

WMPI
Message Passing Interface for Win32 Clusters

José Marinho† and João Gabriel Silva‡

†Instituto Superior de Engenharia de Coimbra, Portugal
fafe@isec.pt

‡Departamento de Engenharia Informática, Universidade de Coimbra, Portugal
jgabriel@dei.uc.pt

Abstract. This paper describes WMPI1, the first full implementation of the
Message Passing Interface standard (MPI) for clusters of Microsoft's Windows
platforms (Win32). Its internal architecture and user interface are presented,
along with some performance test results (for release v1.1), that evaluate how
much of the total underlying system capacity for communication is delivered to
the MPI based parallel applications. WMPI is based on MPICH, a portable
implementation of the MPI standard for UNIX® machines from the Argonne
National Laboratory and, even when performance requisites cannot be satisfied,
it is a useful tool for application developing, teaching and training. WMPI
processes are also compatible with MPICH processes running on Unix
workstations.

1. Introduction

Parallel platforms based on heterogeneous networked environments are widely
accepted. This kind of architecture is particularly appropriate to the message-passing
paradigm that has been made official by the Message Passing Interface standard
(MPI) [1]. Some relevant advantages over massively parallel machines are availability
and excellent competitive performance/cost ratios, and the main disadvantage relies
on the underlying networks and communication subsystems that are not optimised for
message exchange performance but reliability and low cost.

Most of the researchers presently interested in parallel programming (and probably
in the future) may not have access to massively parallel computers but generally do
have networks of both PC and UNIX machines that are able to communicate with
each other. MPI libraries were originally available for clusters of UNIX workstations
with the same or even lower capabilities than the present personal computers (PCs)
running the Microsoft Win32 operating systems (Win32 platforms). Being these PCs

1 This work was partially supported by the Portuguese Ministério da Ciência e Tecnologia, the

European Union through the R&D Unit 326/94 (CISUC), the project ESPRIT IV 23516
(WINPAR) and the project PRAXIS XXI 2/2.1/TIT/1625/95 (PARQUANTUM)

almost everywhere and having reached competitive levels of computational power
[2,3], there was no reason to keep them out of the world of parallel programming.
Additionally, since many local area networks (LAN's) consist of a mix of PC and
UNIX workstations, protocol compatibility between UNIX and Win32 MPI systems
is an important feature. These considerations lead to the development of the WMPI
package, the first MPI implementation for clusters of Win32 machines, first released
on April 1996. WMPI provides the ability to run MPI programs on heterogeneous
environments of Win32 (Windows 95 and NT) and UNIX architectures. The wide
availability of Win32 platforms makes WMPI a good learning and application
development tool for the MPI standard.

Section 2 introduces the bases of the WMPI package development. Then, section 3
shortly describes how to use WMPI for developing and running parallel applications.
In section 4 some internal details are explained and, finally, the performance of
WMPI is evaluated in section 5 with clusters based on Win32 platforms.

2. Design Philosophy

MPICH [4,5], a message passing implementation from Argonne National
Laboratory/Mississippi State University, is fully available for general-purpose UNIX
workstations and it enables heterogeneous UNIX platforms to cooperate using the
message-passing computational model. Therefore, an MPICH compatible WMPI
implementation was considered to be the most appropriate and time-effective solution
for the integration of Win32 and UNIX platforms into the same virtual parallel
machine.

MPICH has a layered implementation. The upper layer implements all the MPI
functions, is independent of the underlying architecture and relies on an Abstract
Device Interface (ADI) that is implemented to match a specific hardware dependent
communication subsystem [6,7]. Depending on the environment, the latter can be a
native subsystem or another message passing system like p4 or pvm.

Fig. 1. WMPI and Wp4 process structure

For the sake of compatibility with UNIX workstations and to shorten development
time, p4 [8], an earlier portable message passing system from the Argonne National
Laboratory/Mississippi State University, was chosen because it is the communication

TCP/IP Network

Winsock

MPI/p4
source code

Win32

MPI

p4

WMPI DLL

subsystem that is used by MPICH for TCP/IP networked UNIX workstations
(MPICH/ch_p4). Most of the porting work is just concerned with p4, being this layer
the only one that directly works on top of the operating system.

3. User Interface

WMPI consists of dynamic link libraries, for console and GUI Win32 applications,
that offer all the MPI and p4 application programming interfaces (API) with C/C++
and Fortran 77 bindings, and a daemon that runs in each Win32 machine for
automated remote starting. MPI and p4 programs written for UNIX require almost no
changes except for UNIX specific system calls (e.g., fork()’s), which are not very
frequent in this type of applications anyway.

3.1. Startup

WMPI and Wp4 application's startup and configuration are similar to the original p4
communication system, being every process of a parallel application statically defined
in a process group configuration file.

3.2. Remote Starting

For remote starting, the original MPICH and p4 UNIX systems try to contact two
specific daemons on target machines - the p4 secure server and the p4 old server. A
compatible implementation of the p4 old server daemon is available for WMPI as an
application and as an NT service. If this server is not available, WMPI tries to contact
a remote shell daemon in the remote machine.

4. Internal Architecture

Some internal details are described in this section. As mentioned earlier, the p4 layer
handles most of the platform dependent features. Hence, the major concern of the
following discussion is related to this communication subsystem.

4.1. Compatibility and Heterogeneity

For the sake of compatibility with MPICH/ch_p4 for UNIX, the same message
structures and protocols are kept for communication between distinct clusters.

Communication can be established between a pair of nodes with different internal
data representations. To deal with this situation appropriate data conversions must be
performed on message contents to match the destination format. As with the original
systems, WMPI and Wp4 processes are aware of data representation for the other
processes and handle it in a transparent way to the users. Data conversion only occurs
when strictly necessary and a subset of the standard XDR protocol has been

implemented for that purpose, although the MPI layer just uses simple byte swapping
whenever it is possible.

4.2. Local Communication

Messages that are sent between WMPI processes in the same cluster (set of processes
running in the same machine) are internally exchanged via shared memory, with each
process having a message queue. For that purpose, each cluster has a private large
contiguous shared memory block that is dynamically managed (global shared
memory) using the monitor paradigm. The Win32 API provides some efficient and
simple mechanisms to allow the sharing of resources between processes despite of
distinct virtual address spaces and contexts [9].

4.3. Remote Communication

Communication between distinct clusters is achieved through the standard TCP
protocol that provides a simple and fast reliable delivery service. To access the TCP
protocol a variation of BSD sockets called Windows sockets or simply Winsock,
which was approved as a standard for TCP/IP communication under MS Windows, is
used.

For every process, a dedicated thread (network receiving thread) receives all the
TCP incoming messages and puts them into the corresponding message queue. As a
result, MPI receive calls just test the message queues for the presence of messages.

4.4. Performance Tuning

WMPI is designed to avoid any kind of active waiting. Any thread that starts waiting
for some event to occur stops competing for the CPU immediately and does not use
its entire quantum. As an example, when its message queue is empty, a process that
makes a blocking receive call stops waiting for a semaphore that is in a non-signaled
state (counter equal to zero). Then, just after adding a message to the empty queue,
the network receiving thread or a local process turn the semaphore into a signaled
state, then enabling the waiting process.

5. Performance Evaluation

The main goal of this section is to quantify the efficiency of WMPI (release v1.1) for
delivering the underlying communication capacity of a system to the applications.
Also, results obtained with single and dual Pentium boxes are compared.

5.1. Testbed

All the machines involved in the experiments (Table 1) are hooked together by
dedicated 10 Base T or 100 Base T Ethernet hubs. Some sources of significant

overhead (software and hardware) already exist between the transmission physical
medium and the Winsock interface that is used by WMPI. To quantify the real
overhead that the WMPI layer is responsible for, some of the experiments are
repeated directly on top of the Winsock (TCP/IP) interface. Every socket is
configured with the TCP_NODELAY option, as in the Wp4 layer, in order to avoid
small messages to be delayed by the TCP protocol (default behaviour).

Table 1. Machines used for the experiment

CPU OS RAM #
Dual Pentium Pro 200Mhz NT Server 128 MB 1
Dual Pentium Pro 200Mhz NT Workstation 128 MB 1
Single Pentium Pro 200Mhz NT Workstation 64 MB 4

5.2. MPI Benchmark Tests

Message passing overhead is the main bottleneck for speedup. Some results that have
been obtained with the Pallas MPI benchmarks (PMB) [10] are reported here.

Table 2. Pallas MPI benchmark tests
PingPong Two messages are passed back and forth between two processes (MPI_Send/ MPI_Recv).
PingPing Two messages are exchanged simultaneously between two processes (MPI_Sendrecv).

Xover Two messages are sent and received in reverse order (MPI_Isend/ MPI_Recv).
Cshift A cyclic shift of data along a one-dimensional torus of four processes (MPI_Sendrecv).

Exchange In one-dimensional torus of four processes, each process sends a message to its right
neighbour and then to the left one (MPI_Isend). Then, it receives a message from its left
neighbour and then from the right one.

Every test is repeated with messages of variable length. For each message length,
ranging from 0 bytes to 4 Mbytes, tests are repeated several times2 to smooth network
fluctuations. Latency is half (for PingPong, PingPing and Cshift) or a quarter (for
Xover and Exchange) the measured average time to complete.

5.3. Remote Communication

Tables 3 and 4 depict some results of the Ping-Pong test with processes running on
distinct machines. A pair of Dual Pentium machines and another of Single Pentium
machines are separately used. For this latter, an equivalent Ping-Pong test that is
directly implemented on top of the Winsock interface is also executed. The overhead
columns of these tables represent the percentage of the available bandwidth at the
Winsock interface (the Winsock columns) that, because of its internal operation, the
WMPI layer cannot deliver to end-users.

2 For message lengths up to 256 Kbytes: 100 times. For message lengths equal to 512 Kbytes,

1 Mbyte, 2 Mbytes and 4 Mbytes: 80, 40, 20 and 10 times respectively.

Table 3. Bandwidth with a 10 Base T hub

Size Pair of Dual
Pentiums

Pair of Single Pentiums

(bytes) WMPI (Mbps) WMPI (Mbps) Winsock (Mbps) Overhead (%)
1 0.01 0.01 0.04 63.6
4 0.06 0.06 0.16 63.6

16 0.23 0.23 0.64 63.6
64 0.73 0.93 2.05 54.5

256 2.40 2.93 5.12 42.9
1024 5.81 6.07 7.80 22.2
4096 7.49 7.98 8.84 9.7
8192 7.99 8.49 8.97 5.2

32768 8.30 8.75 8.95 2.2
65536 8.34 8.81 8.93 1.3

131072 8.28 8.81 8.94 1.5
262144 8.27 8.79 8.94 1.7

1048576 8.27 8.77 8.94 1.9
4194304 8.18 8.74 8.93 2.2

Table 4. Bandwidth with a 100 Base T hub

Size Pair of Dual
Pentiums

Pair of Single Pentiums

(bytes) WMPI (Mbps) WMPI (Mbps) Winsock (Mbps) Overhead (%)
1 0.02 0.02 0.05 66.7
4 0.05 0.07 0.21 66.7

16 0.26 0.28 0.85 66.7
64 0.94 1.14 3.41 66.7

256 2.71 4.50 13.65 67.0
1024 14.89 16.38 32.77 50.0
4096 34.86 36.41 59.58 38.9
8192 39.60 48.37 68.62 29.5

32768 51.35 68.89 71.72 3.9
65536 50.83 68.85 74.79 7.9

131072 49.53 69.10 85.11 18.8
262144 51.92 70.05 86.71 19.2

1048576 49.48 71.14 87.94 19.1
4194304 45.50 63.88 87.48 27.0

As expected, WMPI is less performing than the Winsock interface. For small
messages the message size independent overhead of WMPI (e.g., constant-size header
fields) gives rise to overhead values over 50% in tables 3 and 4. For large messages,
the copying of data bytes between WMPI internal buffers and the application
allocated buffers is one of the main contributions for the overhead. It doesn't depend
on the available bandwidth because only internal processing is included. Thus, the
overhead of WMPI for large messages is much higher with the 100 Base T
connection. For larger messages, performance starts decreasing because memory
management (e.g., copying) gets less efficient for larger blocks.

The Dual Pentium boxes always perform worst than the single ones. A possible
reason may be that some data has to be exchanged between processes (e.g., between a
WMPI process and the TCP service provider) that are, possibly, running on different
processors. Thus, data that has to be exchanged between distinct processes is not
found in the data cache of the destination processor.

As a conclusion and despite of some significant overhead, it can be concluded that
WMPI is able to give a significant portion of the underlying available bandwidth to
the applications. Encouraging maximum values of 8.8 Mbps and 71.14 Mbps are
obtained with 10 Base T and 100 Base T connections, respectively.

5.4. More Communication Patterns.

Other PMB benchmarks (PingPing, Xover, Cshift and Exchange) have been also
executed with four single Pentium Pro machines and a 100 Base T hub (table 5).

Table 5. Bandwidth (Mbps) with a 100 Base T hub and 4 single Pentium Pro machines

Size
(bytes)

PingPong
(2 proc.)

PingPing
(2 proc.)

Xover
(2 proc.)

Cshift
(4 proc.)

Exchange
(4 proc.)

1 0.02 0.02 0.02 0.02 0.02
4 0.07 0.09 0.08 0.06 0.10

16 0.28 0.37 0.32 0.32 0.39
64 1.14 1.26 1.36 1.28 1.46

256 4.50 5.12 5.12 4.95 5.74
1024 16.38 18.20 20.35 18.20 20.74
4096 36.41 46.81 42.28 32.73 32.71

16384 60.82 65.37 60.89 36.36 35.13
65536 68.85 74.26 66.07 33.24 38.55

262144 70.05 76.71 64.19 34.73 35.68
524288 70.54 77.38 65.34 38.26 36.79

1048576 71.14 77.03 65.80 39.82 40.51
2097152 69.44 75.21 63.97 40.10 39.81
4194304 63.88 69.66 60.02 39.78 39.17

When compared to the Ping-Pong test results, only Cshift and Exchange
experience a significant difference for messages up from 4 Kbytes. Being Cshift and
Exchange the only tests that make the four processes access the network bus
simultaneously to send messages, the increased number of collisions is the main
reason for that performance loss.

5.5. Local Communication

Table 6. Bandwidth for local communication

Size Pair of Dual
Pentiums

Pair of Single Pentiums

(bytes) PingPong (Mbps) PingPong (Mbps) PingPing (Mbps) Xover (Mbps)
1 0.05 0.16 0.16 0.10
4 0.40 0.64 0.64 0.43

16 1.60 2.56 2.56 1.71
32 1.65 5.12 2.56 3.41

128 13.65 20.48 10.24 13.65
512 26.43 81.92 40.96 54.61

2048 105.70 163.84 163.84 163.84
8192 168.04 327.68 327.68 262.14

16384 278.88 524.29 524.29 403.30
32768 280.37 655.36 582.54 386.93

131072 150.77 282.64 265.13 173.75
262144 150.82 238.04 233.93 177.50

1048576 147.07 227.87 222.58 174.29
4194304 145.10 220.46 215.44 173.16

Table 6 depicts some results with two processes running on the same machine. As
expected, communication between two processes running on the same machine is
much more efficient than remote communication because it is achieved through
shared memory. It is also visible that the already noticed performance discrepancy
between Dual and Single Pentium boxes and performance decreasing is greatly
enhanced. With just a single processor the probability of a receiving process to get a

message, or part of it, from its local data cache is very high because local
communication between two WMPI processes is exclusively based on shared data.

6. Conclusions

WMPI fulfills the goals outlined at the beginning of this document, i.e., an MPI
support for widely available Win32 platforms that widespread this accepted
programming model. It also enables cooperation between low cost Win32 machines
and UNIX ones, to offer accessible parallel processing. Additionally, the download of
WMPI (http://dsg.dei.uc.pt/w32mpi) by more than 1700 different institutions (until
March 98) since its first release (April 96) demonstrates how real is the interest for
MPI based parallel processing under Win32 clusters and how valuable and useful has
been the development of WMPI.

Presently there are a few other available implementations of MPI for Windows, but
WMPI is still the most efficient and easy to use MPI package for Win32 based
clusters [11]. More complex communication patterns of some real applications can
result in higher communication overheads. Nevertheless, the expected performance is
promising due to a positive evolution of the interconnection technologies and of the
individual computational power for Win32 platforms.

References

1. Message Passing Interface Forum, “MPI: A Message-passing Interface Standard”, Technical
report CS-94-230, Computer Science Dept., University of Tennessee, Knoxville, TN, 1994

2. Tom R. Halfhill, “UNIX vs WINDOWS NT”, Byte magazine, pp. 42-52, May 1996
3. Selinda Chiquoine and Dave Rowell, "Pentium Pro Makes NT Fly", Byte magazine, pp.

155-162, February 1996
4. William Gropp, “Porting the MPICH MPI implementation to the sun4 system”, January 12,

1996
5. P. Bridges, et. Al., “User’s Guide to MPICH, a Portable Implementation of MPI”,

November 1994
6. William Gropp, Ewing Lusk, “MPICH Working Note: Creating a new MPICH device using

the Channel interface - DRAFT”, ANL/MCS-TM-000, Argonne National Laboratory,
Mathematics and Computer Science Division

7. William Gropp, Ewing Lusk, “MPICH ADI Implementation Reference Manual - DRAFT”,
ANL-000, Argonne National Laboratory, August 23, 1995

8. Ralph Butler, Ewing Lusk, “User’s Guide to the p4 Parallel Programming System”,
Argonne National Laboratory, Technical Report TM-ANL-92/17, October 1992, Revised
April 1994

9. Jeffrey Richter , “ADVANCED WINDOWS, The Developer’s Guide to the Win32 API for
Wondows NT 3.5 and Windows 95”, Microsoft Press, Redmond, Washington, 1995

10.Elke Krausse-Brandt, Hans-Christian Hoppe, Hans-Joachim Plum and Gero Ritzenhöfer,
“PALLAS MPI Benchmarks – PMB”, Revision 1.0, 1997

11.Mark Baker and Geoffrey Fox, “MPI on NT: A Preliminary Evaluation of the Available
Environments”, “http://www.sis.port.ac.uk/~mab/Papers/ PC-NOW/”, November 1997

http://dsg.dei.uc.pt/w32mpi

