
The WMPI Architecture for Dynamic Environments and
Simultaneous Multiple Devices1

Hernâni Pedroso, Pedro Silva and João Gabriel Silva

Dependable Systems Group
Dept. Engenharia Informática

Universidade de Coimbra – Polo II
3030-397 Coimbra

Portugal
{hernani,ptavares,jgabriel}@dei.uc.pt

Abstract

 WMPI was originally based on the MPICH
implementation. MPICH’s architecture,
though well fitted for portability and
performance, is not flexible enough to allow
the implementation of the new functionality
introduced in the MPI-2 standard. Due to this
difficulty, we decided to develop a new
architecture from scratch. This architecture
introduces new concepts that allow for the
dynamic creation and termination of processes
as well as the usage of simultaneous multiple
devices. The new architecture was designed to
be completely thread safe and to allow a rapid
development of libraries for any
communication medium. This paper describes
the reasons for developing thr new
architecture and presents the implemented
solutions to achieve the proposed goals.

Keywords. Cluster Computing, MPI, Parallel
Computing, MPI-2, WindowsNT

1. Introduction

The first version of the MPI standard [1] only
proposed a specification about how the
processes communicate between each other.

This decision was on purpose, since the
standard tried to unify the functionality present
in the several existent libraries and obtain a
consensus in the high-performance computing
community. MPI was well accepted by the
community and became a de facto standard for
parallel computing. Eager for more
functionality, the users and developers
presented several requests to the MPI Forum
[2] to increase the functionality of the MPI
standard. Version 2.0 [3] of the standard
included several new types of functionality,
from which one-sided communication and
dynamic process creation are examples.
Although the users and developers embraced
these new chapters, they require deep changes
in most of the existing MPI libraries.

The Argonne National
Laboratory/Missisipi State University
developed MPICH [4] alongside with the
standard’s first version. This library aimed to
implement all the functionality specified by the
standard in an efficient and portable fashion.
Due to its characteristics, MPICH served as a
development base for many other
implementations, which addressed different
operating systems and architectures.

WMPI (Windows Message Passing
Interface) [5,6] was the first full
implementation of the MPI standard for
Windows operating systems. The first versions
of WMPI were strongly based on the MPICH
implementation. It used the Abstract Device
Interface (ADI) [7] to interact with the
communication subsystem. A Win32 port of
the p4 [8] library was used to setup the
environment and manage the communication
between processes. Although the base

1 This work was partially supported by the
Portuguese Ministry of Science and Technology
through the R&D Unit 326/94 (CISUC) and the
project PRAXIS XXI 2/2.1/TIT/1625/95 named
ParQuantum

architecture was never changed, we conducted
several modifications during the WMPI
lifetime to improve performance and usability.
In a recent study, which evaluated
implementations of MPI for Windows NT
environment [9], WMPI was considered the
best freely available implementation. In
addition, the study concluded that WMPI rivals
with other commercial implementations in
performance and functionality.

While evolving the WMPI library to MPI-
2, we faced several limitations in the used
architecture. Although the architecture is
simple and well structured, it did not have the
necessary flexibility to introduce the necessary
changes for implementing the dynamic
creation of processes. Necessarily we designed
a complete new structure for the WMPI
library. During the several years of
development and maintenance, other pitfalls of
the architecture were identified. For example,
it was not thread safe or able to use more than
one device simultaneously. This paper presents
the new WMPI architecture, which fulfills the
new requirements. This architecture is the base
for the WMPI 2.0, an MPI-2 compliant version
of the WMPI library.

This paper first presents the architecture
issues of MPICH, inherited by the first WMPI
versions that were making difficult the
evolution of the library. Then presents the new
architecture. Further on, its objectives and the
design decisions. How the library manages
more than one device simultaneously and a
dynamic environment is extensively presented.
Then an analysis about the communication
progress in the library. Finally, a comparison
with related work and some conclusions are
presented.

2. MPICH Architecture Issues

One of the objectives of the MPICH’s design
was to make a MPI library easily portable to
other platforms, though efficient. This
objective obviously had a strong impact in the
library architecture. The portable MPI
management layer excluded all the
functionality that required machine dependent
code. The WMPI version used a port of the
MPICH most common device, the p4 [10]
library, to implement the machine dependent
code. The setup of the MPI environment is

dependent from the underlying platform. The
whole MPI environment considers that
somehow the processes were created and that
they all will be present until the end of the
computation. There is no control on how the
processes are created, destroyed or how they
communicate. This was a good decision
considering the static environment of MPI-1.
However, this scenario changed in the MPI-2
version. Since there is no mechanism to control
the creation of processes, it is not possible to
create processes dynamically.

The MPICH architecture also emphasizes
its Unix origins. It uses only one thread per
MPI process and works with one type of
communication medium at a time. These
design characteristics also helped the
portability of the library, since not all
platforms have threads. Although, some
mechanisms were implemented to use more
than one device, in fact they were very poor
and hard to use. Since only one thread was
available, the library had to make polling on
the devices to get new messages. In addition,
the message passing progress could only be
possible when the user thread made a call to a
MPI function. This architecture’s type is well
fitted for supercomputers or dedicated clusters
where there is only one process per CPU.
However, the typical NT cluster is shared
among several users, which may be executing
interactive tasks.

3. The New WMPI Architecture

MPI-2 introduced completely new features into
the standard. Some of the new types of
functionality required deep changes in the
library structure. We decided to create a
completely new architecture to avoid the
implementation of successive patches, which
are more prone to errors and make the
evolution difficult. Based on our experience
with cluster computing and considering the
trends on the field, several other reasons were
identified that strongly required a new
architecture. The design aimed to create an
architecture that is able to:

- manage a dynamic environment, where
processes could be created and
destroyed, join and leave the MPI
computation;

- work with several devices
simultaneously;

- easily support new communication
technologies by reducing the
complexity, hence the development
time, of the communication dependent
code

- be completely thread safe, and;
- diminish the communication latency.

The new architecture does not try to be
portable across other platforms. Since the
WMPI library is used only in Windows
environments, we decided to use the features
that the operating system provides. This
reduces the complexity and increases the
performance of the library.

Fig. 1. The WMPI structure.

Figure 1 presents the structure of the
WMPI library. The upper layer implements the
MPI interface. The WMPI Management Layer
(WML) is responsible for managing the MPI
environment. The WML interacts with the
existing devices through a generic interface,
called Multiple Device Interface (MDI). These
devices implement the operations, whose
implementation is dependent from the
communication medium. The WML
concentrates most of the features that allow the
objectives of the design to be achieved.

Thread safeness and performance were a
constant concern during the design and
implementation of the library’s architecture.
Every structure and all the functions that
manipulate its data were studied to verify if
they have or not to be thread safe. The
synchronization points were reduced to the
minimum to improve the general performance
of the library.

However, one of the architecture goals is
that it must easily support new communication
technologies. Through an analysis of the

library requirements, the operations that have
to be performed by medium dependent code
have been identified. To diminish the
complexity of the communication medium
dependent code (device), the set of operations
that the WML requires is quite simple. The
simplicity of the required functionality
increases the number of technologies that can
be used with WMPI. The implementation of a
device does not require any knowledge of the
library internals. It is only necessary to follow
the MDI specification that is available at the
WMPI web site [2]. This allows virtually
anyone to implement a device for WMPI. For
example, technology vendors and university
researchers can create devices for new
technologies or devices that have a better
performance in specific environments. We
expect that this characteristic will allow the
WMPI to be available in a broad set of
technologies.

The next chapters present how the WMPI
manages to work within a dynamic
environment using multiple devices, the two
major enhancements of the library.

4. Multiple Devices Management

It is common to find more than one type of
technology for communication in a cluster.
The most common configuration is, probably,
shared memory and TCP/IP. However, other
configurations are possible and some of them
may use more than two different
communication mediums. WML has the
capability to interact with any number of
different devices simultaneously. Within each
process, WML associates a device to each
machine of the cluster, according to a cluster
configuration. When one MPI process needs to
interact with another process, it chooses the
correct device and performs the necessary
action.

The user is responsible for defining how
processes communicate during the WMPI
computation through a cluster configuration
file. Figure 2 presents an example of such a
file. The Windows machine name is the
identifier of each machine. For each machine,
the user has to indicate which devices the
processes running on that machine can
communicate with and the identification of the
machine using that device. Devices are now

MPI Interface Code

WMLWML
WMPI Management Layer

Device 1 Device 2 Device N...

Medium 1Medium 1 Medium 2Medium 2 Medium NMedium N

MDIMDI

independent DLLs that are loaded at the
startup of each process according to the cluster
configuration.

Fig. 2. Example of a cluster definition.

During the design of the new architecture,
we identified the necessary operations that the
devices should perform. It was important to
reduce the expected functionality of the
devices to a minimum, since it should be
feasible to produce a device for every possible
technology. Moreover, simple devices are
easier to optimize and guarantee the
independence of the library core. The
operations can be grouped in four categories:

- Environment: The environment
functions are used to initialize and
finalize the devices. The devices use
these functions to allocate and free the
necessary resources.

- Process Creation: The only
communication medium that the
WML knows to be available to
contact the other machine is the

device specified in the cluster’s
configuration. Hence, WML relies on
the devices to create new processes.

- Connections Management: WML is
connection oriented. A connection is
opened between each pair of
processes and is maintained while the
processes are connected (have a
common group/communicator).

- Communication: Functions to send and
receive data are available. To send
data two functions are available, a
blocking send and a non-blocking
send. When receiving data, the
devices can use WML functions to
access the receiving queues and get
information about the message they
are receiving. This way it is possible
to receive the message directly from
the communication medium into the
user buffer.

5. Dynamic Environment Management

MPICH used the MPI_COMM_WORLD rank to
identify the processes in the computation.
WMPI inherited this characteristic. Since the
first version of the MPI standard implied a
static environment, all the existent processes
belonged to this communicator. However, with
the introduction of dynamic creation of
processes, it is possible for the existence of
processes in the computation that do not
belong to the MPI_COMM_WORLD and with
which messages can be exchanged. These
processes are the result of a spawn or the
joining of two MPI computations, using
MPI_Comm_connect or MPI_Comm_join.
These processes can enter and leave the
computation in runtime. When a spawn is
performed or two MPI computations join not
all the processes of both computations have to
be involved. This means that each process will
have its own set of processes with which it can
communicate. Although when the new
processes join, the communication has to be
performed through an inter-communicator,
they can form an intra-communicator using the
MPI_Intercomm_merge function. It is also
possible to extract the remote group of
processes in an inter-communicator and
manipulate it as any other group. This implies
that an inter-communicator can be closed

/Machines
machine1
tcp 193.145.134.21
other other_addr1
shmem machine1
machine2
tcp 193.145.134.11
other other_addr2
shmem machine2
machine3
tcp 193.145.134.31
shmem machine3
/Devices
default internal shmem
default external tcp
machine1 machine2 other

Other
NIC

Other
NIC

TCP
NIC

TCP
NIC

TCP
NIC

Network

Machine 1Machine 1 Machine 2Machine 2

Machine 3Machine 3

(which should indicate that the two
computations are independent) but some of the
processes still communicate, through groups
and intra-communicators that were built using
the inter-communicator. This situation is an
example of the extreme freedom that the users
have to manipulate the processes and create the
configuration of interconnections and
communicators. The usage of ranks to globally
identify the processes is impracticable in such
an environment. It is necessary to create
another form of global identification, which
must be valid whether the process starts within
the same computation or joins in runtime.

Each process has a set of devices through
which it may receive and send messages. The
set of devices is defined in the cluster
configuration file as the ones that are available
in the machine where the process is running.
For each device, the process has an address
that is used by the other processes to
communicate with it. This address must be
unique in each device. The set of addresses of
the process in the devices available, is a unique
key that represents the process in the whole
computation, since no other process can have
the same addresses in the same devices.

Each process contains a structure per
process with which it is connected. This
structure, or record, contains the set of
addresses of the process that it represents. Each
record also contains a reference to the device
that must be used to communicate with the
process. The set of the process’s records is
called the WorldView (Figure 3). It represents
all the processes in the computation with
which this process has at least one group in
common.

Fig. 3. The WMPI process’s World View.

The MPI_Groups have an array of
references to the process records that belong to

the group. The rank of each process is defined
by the index of its reference in the array. Each
process record has a reference counter that
indicates the number of groups that the
processes have in common. When this counter
reaches zero, it means that there are no more
groups in common and hence the two
processes are disconnected. In this case the
WML removes the process record from the
WorldView and erases it from memory.

The comparison between processes at the
MPI level was made, in the first version of
WMPI, by the rank of the processes in the
MPI_COMM_WORLD communicator. Now
the memory address of the process record is
used. This maintains the speed of comparison.
When a new process joins in runtime, WML
verifies which device must be used to
communicate with it. Then the WorldView is
searched to verify if a process record that uses
that device and has the same address already
exists. If it finds one it means that the process
already belongs to the WorldView and no new
process record is created.

This design works in a completely
dynamic environment. Any process can leave
the WorldView if no more common groups
exist. Even the processes that belong to the
same initial set could be removed if the
standard allowed for the destruction of the
MPI_COMM_WORLD communicator. The
design only requires one communicator to be
indestructible, the MPI_COMM_SELF. If this
communicator could be destroyed, it would be
possible to erase the process record that
contains the information of the current process.

6. Communication Progress

The WML does not use any specific thread for
communication progress. The communication
progress depends upon the implementation of
the devices used. The architecture allows the
devices to have or not threads to receive and
send messages.

Functions of the WML are available to get
information about a message that is being
received. The device is able to know if the
message that it is receiving is expected or not.
If expected the data can be copied directly
from the communication medium into the
user’s buffer. This allows for a completely
asynchronous reception of the messages. The

COMM_WORLDCOMM_WORLD

Other MPI GroupOther MPI Group

ProcProc

COMM_World GroupCOMM_World Group

ProcProc ProcProc ProcProc ThisThis
ProcProc

Device 1Device 1 Device 2Device 2

Other CommunicatorOther Communicator

WorldWorld
ViewView

MDI also specifies a function to send a
message asynchronously. When this function
is used, the user’s thread does not wait for the
completion of the send. The device is
responsible for sending the message
concurrently with the work of the user’s thread
and for notifying to the WML, through a WML
specific function, when the send is complete.
The user’s thread verifies the completion of the
message, for example when it calls the
MPI_Wait function, through the state of the
WML data.

If the device has threads for send and
receive messages then the communication
progress complies with the strictest
interpretation of the MPI Progress Rule
[11,12].

However, the existence of threads in the
devices is not required by the WML. It was
considered that if a thread is not necessary,
then it represents an added latency, due to
context switching, to the communication
through that device. If the device does not have
a receiving thread, WML uses a receive
function (specified in the MDI for this type of
devices) to receive messages from the device.
To avoid WML from polling over the several
devices to get messages, the devices have to
use a synchronization system to indicate to the
WML that messages are available.

The WML can also work with devices that
use polling to receive data. However, in this
case only one device can exist in the system.
This type of devices is common on SMPs were
processes communicate only through shared
memory.

7. Related Work

Few MPI libraries implement the interface for
dynamic process creation specified in the MPI-
2 standard. An implementation from Pallas
GmbH for Fujistu machines [13] and the
LAM/MPI library from Notre Dame [14]
already implement this functionality. None of
them works in the Windows NT environment.
Through this new architecture, WMPI is able
to manage a dynamic environment. Hence to
create new processes in run-time.

MPI/Pro [15] is able to run over more than
one communication medium and is thread safe.
However, it does not use more than one device
simultaneously and the users do not have the

same ease as with WMPI to configure the
computation, to fit the cluster configuration.

The MPICH-NT [16], MP-MPICH [17],
FM-MPI [18] and PaTENT MPI [19] cannot
use more than one device simultaneously.
Moreover, none of these implementations has
support for thread safeness and dynamic
process creation.

In contrast to WMPI, none of the libraries
has a strong independence between the library
core and the devices and all present a different
implementation for each communication
medium. In addition the development of other
devices requires a thorough knowledge of the
library.

8. Conclusions

WMPI was originally based on the MPICH
implementation. MPICH’s architecture, though
well fitted for portability and performance, is
not flexible enough to allow the
implementation of the new functionality
introduced in the MPI-2 standard. This
difficulty was the most important reason that
led to the development of a new architecture.

The architecture was designed to be
completely thread safe and to allow a rapid
development of the library for any
communication medium. One of the biggest
achievements of the architecture is to enable
anyone to easily develop his or her own
device. This can be done because the
developers do not have to have any knowledge
about the library core. Communication
medium vendors or any other research
institutions can develop their own device
implementation for the WMPI library. This
should diminish the time to have the WMPI
available over new technologies and to have
better devices.

WMPI is now able to work with more than
one device simultaneously. The devices are
independent DLLs that are loaded according to
the cluster configuration, at the startup of the
MPI process. The user is able to define which
devices are used in the computation. The
library has thus an enormous flexibility to
adjust to the user’s clusters.

The new architecture introduces to the
library the ability to manage a dynamic
environment, where processes can be added
and deleted from the computation in runtime.

The implementation of the MPI-2 standard’s
process creation interface is now possible and
is under way.

The WMPI 1.5 version, which uses this
new architecture, is already available at the
WMPI’s web site [6].

References

[1] Message Passing Interface Forum: MPI: A
message-passing interface standard.
International Journal of Supercomputer
Applications, 8(3/4):165-414 (1994).

[2] Message Passing Interface (MPI) Forum Home
Page, http://www.mpi-forum.org.

[3] Message Passing Interface Forum: MPI-2:
Extensions to the Message-Passing Interface.
(June 1997), available at http://www.mpi-
forum.org.

[4] Gropp, W., Lusk, E., Doss, N. and Skejellum,
A.: A High-Performance, Portable
Implementation of the MPI Message Passing
Interface Standard. Parallel Computing Vol.
22, No. 6, (September 1996).

[5] Marinho, J. and Silva, J.G.: WMPI – Message
Passing Interface for Win32 Clusters. Proc. of
5th European PVM/MPI User’s Group Meeting,
pp.113-120 (September 1998).

[6] WMPI Homepage – http://dsg.dei.uc.pt/wmpi.
[7] Groop, W. and Lusk, E.: MPICH ADI

Implementation Reference Manual – DRAFT.
ANL-000, Argonne National Laboratory,
Mathematics and Computer Science Division
(August 1995).

[8] Butler, R. and Lusk, E.: Monitors, messages
and clusters: The p4 parallel programming
system. Parallel Computing, 20:547-564 (April
1994).

[9] Baker, M: MPI on NT: The Current Status and
Performance of the Available Environments.

NHSE Review, Volume 4, No 1 (September
1999).

[10] Butler, R. and Lusk, E.: Monitors, messages
and clusters: The p4 parallel programming
system. Parallel Computing, 20:547-564 (April
1994).

[11] Message Passing Interface Forum: A Message-
Passing Interface Standard. Section 3.7.4
(1994).

[12] Herbert, L.S., Seefeld, W., Skjellum, A.,
Taylor, C.D. and Dimitrov, R.: MPI for
Windows NT: Two Generations of
Implementations and Experience with the
Message Passing Interface for Clusters and
SMP Environments. Proceedings of the
International Conference on Parallel and
Distributed Processing Techniques and
Applications, Vol. 1, pp: 309-317, Las Vegas,
Nevada (July 1998). Asai, N., Kentemich, T.
and Lagier, P.: MPI-2 Implementation on
Fujitsu generic passing kernel. Proceedings of
Supercomputer 99, Portland, Oregon
(November 1999).

[13] LAM / MPI Parallel Computing -
http://www.mpi.nd.edu/lam/

[14] MPI Software Technology, Inc –
http://www.mpi-softtech.com

[15] MPICH – A Portable MPI Implementation -
http://www-unix.mcs.anl.gov/mpi/mpich/

[16] MP-MPICH: Multiple Platform MPICH -
http://www.lfbs.rwth-aachen.de/~joachim/MP-
MPICH.html

[17] Lauria, M., Pakin, S., Chien, A.: Efficient
Layering for High Speed Communication: The
MPI over Fast Messages (FM) Experience.
Cluster Computing, HPDC7 special issue
(1999)

[18] Genias Software GmbH, PaTENT – Parallel
Tools Environment on NT,
http://www.genias.de/products/patent/index.ht
ml

