
Implementing MPI's One-Sided

Communications for WMPI

Fernando Elson Mour~ao and Jo~ao Gabriel Silva

Universidade de Coimbra, Departamento de Eng. Inform�atica,

P�olo II, 3030 Coimbra, Portugal

elson@dsg.dei.uc.pt, jgabriel@dei.uc.pt

Abstract. One-sided Communications is one of the extensions to MPI

set out in the MPI-2 standard. We present here a thread-based imple-

mentation of One-sided Communications written for WMPI, an existing

Windows implementation of MPI written at the Universidade de Coim-

bra. This is a major step towards WMPI incorporating the MPI-2 stan-

dard, with the further bene�t of contributing to the thread safety of

WMPI. We discuss the main design decisions associated with the im-

plementation and consider further research work required in this area to

improve both the existing implementation and to assess other implemen-

tations of One-sided Communications.

1 Introduction

MPI is the de facto standard for message passing, and its acceptance is so wide

that the demand for new features increases rapidly. So the MPI Forum released

the MPI-2 standard[1] in June 1997. This paper describes the implementation

of one of the most important new chapters in the standard, the One-Sided Com-

munications (OSC) chapter. This implementation is an extension to an existing

Windows implementation of MPI and represents the �rst step towards MPI-2

compliance.

This paper is laid out as follows. Firstly section 2 gives background informa-

tion placing this implementation of OSC into context. In section 3 the imple-

mentation is discussed, including major design decisions and performance issues.

Following this, section 4 suggests directions for further research and work, and

�nally section 5 concludes the paper.

2 Background

The implementation of OSC discussed here was done over an existing Windows

implementation of MPI, the Windows Message Passing Interface (WMPI) [2, 3].

WMPI is now in the process of being extended to meet the requirements of

the MPI-2 standard [1]. The implementation of OSC forms part of this work.

Below we give brief details of WMPI, the OSC chapter in the MPI2 standard

and an overview of OSC.



2.1 WMPI

WMPI was the �rst implementation of MPI for computers running the Windows

operating system. This implementation was originally based on MPICH [4{7]

but it has been tuned and recently Mark Baker showed[8] that WMPI was the

fastest Windows implementation freely available. The idea behind WMPI is to

take advantage of the evergrowing number of Windows based machines and that

purpose has been achieved.

2.2 MPI 2

MPI-2.0, as stated by the MPI Forum, is a set of extensions to the MPI-1.1 stan-

dard. These extensions include a de�ned way of running MPI processes, C++

bindings and thread compliance. However its main new features are discussed in

its four main chapters:

{ Process Creation and Management is a �rst simple approach to allow MPI

applications to launch more MPI processes during runtime, a feature mostly

needed in networks of workstations (NOWs) and clusters of PCs (COPs).

{ Parallel I/O concerns the parallel and distributed environments but is out-

with the message passing scope.

{ Extended Collective Operations are a true extension to the existing collective

operations, but also an extension to allow collective operations to cope with

Process Creation and Management.

{ One-Sided Communications are asynchronous communications that allow

one process to specify both the sending and receiving parameters for the

message being transferred, hence the name "one-sided". This also means

that the remote process involved does not have to explicitly call any MPI

function to send or receive the message.

As is evident from their names, only one, Extended Collective Operations,

refers to pure message passing. The reasons for this seem to be related to the fact

that MPI is being used so widely that there is a need to cover other areas aside

from pure message passing. Moreover, nowadays the use of NOWs and COPs

for parallel computing is a reality, which seems to have driven the MPI Forum

to take into consideration the needs of these types of machines in presenting

chapters such as Process Creation and Management.

2.3 One-Sided Communications

The MPI Forum also names OSC function calls as remote memory access (RMA)

calls. There is a set of synchronisation functions to control the access to remote

processes' memory, and a set of RMA functions to retrieve and put data into a

remote process's memory.

For RMAs to be issued a group of processes have to call an initialisation

function, MPI Win Create. There each process states the amount of memory that



is available for remote access, as well as giving a pointer to that space. When

the RMAs are �nished the processes call MPI Win free to release the memory

and close remote accesses.

Between these two calls any number of synchronisation and RMA calls can

be issued. The synchronisation calls open what the standard refers to as epochs.

Epochs can be access epochs or exposure epochs. If a process A is issuing

RMAs to a process B then process A must have an access epoch open and process

B must have an exposure epoch open. There are three types of synchronisation

calls that can be used:

Fence (MPI Win fence) is a global (to the group of processes that initially called

MPI Win Create) synchronisation call which opens both exposure and access

epochs in all the processes.

Start/Post (MPI Win start, MPI Win complete, MPI Win post, MPI Win wait)

are two pairs of synchronisation calls that open and close an access epoch

and a corresponding exposure epoch on a group of processes. The accessing

processes call start and complete, which respectively open and close an access

epoch, while the targeted processes have to call post and wait to respectively

open and close an exposure epoch.

Lock (MPI Win lock, MPI Win unlock) is a one-to-one synchronisation call that

opens an access epoch at the calling process and an exposure epoch at the

given target.The exposure epoch is opened without the target process having

to call any synchronisation call or even being aware of its memory being

accessed.

The RMA calls are:

{ MPI Get to read data to remote processes.

{ MPI Put to write data to remote processes.

{ MPI Accumulate to write data to remote processes but using an operation

over the existing data.

To avoid repeating the standard refer to the MPI 2.0 Standard document for

further details.

3 Implementation

This implementation is a �rst prototype and improvements are expected. In par-

ticular since many of the implementation options were tightly restricted. As well

as the standard's requisites there was already a fully running implementation of

MPI which had not been planned to satisfy the needs of OSC. Thus some op-

tions taken were driven by the fact that it would not pay o� to undertake certain

changes to the existing code. The most relevant ones relate to the asynchronous

agent to handle the requests, and the issue of datatypes handling. This section

discusses the most important implementation options taken and the reasons for

them.



3.1 Synchronisation Model

The standard states that OSC follows a loose synchronisation model. For that

the synchronisation function calls should only block when strictly necessary.

However the standard allows an implementation to block on all synchronisation

calls if desired. The implementation discussed here behaves as follows:

{ The fence call blocks when it is closing an epoch.

{ The start call blocks if any of the processes in the group has not yet closed

a previous epoch from the calling process.

{ The complete call only blocks if there are RMAs requests waiting for a reply.

{ The post call does not block.

{ The wait call blocks until all processes in the accessing group call complete.

{ The lock call only blocks if the target process is the local and there is a

lock being held already. Locks to remote processes do not block under any

circumstance.

{ The unlock call blocks until all the issued RMAs receive a reply and until

the lock epoch is closed at the target process.

This behaviour is more complex to implement than blocking all calls, but copes

better with network latency in COPs. Moreover if all calls were to block then

the whole purpose and advantage of loose asynchronous communications would

be lost.

3.2 To Thread or Not to Thread

In NOWs and COPs there is no native support for RMAs, so an asynchronous

agent is required to handle requests. This can be achieved either by using spe-

ci�c hardware or by implementing it with software. There are several ways of

implementing it depending on the system it is being implemented for. The two

approaches we considered for OSC were:

{ All MPI calls check for asynchronous OSC requests.

{ Use a separate software agent such as a thread or a dedicated process.

The �rst option would require all MPI calls to check if a request for RMAs

had been issued and if so the request would be dealt with. This option requires

less dramatic changes to the existing code, but it is easy to see that if a targeted

process does few calls to MPI the performance is a�ected. Scalability is poor

and the method is prone to process starvation and deadlocks. It also might

cause delay on simple MPI calls if a reasonable number of OSC requests are on

hold and have to be processed.

The second option could be implemented using a process or using threads. If

a process were to be implemented then a large amount of data would have to be

shared between this process and the MPI processes. Thus interprocess commu-

nication mechanisms such as semaphores and shared memory would have to be



used intensively. These mechanisms, along with context switching between pro-

cesses, are very expensive in terms of performance. Thus threads were considered

to be a better option.

Having decided to use threads a second decision was required: to use only

one thread per process or one thread per window. In the �rst case one thread

would serve all windows of a given MPI process. In the second case each window

which the process creates has a thread associated with it. Our conclusions were

that one thread per process could easily become a bottleneck, is obviously more

complex and in certain ways defeats the purpose of using threads.

In the implementation scheme used, a thread is created in the MPI Win create

call each time a new window is created. The thread is destroyed by the MPI Win free

call.

3.3 Datatypes

The datatypes handling functions are not required to be global operations. The

WMPI implementation relies on this fact to make datatype handling calls local.

Considering that the internal data representation can di�er from machine to

machine, sending or receiving data using OSC becomes an issue. When using

regular MPI send and receive calls this is not a problem because when data

is received the local datatype is used to un-marshal the data. However when

using OSC the datatype is unknown at the receiving end. Both datatypes (send

and receive) are given as parameters at the process issuing the RMA. Thus the

controller thread has no information about what datatype to use to marshal or

un-marshal the data.

The solutions found to this problem are:

{ Pack and send the needed datatype information with each request.

{ Change datatype handling function calls to become global operations.

{ Use datatype caching to improve performance over the �rst option presented

here.

The solution implemented was the �rst of these, due to the fact that the

other two required further research and e�ort which was beyond the project's

scope. A more detailed discussion on the last two options is presented in section

4.

3.4 Performance

As stated before performance was not the priority for this project. Although

some benchmarking was planned it could not be performed.

The planned benchmarking was to be done using third party benchmarking

applications. However no suitable applications were found. This can be explained

by the fact that there are few implementations of OSC and those that do exist

are not in the public domain.



A �rst formal analysis suggests that the results are likely to be below that

expected for a high performance library. The most obvious reason for lower per-

formance is the datatype information sent with each RMA request. A less obvi-

ous reason is that the actual RMA requests are sent and processed individually.

However an algorithm that takes advantage of the loose synchronisation model

could improve the performance of the current implementation. The following

section describes some of these as a subject of further research.

4 Further research

This section highlights areas where further research and work on the OSC im-

plementation is needed. While this list is not exhaustive we believe it covers the

major issues.

4.1 Datatypes Handling

As discussed in section 3.3 handling datatypes proved to be a matter of concern

in implementing OSC. Datatypes are local to MPI processes but in OSC MPI

processes need to know about datatypes belonging to other processes.

At the moment each time an RMA is issued the required datatype informa-

tion is sent with the request. However we suggest two approaches to improve

this solution: global IDs for datatypes and caching of datatype information.

Global IDs: If the datatypes were identi�ed by a global ID then the problem

no longer exists, as all processes will have the required information. However

to achieve this all current MPI datatypes handling calls would have to become

collective. There are three main disadvantages to this option:

{ It does not follow the standard.

{ It adversely a�ects performance.

{ Under dynamic process creation the propagation of global IDs and datatypes'

information to the new processes has to be done, i.e. we still have the same

problem.

Cache of Datatypes Information: If the datatype information currently sent

with each RMA request were cached by the controller thread, then subsequent

RMAs would not need to send the information again. This approach exploits

locality of reference in long running high performance applications. Additionally

it does not require changes to the current WMPI implementation and is an

extension to the OSC implementation presented here.



4.2 RMA Grouping

There is potential to improve the handling of RMA requests. Instead of issuing

RMA calls individually, grouping them could cope better with latency and low

bandwidths. Further research is needed to �nd the optimal grouping scheme, or

to develop an adaptative algorithm to suit the needs of an application at a given

time. For instance, one issue to be considered is the tradeo� between the size

of the message and the time required to process the number of RMAs in the

message.

4.3 Benchmarking

Benchmarks are fundamental to high performance libraries. They are not only

a way of assessing improvements but more importantly to spot areas that need

improvement. For OSC we consider that benchmarking should concentrate on

the synchronisation calls as these are the ones that require more processing and

data checking.

5 Conclusion

In this paper we have described the implementation of One-Sided Communica-

tions for WMPI. The �rst results are satisfying, but the lack of proper bench-

marking applications restricted the project work. Further work is required in the

area, in particular to develop benchmarks, assess the e�ects of grouping RMA

accesses and to improve datatype handling.

References

1. Message Passing Interface Forum, "MPI-2: Extensions to the Message-Passing In-

terface", June 1997.

2. Marinho, Jos�e, Silva, Jo~ao Gabriel: WMPI - Message Passing Interface for Win32

Clusters, in Proc. of 5th European PVM/MPI Users' Group Meeting, pp. 113{120,

September 1998.

3. Jos�e Marinho: Realiza�c~ao Pr�atica da Norma MPI para Redes de Computadores

Pessoais, MSc thesis, August 1996, Universidade de Coimbra

4. William Gropp, Ewing Lusk, "MPICH Working Note: Creating a new MPICH de-

vice using the Channel interface - DRAFT", ANL/MCS-TM-000, Argonne National

Laboratory, Mathematics and Computer Science Division

5. William Gropp, Ewing Lusk, "MPICH ADI Implementation Reference Manual -

DRAFT", ANL-000, Argonne National Laboratory, August 23, 1995

6. Ralph Butler, Ewing Lusk, "User's Guide to the p4 Parallel Programming System",

Argonne National Laboratory, Technical Report TM-ANL-92/17, October 1992,

Revised April 1994

7. W. Gropp, E. Lusk, N. Doss, and A. Skjellum: "A High-Performance, Portable

Implementation of the MPI Message Passing Interface Standard", Pre-print MCS-

P567-0296, July 1996.



8. Mark Baker, "MPI on NT: The Current Status and Performance of the Available

environments", in Proc. of 5th European PVM/MPI Users' Group Meeting, pp.

63{73, September 1998.


