
Abstract

We describe here the design and performance of
OdinMP/CCp which is a portable compiler for C-programs
using the OpenMP directives for parallel processing with
shared memory. OdinMP/CCp was written in Java for
portability reasons and takes a C-program with OpenMP
directives and produces a C-program for POSIX threads.

We describe some of the ideas behind the design of
OdinMP/CCp and show some performance results achieved
on an SGI Origin 2000 and a Sun E10000. Speedup
measurements relative a sequential version of the test
programs show that OpenMP programs using OdinMP/
CCp exhibits excellent performance on the Sun E10000 and
reasonable performance on the Origin 2000.

1. Introduction

Parallel architectures that support a shared address space in
hardware have now become commonplace and they are no
longer confined to just a few processors. Servers such as the
Sun E10000 and the SGI Origin 2000 are often equipped
with 64 processors or more. Unfortunately, until quite
recently, each manufacturer of shared memory architectures
has had its own way of writing programs with a shared
address space model. With the advent of OpenMP, a new
industry standard for a shared address space programming
model, this has changed [2].

The OpenMP standard API is specified for Fortran and
C/C++ [3, 4]. The API consists of a set of compiler
directives to express parallelism, work sharing, data storage
and synchronisation. In addition there are a number of
library routines that can be used for synchronisation and to
control the work sharing in more detail. The directives
extend the programming language but does not change it.
Compilers that do not understand the OpenMP directives
can safely ignore them.

OpenMP implementations now exist for most shared
memory parallel platforms. However, up until very recently
all compilers that understand OpenMP directives are either
vendor propriatary, such as the MIPSpro compiler from
SGI, or commercial, such as the compilers from
Kuck&Associates and Portland Group. There is, however, a
need for portable public domain implementations in order

to let users of parallel computers try out OpenMP before
being committed financially.

In this paper we describe the design, implementation and
performance of a portable implementation of the OpenMP
specification for C. The result is a C-to-C translator written
in Java that takes a C program with OpenMP directives and
produces a C program using POSIX threads, or pthreads for
short, to implement the parallelism. The resulting translator
implements the entire specification for sequentially
consistent shared memory multiprocessors using pthreads.
For multiprocessors with a relaxed memory model, a slight
modification to the compiler is needed for strictly correct
behaviour for volatile variables.

We first approached the problem by attempting to
develop a mechanical way to manually translate an
OpenMP program into an equivalent program using
pthreads. In this process, we had to solve a number of
conceptual problems. Pthreads offer a granularity of
parallelism at the level of one function, which is quite
radically different from what OpenMP offers. Likewise, we
had to investigate, understand and solve such problems as
thread initialization, how to implement threadprivate
variables, or how to handle the fact that source code can
come in more than one file. Also, while the main focus was
to investigate the viability of doing this at all, we could not
entirely lose sight of performance issues, both regarding
memory use and overhead introduced into the code by the
translation.

To write the translator itself, we chose to perform the
development in Java, with the help of two compiler-writing
tools, Java Tree Builder and Java Compiler Compiler [5, 6].
The result is a working compiler called OdinMP/CCp (CCp
stands for C-to-C with pthreads). It generates code that
offers good performance, and it has the advantages that is
can be used on any platform that offers support for POSIX
threads.

Preliminary performance measurements on an SGI
Origin 2000 and a Sun E10000 shows that the performance
of OdinMP/CCp is reasonable even comparing with a
commercial OpenMP implementation, except in certain
circumstances.

OdinMP/CCp - A portable implementation of OpenMP for C
Christian Brunschen and Mats Brorsson

Department of Information Technology, Lund University
P.O. Box 118, SE-221 00 Lund, Sweden

Mats.Brorsson@it.lth.se

OdinMP/CCp is publicly available with complete source
code at the following URL: http://www.it.lth.se/odinmp. It is
also currently being used in another project, to convert the
SPLASH program suite from ANL macros to OpenMP, in
order to compare the two approaches to parallel
programming of shared memory architectures.

2. Design of the translator

We will in this section give an overview of how OdinMP/
CCp translates a C-program with OpenMP directives to a
pthreads program. A more detailed description of both the
design and the implementation can be found in [1].

2.1 Creating parallelism

The only way to create parallel activity in OpenMP is by the
means of the parallel directive as shown below:

#pragma omp parallel
{

/* Code to be executed in parallel */
}

This is in sharp contrast to pthreads where a new parallel
thread is specified by designating a function for the new
thread to run. This means that anything we want to be able
to run in parallel in the OpenMP program must be inside this
function or called by it. The basic way that OdinMP/CCp
deals with this issue works as follows:

1. OdinMP defines a function thread_function,
which basically is a large, initially empty, switch
statement.

2. Each parallel region in the program is assigned a unique
identifying number. The code inside the parallel region is
moved from its original place in the program, into the
switch statement inside thread_function, where it
can be selected by its associated number.

3. OdinMP/CCp defines a function thread_spinner,
which waits for work, and calls thread_function to
perform the actual task. This function is the basic
function each thread executes.

The parallel construct is replaced with code that:

• Allocates a team of threads.

• Tells each thread in the team to execute the parallel
region in question.

• Runs the parallel region itself as the master thread of the
team, and

• Waits for all the other threads in the team to finish.

This is illustrated in figure 1.

2.2 Work sharing constructs

The for-construct

The most common work sharing construct in OpenMP is the
for-construct. This constructs divides the iterations in a
for-loop among the available threads. We show below a
simple example in which a for-loop with 100 iterations is
parallelised. It is assumed that this code is executed inside a
parallel region. Otherwise it is ignored.

#pragma omp for
for (i = 0; i < 100; i++){

/* parallel code */
}

The OpenMP for-construct distributes the iterations of a
for-loop into smaller slices and hands them to different
threads which then runs the slices in parallel. To do this in
OdinMP/CCp we first extract the range of the for-loop
from the loop header. The each thread performs the
following repetitively.

• Fetch a slice of the shared loop.

• If there are no more slices then this thread is done with
the for-loop and exits the for-construct.

• Otherwise, iterate over the iterations as defined by the
fetched slice.

This is illustrated in figure 2. The arrows indicate how
OdinMP/CCp extracts information from the for-loop
header to find the loop index variable, the loop initialisation
value, the boundary value and the increment.

The sections construct

The for-construct is useful to distributed work in loop
parallelism. Function parallelism can be expressed by means
of the sections construct. In the example below
functions foo() and bar() are executed in parallel.

#pragma omp parallel
{
#pragma omp sections

{
#pragma omp section

{ foo(); }
#pragma omp section

{ bar(); }
}

}

The way this is solved in OdinMP/CCp is similar to the
way slices of iterations are handed out to threads for a for-
loop. We collect information about the number of sections to
run and give each section a unique identity. Each thread then
performs the following:

void foo() {
 // ...
 #pragma omp parallel
 {
 printf("hello world!\n");
 }
 // ...
}

int main(int argc, char **argv) {
 foo();
}

void foo() {
 {
 <allocate a team of threads>
 // each of these threads will be running, waiting for work

 for (i = 0; i < n_threads; i++)
 <tell thread i to run parallel region 1>

 <run parallel region 1 myself>

 for (i = 0; i < n_threads; i++)
 <wait for thread i to finish running parallel region 1>
 }

}

int main(int argc, char **argv) {
 <create n_threads threads, each running thread_spinner()>

 foo();

 <end all threads>
}

void thread_function(<region to run>) {
 switch (<region to run>) {
 case 1:

printf("hello world!\n");
break;

 }
}

void thread_spinner() {
 while (<keep running>) {
 <wait for work>
 if (<have work>)
 thread_function(<region to run>);
 else if (<end, please>)
 break;
 }
}

Figure 1. The principle of the translation of a simple OpenMP program (left) to pthreads (right).

// ...

#pragma omp for
for (i = 0; i < 100; i++)
{

foo(i);
}

// ...

// ...

{
// the loop index, made private automatically
int i;

struct { int from, to, increment, is_done }

loop = { 0, 100, 1, 0 }, // this describes the whole loop
// this is shared between threads

slice = { 0, 0, 0, 0 }; // this is the part of the loop which
// this thread gets to run

while (1) {
slice = <fetch a slice from loop>;
if (slice.is_done // we’re done with the loop, proceed

break;

// here’s the original loop, with the for loop head exchanged
for (i = slice.from;

i < slice.to;
i += slice.increment) {

foo(i);
}

} // while(1)
}

// ...

Figure 2. The translation of the for-construct in OpenMP

• Fetch a slice of sections, i.e., fetch the number of sections
this thread is to run.

• If there is no slice available, the thread is ready and exits
the sections code.

• Otherwise, it executes the appropriate sections.

2.3 Data scope attributes

A parallel region and/or a work sharing construct can have a
number of data scope attributes that control the way
variables are accessed. By default, all variables visible in a
parallel region are shared among the threads unless they
have been allocated with automatic storage, e.g. on the
stack, within the dynamic extent of a parallel region. Please
refer to the OpenMP specification for a more detailed
description of the data environment [3].

OpenMP provides a number of directives to change the
default behaviour. The following example gives a flavour of
the data scope attributes:

static int s1;

void foo() {
int s2, p, fp, rdx;
/* ... */

#pragma omp parallel shared(s1,s2) \
 private(p) \
 firstprivate(fp) \
 reduction(+ : rdx)

{
bar();

}
/* ... */

}

Here there are five different variables that have to be dealt
with differently. Variables s1 and s2 are declared as shared.
This would not have been necessary as they are visible from
within the parallel region and therefore are shared by default
but it is good practice to explicitly declare them as shared.
Variable s1 is a global static variable and is normally
allocated in the data section of the program. This section is
shared among all threads in a pthreads program and we
therefore do not need to take any special action for this
variable.

Variable s2, however, is declared within the lexical
context of function foo() and is therefore allocated on the
stack. Since the stack is private to each thread we have to
change all references to s2 to a shared memory area.

The private variable, p, in this example is re-declared in
the thread-function (see figure 1) as well as the firstprivate
variable fp. However, since fp should be initialised from

the master thread’s copy a shared version of it is also
declared in order to communicate the initialisation value.

Finally, the reduction variable is declared in a special data
structure for each thread. Each copy of the reduction
variable is initialised according to the reduction operation
and all copies are later combined into the original reduction
variable.

3. Implementation

OdinMP/CCp is written in Java based on JavaCC [6] and the
Java Tree Builder [5]. JavaCC – The Java Compiler
Compiler – distributed by Metamata Inc., is a simple yet
powerful LL(1) parser generator and was suitable as a
starting point as it includes a complete grammar for ANSI C.

The Java Tree Builder from Purdue University is a
preprocessor for JavaCC. It takes a simple JavaCC grammar
and processes it, generating classes to describe each non-
terminal node in the grammar and rewriting the grammar so
that the resulting parser will build a tree of nodes
corresponding to the parsed data.

The grammar used was the sample C grammar distributed
with JavaCC with additions for the OpenMP directives and
constructs.

The choice of Java to implement OdinMP/CCP has lead
to a portable binary distribution of the translator. The
translator has been tested on a generic dual processor PC
with Linux, an SGI Origin 2000 and various Sun
multiprocessors and was found to be portable across these
platforms without any change in the distribution at all. The
only platform dependent code concerns the way how
pthreads are scheduled. In Solaris and Linux it is possible to
specify that POSIX threads should contend for CPU
resources in the same way as processes. This is, however,
not possible without super-user privileges in IRIX, the
operating system used on the SGI Origin. Therefore, an
additional call is added on IRIX platforms in order to
provide a hint to IRIX that it should schedule the threads in
parallel. Unfortunately this scheduling policy has a negative
impact on the performance on IRIX platforms.

4. Performance

4.1 Overview

In order to utilise pthreads to implement OpenMP programs
a lot of extra code has to be added to the application. This
creates extra overheads and it is therefore not self-evident
that OdinMP/CCp as described here would be useful to write
production code. We have done a preliminary performance
evaluation in which we have run a set of five applications
and measured the resulting speedup.

4.2 Experimental setup

Platforms

We have used two different platforms for our experiments.
The first platform is an SGI Origin 2000 with a total of 100
300 MHz MIPS R12000 processors at LUNARC, Lund
university. The other platform is a Sun E10000 with a total
of 64 250 MHz UltraSPARC processors.

Both systems implement POSIX threads although
somewhat differently. On the Sun machine it is possible to
specify that a POSIX thread should be scheduled together
with processes by specifying a system scope for scheduling.
This is equivalent to bind a thread to a light-weight process
using Solaris threads. On the SGI machine, this operation is
reserved for super-users. Instead a call is made to the threads
library to suggest the ideal number of processors that this
program is to be run on. It is, however, up to the operating
system to decide the number of processors during run-time.

On the Sun E10000 we have only used OdinMP/CCp but
on the SGI Origin 2000 we have compared the performance
of OdinMP/CCp with that of MIPSpro ver. 7.3 which has
support for OpenMP for C. MIPSpro 7.3 was also used as
the back-end compiler when using OdinMP/CCp. On the
Sun E10000 we used gcc as back-end compiler. All
compilations were done with the optimisation level -O3.

Applications

We have used five different applications in the performance
evaluation:

• pi – a calculation of pi using a simple series. 100 million
partial sums.

• md – a simple molecular dynamics simulation. This is a
C-version of the md-program available from the
OpenMP web site and developed by Kuck&Associates.
2048 molecules and 10 time steps.

• laplace – solving the laplace equations with an explicit
method. 1000 by 1000 elements in the matrix and
iterating 100 times.

• cg – solving an unstructured sparse linear system with a
conjugate gradient method. This is an OpenMP version
of the same benchmark in the NAS parallel benchmark
suite. Using the class A parameters.

• cg-orphan – solving the same problem as cg but using
orphaned OpenMP directives with only one parallel
region instead of a parallel region for each work sharing
construct.

4.3 Speedup measurements

Figures 3 to 7 show the speedup using for the five
applications. The speedups are relative to the sequential
execution time without using OpenMP directives on each

platform. We have executed each application five times for
each configuration and used the average of the measured
execution times. I should be noted that the sequential
execution times on the Sun E10000 is approximately three
times as long as the sequential execution times on the SGI
Origin 2000.

The speedups were measured on 2 to 8 number of threads.
The actual parallelism achieved is a function of the

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

Number of processors

S
p

ee
d

u
p sgi

odinmp-sgi

odinmp-sun

Figure 3. Speedup for pi.

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

Number of processors

S
p

ee
d

u
p sgi

odinmp-sgi

odinmp-sun

Figure 4. Speedup for md.

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

Number of processors

S
p

ee
d

u
p sgi

odinmp-sgi

odinmp-sun

Figure 5. Speedup for laplace.

application parallelism and how the operating system
schedules the threads on available processors.

From the figures we can see that OdinMP/CCp on the Sun
E10000 performs similarly as the MIPSpro OpenMP
compiler on the SGI Origin 2000. It is, however, unclear
how the difference in scalar performance affects the
speedup.

OdinMP/CCp performs reasonably well also on the SGI
Origin 2000. The performance numbers are, however,
preliminary as we have so far been unable to make a truly
fair comparison between Odin MP/CCp which uses pthreads
and the MIPSpro compiler which uses the SGI proprietary
sprocs light-weight processes. The measurements have been
carried out on a loaded system and the standard deviations
of the execution times were high.

We have so far been unable to explain why OdinMP/CCp
performs badly for cg-orphan on the Origin 2000 while it
performs well on the Sun E10000.

5. Conclusions

We are encouraged by the fact that it has been possible in a
relatively short period of time – six months to be precise –
to develop an implementation of the OpenMP standard for
C. OdinMP/CCp has some limitations. It only works for
ANSI C and it requires the underlying architecture to be
sequentially consistent as it ignores the flush directive.

One major goal when OdinMP/CCp was developed was
portability. This has been achieved thanks to the POSIX
threads interface and the fact that the translator was written
in Java. Even if the Java byte-code is interpreted the
performance of the actual translation process is not poor.

Finally we are also encouraged by the performance of
OpenMP. Even though we have only performed a
preliminary performance evaluation the results so far
indicates that it has a reasonable performance. We intend to
characterise the performance more thoroughly in the future
and to gradually improve it.

Acknowledgements

We gratefully acknowledge the use of the computing
resources of LUNARC, centre for scientific and technical
computing at Lund University and UNICC, Unix Numeric
Intensive Calculations at Chalmers.

References
[1] Christian Brunschen, OdinMP/CCp – A Portable Compiler

for C with OpenMP to C with POSIX threads, MSc thesis,
Department of Information Technology, Lund University, P.O.
Box 118, SE-221 00 Lund, Sweden, July 1999.

[2] OpenMP Architecture Review Board, OpenMP: A Proposed
Standard API for Shared Memory Programming, White paper,
http://www.openmp.org.

[3] OpenMP Architecture Review Board, OpenMP C and C++
Application Pogram Interface, Version 1.0, October 1998.
http://www.openmp.org

[4] OpenMP Architecture Review Board, OpenMP Fortran
Application Pogram Interface, Version 1.0, October 1997.
http://www.openmp.org

[5] Jens Palsberg, Kevin Tao and Wanjun Wang, The Java Tree
Builder. http://www.cs.purdue.edu/jtb

[6] Sriram Sankar, Sreenivasa Viswandha, Rob Duncan and Juei
Chang, JavaCC, The Java Compiler Compiler.
http://www.metamata.com/JavaCC

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

Number of processors

S
p

ee
d

u
p sgi

odinmp-sgi

odinmp-sun

Figure 6. Speedup for cg.

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Number of processors

S
p

ee
d

u
p sgi

odinmp-sgi

odinmp-sun

Figure 7. Speedup for cg-orphan.

