph was samplec
2) Maximum correlation coefficient.

3) What HINT memory point has maximum correlation.

4) Linear fit; ratio between the benchmark and HINT.

5) Maximum relative error of approximation in the fit.

6) Maximum rank correlation coefficient (Spearman’s)

7) What HINT memory point has best rank correlation.

The curve resulting from (1) represents what we calafiication signaturelt shows the emphasis
on different parts of memory, instantly revealing whether a test stresses cache, main memory, or some ur
sual pattern.

8.1. Serial benchmarking: SPEC 95

The SPEC 95 benchmark comes in integer and floating-point flavors, explicitly declaring the data
type. Both integer (8 benchmarks) and floating-point (10 benchmarks) suites use large arrays that potenti
exercise much of any secondary cache. The integer benchmarks are poor at revealing any shortcomings
main memory speed. The first “HINT Sample” column is the memory size giving the best correlation; the
second “HINT Sample” column is the memory size giving the most accurate ranking.



Table 4a
Integer HINT versus SPEC 95int

Benchmark HINT Correlation HINT Rank
Sample Sample Correlation
go
gec
compress
| 17KB | 09947 | 164KB [ = 099% |
| ey | 198KB | 09986 | 164kB |  0.992
E
vortex
Table 4b
Floating pt. HINT versus SPEC 95fp
Benchmark HINT Correlation HINT Rank
Sample Sample Correlation
| absi | 1080KB | 09979 |  net | = 09892 |
waves | B93KB | 0992 |

The “net” entry means the integral of the entire HINT curve provided the best correlation. SPEC perform-
ance can be estimated from HINT by

spec95int 7.5x (MQUIPS at 180 KB), max. error 15%
spec95fp= 11.x (MQUIPS at 893 KB), max. error 23%

If HINT and SPEC provide similar information, one would then need to ask which benchmark is more
repeatable, easier to port, and takes less time to run,

In running SPEC on two identical workstations, we found variations in the SPEC ratings up to 7%.
The difference between HINT runs never exceeded 1%. We also are unable to obtain ratings as high as thos
published by the vendors. The original SPEC suite was based on a VAX-11/780 speed defined as 1.0; yet,
when run on a VAX-11/780 the VAX got a SPEC rating of 3, implying it is three times as fast as itself.
“Compiler improvements” are the usually cited explanation. In any case, variation in SPEC measurements is
exceptionally high.

It takes about one day to run SPEC on a dedicated workstation. HINT takes about 10 minutes per data
type tested, or 20 minutes for both 32-bit integer and 64-bit floating-point measurements. This represents a



ratio of about 100:1. It does not appear that taking 100 times as long to run a benchmark yields 100 times
more information. If anything, it yieldessinformation since statistical variation is less easily controlled by
multiple trials.

While the statement that real applications make the best benchmarks is intuitively appealing, one ca
do as well or better with a reduced problem that has been carefully designed to capture the behavior of a
computer on different data types and in different memory regimes. SPECfp does a better job than most
benchmarks of exploring large memory behavior, as we will see.

The application profile of hydro2d is particularly interesting:

1.000

0.995 | 1

0.990 | 1

0.985 | 1

0.980 - 1

0.975 | 1

Correlation Coefficient

0.970 ¢ 1

0.965 - - - - -
102 10®  10* 10° 10%° 107 108
Sample HINT memory point

Figure 8. hydro2d application profile

The twin peaks probably indicate the exercising of two arrays that differ in size by about a factor of four. A
with many of these examples, the correlation coefficient seldom drops below about 0.95. When it does, it
indicates that the HINT curves cross one another as described in the first few sections; then it is critical to
pick the right point.

8.2. Example 2: LINPACK

During the 1980s especially, LINPACK became the benchmark darling of scientific computer vendor:
It is one of the few benchmarks that correlates well with Peak Advertised Performance in terms of FLOPS
It exercises the ability of a processor to do independent multiply-add operations on contiguous local stora
and registers, something easy to optimize in hardware.

In purchasing computers for computational chemistry applications at Ames Lab we discovered that
LINPACK frequently overpredicted application performance by a factor of 10. HINT provides a graphical
explanation of this phenomenon. Since the 100 by 100 LINPACK slightly exceeds primary cache (80
KBytes maximum), it tends to overstate performance on machines with a mismatch between floating-poin
speed and main memory bandwidth. LINPACK performance can thus be estimated by looking at the left
extreme of the HINT curve where the main memory regime is not used. For many scientific computers,
performance drops catastrophically once a problem becomes too large to fit in cache. (On older Cray
mainframes, the nominal main memory is static RAM and serves as the secondary cache regime; the SSI



dynamic RAM and is effectively the main memory for applications. Hence, Cray mainframes suffer the

same performance dropoff as RISC workstations.)
Table 5 summarizes correlation experiment results.

Table 5
HINT versus LINPACK

Benchmark HINT |Correlation | HINT Rank
Sample Sample Correlation

10Qx100 29 KB 0.9971 4963 KB 0.983
100x1000 4512 KB 0.9968 2801 KB 0.967

Again, HINT appears to hold a superset of the information in the other benchmark. One can predict
the LINPACK scores using

100 by 100 LINPACK MFLOPS (rolled)
= 49x (MQUIPS at 29 KBytes), max error 51%

1000 by 1000 LINPACK MFLOPS
= 54x (MQUIPS at 4.5 MBytes), max error 14%

The different emphasis on large memory regimes is made clear by the application signature for
LINPACK, shown in Figure 9. LINPACK tends to operate on single vectors and submatrices, which fit in
caches. The second peak shows the need to sometimes sweep through the entire matrix.
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Figure 9. Application signature for LINPACK.



8.3 Parallel benchmarks: NPB

The NAS Parallel Benchmarks [2. 9, 10] provide data we can compare with HINT curves for various-
sized ensembles of SGI, SP-2, T3D and nCUBE computers. The SP-2 in particular resembles a distribute
computer system more than a parallel computer in the older sense. We used “Class A” and “Class B” size
of the NPB. Space does not permit detail, but correlations are excellent as shown in Table 6. The NPB is
another benchmark suite which is very expensive to convert and tedious to run. HINT predicts the perforn
ance within a few percent within one vendor product line, and within a factor of two when predicting widel
varying architectures.

Table 6

HINT versus NAS Parallel Benchmarks

Benchmark HINT Correlation | HINT Rank
Sample Sample Correlation

| EPClassA | 43MB| 09943 | 0.4 MB| 0.967
MG Cla 10 MBl 09892 | 16. MB| 0096
MG Class 0.942
CG Class A 0.937
CG Class B 0.932
FT Class A 0.889
LU Class A 0.968

LU Class B 0.974

BT Class B 2.6 MB 0.9971 16. MB 0.988

Compared to the successes the Fourier transform (FT) is inaccurately predicted by HINT both here
and in other benchmarks we have tested that use the Fast Fourier Transform algorithm. We suspect that
power-of-two strides in the address space exercise memory interleave very differently from the manner
exercised by HINT. However, a scatter plot of FT versus HINT shows that the relationship is quite predic-
tive and is spoiled by only rare points from the slowest machines:
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Figure 10. FT versus HINT scatter plot
8.4 Other benchmark correlations

The following table summarizes our efforts to predict performance of some of the other surveyed
benchmarks using all or part of the HINT curve. All tend to sample the extreme left end of the HINT graph..

Table 7
Other correlations with HINT

Benchmark HINT Sampling
Hanoi 0.9994 88 bytes, integer
ff 0.7474 2.3 MB, double

Dhrystone 0.8891 88 bytes, integer
gueens 0.9924 88 bytes, integer

Fhourstones 0.9758 88 bytes, integer

88 bytes is the smallest HINT problem. While small problems are disparaged by serious benchmark
practitioners, they continue to resurface from time to time.

9. Summary and future work

We have accumulated several years of experience running the HINT benchmark. To a large extent, it
appears that it is a superset of other benchmarks, because excellent predictions of the performance of other
benchmarks can be made using either the Net QUIPS or a single-number sample of QUIPS versus problem
size.

Correlation tests are slightly hampered by the lack of repeatability in many benchmarks. The drivers
usually attempt multiple runs, but often are unable to remove noise in the data. HINT is somewhat unusual
in the way noise is detected and removed, and as a result its runs are highly repeatable. Even the 7% varia-
tion we saw in SPEC runs is larger than the variation implied by the correlation coefficient between HINT
and SPEC, for example.Taken as a positive, this shows that performance prediction accuracy using HINT is
more than sufficient for practical purposes.
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Figure 11. Benchmarks as sample points of a generic HINT graph

Our studies of parallel benchmarks such as the NAS Parallel Benchmarks indicate that HINT has
superset capability. Parallel benchmarking is the most expensive kind of benchmarking, because conver-
sions to different parallel architectures can take many person-months. This is where the ease-of-conversit
of HINT could produce practical savings without sacrifice of information or accuracy.

We are now beginningwork to find application signatures by linear programming methods instead of
by plotting correlation curves. We will adjust the weights at each of the HINT sample points by the simplex
method to find the maximum predictive value, and then infer these weights to be the true application sign:
ture.

Ultimately, the goal of any benchmark is to correlate closely with application performance, not with
other benchmarks. This is our next direction. Because benchmark data is readily available for so many
computers, we were able to test our “application signature” idea by testing correlations with HINT curves.
We expect to find ways to obtain application signatures automatically and use these to test the predictive
power of HINT technology. While we echo the caveat of all benchmarkers that no single benchmark can
universally predict performance, we feel this study clarifies the two main dimensions of variability (data
type and memory regime) and provides a practical way to reduce the chance of being misled by bench-
marksm
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