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Abstract. This paper describes WMPI1, the first full implementation of the 
Message Passing Interface standard (MPI) for clusters of Microsoft's Windows 
platforms (Win32). Its internal architecture and user interface are presented, 
along with some performance test results (for release v1.1), that evaluate how 
much of the total underlying system capacity for communication is delivered to 
the MPI based parallel applications. WMPI is based on MPICH, a portable 
implementation of the MPI standard for UNIX® machines from the Argonne 
National Laboratory and, even when performance requisites cannot be satisfied, 
it is a useful tool for application developing, teaching and training. WMPI 
processes are also compatible with MPICH processes running on Unix 
workstations. 

1. Introduction 

Parallel platforms based on heterogeneous networked environments are widely 
accepted. This kind of architecture is particularly appropriate to the message-passing 
paradigm that has been made official by the Message Passing Interface standard 
(MPI) [1]. Some relevant advantages over massively parallel machines are availability 
and excellent competitive performance/cost ratios, and the main disadvantage relies 
on the underlying networks and communication subsystems that are not optimised for 
message exchange performance but reliability and low cost. 

Most of the researchers presently interested in parallel programming (and probably 
in the future) may not have access to massively parallel computers but generally do 
have networks of both PC and UNIX machines that are able to communicate with 
each other. MPI libraries were originally available for clusters of UNIX workstations 
with the same or even lower capabilities than the present personal computers (PCs) 
running the Microsoft Win32 operating systems (Win32 platforms). Being these PCs 
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almost everywhere and having reached competitive levels of computational power 
[2,3], there was no reason to keep them out of the world of parallel programming. 
Additionally, since many local area networks (LAN's) consist of a mix of PC and 
UNIX workstations, protocol compatibility between UNIX and Win32 MPI systems 
is an important feature. These considerations lead to the development of the WMPI 
package, the first MPI implementation for clusters of Win32 machines, first released 
on April 1996. WMPI provides the ability to run MPI programs on heterogeneous 
environments of Win32 (Windows 95 and NT) and UNIX architectures. The wide 
availability of Win32 platforms makes WMPI a good learning and application 
development tool for the MPI standard. 

Section 2 introduces the bases of the WMPI package development. Then, section 3 
shortly describes how to use WMPI for developing and running parallel applications. 
In section 4 some internal details are explained and, finally, the performance of 
WMPI is evaluated in section 5 with clusters based on Win32 platforms. 

2. Design Philosophy 

MPICH [4,5], a message passing implementation from Argonne National 
Laboratory/Mississippi State University, is fully available for general-purpose UNIX 
workstations and it enables heterogeneous UNIX platforms to cooperate using the 
message-passing computational model. Therefore, an MPICH compatible WMPI 
implementation was considered to be the most appropriate and time-effective solution 
for the integration of Win32 and UNIX platforms into the same virtual parallel 
machine.  

MPICH has a layered implementation. The upper layer implements all the MPI 
functions, is independent of the underlying architecture and relies on an Abstract 
Device Interface (ADI) that is implemented to match a specific hardware dependent 
communication subsystem [6,7]. Depending on the environment, the latter can be a 
native subsystem or another message passing system like p4 or pvm. 

Fig. 1. WMPI and Wp4 process structure 

For the sake of compatibility with UNIX workstations and to shorten development 
time, p4 [8], an earlier portable message passing system from the Argonne National 
Laboratory/Mississippi State University, was chosen because it is the communication 
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subsystem that is used by MPICH for TCP/IP networked UNIX workstations 
(MPICH/ch_p4). Most of the porting work is just concerned with p4, being this layer 
the only one that directly works on top of the operating system. 

3. User Interface 

WMPI consists of dynamic link libraries, for console and GUI Win32 applications, 
that offer all the MPI and p4 application programming interfaces (API) with C/C++ 
and Fortran 77 bindings, and a daemon that runs in each Win32 machine for 
automated remote starting. MPI and p4 programs written for UNIX require almost no 
changes except for UNIX specific system calls (e.g., fork()’s), which are not very 
frequent in this type of applications anyway. 

3.1. Startup 

WMPI and Wp4 application's startup and configuration are similar to the original p4 
communication system, being every process of a parallel application statically defined 
in a process group configuration file. 

3.2. Remote Starting 

For remote starting, the original MPICH and p4 UNIX systems try to contact two 
specific daemons on target machines - the p4 secure server and the p4 old server. A 
compatible implementation of the p4 old server daemon is available for WMPI as an 
application and as an NT service. If this server is not available, WMPI tries to contact 
a remote shell daemon in the remote machine. 

4. Internal Architecture 

Some internal details are described in this section. As mentioned earlier, the p4 layer 
handles most of the platform dependent features. Hence, the major concern of the 
following discussion is related to this communication subsystem.  

4.1. Compatibility and Heterogeneity 

For the sake of compatibility with MPICH/ch_p4 for UNIX, the same message 
structures and protocols are kept for communication between distinct clusters.  

Communication can be established between a pair of nodes with different internal 
data representations. To deal with this situation appropriate data conversions must be 
performed on message contents to match the destination format. As with the original 
systems, WMPI and Wp4 processes are aware of data representation for the other 
processes and handle it in a transparent way to the users. Data conversion only occurs 
when strictly necessary and a subset of the standard XDR protocol has been 



   
 

implemented for that purpose, although the MPI layer just uses simple byte swapping 
whenever it is possible. 

4.2. Local Communication 

Messages that are sent between WMPI processes in the same cluster (set of processes 
running in the same machine) are internally exchanged via shared memory, with each 
process having a message queue. For that purpose, each cluster has a private large 
contiguous shared memory block that is dynamically managed (global shared 
memory) using the monitor paradigm. The Win32 API provides some efficient and 
simple mechanisms to allow the sharing of resources between processes despite of 
distinct virtual address spaces and contexts [9]. 

4.3. Remote Communication 

Communication between distinct clusters is achieved through the standard TCP 
protocol that provides a simple and fast reliable delivery service. To access the TCP 
protocol a variation of BSD sockets called Windows sockets or simply Winsock, 
which was approved as a standard for TCP/IP communication under MS Windows, is 
used. 

For every process, a dedicated thread (network receiving thread) receives all the 
TCP incoming messages and puts them into the corresponding message queue. As a 
result, MPI receive calls just test the message queues for the presence of messages. 

4.4. Performance Tuning 

WMPI is designed to avoid any kind of active waiting. Any thread that starts waiting 
for some event to occur stops competing for the CPU immediately and does not use 
its entire quantum. As an example, when its message queue is empty, a process that 
makes a blocking receive call stops waiting for a semaphore that is in a non-signaled 
state (counter equal to zero). Then, just after adding a message to the empty queue, 
the network receiving thread or a local process turn the semaphore into a signaled 
state, then enabling the waiting process.  

5. Performance Evaluation 

The main goal of this section is to quantify the efficiency of WMPI (release v1.1) for 
delivering the underlying communication capacity of a system to the applications. 
Also, results obtained with single and dual Pentium boxes are compared. 

5.1. Testbed 

All the machines involved in the experiments (Table 1) are hooked together by 
dedicated 10 Base T or 100 Base T Ethernet hubs. Some sources of significant 



   
 

overhead (software and hardware) already exist between the transmission physical 
medium and the Winsock interface that is used by WMPI. To quantify the real 
overhead that the WMPI layer is responsible for, some of the experiments are 
repeated directly on top of the Winsock (TCP/IP) interface. Every socket is 
configured with the TCP_NODELAY option, as in the Wp4 layer, in order to avoid 
small messages to be delayed by the TCP protocol (default behaviour). 

Table 1. Machines used for the experiment 

CPU OS RAM # 
Dual Pentium Pro 200Mhz NT Server 128 MB 1 
Dual Pentium Pro 200Mhz NT Workstation 128 MB 1 
Single Pentium Pro 200Mhz NT Workstation 64 MB 4 

5.2. MPI Benchmark Tests 

Message passing overhead is the main bottleneck for speedup. Some results that have 
been obtained with the Pallas MPI benchmarks (PMB) [10] are reported here. 

Table 2. Pallas MPI benchmark tests 
PingPong Two messages are passed back and forth between two processes (MPI_Send/ MPI_Recv). 
PingPing Two messages are exchanged simultaneously between two processes (MPI_Sendrecv). 

Xover Two messages are sent and received in reverse order (MPI_Isend/ MPI_Recv). 
Cshift A cyclic shift of data along a one-dimensional torus of four processes (MPI_Sendrecv). 

Exchange In one-dimensional torus of four processes, each process sends a message to its right 
neighbour and then to the left one (MPI_Isend). Then, it receives a message from its left 
neighbour and then from the right one. 

Every test is repeated with messages of variable length. For each message length, 
ranging from 0 bytes to 4 Mbytes, tests are repeated several times2 to smooth network 
fluctuations. Latency is half (for PingPong, PingPing and Cshift) or a quarter (for 
Xover and Exchange) the measured average time to complete. 

5.3. Remote Communication 

Tables 3 and 4 depict some results of the Ping-Pong test with processes running on 
distinct machines. A pair of Dual Pentium machines and another of Single Pentium 
machines are separately used. For this latter, an equivalent Ping-Pong test that is 
directly implemented on top of the Winsock interface is also executed. The overhead 
columns of these tables represent the percentage of the available bandwidth at the 
Winsock interface (the Winsock columns) that, because of its internal operation, the 
WMPI layer cannot deliver to end-users. 

 
2  For message lengths up to 256 Kbytes: 100 times. For message lengths equal to 512 Kbytes, 

1 Mbyte, 2 Mbytes and 4 Mbytes: 80, 40, 20 and 10 times respectively. 



   
 

Table 3. Bandwidth with a 10 Base T hub 

Size Pair of Dual 
Pentiums 

Pair of Single Pentiums 

(bytes) WMPI (Mbps) WMPI (Mbps) Winsock (Mbps) Overhead (%) 
1 0.01 0.01 0.04 63.6 
4 0.06 0.06 0.16 63.6 

16 0.23 0.23 0.64 63.6 
64 0.73 0.93 2.05 54.5 

256 2.40 2.93 5.12 42.9 
1024 5.81 6.07 7.80 22.2 
4096 7.49 7.98 8.84 9.7 
8192 7.99 8.49 8.97 5.2 

32768 8.30 8.75 8.95 2.2 
65536 8.34 8.81 8.93 1.3 

131072 8.28 8.81 8.94 1.5 
262144 8.27 8.79 8.94 1.7 

1048576 8.27 8.77 8.94 1.9 
4194304 8.18 8.74 8.93 2.2 

Table 4. Bandwidth with a 100 Base T hub 

Size Pair of Dual 
Pentiums 

Pair of Single Pentiums 

(bytes) WMPI (Mbps) WMPI (Mbps) Winsock (Mbps) Overhead (%) 
1 0.02 0.02 0.05 66.7 
4 0.05 0.07 0.21 66.7 

16 0.26 0.28 0.85 66.7 
64 0.94 1.14 3.41 66.7 

256 2.71 4.50 13.65 67.0 
1024 14.89 16.38 32.77 50.0 
4096 34.86 36.41 59.58 38.9 
8192 39.60 48.37 68.62 29.5 

32768 51.35 68.89 71.72 3.9 
65536 50.83 68.85 74.79 7.9 

131072 49.53 69.10 85.11 18.8 
262144 51.92 70.05 86.71 19.2 

1048576 49.48 71.14 87.94 19.1 
4194304 45.50 63.88 87.48 27.0 

As expected, WMPI is less performing than the Winsock interface. For small 
messages the message size independent overhead of WMPI (e.g., constant-size header 
fields) gives rise to overhead values over 50% in tables 3 and 4. For large messages, 
the copying of data bytes between WMPI internal buffers and the application 
allocated buffers is one of the main contributions for the overhead. It doesn't depend 
on the available bandwidth because only internal processing is included. Thus, the 
overhead of WMPI for large messages is much higher with the 100 Base T 
connection. For larger messages, performance starts decreasing because memory 
management (e.g., copying) gets less efficient for larger blocks. 

The Dual Pentium boxes always perform worst than the single ones. A possible 
reason may be that some data has to be exchanged between processes (e.g., between a 
WMPI process and the TCP service provider) that are, possibly, running on different 
processors. Thus, data that has to be exchanged between distinct processes is not 
found in the data cache of the destination processor. 

As a conclusion and despite of some significant overhead, it can be concluded that 
WMPI is able to give a significant portion of the underlying available bandwidth to 
the applications. Encouraging maximum values of 8.8 Mbps and 71.14 Mbps are 
obtained with 10 Base T and 100 Base T connections, respectively.  



   
 

5.4. More Communication Patterns. 

Other PMB benchmarks (PingPing, Xover, Cshift and Exchange) have been also 
executed with four single Pentium Pro machines and a 100 Base T hub (table 5). 

Table 5. Bandwidth (Mbps) with a 100 Base T hub and 4 single Pentium Pro machines 

Size 
(bytes) 

PingPong 
(2 proc.) 

PingPing 
(2 proc.) 

Xover 
(2 proc.) 

Cshift 
(4 proc.) 

Exchange 
(4 proc.) 

1 0.02 0.02 0.02 0.02 0.02 
4 0.07 0.09 0.08 0.06 0.10 

16 0.28 0.37 0.32 0.32 0.39 
64 1.14 1.26 1.36 1.28 1.46 

256 4.50 5.12 5.12 4.95 5.74 
1024 16.38 18.20 20.35 18.20 20.74 
4096 36.41 46.81 42.28 32.73 32.71 

16384 60.82 65.37 60.89 36.36 35.13 
65536 68.85 74.26 66.07 33.24 38.55 

262144 70.05 76.71 64.19 34.73 35.68 
524288 70.54 77.38 65.34 38.26 36.79 

1048576 71.14 77.03 65.80 39.82 40.51 
2097152 69.44 75.21 63.97 40.10 39.81 
4194304 63.88 69.66 60.02 39.78 39.17 

When compared to the Ping-Pong test results, only Cshift and Exchange 
experience a significant difference for messages up from 4 Kbytes. Being Cshift and 
Exchange the only tests that make the four processes access the network bus 
simultaneously to send messages, the increased number of collisions is the main 
reason for that performance loss. 

5.5. Local Communication 

Table 6. Bandwidth for local communication 

Size Pair of Dual 
Pentiums 

Pair of Single Pentiums 

(bytes) PingPong (Mbps) PingPong (Mbps) PingPing (Mbps) Xover (Mbps) 
1 0.05 0.16 0.16 0.10 
4 0.40 0.64 0.64 0.43 

16 1.60 2.56 2.56 1.71 
32 1.65 5.12 2.56 3.41 

128 13.65 20.48 10.24 13.65 
512 26.43 81.92 40.96 54.61 

2048 105.70 163.84 163.84 163.84 
8192 168.04 327.68 327.68 262.14 

16384 278.88 524.29 524.29 403.30 
32768 280.37 655.36 582.54 386.93 

131072 150.77 282.64 265.13 173.75 
262144 150.82 238.04 233.93 177.50 

1048576 147.07 227.87 222.58 174.29 
4194304 145.10 220.46 215.44 173.16 

Table 6 depicts some results with two processes running on the same machine. As 
expected, communication between two processes running on the same machine is 
much more efficient than remote communication because it is achieved through 
shared memory. It is also visible that the already noticed performance discrepancy 
between Dual and Single Pentium boxes and performance decreasing is greatly 
enhanced. With just a single processor the probability of a receiving process to get a 



   
 

message, or part of it, from its local data cache is very high because local 
communication between two WMPI processes is exclusively based on shared data.  

6. Conclusions 

WMPI fulfills the goals outlined at the beginning of this document, i.e., an MPI 
support for widely available Win32 platforms that widespread this accepted 
programming model. It also enables cooperation between low cost Win32 machines 
and UNIX ones, to offer accessible parallel processing. Additionally, the download of 
WMPI (http://dsg.dei.uc.pt/w32mpi) by more than 1700 different institutions (until 
March 98) since its first release (April 96) demonstrates how real is the interest for 
MPI based parallel processing under Win32 clusters and how valuable and useful has 
been the development of WMPI. 

Presently there are a few other available implementations of MPI for Windows, but 
WMPI is still the most efficient and easy to use MPI package for Win32 based 
clusters [11]. More complex communication patterns of some real applications can 
result in higher communication overheads. Nevertheless, the expected performance is 
promising due to a positive evolution of the interconnection technologies and of the 
individual computational power for Win32 platforms. 
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