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Preface

This is the second edition of a user’s guide to the Cray T3E massively
parallel supercomputer installed at the Center for Scientific Computing
(CSC), Finland.

The first edition of this guide was written by Juha Haataja, Yrjö Leino,
Jouni Malinen, Kaj Mustikkamäki, Jussi Rahola, and Sami Saarinen. The
second edition was written by Juha Haataja, Jussi Heikonen, Yrjö Leino,
Jouni Malinen, Kaj Mustikkamäki, and Ville Savolainen.

The following colleagues at CSC have provided invaluable feedback about
this book: Juha Fagerholm, Erja Heikkinen, Tiina Kupila-Rantala, Peter
Råback, Tomi Salminen, and Raimo Uusvuori.

The second edition is available only in PDF format, and can be loaded and
printed freely from the WWW address http://www.csc.fi/oppaat/
t3e/. The paper version of the first edition can still be ordered from
CSC.

We are very interested in receiving feedback about this publication.
Please send your comments to the e-mail address Juha.Haataja@csc.
fi.

Espoo, 31st July 1998

The authors
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Chapter 1

Introduction

This chapter gives a short introduction of the Cray T3E system. We also
describe the policies imposed on using the computer: application forms,
scalability testing, and user quotas.

1.1 How to use this guide

This book is divided into ten independent chapters, and it can be used
as a handbook. However, we recommend that you browse through at
least the first four chapters which provide a general overview of the Cray
T3E system.

This chapter gives a short introduction to the Cray T3E parallel super-
computer, and provides pointers to additional information. Chapter 2
describes how to log in to the system and how to compile and run your
applications. Chapter 3 discusses the Cray T3E hardware. Chapter 4
provides information on the program development environment of the
T3E system.

Chapters 5 and 6 give more detailed information about the Fortran and
C/C++ compilers on the system. Chapter 7 shows how to parallelize your
codes using the MPI or PVM message-passing libraries, the Cray data-
passing library SHMEM, or the data-parallel HPF programming model.

Chapter 8 discusses the batch job system and how to submit your ap-
plications to the NQE system (Network Queuing Environment).

Chapter 9 illustrates Cray programming tools such as the TotalView de-
bugger and the available profiling tools. Finally, Chapter 10 discusses
some further topics, such as timing of programs or predicting the par-
allel performance of a code.
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1.2 Usage policy

As the Cray T3E is a high-performance computational resource, CSC
enforces a usage policy in order to guarantee an efficient and fair usage
of the computer.

When applying for access to the Cray T3E you are supposed to have a
user id also on some other computer at CSC. A T3E resource application
form can be requested by contacting Ms. Paula Mäki-Välkkilä at CSC, tel.
(09) 457 2718, e-mail Paula.Maki-Valkkila@csc.fi.

The project application form is handled by the CSC T3E contact person
at CSC, who will contact the applicant if necessary. You are first granted
an initial quota of 100 hours, which gives you a possibility to test and
tune your code using 16 processors at maximum.

Within the limits of the initial quota, you have three months to demon-
strate that your code scales up. The results of the scaling tests should be
sent to CSC by the end of this time. Currently a typical requirement is to
attain at least a speedup of 1.5 when doubling the number of processors
allocated. The eventual quota and the maximum number of processors
for production runs will be granted by CSC’s Scientific Director when
the results of the scaling tests are available.

To get a production quota, you are requested to explain how you have
parallelized the program code. The aim of this procedure is to ensure
that you have understood the specific features of the T3E system and
that the code is parallelized efficiently.

The T3E system is intended only for parallel jobs. Single processor
production runs are not allowed. The computer can be used both for
interactive program development (testing and debugging) and for pro-
duction runs. However, there is a limit of 16 processors for interactive
use. If you want to use more processors, you have to use the batch job
facilities.

When running a batch job, a set of processors will be dedicated for your
job. If some of the processors become idle during the run, no other user
is allowed to use them until the whole run is finished.

Your quota will be charged according to the number of processors that
are assigned to the job multiplied by the elapsed wall clock time. For
example, if you run a job on 32 processors for three hours, 96 hours will
be deducted from your quota.

The usage policy and especially the configuration for batch jobs is likely
to change in time. Current configuration and batch job limits are given
in Chapter 8 (page 81).
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1.3 Overview of the system

The Cray T3E system at CSC has currently 224 RISC processors for paral-
lel applications. In addition, there are 16 processors for system services
and for interactive use.

The T3E has a good user and programming environment. The sys-
tem feels like any Unix computer. You log in to the Internet address
t3e.csc.fi and end up in an interactive processor.

All processors share a common file system. The ps and top commands
can be used to look at processes on any processor (see page 29 for
details). The parallel nature of the machine is only manifested when
running parallel codes.

The single-processor performance is a critical factor in the performance
of parallel user codes. As on most RISC processors, user codes may
typically obtain only 5–15% of the maximum performance on each pro-
cessor. This is also true for the Cray T3E. However, in linear algebra
operations, the BLAS kernels can reach over 65% and LAPACK kernels
over 45% of the peak performance. See page 33 for more details.

The T3E has a remarkably fast communication network which makes the
machine a well-balanced system. It is quite easy to write parallel codes
that scale up to a hundred processors.

The Cray T3E is an IEEE-conformant system with 64-bit integer and
floating point representation by default. To conserve memory, you can
switch to 32-bit representation of integers or integers and floating point
values together.

The Cray T3E hardware is described in Chapter 3, and code optimization
is discussed in Chapters 5 and 6 (Fortran 90 and C, respectively).

The Cray T3E series is a product of Cray Research, which is a subsidiary
of Silicon Graphics, Inc.

1.4 Programming environment

The Cray T3E system offers a versatile programming environment for the
users. There is a high-quality Fortran 90 compiler which can, of course,
be used to compile standard-conforming FORTRAN 77 programs as well.
Also C and C++ compilers are available.

Parallelization can be done using the Cray implementation of MPI (Mes-
sage Passing Interface), which has been optimized for the system. Also
the PVM libraries (Parallel Virtual Machine) are available. MPI is dis-
cussed in Section 7.2 (page 63) and PVM in Section 7.3 (page 68).
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Besides the portable MPI and PVM message-passing systems, the high-
performance SHMEM library is available. This is a Cray-specific library
for parallelization using the “data-passing” or one-sided communication
paradigm. See page 70 for further details.

In addition to the message-passing and data-passing methods for par-
allelization, there is a possibility for data-parallel programming on the
Cray T3E. The HPF (High Performance Fortran) programming model is
a data-parallel extension of the Fortran 90 programming language (see
Section 7.5 on page 78 for details).

1.5 Programming tools and libraries

In addition to the previously mentioned compilers and parallelization
tools, there are additional programming tools available on the T3E. The
MPP Apprentice and PAT (the Performance Analysis Tool) profiling tools
make it possible to locate performance bottlenecks in a parallel code.
The Cray TotalView debugger makes finding bugs in a parallel program
easier. You may also use the VAMPIR software for tracing message
passing of MPI codes.

The Cray T3E system also offers some standard numerical libraries, such
as the Cray Libsci library, which contains high-performance versions of
the BLAS and LAPACK libraries. In addition, the Libsci library offers
tuned routines for, e.g., FFT operations on large datasets.

The IMSL and NAG general-purpose numerical libraries are also available.
At the moment, these packages contain only single-processor routines,
but in the future some of the IMSL and NAG routines will be parallelized.
However, the ScaLAPACK library already offers some parallel routines
for linear algebra operations. In addition, some of the FFT routines in
Libsci are parallelized.

See page 33 for more information on the Libsci library. If you are inter-
ested in using the NAG or IMSL libraries, see pages 37 or 38, respectively.

1.6 Notation used in this guide

The teletype font indicates a command or a file name, or the output
of a program. To distinguish between user commands and the response
of the computer, the following fonts are used:

t3e% pwd
/csc
t3e% echo $ARCH
t3e
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Here the prompt and response of the machine have been typeset with
the teletype font, and the user commands are shown in boldface.

The generic names given to the commands are indicated with a slanted
font type:

rm file

The optional parts of a command are written inside brackets:

more [options] [file]

Some commonly used names have been written in the same way as Unix.
To introduce new terms, an emphasized text type is used.

1.7 Sources for further information

A general introduction to the Unix programming environment is given
in Finnish in Metakoneen käyttöopas (Metacomputer Guide) [Lou97]. For
a short introduction to the CSC metacomputer in English, see CSC User’s
Guide [KR97].

There is a good on-line reference for the Unix operating system at the
WWW address

http://unixhelp.ed.ac.uk/index.html

CSC has published textbooks on MPI and PVM in Finnish [HM97, Saa95].
CSC has also published textbooks on Fortran 90 [HRR96] and numerical
methods [HKR93] (in Finnish).

There is a mailing list t3e-users@csc.fi for CSC’s Cray T3E users. This
is the most rapid and flexible means for CSC’s personnel to reach the
T3E customers. Hints and tips on T3E usage are also submitted via the
list.

Since the number of users is still growing, we keep a backlog of the
messages for new users and occasional review at

http://www.csc.fi/oppaat/t3e/t3e-users/archive/

There are several types of MPI handbooks. At least the following books
are useful:

• MPI: A Message-Passing Interface Standard [For95]

• MPI: The Complete Reference [SOHL+96]

• Using MPI: Portable Parallel Programming with the Message-Passing
Interface [GLS94]

• Parallel Programming with MPI [Pac97]
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The basics of parallel programming are discussed in the textbook De-
signing and Building Parallel Programs [Fos95]. Another good textbook
is Introduction to Parallel Computing — Design and Analysis of Algo-
rithms [KGGK94].

CSC maintains a WWW service called CSC Program Development, which
contains examples of parallel codes, an English-Finnish parallel comput-
ing dictionary, and some other information. The WWW address is

http://www.csc.fi/programming/
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Chapter 2

Using the Cray T3E at CSC

This chapter helps you to start using the Cray T3E at CSC: how to log in,
where to store files, how to to use the compiler and run your codes etc.
The usage policy of the machine is discussed in Section 1.2 on page 8.

2.1 Logging in

When logging into the Cray T3E, you will actually get connected to one
of the command processors. These are the processing elements (PEs)
that are responsible for Unix command processing.

In order to log in, you normally have to first log into a local Unix com-
puter (at your university or some other site on the Internet) and then
use a ssh, telnet or rlogin command, giving t3e.csc.fi as argument.
For example, logging in from cypress.csc.fi:

cypress% ssh t3e.csc.fi

The same can be done using telnet:

cypress% telnet t3e.csc.fi

Or rlogin:

cypress% rlogin t3e.csc.fi

If you use the ssh or rlogin command and your user id on the Cray T3E
is different from your user id on your local computer, you must give the
-l option to specify the user id on the Cray T3E. This option is added
after the computer name, for example:

cypress% ssh t3e.csc.fi -l user_id

ssh is the preferred way to connect to T3E as well as to all CSC machines
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because it uses a secure way to authenticate oneself to the host machine.

If you are using an X terminal or an equivalent (a workstation or a mi-
crocomputer with software supporting the X Window System), you can
establish an X Window System connection to the Cray T3E directly.

An easy way to use X Window System connection to the T3E is an ssh
connection running in local xterm. To establish an X Window System
connection to the T3E with environment settings correct, type:

localhost% xterm -e ssh t3e.csc.fi

Using rlogin or telnet connections, the procedure differs somewhat
from ssh. Once logged in, the appropriate value of the DISPLAY envi-
ronment variable has to be set, if any X applications are to be run:

t3e% setenv DISPLAY your_x_terminal:0.0

Sometimes the Cray T3E may not recognize the string your_x_terminal
and you have to give the numerical Internet address instead:

t3e% setenv DISPLAY 128.256.512.64:0.0

If the Internet address is not known, it can be found by the following
command:

t3e% nslookup your_x_terminal

When a connection has been established to the Cray T3E using telnet,
you have to enter your user id and password. A typical telnet session
starts as follows:

Trying 128.214.248.31...
Connected to t3e.csc.fi.
Escape character is ’^]’.

Cray UNICOS/mk (t3e) (ttyp007)

login: user_id
Password: jameS5#e (the password does NOT show up)

t3e%

After displaying the prompt (t3e%), the Cray T3E is ready to execute
your commands.

2.2 Files

Your home directory ($HOME) is located on the disk server. Therefore,
your files are shared between the T3E and other computer systems at
CSC.

However, for performance reasons it is highly recommended to copy
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all files before running a job from the home directory tree to the local
T3E disk described below. The home directory is suitable only for small
initialization files and frequently used small programs. It is not intended
for extensive I/O operations or for large data sets.

There are three file storage areas available for users. Usually you need
not (and should not) refer to directories with full path names. Instead,
use the symbolic names (environment variables) listed in the following
table.

Symbol Where Lifetime Backup

$HOME Home directory (NFS-mounted) Unlimited Yes
$TMPDIR /tmp/$LOGNAME One day No

/tmp/jtmp.session-id Interact. session No
/nqstmp/nqs.job-id Batch job No

$WRKDIR /wrk/$LOGNAME Seven days No

The home directory ($HOME) tree is backed up regularly. This direc-
tory is meant for permanent files, with a maximum total size of a few
megabytes. It is a typical repository for source codes and small input
files.

The temporary directory ($TMPDIR) should be used by programs which
produce temporary, run-time files. Unless changed in the login or run
script, all files will typically be deleted upon the exit of a job. The size of
the disk storage is typically a few gigabytes and no backups are taken.

The environment variable $TMPDIR can have three different values de-
pending on the execution mode, or on settings in your login scripts.

An interactive session gets a unique session id. The variable $TMPDIR
points to the directory /tmp/jtmp.session-id, which can be used to
store temporary files. The files in this directory are deleted upon the
end of the session. Thus, you may find it more convenient to redeclare
this environment variable to be /tmp/$LOGNAME, where $LOGNAME is your
username.

In a batch job, the directory $TMPDIR gets its unique value from the
identification string of the job, and this directory is removed at the end
of the job.

The working directory ($WRKDIR) differs from the temporary directory
in the storage time. However, since no backup is taken, a disk crash may
destroy its contents. Untouched files will be deleted after seven days.
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2.3 Editing files

You can use the Emacs or vi editors on the T3E. To start Emacs, give the
command

emacs [options] [filename]...

Here is an example:

emacs -nw main.f90

However, because your home directory is shared with other computers
at CSC, you can do your editing on some other system. We recommend
this approach, because it minimizes the interactive load on the T3E.

You get a short introduction to Emacs in Finnish by giving the command

help emacs

2.4 Compiling and running applications

Parallel programs on the Cray T3E can be either malleable or non-malleab-
le. Malleable executables can be run on any number of processing ele-
ments using the mpprun command. Non-malleable executables are fixed
at compile time to run on a specific number of processors.

If a program is to be non-malleable, it has to be compiled and linked
with the option -Xn (or -X n) indicating the number n of PEs. A program
with a fixed number of PEs can be started directly. For example, in the
following we use ten processors:

t3e% f90 -X 10 -o prog.x prog.f90
t3e% ./prog.x

To produce a malleable program, the source code can be compiled and
linked with the option -Xm, but since this is the default, you can usually
omit the flag. To choose the number of processors, the executable has
to be run using the mpprun command.

The following example compiles, links and executes twice a program
called prog.x. The first invocation uses five (5) processors and the
second twelve (12) processors:

t3e% f90 -o prog.x prog.f90
t3e% mpprun -n 5 ./prog.x
t3e% mpprun -n 12 ./prog.x

Note: if the program is executed only on one processor, it will not be
run on the application nodes, and thus it might be interrupted by other
activities.
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Interactive jobs can use at maximum 16 processors and 30 min parallel
CPU time.

2.5 Executing in batch mode

The batch jobs on all CSC’s computers are handled by the NQE system
(Network Queuing Environment). A more detailed description of this
system is given in Chapter 8 (page 81).

You can run a batch job by submitting an NQE request, which is a shell
script that contains NQE commands and options, shell commands, and
input data. At the moment, batch requests have to be submitted locally
on the Cray T3E with the command:

qsub [-l mpp_p=number]
[-l mpp_t=time]
[-l p_mpp_t=ptime]
[options] script

Resource specifications (option -l) are:

Option Meaning

-l mpp_p=number Number of PEs to be used within a job
-l mpp_t=time Maximum execution time of

all the programs in the script.
The time should be given in the formats
hh:mm:ss, mm:ss or ss.

-l p_mpp_t=ptime Maximum processing time of any
single program in the script.

Other typical options are:

Option Meaning

-r request_name Specific name for the batch job request
-q queue_name Batch queue name where the job should be run
-lT time Maximum single processor time for the job

to be run (hh:mm:ss).
-eo Concatenate stderr output to stdout
-o filename Specific script output file

The argument script of the qsub command is a file, which contains the
Unix commands to be executed. If omitted, standard input will be used.

Before executing the commands in the script, the batch system uses
your default shell to log in to the T3E. This sets up your normal user
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environment. After this, the commands in the script are executed using
/bin/sh. This can be overridden using the option -s shell_name.

Here follows an example script, which is written into a file called t3e.job.
The request name is set to simulation. The job file reserves at max-
imum six processors (option -l mpp_p=6), and the approximate maxi-
mum wall clock time is 600 seconds (-l mpp_t=600). Standard error is
concatenated with the standard output (option -eo).

#QSUB -r simulation
#QSUB -l mpp_p=6
#QSUB -l mpp_t=600
#QSUB -eo
#QSUB

cd $TMPDIR
cp $HOME/data/inputfile .
cp $HOME/src/a.out .
mpprun -n $NPES a.out

First, the script changes the current directory to the temporary direc-
tory. Thereafter, the input file inputfile and the executable program
a.out are copied there. Finally, the mpprun command triggers the actual
parallel execution.

If the time limit of 600 seconds is reached, the job will be terminated.

The environment variable $NPES indicates the number of processors
actually allocated for the job. This is a local feature of the T3E at CSC.

To submit the previous job file to the prime queue, use the command

t3e% qsub -q prime t3e.job

You can use the command qstat for checking out the status of your
batch job. You get a listing of the current processes with the commands
top and ps -PeMf. Use the command qdel to delete a batch job from
the queue. See Chapter 8 for more details.

2.6 More information

There are normal Unix-style man pages available on the Cray T3E. In
addition to this, CSC’s help system is available on the Cray T3E. For
example, you can look up how to use the IMSL libraries:

help imsl

The guide Metakoneen käyttöopas (Metacomputer Guide) [Lou97] de-
scribes (in Finnish) the CSC environment in detail. See also the Web
address

http://www.csc.fi/metacomputer/english/crayt3e.html
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for some information in English.

Cray has published several manuals, which help in using the T3E. On-line
versions of the manuals are found at the Web address

http://www.csc.fi:8080

The most useful manuals are the following:

• CF90 Commands and Directives Reference Manual [Craa]

• Cray T3E Fortran Optimization Guide [Crac]

• Cray C/C++ Reference Manual [Crab].
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Chapter 3

The Cray T3E system

This chapter reviews the Cray T3E hardware and operating system.

3.1 Hardware overview

The Cray T3E system consists of the following hardware components:

• processing elements
• interconnect network
• I/O controllers
• external I/O nodes.

This section briefly presents each of the system components and their
interactions.

The current configuration at CSC is as follows:

• For parallel programs there are 224 application processing ele-
ments (PEs) which contain 375 MHz processors.

• In addition, there are 16 command and operating system process-
ing elements.

• Each processing element has 128 MB of local memory.

• The total memory in the application PEs is 28 GB.

• The total theoretical peak performance of the application proces-
sors is 168 Gflop/s (= 224× 750 Mflop/s).

• The local disk space is over 300 GB.
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This configuration may change in the future. Use the command grmview
to find out the current situation.

3.2 Distributed memory

The T3E has a physically distributed and a logically shared memory
architecture. Access to the local memory inside current processing ele-
ment is faster than to the remote memory.

Essentially, the T3E is a MIMD (Multiple Instruction, Multiple Data) com-
puter although it supports SIMD (Single Instruction, Multiple Data) pro-
gramming style.

The operating system software of the Cray T3E system is functionally
distributed among the PEs. For every 16 PEs dedicated to user com-
putation, there is, on average, one additional system PE. System PEs are
added to provide operating system services and to handle the interactive
load of the system, e.g., compiling and editing...

3.3 Processing elements

The T3E at CSC is physically composed of 224 + 16 = 240 nodes. Each
node in the T3E consists of a processing element (PE) and interconnec-
tion network components. Each PE contains a DEC Alpha 21164 RISC
microprocessor, local memory and support circuitry. Figure 3.1 illus-
trates the components inside one node.

Each PE has its own local memory. The global memory consists of these
local memories.

The Cray T3E memory hierarchy has several layers: registers, on-chip
caches (level 1 and level 2), local memory and remote memory. The
processor bus bandwidth is in the range of 1 GB/s but the local memory
bus speed is limited to 600 MB/s.

To enhance the performance of the local memory access, there is a mech-
anism called stream buffers or streams in the Cray T3E. Six streams fetch
data in advance from the local memory when small-strided memory ref-
erences are recognized.

The consequences of simultaneous remote memory operations (see Sec-
tion 3.6) and streamed memory access to the same location in memory
can be fatal. There is a possibility of data corruption and even of a sys-
tem hang. Therefore it is very important to synchronize local and remote
memory transfers or to separate memory areas for remote transfers.
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Figure 3.1: The components of Cray T3E node.

This is a problem only if you are using the SHMEM library for commu-
nication. The MPI library, for example, handles the streams mechanism
properly.

The streams mechanism can be disabled or enabled on the user level by
using the environment variable $SCACHE_D_STREAMS. To enable streams,
give the command

setenv SCACHE_D_STREAMS 1

before executing your program. To disable streams, set the environment
variable to 0. Use the command udbsee to see whether you have rights
to use the streams mechanism.

You can also set the streams using the C/C++ function

#include <mpp/rastream.h>
void set_d_stream(int ss);

or the Fortran routine

INTEGER :: ss
CALL SET_D_STREAM(ss)

See the manual pages for more details (man intro_streams).
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Attribute Value

Processor type DEC Alpha 21164
Physical address base 40 bits
Virtual address base 43 bits
Clock rate on the T3E 375 MHz
Peak floating-point rate 750 Mflop/s
Peak instruction issue rate 4 (2 floating-point + 2 integer)
Size of the on-chip instruction cache 8 kB
Size of the on-chip level 1 data cache 8 kB
Size of the on-chip level 2 data cache 96 kB

Table 3.1: Characteristics of the DEC Alpha 21164 processor.

3.4 Processor architecture

The microprocessor in each of the T3E nodes is a DEC Alpha 21164,
a RISC processor manufactured by COMPAQ/Digital. This 64-bit pro-
cessor is cache-based, superscalar, and has pipelined functional units.
It supports the IEEE standard for 32-bit and 64-bit floating point arith-
metics.

The range of a 64-bit floating point number is

2.2250738585072014 · 10−308 . . .1.7976931348623157 · 10+308.

The mantissa contains 53 bits, and therefore the precision is about 16
decimal numbers.

Correspondingly, 32-bit floating point numbers are between

1.17549435 · 10−38 . . .3.40282347 · 10+38

The mantissa contains 24 bits (the leading bit is not stored), and the
precision is about 7 decimal numbers.

Specific characteristics of the processor are presented in Table 3.1. The
structure of the processor is illustrated in Figure 3.2.
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Figure 3.2: The DEC Alpha 21164 processor architecture.
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3.5 Local memory hierarchy

The local four-level memory hierarchy of the processing elements is
shown in Figure 3.3. Nearest to the execution units are the registers.
Caches for instructions and data (ICACHE and DCACHE) are each of size
8 kB. The second-level cache, SCACHE (96 kB in total), is on the Alpha
chip. The fourth level of the memory hierarchy is the main (DRAM)
memory (128 MB).

Registers 
and

functional 
units

SCACHE
2nd level

cache
96 kB

streams

DRAM
memory
128 MB

ICACHE
instruction

cache
8 kB

DCACHE
data

cache
8 kB

Figure 3.3: The local memory hierarchy.

It takes 2 clock periods (cp) to start moving a value from the first level
data cache DCACHE to registers. The bandwidth is 16 bytes in a cp.

The size of the DCACHE is 8 kB, or 1024 words of 8 bytes. The cache
is divided into 256 lines of 32 bytes each. Each read operation allocates
one line in DCACHE for moving data from the 2nd level cache (SCACHE)
or the main memory. This means that four consecutive 64 bit words
are read at a time. Therefore, arrays should always be indexed using the
stride of one!

For example, if you have a loop which indexes array elements which
are 8 kB apart in memory, all the elements will be stored to the same
DCACHE position. Therefore the data has to be fetched from a lower
level of the memory hierarchy each time. This kind of memory reference
pattern slows down the program considerably.

The second level cache (SCACHE) is of size 96 kB. This cache is three-way
set-associative, which means that each location in the central memory
can be loaded to three different locations in the SCACHE. This mapping
is random and the programmer can not dictate it. Therefore, from the
programmer’s point of view, the SCACHE is actually of size 32 kB or a
third of the physical size.

Each part of the set-associative SCACHE is direct-mapped to the memory
in the same way as DCACHE is. You can fit 4096 words (each 8 bytes)
to each of the three parts of the SCACHE. The latency of SCACHE is 8 cp
for moving data to the DCACHE. The bandwidth is 16 bytes in a cp, or
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two words in each cp. An SCACHE line is 64 bytes. Therefore, data is
moved in consecutive blocks of 64 bytes from the main memory.

When you are optimizing your code, the most important thing is to
optimize the usage of the DCACHE. Almost as important is to optimize
the usage of the SCACHE.

Because of the reasons mentioned above, try to avoid step sizes of 8 kB
or 32 kB when you are referencing memory. The most optimal way is
to use stride one, which in the case of Fortran means changing the first
index of arrays with a step size of one.

Here is a simple example of memory references:

REAL, DIMENSION(n) :: a, b
REAL, DIMENSION(n,n) :: c
INTEGER :: i, j

DO i = 1, n
DO j = 1, n
c(i,j) = c(i,j) + a(i)*b(j)

END DO
END DO

If the constant n is of size 1024, the code runs very slowly due to the
memory references c(1,1), c(1,2), c(1,3) etc., which are 8 kB apart
in memory. You should rearrange the loops as follows to get better
performance:

DO j = 1, n
DO i = 1, n
c(i,j) = c(i,j) + a(i)*b(j)

END DO
END DO

3.6 Interprocessor communication

The system PEs of the Cray T3E are connected through a high-speed, low-
latency interconnection network. The peak data-transfer speed between
processors is 480 MB/s in every direction through the bi-directional 3D
torus network. The hardware latency is less than 1 µs.

The T3E system interconnection network operates asynchronously and
independently from the PEs to access and redistribute global data. The
3D torus topology ensures short connection paths. The bisectional band-
width is also high (measured by splitting the machine in half and finding
out the maximum transfer rate between these parts). The topology has
also the ability to avoid failed communication pathways.

An example of routing through the interconnection network is presented
in Figure 3.4.
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Figure 3.4: A routing example through the 3D torus network of the T3E.

Addressing of remote memory is managed by the External Register Set,
or E-registers. Latency hiding and synchronization are integrated in 512
+ 128 off-chip memory-mapped E-registers. The E-registers consist of
a general set of 512 external registers that manage asynchronous data
transfer between nodes by providing the destinations and/or sources of
all remote references. The second set of 128 registers are reserved for
the operating system. E-registers are used by predefined op-codes.

Each PE has 32 Barrier/Eureka Synchronization Units (BESUs), used to
implement barrier and eureka type synchronization and atomic opera-
tions. Barriers may be used, among other things, to execute SIMD codes
efficiently. Eureka operations can be used to indicate, for example, that
one PE has found a solution.

The virtual synchronization networks have higher priority for the phys-
ical channel between nodes than any other traffic. Therefore the global
synchronization is very efficient.
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3.7 External I/O

The T3E system has four processing elements per one I/O controller,
while one out of every two I/O controllers is connected to a GigaRing
controller. These controllers can be connected to external I/O clients
through high-speed GigaRing channels. Figure 3.5 illustrates the I/O
path from a PE to an external disk device.
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Figure 3.5: A Cray T3E node with external I/O.

The GigaRing architecture is implemented using a dual-ring design, with
data in the two rings traveling in opposite directions. The raw data
bandwidth of one ring is up to 600 MB/s which gives a total of 1200 MB/s
per channel. The peak data bandwidth is 800 MB/s per channel for
half-duplex connections and 2 × 700MB/s for full-duplex connections
between two GigaRing nodes. The data bandwidth from a T3E node
is limited by the connection through the Network Router and the I/O
controller. Thus, the bandwidth is up to 500 MB/s.

GigaRing channels can be configured with multiple nodes of different
type, a Multi Purpose Node (MPN) or a Single Purpose Node (SPN). In an
MPN several types of I/O controllers can be installed: FDDI, Ethernet,
ATM or SCSI.
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3.8 The UNICOS/mk operating system

The Cray T3E has a distributed microkernel based operating system.
This provides a single system image of the global system to the user.
UNICOS/mk is a Unix-like operating system based on Cray’s UNICOS
system, which runs on parallel vector processor (PVP) platforms such as
the Cray C90.

The microkernel is based on the CHORUS technology. It provides ba-
sic hardware abstraction, memory management, thread scheduling and
interprocessor communication between the processes.

Several processors offer operating system (OS) services, “servers”. These
servers look like normal processes running on top of the microkernel.
The most important OS servers are listed in Table 3.2. Additionally,
various servers manage logging, devices, and other operating system
services.

Server Function

Process Manager (PM) Manages processes local to its PE
Global Process Manager (GPM) Manages list of all known processes
Global Resource Manager (GRM) Tracks and allocates the resource

management
Configuration Server (CS) Processes requests for system

configuration data
File Server Provides file system services
File Server Assistant Provides file system services locally

Table 3.2: Some UNICOS/mk high-level OS servers.

The user communicates with the servers using normal Unix-type appli-
cation programming interfaces (APIs) like in any other Unix system, i.e.,
using libraries and system calls.

Scalability is an important issue in a system like the Cray T3E. When the
system size is increased, not only the number of application processors
is affected, but also the number of command and OS processors. The
command processors run interactive user jobs and the operating system
processors run OS servers.

3.9 File systems

The Cray T3E running UNICOS/mk has a similar file system structure
as many other Unix systems. These include the file systems / (root
directory), /usr/ and /tmp/.
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The T3E file systems at CSC are located on striped FiberChannel disks re-
siding in one GigaRing, which is attached to a Multi Purpose Node (MPN).
The total disk capacity is over 300 GB. Most of the space is allocated for
paging (swapping), $TMPDIR and $WRKDIR.

3.10 Resource monitoring

The most useful commands for viewing the global configuration and
status of the Cray T3E system are grmview and top.

The grmview command displays information on the Global Resource
Manager (GRM) regarding the current PE configuration (PE map), appli-
cations currently running on the PEs and applications waiting to run on
the PEs.

Here is an extract of the output of the command grmview -l:

PE Map: 240 (0xf0) PEs configured
Ap. Size Number Aps. Abs.

Type PE min max running limit limit x y z Clock UsrMem FreMem
+ APP 0 2 192 1 1 2 0 0 0 375 118 19
+ APP 0x1 2 192 1 1 2 1 0 0 375 118 20
+ APP 0x2 2 192 1 1 2 0 1 0 375 118 20
+ APP 0x3 2 192 1 1 2 1 1 0 375 118 20
+ APP 0x4 2 192 1 1 2 0 2 0 375 118 20
+ APP 0x5 2 192 1 1 2 1 2 0 375 118 20
+ APP 0x6 2 192 1 1 2 0 3 0 375 118 20
+ APP 0x7 2 192 1 1 2 1 3 0 375 118 20
+ APP 0x8 2 192 1 1 2 2 0 0 375 118 20
+ APP 0x9 2 192 1 1 2 3 0 0 375 118 20
...
+ APP 0x4a 2 192 1 1 2 2 1 2 375 118 69
+ APP 0x4b 2 192 1 1 2 3 1 2 375 118 69
+ APP 0x4c 2 192 1 1 2 2 2 2 375 118 69
+ APP 0x4d 2 192 1 1 2 3 2 2 375 118 69
+ APP 0x4e 2 192 1 1 2 2 3 2 375 118 69
+ APP 0x4f 2 192 1 1 2 3 3 2 375 118 69
+ APP 0x50 2 192 0 1 2 4 0 2 375 118 118
+ APP 0x51 2 192 0 1 2 5 0 2 375 118 118
+ APP 0x52 2 192 0 1 2 4 1 2 375 118 118
+ APP 0x53 2 192 0 1 2 5 1 2 375 118 118
...
+ APP 0xd0 2 192 0 1 2 5 1 6 375 118 118
+ APP 0xd1 2 192 0 1 2 4 2 6 375 118 118
+ APP 0xd2 2 192 0 1 2 5 2 6 375 118 118
+ APP 0xd3 2 192 0 1 2 4 3 6 375 118 118
+ APP 0xd4 2 192 0 1 2 5 3 6 375 118 118
+ APP 0xd5 2 192 0 1 2 6 0 6 375 118 118
+ APP 0xd6 2 192 0 1 2 7 0 6 375 118 118
+ APP 0xd7 2 192 0 1 2 6 1 6 375 118 118
+ APP 0xd8 2 192 0 1 2 7 1 6 375 118 118
+ APP 0xd9 2 192 0 1 2 6 2 6 375 118 118
+ APP 0xda 2 192 0 1 2 7 2 6 375 118 118
+ APP 0xdb 2 192 0 1 2 6 3 6 375 118 118
+ APP 0xdc 2 192 0 1 2 7 3 6 375 118 118
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+ APP 0xdd 2 192 0 1 2 0 0 7 375 118 118
+ APP 0xde 2 192 0 1 2 1 0 7 375 118 118
+ APP 0xdf 2 192 0 1 2 0 1 7 375 118 118
+ OS 0xe0 0 0 0 0 0 1 1 7 375 92 40
+ CMD 0xe1 1 1 0 unlim unlim 0 2 7 375 115 42
+ CMD 0xe2 1 1 0 unlim unlim 1 2 7 375 115 92
+ CMD 0xe3 1 1 0 unlim unlim 0 3 7 375 116 87
+ CMD 0xe4 1 1 0 unlim unlim 1 3 7 375 116 97
+ CMD 0xe5 1 1 0 unlim unlim 2 0 7 375 116 100
- NUL 0xe6 0 0 0 0 0 0 3 6 0 0 0
- NUL 0xe7 0 0 0 0 0 1 2 6 0 0 0
+ CMD 0xe8 1 1 0 unlim unlim 3 0 7 375 117 100
+ CMD 0xe9 1 1 0 unlim unlim 2 1 7 375 117 99
+ CMD 0xea 1 1 0 unlim unlim 3 1 7 375 117 100
+ CMD 0xeb 1 1 0 unlim unlim 2 2 7 375 117 113
+ CMD 0xec 1 1 0 unlim unlim 3 2 7 375 117 99
+ CMD 0xed 1 1 0 unlim unlim 2 3 7 375 116 99
+ CMD 0xee 1 1 0 unlim unlim 3 3 7 375 116 113
+ OS 0xef 0 0 0 0 0 0 0 3 375 105 105

Exec Queue: 4 entries total. 4 running, 0 queued
uid gid acid Label Size BasePE ApId Command Note

nnnn nnnn nnnn - 16 0x68 11839 ./prog1 -
nnnn nnnn nnnn - 64 0 16931 ./prog2 -
nnnn nnnn nnnn - 16 0x40 36477 ./prog3 -
nnnn nnnn nnnn - 64 0x78 38718 ./prog4 -

The listing indicates that 224 processors are application nodes (APP),
two are operating system nodes (OS), and 12 are command nodes (CMD).
This listing also shows that two processors were non-operational. Four
parallel jobs were running using 16–64 processors.

The listing also shows that all processors have the clock rate of 375 MHz.
Earlier there were processors having different clock rates, but now all
are running at the same speed.

The grmview command also shows the coordinates of the PEs in the 3D
torus. You can see that the size of the torus is 8× 4× 7, so the torus is
not a complete cube.

The top command gives a global picture of the system status at a glance.
Here is an example of the output:

last pid: 5; load averages: 0.00, 0.00, 0.00 09:37:10
116 processes: 110 sleeping, 6 running
CPU states: 31.9% idle, 66.7% user, 0.0% syscall, 1.4% kernel, 0.0% wait
Memory: 30464M physical, 28025M usrmem, 2428M sysmem, 16447M free

PID USERNAME PRI NICE RES STATE TIME CPU NPE @PE COMMAND
1406 user1 24 0 653M run 79.9H 100.0% 32 64 prog1.x
1688 user1 -5 0 1861M run 69.7H 100.0% 32 96 prog2.x
9985 user2 -5 0 4582M run 24.3H 99.6% 64 128 prog3.x
9864 user3 34 0 245M run 391:11 97.3% 16 20 prog4.x
8817 user4 -5 0 1062M run 707:08 94.9% 16 0 prog5.x
10501 jhaataja 34 4 7120K sleep 0:04 25.5% 1 195 top

This listing shows that currently about 67% of the computer is used for
computing. The top command also shows the total memory usage and
the total memory requirements of the running processes.
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You can also use the command

ps -PeMf

to see what parallel processes are running. Here is an extract from the
output:

F S UID PID PPID ... STIME TTY TIME CMD
1 R user1 1406 1386 11:17 ? 147:3 ./prog1.x
1 R user1 1688 1617 11:36 ? 129:5 ./prog2.x
1 R user2 8817 8809 13:03 ? 44:26 ./prog3.x
1 R user3 9864 9855 13:22 ? 24:04 ./prog4.x
1 R user4 9985 9922 13:24 ? 23:15 ./prog5.x

You can compare this with the output of the top command shown above.

3.11 More information

To get more information about the Cray T3E hardware architecture and
the system software, a good place to start are the WWW pages of Cray
Research, Inc.:

http://www.cray.com

The current configuration of the T3E at CSC can also be found on the
WWW pages at CSC:

http://www.csc.fi/metacomputer/crayt3e.html
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Chapter 4

Program development

This chapter shows how to compile and run your programs on the Cray
T3E at CSC. Fortran programming is discussed in more detail in Chap-
ter 5 and C/C++ in Chapter 6. Parallel programming (message passing
etc.) is discussed in Chapter 7.

4.1 General overview

The Cray T3E environment for program development is automatically
initialized upon logging in or startup of a batch job. This environment
consists of a Fortran 90 compiler (f90) and ANSI C (cc) and C++ (CC) com-
pilers. You can also use efficient mathematical and scientific libraries,
e.g., to obtain good performance in linear algebra operations.

You can do parallelization with native MPI and PVM message-passing
libraries, or with SHMEM, the Cray-specific one-sided communication
library. The HPF data-parallel language is also available.

The system offers the Cray TotalView parallel debugger and the perfor-
mance monitoring tools MPP Apprentice and PAT as help to program
development. The VAMPIR software package can be used to trace and
profile message-passing programs visually.

4.2 Compiling and linking programs

Both the Fortran 90 compiler (f90) and the C/C++ compilers (cc and CC)
accept a few common compiler options.
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The option -Xn or -X n is used to indicate how many processors you
want for your application. If you do not provide this option, the program
can be run on any number of processors using the mpprun command.
This kind of executable is called malleable.

Here is a typical example of generating and running a non-malleable
executable, which has to be run on a fixed number of PEs:

t3e% f90 -X 16 -o prog.x prog.f90
t3e% ./prog.x

Here we are using 16 processors for our application. However, we can
also generate and run a malleable executable prog.x:

t3e% f90 -o prog.x prog.f90
t3e% mpprun -n 16 ./prog.x
t3e% mpprun -n 8 ./prog.x

Here the number of processors was given to the mpprun command and
the option -X was omitted. The program was first run on 16 processors
and then on eight processors.

The same applies to the C/C++ compilers. Here is an example of com-
piling and running a C program:

t3e% cc -o prog.x prog.c
t3e% mpprun -n 8 ./prog.x

Here we used eight processors for running our malleable executable
prog.x.

The MPI, PVM, and SHMEM libraries are automatically linked to your
application, when needed. Therefore, you do not need to provide any
special flags to be able to use, e.g., MPI calls. The Cray scientific library
(Libsci) is also automatically linked to your program.

The option -O indicates the optimization level used in the compilation.
If you are running production jobs, you should always turn code opti-
mization on! The default is moderate optimization, but you can request
more aggressive optimization.

The Fortran 90 compiler is discussed in more detail in Chapter 5, and
the C/C++ compiler in Chapter 6.

4.3 Libsci — Cray scientific library

Libsci is a collection of various mathematical subroutines. Most of the
routines solve some specific problem of linear algebra, but there are a
few routines for fast Fourier transforms as well.

Libsci is Cray’s own package of subroutines for computational tasks. Lib-
sci is divided into following sublibraries: BLAS 1,2,3, LAPACK, BLAS_S,
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PBLAS, ScaLAPACK, BLACS, and FFT. The most straightforward way to
obtain more information on these libraries is through the man command
as follows:

man intro_lapack

There is a manual page for almost all subroutines in Libsci, the most
notable exception being the routines under the PBLAS library. Unfortu-
nately, there are also manual pages for some non-existent routines such
as those solving sparse linear systems.

For more information, you can look up the following WWW addresses:

Package WWW address

BLAS http://www.netlib.org/blas/index.html
LAPACK http://www.netlib.org/lapack/
ScaLAPACK http://www.netlib.org/scalapack/
PBLAS http://www.netlib.org/scalapack/html/

pblas_qref.html
BLACS http://www.netlib.org/blacs/index.html

The Libsci library is automatically linked when programs are loaded.

4.3.1 BLAS

BLAS (Basic Linear Algebra Subroutines) is the first in a series of subrou-
tine packages designed for solving efficiently computational problems
in linear algebra. As the name indicates, the tasks that the BLAS rou-
tines perform are of the most fundamental kind: adding and multiplying
vectors and matrices.

BLAS is divided into three levels: level 1 routines handle operations
between two vectors, level 2 routines take care of operations between a
vector and a matrix, and, finally, the routines at level 3 can manipulate
two or more matrices. For instance, the routine SDOT computes the dot
product (inner product) of two vectors. This routine belongs to the level
1 BLAS, whereas the SGEMV routine multiplies a vector by a matrix and
is thus a level 2 routine.

4.3.2 LAPACK

LAPACK (Linear Algebra PACKage) is a collection of subroutines aimed
for more complicated problems such as solving a system of linear equa-
tions or finding the eigenvalues of a matrix. LAPACK is built on top of
BLAS.
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4.3.3 BLACS

Both BLAS and LAPACK are developed for single processor computa-
tions. In order to solve problems of linear algebra on parallel machines
where matrices can be distributed over several processors, we need to
communicate data between the processors. For this purpose there is a
special library called BLACS (Basic Linear Algebra Communication Sub-
routines).

The routines in BLACS can be divided into three classes. First, there
are communication routines for sending and receiving parts of matrices
between two or more processors. Second, there are global reduction rou-
tines in which all processors take part. An example of these is finding
the element of the largest absolute value in a distributed matrix. Third,
there are a few general support routines for setting up the communica-
tion network.

4.3.4 PBLAS and ScaLAPACK

PBLAS (Parallel BLAS) and ScaLAPACK (Scalable LAPACK) are parallelized
versions of BLAS and LAPACK, respectively. The names of the multipro-
cessor routines in these libraries are almost the same as the ones used
for the corresponding single processor routines, except for an initial P
for “parallel”.

For some obscure reason, Cray has not documented the PBLAS library
at all, except for a short notice on the ScaLAPACK manual pages about
PBLAS being supported. For ScaLAPACK, the situation is somewhat bet-
ter, since for all available routines there is a manual page. On the other
hand, the current implementation of ScaLAPACK on the T3E does not
support all routines available in the public domain version. See Table 4.1
for the existing ScaLAPACK routines.

4.3.5 Details

All of the above mentioned libraries follow a naming convention. This
dictates that any subroutine operating with single precision floating-
point numbers should be given a name beginning with S. Correspond-
ingly, those routines accepting double precision floating point numbers
as arguments have a name beginning with D (not counting the letter P
for parallel versions, which precedes the actual name).

However, since the single precision floating point numbers on the T3E
have 8 bytes, which on most other computers corresponds to the double
precision, you should make sure that you change not only the type defi-
nitions of the variables but also all calls to BLAS etc. accordingly. Note
that on the T3E there are no BLAS routines starting with the letter D.
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Routines Explanation

PSGETRF PCGETRF LU factorization and solution of linear general
PSGETRS PCGETRS distributed systems of linear equations
PSTRTRS PCTRTRS
PSGESV PCGESV
PSPOTRF PCPOTRF Cholesky factorization and solution of real
PSPOTRS PCPOTRS symmetric or complex Hermitian distributed
PSPOSV PCPOSV systems of linear equations
PSGEQRF PCGEQRF QR, RQ, QL, LQ, and QR with column pivoting
PSGERQF PCGERQF for general distributed matrices
PSGEQLF PCGEQLF
PSGELQF PCGELQF
PSGEQPF PCGEQPF
PSGETRI PCGETRI Inversion of general, triangular, real symmetric
PSTRTRI PCTRTRI positive definite or complex Hermitian positive
PSPOTRI PCPOTRI finite distributed matrices
PSSYTRD PCHETRD Reduction of real symmetric or complex

Hermitian matrices to tridiagonal form.
PSGEBRD PCGEBRD Reduction of general matrices to bidiagonal form
PSSYEVX PCHEEVX Eigenvalue solvers for real symmetric or

complex Hermitian distributed matrices
PSSYGVX PCHEGVX Solvers for generalized eigenvalue problem with

real symmetric or complex Hermitian
distributed matrices

INDXG2P Computes the coordinate of the processor in
the two-dimensional (2D) processor grid that
owns an entry of the distributed array

NUMROC Computes the number of local rows or columns
of the distributed array owned by a processor

Table 4.1: The ScaLAPACK routines on the Cray T3E.

In an exactly similar fashion, the subroutines for complex arithmetics
have always a C as their first letter, never a Z. Thus, you should call
CGEMV, not ZGEMV.

BLACS, PBLAS and ScaLAPACK libraries all share the same method to
distribute matrices and vectors over a processor grid. This distribution
is controlled by a vector called the descriptor. The descriptor in the
ScaLAPACK implementation in T3E used to differ from the one specified
in the manuals, but this is no longer true. Thus, with respect to the
composition of the descriptor, ScaLAPACK codes should be portable to
other machines.
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4.4 The NAG subroutine library

The NAG library is a comprehensive mathematical subroutine library
that has become a de facto standard in the field of numerical program-
ming. NAG routines are not parallelized on the T3E. The implemented
single PE version is Mark 17 (July 1998).

NAG routines cover several branches of numerical mathematics includ-
ing ordinary and partial differential equations, integral equations, inter-
polation, finding the extreme values and zeros of a function, statistical
analysis, and linear algebra.

Because of Cray’s precision conventions explained in the previous sec-
tion, all routines should use formally single precision (real) arithmetic,
which corresponds to double precision on most other computers. Thus
the names of the NAG routines should end in the letter E, e.g., F06ABE
instead of F06ABF.

The linear algebra subroutines in Chapter F07 of the NAG library as well
as the least-squares algorithms in Chapter F08 call LAPACK routines in
Cray’s Libsci.

A program containing calls to NAG routines is compiled with the option
-lnag, e.g.,

f90 -o prog prog.f90 -lnag

For a thorough introduction to the NAG library, it is necessary to browse
the manuals, if available at your local computer center. Alternatively,
you may read the file $DOC/nagdoc/essint where the essential princi-
ples are described.

If you are already familiar with NAG, you can try to decide which routine
to use by studying the file $DOC/nagdoc/summary. On the T3E, you can
find more information about NAG with the command

man nag_fl_un

These manual pages give mainly T3E dependent details. Files

$DOC/nagdoc/called
$DOC/nagdoc/calls

contain information about the calls between various NAG routines. The
most important features of Mark 17 are collected in the file

$DOC/nagdoc/news

See also the file $DOC/nagdoc/replaced if you are interested in the
differences between Mark 17 and previous releases.

There is a collection of almost 1000 example codes in the directory
$DOC/nag_examples/source/ with the associated data files in the di-
rectory $DOC/nag_examples/data/. The correct results are stored in
the directory $DOC/nag_examples/results/.
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You can also use the NAG on-line documentation on Cypress by the
command

naghelp

4.5 The IMSL subroutine library

The IMSL library is another general purpose mathematical subroutine
library with two separate parts, MATH/LIBRARY and STAT/LIBRARY.
The release installed on the T3E is the IMSL FORTRAN 90 MP Library
version 3.0.

What has been stated about the precision of arithmetic operations above
applies here as well: programs should introduce nominally only single
precision (real) variables, even though all calculations are carried out in
8 byte operations.

Before running any application programs which use the IMSL routines
you must give the initialization command

use imsl

After this, compilation and linking take place as follows:

f90 -o prog prog.f90 -p$MODULES_F90 $LINK_F90 -Xm

Note: when calling IMSL routines one must specify the non-malleable
option -Xm, because the IMSL library is compiled for fixed one processor.

IMSL is documented in a four-volume manual. Unfortunately, IMSL offers
no on-line documentation on the T3E. However, one can access the the
hypertext help system for IMSL on Caper Cypress and Cypress2 with the
command

imsl.help

and the text-based help system on Cray C94 by

imsl.idf

There is also a large collection of example codes in the directory

$DOC/imsl_examples/

4.6 More information

Chapter 5 discusses Fortran programming in more detail and Chapter 6
C and C++ programming.
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The manual Introducing CrayLibs [Crad] contains a summary of Cray
scientific library routines.

You can use help to get some information about the IMSL and NAG
libraries in the CSC environment with the commands

help imsl
help nag

You can also use the NAG and IMSL help systems on other computers at
CSC as described in Sections 4.4 and 4.5.
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Chapter 5

Fortran programming

The Cray T3E offers a Fortran 90 compiler which can be used to com-
pile standard-conforming FORTRAN 77 programs as well. This chapter
discusses the most essential compiler features. Parallel programming is
described in Chapter 7. Programming tools are discussed in Chapter 9.

5.1 The Fortran 90 compiler

The Cray T3E Fortran 90 compiler (CF90) supports a full implementation
of the ANSI and ISO Fortran 90 standard. The compiler also includes
many traditional Cray-specific features, such as Cray-style pointers.

A separate FORTRAN 77 compiler is not (and will not be) available on
the Cray T3E. Because the FORTRAN 77 standard is included in the
Fortran 90 programming language, you can also compile FORTRAN 77
programs with the Cray CF90 compiler. You should note, however, that
some Fortran programs contain vendor-specific extensions which may
or may not be compatible with the Fortran 90 standard.

Note that the Cray Fortran 90 compiler is unable to parallelize your code
automatically. Instead, you must use explicit methods such as message-
passing (MPI or PVM) libraries, or the data-passing library (SHMEM).

The data-parallel programming language HPF (High Performance For-
tran) with HPF_CRAFT extensions is also available. This programming
model, supporting HPF directives in the Fortran source code, is dis-
cussed in Section 7.5.
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5.2 Basic usage

The CF90 compiler is invoked using the command f90 followed by op-
tional compiler options and the filenames to be compiled:

t3e% f90 [options] filenames

If the -c option is not specified, the f90 command will automatically
invoke the linker to create an executable program.

You can compile and link in a single step:

t3e% f90 -o prog.x prog.f90 sub.f90

Here the source code files prog.f90 and sub.f90 were compiled into
the executable program prog.x. The compilation and linking can also
be done in several steps using the -c option:

t3e% f90 -c prog.f90
t3e% f90 -c sub.f90
t3e% f90 -o prog.x prog.o sub.o

This way, only the changed program units have to be compiled before
linking the .o files.

The malleable program prog.x can now be executed using the mpprun
command:

t3e% mpprun -n 16 ./prog.x

Here we used 16 processors.

The program can also be compiled and linked into a non-malleable exe-
cutable by:

t3e% f90 -X 16 -o prog.x prog.f90 sub.f90

5.3 Fixed and free format source code

The Fortran compiler uses filename extensions to distinguish different
types of files. The compiler interprets the extensions .f and .F to mean
the traditional fixed form of source code (“FORTRAN 77 style”). The
extensions .f90 and .F90 imply the new free form of source code. You
can override these defaults using the options -f fixed and -f free.
Table 5.1 illustrates the use of the file extensions.
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File extension Type Notes

.f Fixed source form (72 columns) No preprocessing

.f90 Free source form (132 columns) No preprocessing

.F Fixed source form (72 columns) Preprocessing

.F90 Free source form (132 columns) Preprocessing

.o Object file Passed to linker

.a Object library file Passed to linker

.s Assembly language file Passed to assembler

Table 5.1: The interpretation of some filename extensions.

5.4 Compiler options

You can control the compilation process using compiler options. The
most common situation is to increase the optimization level. The fol-
lowing command sequence illustrates a typical compilation process and
creation of an executable (master.x). The source code is in the files
master.f90 and shallow.f90.

t3e% f90 -c master.f90
t3e% f90 -c -O3 -Obl,aggress,split2,unroll2 shallow.f90
t3e% f90 -o master.x master.o shallow.o

In the previous example we used the option -O3. This normally gener-
ates faster programs with reduced turnaround time. The cost of code
optimization is increased compilation time which can sometimes be ex-
cessive. The size of the executable can also increase.

You may also request more information about the optimizations made
by the compiler in the form of a listing file. Compiler options can also
be used to activate debugging or performance tracing (see Chapter 9).

The default size of REAL and INTEGER variables is 8 bytes or 64 bits,
which can be changed to 32 bits with the option -s default32.

Table 5.2 lists the most important CF90 compiler options.

Without explicit compiler options, the compiler assumes conservative
optimization levels, which do not introduce side effects. Some features
can be enabled or disabled with the -e and -d options, see Table 5.3.

5.5 Optimization options

It is very important to note that single-CPU code optimization is essential
in getting good performance on the Cray T3E. If the speed of your code
is only 10 Mflop/s per processor, compared to the peak performance of
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Option Explanation

-c Compile only, do not attempt to link
-r2 Request for standard listing file (.lst)
-r6 Request for full listing
-rm Request for listing with loopmarks
-i32 Treat INTEGER as 32-bit (4 bytes)
-s default32 Treat INTEGER, REAL and LOGICAL as 32-bit
-dp Treat DOUBLE PRECISION as REAL (default)
-On Set the optimization level n (0,1,2,3)
-O3 Aggressive optimization
-Osplit2 Automatic loop splitting (check all loops)
-Ounroll2 Automatic loop unrolling (2 copies)
-Oaggress Increases internal table limits for better optimization
-Obl Enables bottom loading of scalar operands in loops
-g Enable debugging of code with TotalView

Table 5.2: Some CF90 compiler options. For further details about the
options see the manual pages using the command man f90.

750 Mflop/s per processor, the parallel performance of the code will be
poor even if the code parallelizes perfectly.

The optimization of Fortran codes is discussed in detail in the Cray
publication Cray T3E Fortran Optimization Guide [Crac]. Therefore we
only present a short review of the subject here.

The first step in the performance optimization is the selection of a robust
and an efficient algorithm with regard to the parallel implementation.
When available, tested and efficient library routines should be used.
The code should be optimized first via compiler options and later, if
necessary, by manual intervention. Furthermore, one should begin the
optimization of a program from the parts that take most resources. This
requires profiling the program that is discussed in Chapter 9.

The -O option of the f90 command can be used to do several different
types of code optimization. The option -On, where n is 0, 1, 2 or 3, is
the basic way to select the optimization level.

Instead of giving the numerical optimization level, you can also request
a specific type of optimization. For example, the option

-O aggress,scalar3,bl,unroll2,split2

specifies aggressive optimization with extensive scalar optimization and
several techniques for loop optimization (bottom loading, unrolling and
loop splitting).

The specific optimization types can also be selected by compiler direc-
tives in the source code (see Section 5.7 on page 45).
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Option Explanation

-dn, -en Report nonstandard code
-dp, -ep Use double precision
-er, -dr Round multiplication results
-du, -eu Round division results upwards
-dv, -ev Static storage
-dA, -eA Use the Apprentice tool
-dI, -eI IMPLICIT NONE statement
-dR, -eR Recursive procedures
-dP, -eP Preprocessing, no compilation
-dZ, -eZ Preprocessing and compilation

Table 5.3: Enabling or disabling some compiler features. The default
option is listed first.

5.6 Optimizing for cache

The Cray T3E memory hierarchy is discussed in Section 3.5 on page 24.
Here is an example of a poorly performing code fragment:

INTEGER, PARAMETER :: n = 4096
REAL, DIMENSION(n) :: a, b, c
COMMON /my_block/ a, b, c
INTEGER :: i

DO i = 1, n
a(i) = b(i) + c(i)

END DO

Here the COMMON statement is used to ensure that the arrays a, b and
c are in consecutive memory positions. Because of this, the elements
a(1) and b(1) are 4096 words or 32 kB apart in memory, and they are
thus mapped to the same line of the SCACHE. The same applies to b(1)
and c(1). Because the elements are also a multiple of 1024 words apart,
they also map to the same DCACHE line, which is even worse.

The size of the DCACHE is 8 kB, and the size of the SCACHE is effectively
32 kB. A DCACHE line is 32 bytes or 4 words, and a SCACHE line is 64
bytes or 8 words.

Because the array elements b(i) and c(i) map to the same cache line
both in the DCACHE and in the SCACHE, each load operation of c(i)
replaces the previously loaded b(i) value.

Since a complete cache line is read from memory at a time, also the ad-
jacent memory locations are replaced. This causes a lot of unnecessary
memory traffic.
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You can improve the performance by padding the arrays so that the
corresponding elements do not map to the same cache lines:

INTEGER, PARAMETER :: n = 4096, pad = 8
REAL, DIMENSION(n+pad) :: a, b
REAL, DIMENSION(n) :: c
COMMON /my_block/ a, b, c

The rest of the code is identical. The padding can also be done using
extra arrays:

INTEGER, PARAMETER :: n = 4096, pad = 8
REAL, DIMENSION(n) :: a, b, c
REAL, DIMENSION(pad) :: temp1, temp2
COMMON /my_block/ a, temp1, b, temp2, c

After this, the read operations for arrays a and b do not map to the
same DCACHE and SCACHE lines, and the write operations of the c(i)
elements do not map to these cache lines. This makes the code run a lot
faster!

Similar techniques can also be used with arrays of two or more dimen-
sions.

5.7 Compiler directives

In addition to using compiler options, you can use the so-called compiler
directives to control the compilation process. There are directives which
help in code optimization, memory usage, checking array bounds etc.

Table 5.4 lists the most useful compiler directives.

Directive Explanation

free, fixed Specifying source form
[no]bounds [array] Array bounds checking
integer=n Specifying integer length
name (fortran_name="ext_name") Naming external routines
[no]bl Bottom loading operands
[no]split Loop splitting
[no]unroll [n] Loop unrolling (n copies)
cache_align var Align on cache line boundaries
symmetric [var, ...] Declaring local addressing

Table 5.4: Some compiler directives for the f90 command.

Directives are written into the source code as special comments, and the
CF90 compiler interprets them in the compilation phase.

Here is a short example:
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!dir$ split
DO i = 1, 1000
a(i) = b(i) * c(i)
t = d(i) + a(i)
e(i) = f(i) + t * g(i)
h(i) = h(i) + e(i)

END DO

The directive is marked with the characters !dir$. If the source code
is written using the fixed source form, these characters must be at the
beginning of the line.

Due to the directive split, the compiler will split the above loop in two
as follows:

DO i = 1, 1000
a(i) = b(i) * c(i)
ta(i) = d(i) + a(i)

END DO
DO i = 1, 1000
e(i) = f(i) * ta(i) * g(i)
h(i) = h(i) + e(i)

END DO

This may make the code faster by reducing memory bandwidth. Instead
of loading and storing a lot of data in an iteration of the loop, the split
loop gives a better balance between computation and memory opera-
tions. This also improves the performance if we are using the streams
mechanism.

Here is an example of loop unrolling:

!dir$ unroll 2
DO i = 1, 10
DO j = 1, 100
a(j,i) = b(j,i) + 1

END DO
END DO

This results in the following unrolled loops (into two copies of the inner
loop):

DO i = 1, 10, 2
DO j = 1, 100
a(j,i) = b(j,i) + 1

END DO
DO j = 1, 100
a(j,i+1) = b(j,i+1) + 1

END DO
END DO

The compiler may also fuse the two inner loops together to produce the
following final code:

DO i = 1, 10, 2
DO j = 1, 100
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a(j,i) = b(j,i) + 1
a(j,i+1) = b(j,i+1) + 1

END DO
END DO

Here we used the inverse operation of loop splitting to decrease the
overhead due to loop control.

Bottom loading is an effective technique for overlapping loop control
and loading of operands for the next iteration of the loop. Here is an
example:

DO i = 1, 100
a(i) = a(i) + b(i)*c(i)

END DO

After each iteration, one has to check whether to do further iterations, or
to continue from the next statement after the loop. When the statement

a(i) = a(i) + b(i)*c(i)

is executed, one has to issue load operations for the a(i), b(i) and
c(i) values, which can take some time. Therefore, one could start the
load operations for the next iteration first, and only after this check if
we should do another iteration.

Bottom loading can cause a program error if we try to load, for example,
the value c(101), which could be outside the memory allocated to the
program. In practice this never occurs, except in cases where the loop
has a large increment:

DO i = 0, 10000, 1000
a(i) = a(i) + b(i)*c(i)

END DO

Here we could load the value c(11000), which could be outside the
memory bounds.

The cache_align directive can be used to align arrays or COMMON blocks
on cache line boundaries:

REAL, DIMENSION(50) :: a, b
REAL, DIMENSION(10) :: c
COMMON /my_block/ a, b
!dir$ cache_align /my_block/, c

Here both the contents of the COMMON block my_block and the array c
were aligned on the cache line boundary. Therefore the array elements
a(1) and c(1) map to the first word of a cache line.

The directives bounds and nobounds tell the compiler to check specific
array references for out-of-bounds errors:

!dir$ bounds [array_name [, array_name]...]
!dir$ nobounds [array_name [, array_name]...]

If the array names are not supplied, the directive applies to all arrays.
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The symmetric directive is useful when using the SHMEM communica-
tions library.

!dir$ symmetric [var [, var]...]

This directive declares that a PE-private stack variable has the same local
address on all PEs. For more information on the SHMEM library routines,
issue the command man intro_shmem. See also Section 7.4 on page 70.

The directives

!dir$ free
!dir$ fixed

allow you to select the form of the source code within a file. This possi-
bility is an extension to the Fortran 90 standard.

5.8 Fortran 90 modules

One of the strongest features of the Fortran 90 programming language
are modules, which can be used to encapsulate data and procedures. In
this way, one can define abstract data types which hide implementation
details, and only the interface is public.

A module must be compiled before it can be used in a program unit. In
T3E the module definitions are placed in an object file with the suffix
.o. During the compilation of the main program the compiler looks for
module definitions in all the .o files and .a archives in the present or
specified directories.

As an example, suppose that a program consists of three modules called
myprec (file myprec.f90), matrix (file matrix.f90), and cg (file cg.f90)
together with the main program (iterate.f90). Assume that matrix
uses myprec, cg uses myprec and matrix, and the main program uses
all three modules. Then we can compile the program as follows:

t3e% f90 -c myprec.f90
t3e% f90 -c matrix.f90
t3e% f90 -c cg.f90
t3e% f90 -o iterate iterate.f90 myprec.o matrix.o cg.o

The resulting executable program is called iterate. Note that the call
hierarchy of the modules is reflected in the order in which they are
compiled.

Using the make system is a convenient way to handle the compilation and
linking. In the makefile one must specify the dependencies between
the modules and other program units (see Section 9.1). The following
makefile handles the above example.

OBJS= iterate.o myprec.o matrix.o cg.o
OPTS= -c
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F90= f90

iterate: $(OBJS)
$(F90) -o $@ $(OBJS)

iterate.o: myprec.o cg.o matrix.o

cg.o: myprec.o matrix.o

matrix.o: myprec.o

.SUFFIXES: .f90

.f90.o:
$(F90) $(OPTS) $<

clean:
rm -f *.o iterate

If the module files (.o or .a) are not in the current directory, one can
use the -p path option of the f90 command to include additional search
paths and/or module files.

It is common to place the modules in an archive so that they can be used
in several programs. As an example we compile the previous modules
as before and form a library called libmod.a:

t3e% ar rv libmod.a myprec.o matrix.o cg.o
t3e% rm myprec.o matrix.o cg.o

Suppose that libmod.a is in the subdirectory lib. Then we can compile
and link the main program with

t3e% f90 -o iterate -p lib iterate.f90

The compiler option -p may take as an argument a directory name,
when all archive files in it are search, or a single file name, e.g., -p
lib/libmod.a.

5.9 Source code preprocessing

Source code preprocessing is activated if the filename extension is .F
or .F90. Preprocessing directives (like #ifdef. . . #else. . . #endif) can
help to isolate computer system specific features. This helps in main-
taining a single version of source code in one source file.

On Cray systems it is often necessary to use the option -F to make
certain macro expansions work (#define). The option -D can be used to
define macros directly from the compiler command line. One can also
use the compiler options -eP (only preprocessing) or -eZ (preprocessing
and compilation) to preprocess source codes.
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As an example, consider a simple code that computes and prints a root
of a polynomial using IMSL routines ZREAL and WRRRN. The code is
written so that it can be run on both T3E and Caper (DEC AlphaServer at
CSC), on which the preprocessor replaces the single precision IMSL calls
with the corresponding double precision versions by defining macros.
Moreover, the variable info is printed if INFO is defined.

#ifdef __alpha
#define zreal dzreal
#define wrrrn dwrrrn
#endif

PROGRAM root
IMPLICIT NONE
INTEGER, PARAMETER:: prec=SELECTED_REAL_KIND(12,100)
REAL (prec):: eabs=1.0e-5, erel=1.0e-5, eps=1.0e-5, &

eta=1.0e-2, xi=1.0, x
INTEGER:: nr=1, imax=100, info, one=1, zero=0
CHARACTER(9):: title=’A root is’
REAL (prec), EXTERNAL:: fun

CALL zreal(fun,eabs,erel,eps,eta,nr,imax,xi,x,info)
CALL wrrrn(title,one,nr,x,one,zero)

#ifdef INFO
PRINT *, info
#endif

END PROGRAM root

FUNCTION fun(x) RESULT(value)
IMPLICIT NONE
INTEGER, PARAMETER:: prec=SELECTED_REAL_KIND(12,100)
REAL (prec):: x, value

value=x**2-2

END FUNCTION fun

To compile and link on T3E use

t3e% f90 -eZ -F root.f90 -p$MODULES_F90 $LINK_F90 -DINFO

Here the preprocessor was invoked with -eZ, -F enables macro expan-
sion, and -DINFO defines INFO. On Caper the preprocessor is activated
with -cpp:

caper% f90 $FFLAGS -cpp root.f90 $LINK_FNL -DINFO

In both cases the output is

A root is
1.414

4
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and four iterations were performed.

5.10 More information

CSC has published a textbook on Fortran 90 [HRR96]. A general intro-
duction to the Unix programming environment is given in the Metacom-
puter Guide [Lou97]. Both books are written in Finnish.

Code optimization is discussed in the Cray manual Cray T3E Fortran Op-
timization Guide [Crac]. Compiler directives are explained in the manual
CF90 Commands and Directives Reference Manual [Craa]. The WWW
address

http://www.csc.fi:8080

contains on-line versions of the Cray manuals.

Compiling Fortran 90 modules at CSC is discussed in the @CSC magazine
4/97, and using preprocessing to write portable code is considered in
@CSC 2/97.
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Chapter 6

C and C++ programming

This chapter discusses C and C++ programming on the Cray T3E. Paral-
lel programming is described in Chapter 7 and programming tools are
discussed in Chapter 9.

6.1 The Cray C/C++ compilers

The Cray C++ Programming Environment contains both the Cray Stan-
dard C and the Cray C++ compilers. The Cray Standard C compiler
conforms with the ISO and ANSI standards. The Cray C++ compiler
conforms with the ISO/ANSI Draft Proposed International Standard.

Because both the Cray Standard C and Cray C++ compilers are contained
within the same programming environment, programmers writing code
in C should use the cc or c89 commands to compile their source files.
The command c89 is a subset of cc and conforms to the POSIX standard.
Programmers writing code in C++ should use the CC command.

Note that the C/C++ compiler is unable to parallelize automatically your
code. Instead, you must use explicit methods like message-passing (MPI
or PVM) libraries, or the data-passing library (SHMEM).

The following commands are included in the C/C++ programming envi-
ronment on the T3E:

Command Description

cc Cray Standard C compiler
c89 Cray Standard C compiler
CC Cray C++ compiler
cpp Preprocessor of the C compiler
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The compilation process, if successful, creates an absolute object file,
named a.out by default. This binary file, a.out, can then be executed.

For example, the following sequence compiles the source file myprog.c
and executes the resulting malleable program a.out with eight proces-
sors:

t3e% cc myprog.c
t3e% mpprun -n 8 ./a.out

Compilation can be terminated with the appropriate options to produce
one of several intermediate translations, including relocatable object
files (option -c), assembly source expansions (option -S), or the output
of the preprocessor phase of the compiler (option -P or -E).

In general, the intermediate files can be saved and later resubmitted to
the CC, cc, or c89 commands, with other files or libraries included as
necessary. By default, the CC, cc, and c89 commands automatically call
the loader, cld, which creates an executable file.

The program can also be compiled and linked into a non-malleable exe-
cutable by:

t3e% cc -X 8 -o myprog.c

6.2 The C compiler

The Cray Standard C compiler consists of a preprocessor, a language
parser, an optimizer and a code generator. The Cray Standard C com-
piler is invoked by commands cc or c89.

The cc command accepts C source files that have the .c and .i suffixes,
object files with the .o suffix, library files with the .a suffix and assem-
bler source files with the .s suffix. The cc command format is generally
as follows:

t3e% cc [compiler_options] files

The sizes of the C datatypes on the T3E are:

• float: 4 bytes
• double: 8 bytes
• long double: 8 bytes
• int: 8 bytes
• long: 8 bytes
• long long: 8 bytes
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6.3 Calling Fortran from C

Sometimes you need to call Fortran routines from C programs. In the
following, we calculate a matrix product using the routine SGEMM from
the Libsci library:

#include <stdio.h>
#include <fortran.h>

#define DGEMM SGEMM

#define l 450
#define m 500
#define n 550

main()
{
double a[n][l], b[l][m], ct[m][n];
int ll, mm, nn, i, j, k;
double alpha = 1.0;
double beta = 0.0;
void DGEMM();
char *transposed = "t";
_fcd ftran;

/* Initialize */

for (i = 0; i < n; i++)
for (j = 0; j < l; j++)
a[i][j] = i-j+2;

for (i = 0; i < l; i++)
for (j = 0; j < m; j++)
b[i][j] = 1/(double)(i+2*j+2);

ftran = _cptofcd(transposed, strlen(transposed));

ll = l; mm = m; nn = n;
DGEMM(ftran, ftran, &nn, &mm, &ll, &alpha, a, &ll,

b, &mm, &beta, ct, &nn);

printf("%.6f\n", ct[10][10]);

exit(0);
}

Note that on the T3E, the SGEMM routine performs the calculation using
64-bit real numbers, corresponding to the double type in C. Before mak-
ing the Libsci call, we need to convert the C strings into Fortran strings.
This is done with the function _cptofcd. We also use the type _fcd
defined in the header file fortran.h.
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The fact that Fortran stores arrays in reverse order compared to C needs
to be taken into account. Therefore, the array ct contains the transpose
of the result of the matrix multiplication.

This program takes about one second to execute on a 375 MHz proces-
sor, which corresponds to the execution speed of about 240 Mflop/s.

6.4 C compiler options

The most typical compiler options are given in the Table 6.1. Many of the
options have corresponding compiler directives, which can be included
in the source code.

Compiler option Meaning

-c Compile only, do not attempt to link
-On Choose optimization level n (0,1,2,3)
-hoption Enable specific compiler actions
-haggress Aggressive optimization
-hunroll Enable loop unrolling
-hscalarn Choose scalar optimization level n (0,1,2,3)
-hstdc Strict conformance of the ISO C standard
-hsplit Split loops into smaller ones
-happrentice Compile for MPP Apprentice
-lapp Link with MPP Apprentice library
-g Compile for the Cray TotalView debugger
-Gf Debugging with full optimization
-Gp Debugging with partial optimization
-Gn Debugging with no optimization (same as -g)
-Xnpes Compile for npes processors
-Dmacro[=def] Define a cpp macro
-Umacro Undefine a cpp macro
-V Display the version number of the compiler
-Wphase[,"options"] Pass options to phase
-Iincpath Search include files also from incpath
-Llibpath Search libraries also from libpath
-lname Link also with library libname.a

Table 6.1: Typical compiler options.
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6.5 C compiler directives (#pragma)

The #pragma directives are used within the source program to request
certain kinds of special processing. The #pragma directives are exten-
sions to the C and C++ standards. They are classified according to the
following types:

• general
• template instantiation (Cray C++ only)
• scalar
• tasking
• inlining.

You can control the compiler analysis of your source code by using
#pragma directives. The #pragma directives have the following form:

#pragma [_CRI] identifier [arguments]

In the specification, the macro expansion is applied only to arguments.
The _CRI specification is optional and ensures that the compiler will
issue a message concerning any directives that it does not recognize.
Diagnostics are not generated for any directives that do not contain the
_CRI specification.

To ensure that your directives are seen only by Cray Research compilers,
you should use the following coding technique, where identifier repre-
sents the name of the directive:

#if _CRAYC
#pragma _CRI identifier

#endif

The following sections describe the most useful #pragma directives in
the Cray T3E environment. They are all classified as scalar directives
and used for code optimization.

cache_align

The cache_align directive aligns a variable on a cache-line boundary.
This is useful for frequently referenced variables.

The first-level cache (DCACHE) line consists of four 64-bit words which
are loaded from the memory to the cache whenever any of the words
is referenced. By using the directive you can be sure that a specified
memory location is loaded to the first word of a cache-line.

The effect of the cache_align directive is independent of its position
in the source code. It can appear in global or local scope. The format of
the directive is as follows:

#pragma _CRI cache_align var_list
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In the previous format, var_list represents a list of variable names sepa-
rated by commas. In C, the cache_align directive can appear before or
after the declaration of the named objects. In C++, it must appear after
the declaration of all named objects.

noreduction

The noreduction compiler directive tells the compiler not to optimize
the loop that immediately follows the directive as a reduction loop. If
the loop is not a reduction loop, the directive is ignored.

You may choose to use this directive when the loop iteration count is
small or when the order of evaluation is numerically significant. In the
latter case normal optimization may change the result of a reduction
loop, because it rearranges the operations.

The format of this directive is:

#pragma _CRI noreduction

The following example illustrates the use of the noreduction compiler
directive:

sum = 0;
#pragma _CRI noreduction
for (i=0; i<n; i++) {
sum += a[i];

}

Here we know that n will be a small number and therefore we do not
want to optimize this loop as a reduction loop.

split

The split directive instructs the compiler to attempt to split the follow-
ing loop into a set of smaller loops. Such a loop splitting improves single
processor performance by making the best use of the six stream buffers
of the Cray T3E system. The stream buffers reduce memory latency
and increase memory bandwidth by prefetching for long, small-strided
sequences of memory references.

The split directive may avoid performance problems with the stream
buffers by splitting an inner loop into a set of smaller loops, each of
which allocates no more than six stream buffers.

The split directive has the following form:

#pragma _CRI split

This compiler directive should be placed immediately before the loop
to be split. It should immediately precede a for, while, do or label
statement, but it should not appear in any other context.
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The split directive merely asserts that the loop can profit by splitting.
It will not cause incorrect code.

The compiler splits the loop only if it is safe. Generally, a loop is safe to
split under the same conditions that a loop is vectorizable. The compiler
only splits inner loops, but it may not split loops with conditional code.

The split directive also causes the original loop to be stripmined, and
therefore the data is processed in blocks small enough to fit in the cache.

Loop splitting can reduce the execution time of a loop by as much as
40%. Even loops with as few as 40 iterations may be split. The loops
must contain more than six different memory references with strides
less than 16.

Note that there is a slight risk on increasing the execution time of certain
loops. Loop splitting also increases compilation time, especially when
loop unrolling is also enabled.

Here is an example of loop splitting:

#pragma _CRI split
for (i=0; i<1000; i++) {
a[i] = b[i] * c[i];
t = d[i] + a[i];
e[i] = f[i] + t * g[i];
h[i] = h[i] + e[i];

}

First, the compiler generates the following loop:

for (i=0; i<1000; i++) {
a[i] = b[i] * c[i];
ta[i] = d[i] + a[i];

}
for (i=0; i<1000; i++) {
e[i] = f[i] * ta[i] * g[i];
h[i] = h[i] + e[i];

}

Finally, the compiler stripmines the loops to increase the potential for
cache hits and reduces the size of arrays created for scalar expansion:

for (i1=0; i1<1000; i1+=256) {
i2 = (i1+256 < 1000) ? i1+256 : 1000;
for (i=i1; i<i2; i++) {
a[i] = b[i] * c[i]
ta[i-i1] = d[i] + a[i]

}
for (i=i1; i<i2; i++) {
e[i] = f[i] * ta[i-i1] * g[i]
h[i] = h[i] + e[i]

}
}
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symmetric

The symmetric directive declares that an auto or register variable has
the same local address on all processing elements (PEs). This is useful
for global addressing using the SHMEM library functions. The format
for this compiler directive is:

#pragma _CRI symmetric var...

The symmetric directive must appear in local scope. Each variable listed
on the directive must:

• be declared in the same scope as the directive

• have auto or register storage class

• not be a function parameter.

Because all PEs must participate in the allocation of symmetric stack
variables, there is an implicit barrier before the first executable state-
ment in a block containing symmetric variables.

unroll

The unroll directive allows the user to control unrolling for individual
loops. Loop unrolling can improve program performance by revealing
memory optimization opportunities such as read-after-write and read-
after-read. The effects of loop unrolling also include:

• an improved loop scheduling by increasing the basic block size

• a reduced loop overhead

• improved chances for cache hits.

The format for this compiler directive is:

#pragma _CRI unroll [n]

Item n specifies the total number of loop body copies to be generated.
The value of n must be in the range of 2 through 64. If you do not
specify a value for n, the compiler attempts to determine the number of
copies to be generated based on the number of statements in the loop
nest.

Warning: If placed prior to a non-innermost loop, the unroll directive
asserts that the following loop has no dependencies across iterations of
that loop. If dependencies exist, incorrect code could be generated.

The unroll compiler directive can be used only on loops whose iteration
counts can be calculated before entering the loop.
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The compiler can be directed to attempt to unroll all loops generated
for the program with the command-line option -hunroll.

The amount of unrolling specified on the unroll directive overrides
those chosen by the compiler when the command-line option -hunroll
is specified.

In the following example, assume that the outer loop of the following
nest will be unrolled by two:

#pragma _CRI unroll 2
for (i=0; i<10; i++) {
for (j=0; j<100; j++) {
a[i][j] = b[i][j] + 1;

}
}

With outer loop unrolling, the compiler produces the following nest, in
which the two bodies of the inner loop are adjacent to each other:

for (i=0; i<10; i+=2) {
for (j=0; j<100; j++) {
a[i][j] = b[i][j] + 1;

}
for (j=0; j<100; j++) {
a[i+1][j] = b[i+1][j] + 1;

}
}

The compiler then fuses the inner two loop bodies, producing the fol-
lowing nest:

for (i=0; i<10; i+=2) {
for (j=0; j<100; j++) {
a[i][j] = b[i][j] + 1;
a[i+1][j] = b[i+1][j] + 1;

}
}

Outer loop unrolling is not always legal because the transformation can
change the semantics of the original program. For example, unrolling
the following loop nest on the outer loop would change the program se-
mantics because of the dependency between array elements a[i][...]
and a[i+1][...]:

/* Directive will cause incorrect code due to dependencies */
#pragma _CRI unroll 2
for (i=0; i<10; i++) {
for (j=1; j<100; j++) {
a[i][j] = a[i+1][j-1] + 1;

}
}
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6.6 The C++ compiler

The Cray C++ compiler conforms with the ISO/ANSI Draft Proposed In-
ternational Standard. A revised version of the standard has recently
been accepted as the ISO/ANSI standard.

The Cray C++ compiler is invoked by the command CC. The compiler
consists of a preprocessor, a language parser, a prelinker, an optimizer
and a code generator.

The compiler supports templates, run time type identification (RTTI),
member templates, partial specialization and namespaces. Moreover,
the Silicon Graphics Standard Template Library (STL) is supported.

Cray C++ Tools and Mathpack libraries are installed on T3E. The libraries
are Cray versions of Rogue Wave C++ libraries. The Tools library cor-
responds to Tools.h++ library and the Mathpack is equivalent to the
combination of Math.h++ and LAPACK.h++.

The Cray C++ Compiler options and directives are similar with those
described in conjunction with the Cray Standard C compiler.

6.7 More information

See the Cray publication Cray C/C++ Reference Manual [Crab]. The
WWW address

http://www.csc.fi:8080

contains on-line versions of the Cray manuals.

The 4/96 and 5/97 issues of the @CSC magazine contain information
about C++ programming in CSC’s metacomputer environment, including
the T3E.

For the description of the compiler options, use the man command, e.g.:

man cc
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Chapter 7

Interprocess communication

This chapter describes how to use the MPI or PVM message-passing li-
braries on the Cray T3E at CSC. In addition, the properties of the Cray
data-passing library SHMEM are described in some detail. The data-
parallel High Performance Fortran (HPF) programming model is intro-
duced, too.

7.1 The communication overhead

Parallelization on the T3E can be done by three different approaches:
message"-passing, data-passing and data-parallel programming. The
defining feature of message passing is that the data transfer from the
local memory of one process to the local memory of another requires op-
erations to be performed by both processes. In contrast, data-passing
routines for sending or receiving data are one-sided. In data-parallel
model, the programmer specifies only the data distribution between
processes, and the compiler generates a parallel executable code.

The fastest way to communicate between processors on the Cray T3E is
using the SHMEM library (Shared Memory Library). This is a Cray-specific
data-passing library and will not produce portable code to other archi-
tectures. It may be preferable to use MPI (Message Passing Interface),
a standardized and portable message-passing library. Another portable
message-passing library on the T3E is the somewhat older PVM (Parallel
Virtual Machine), which is, in general, a bit slower than MPI. The Cray T3E
system has also a data-parallel HPF (High Performance Fortran) compiler,
supporting Cray’s CRAFT data-parallel programming model, as well.

Message latency (or start-up time) is about 1µs (microseconds) when
using the SHMEM library. With MPI the latency is about 30 µs. The
maximum bandwidth is in practice about 230 MB/s with both SHMEM
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and MPI. Latency and bandwidth are not equally transparent to the HPF
user, but in general HPF programs are slower than SHMEM and MPI
applications.

The total bandwidth of the machine is very large due to six bi-directional
communication links in each PE. It does not matter much where the com-
putational nodes of your application are physically situated. The physi-
cal start-up time of message passing is about 100 clock periods, which is
incremented by about 2 clock periods for each additional link between
processors. However, the system allocates “neighboring” processors to
your application to minimize the total communication overhead in the
computer.

7.2 Message Passing Interface (MPI)

MPI (Message Passing Interface) is a standardized message-passing li-
brary defined by a wide community of scientific and industrial experts.
Portability is the main advantage of establishing a message-passing stan-
dard. One of the goals of MPI is to provide a clearly defined set of rou-
tines that can be implemented efficiently on many types of platforms.

MPI is also easier and “cleaner” to use than the somewhat older PVM
library. In addition, the MPI library on the T3E is usually about 30%
faster than the PVM library.

Note that you do not need to use any special linker options to use MPI,
because the MPI libraries are linked automatically on the T3E. MPI rou-
tines may be called from FORTRAN 77, Fortran 90, C or C++ programs.
The version of the MPI standard available on the T3E is MPI-1, not MPI-2.

7.2.1 Format of the MPI calls

The format of the MPI calls for Fortran programs (with few exceptions)
is as follows:

SUBROUTINE sub(...)
IMPLICIT NONE
INCLUDE ’mpif.h’
INTEGER :: return_code
...
CALL MPI_ROUTINE(parameter_list, return_code)
...

END SUBROUTINE sub

In Fortran 90 programs, it is often convenient to place the definitions in
MODULE mpi which is taken into use in other modules by the command
USE mpi.
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Correspondingly, for C/C++ programs the format is:

#include <mpi.h>

void sub(...)
{

int return_code;
...
return_code = MPI_Routine(parameter_list);

}

7.2.2 Some MPI routines

The MPI standard includes more than 120 routines. However, one needs
only a few of them for efficient message passing and, at minimum, one
can do with six MPI routines. The most important MPI routines are listed
in Table 7.1 (the Fortran syntax is shown).

The variable comm is often set to the value MPI_COMM_WORLD after initial-
ization. For most applications this is the only communicator . It binds
all processes of a parallel application into a single group. The value of
MPI_COMM_WORLD is defined in the MPI header file mpif.h.

MPI_BCAST and MPI_REDUCE are examples of collective operations. MPI
includes advanced features such as defining application topologies and
derived datatypes.

For more information about a particular MPI routine, issue the com-
mand

man mpi_routine

For example, give the command man mpi_send to find documentation
for the MPI_SEND routine. The manual pages show the C language syn-
tax.

7.2.3 An example of using MPI

Below is a short MPI example program which uses collective communi-
cation to calculate the global sum of task id numbers:

PROGRAM example
IMPLICIT NONE
INCLUDE ’mpif.h’
INTEGER :: ntasks, id, rc, data, s
CALL MPI_INIT(rc)
IF (rc /= MPI_SUCCESS) THEN
WRITE(*,*) ’MPI initialization failed’
STOP

END IF
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, rc)
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Fortran syntax Meaning

MPI_INIT(rc) Initialize the MPI session.
This should be the very first call.

MPI_FINALIZE(rc) Terminate the MPI session.
This should be the very last call.

MPI_COMM_SIZE(comm, Get the number of processes in comm.
nproc, rc)

MPI_COMM_RANK(comm, Get my task id in comm.
myproc, rc)

MPI_SEND(buf, buflen, Sends data buf to process dest.
datatype, dest,
tag, comm, rc)

MPI_SSEND(buf, buflen, Sends data buf to process dest
datatype, dest, (synchronous send).
tag, comm, rc)

MPI_RECV(buf, buflen, Receives data to buf from src.
datatype, src, tag,
comm, status, rc)

MPI_BCAST(buf, buflen, Broadcast data from root to other
datatype, root, processes in comm.
comm, rc)

MPI_REDUCE(sbuf, rbuf, Performs global operation
buflen, datatype, (sum, max, ...) from sbuf to rbuf.
oper, root, comm, rc)

MPI_ISEND(buf, buflen, Sends data buf to process dest,
datatype, dest, tag, but does not wait for completion
comm, request, rc) (non-blocking send).

MPI_IRECV(buf, buflen, Receives data to buf from src,
datatype, src, tag, but does not wait for completion
comm, request, rc) (non-blocking receive).

MPI_WAIT(request, Checks whether a request has been
status, rc) completed.

Table 7.1: A list of important MPI routines.
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CALL MPI_COMM_RANK(MPI_COMM_WORLD, id, rc)
data = id
CALL MPI_REDUCE(data, s, 1, MPI_INTEGER, &

MPI_SUM, 0, MPI_COMM_WORLD, rc)
CALL MPI_BCAST(s, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, rc)
WRITE(*,*) ’data:’, data, ’sum:’, s
CALL MPI_FINALIZE(rc)

END PROGRAM example

If this program is in the file collect.f90, it can be compiled and run
interactively as follows:

t3e% f90 -o collect.x collect.f90
t3e% mpprun -n 8 ./collect.x
data: 0 sum: 28
data: 4 sum: 28
data: 1 sum: 28
data: 5 sum: 28
data: 3 sum: 28
data: 7 sum: 28
data: 6 sum: 28
data: 2 sum: 28

t3e% mpprun -n 3 ./collect.x
data: 0 sum: 3
data: 1 sum: 3
data: 2 sum: 3

The program was first run on eight processors, and thereafter on three
processors. Chapter 8 discusses running batch jobs.

Here is a C language version of the same program:

#include <stdio.h>
#include <mpi.h>

main(int argc, char *argv[])
{
int ntasks, id, rc, data, s;
rc = MPI_Init(&argc, &argv);
if (rc != MPI_SUCCESS) {
printf("MPI initialization failed\n");
exit(1);

}
rc = MPI_Comm_size(MPI_COMM_WORLD, &ntasks);
rc = MPI_Comm_rank(MPI_COMM_WORLD, &id);
data = id;
rc = MPI_Reduce(&data, &s, 1, MPI_INT, MPI_SUM, 0,

MPI_COMM_WORLD);
rc = MPI_Bcast(&s, 1, MPI_INT, 0, MPI_COMM_WORLD);
printf("data: %d sum: %d\n", data, s);
rc = MPI_Finalize();
exit(0);

}

If the program is in the file collect.c, it can be compiled as follows:
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t3e% cc -o collect.x collect.c

The program may be executed as in the Fortran 90 case above.

7.2.4 Reducing communication overhead in MPI

On the T3E, it is in some cases faster to use the synchronous send routine
MPI_SSEND instead of the standard routine MPI_SEND. The synchronous
routine avoids some overhead in buffering the messages, but may cause
load inbalance due to synchronization.

You can also post an MPI_IRECV call, which initiates a receive operation,
and compute before checking for the arrival of a message. You could
also issue an MPI_IRECV call before sending your data, which helps in
avoiding possible deadlock situations.

If the communication speed of MPI seems to be too slow, for example
due to many small messages, you can try to use the SHMEM library
(see Section 7.4 on page 70). You can check your code for possible
communication bottlenecks with the MPP Apprentice tool (see page 95)
or VAMPIR products (see page 100).

7.2.5 MPI data types

MPI introduces a datatype argument for all messages sent and received.
The predefined MPI datatypes correspond directly to Fortran 77 and C
datatypes. On the T3E, the sizes of the most important MPI datatypes
are:

• MPI_INTEGER: 8 bytes
• MPI_REAL: 8 bytes
• MPI_DOUBLE_PRECISION: 8 bytes
• MPI_INT: 8 bytes
• MPI_LONG: 8 bytes
• MPI_FLOAT: 4 bytes
• MPI_DOUBLE: 8 bytes

7.2.6 Further information about MPI

CSC has published an MPI textbook in Finnish [HM97], which discusses
MPI in more detail. The book is also available on the WWW pages at

http://www.csc.fi/oppaat/mpi/

You should also acquire a handbook of MPI [For95, SOHL+96] to be able
to use the system efficiently. There are also many tutorials of MPI in
English [GLS94, Pac97].
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Some examples of MPI programs are available in the WWW system, see
the address

http://www.csc.fi/programming/examples/mpi/

7.3 Parallel Virtual Machine (PVM)

PVM (Parallel Virtual Machine) is a message-passing library that is well-
suited for heterogeneous computing. It is somewhat older and clumsier
to use than MPI.

7.3.1 Using PVM on the T3E

You do not need to use any special linker options to use PVM calls in
your program. Please note that the spawn routines should not be used on
the T3E, because you would be running one process in each processing
element and the number of processing elements is fixed during the run.

You can use the routine pvm_get_PE to find out the id number of each
task. An example is given below. This routine is a T3E specific feature
and is not included in most other PVM implementations.

7.3.2 An example of a PVM program

The following example shows a simple PVM program on the Cray T3E.
In the example, the number of processors specified by the command
mpprun, is passed to the variable nproc. The process number 0 sends
a distinct message to all nodes, and these print out what they received.
Due to buffering, the master node 0 can send a message to itself, too.

PROGRAM main
IMPLICIT NONE
INCLUDE ’fpvm3.h’
INTEGER, PARAMETER :: tag = 100, msglen = 1, stride = 1
INTEGER :: mytid, mype, nproc, j, to, rc, &

from, message

CALL PVMFmytid(mytid)
CALL PVMFgetpe(mytid, mype)
CALL PVMFgsize(PVMALL, nproc)

WRITE (*,*) ’PE#’,mype,’: tid=’,mytid,’ nproc=’,nproc

IF (mype == 0) THEN
DO j = 0, nproc-1
CALL PVMFinitsend(PvmDataRaw, rc)
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CALL PVMFpack(INTEGER8, j, msglen, stride, rc)
to = j
CALL PVMFsend(to, tag, rc)

END DO
END IF

from = 0
CALL PVMFrecv(from, tag, rc)
CALL PVMFunpack(INTEGER8, message, msglen, stride, rc)

WRITE (*,*) ’PE#’,mype,’: message=’,message
END PROGRAM main

Compile, link and run the program as follows (on three processors):

t3e% f90 -o pvmprog.x pvmprog.f90
t3e% mpprun -n 3 ./pvmprog.x
PE# 2 : tid= 393218 nproc= 3
PE# 0 : tid= 393216 nproc= 3
PE# 1 : tid= 393217 nproc= 3
PE# 0 : message= 0
PE# 2 : message= 2
PE# 1 : message= 1

The same program in C is as follows:

#include <stdio.h>
#include <pvm3.h>

main()
{
int mytid = pvm_mytid();
int mype = pvm_get_PE(mytid); /* CRAY MPP specific */
int nproc = pvm_gsize(NULL); /* Default group */
int tag, len, stride;
int from, message;

printf("PE#%d: tid=%d nproc=%d\n", mype, mytid, nproc);
if (mype == 0) {

int to, j;
for (j=0; j<nproc; j++) {

pvm_initsend(PvmDataRaw);
pvm_pkint(&j,len=1,stride=1);
pvm_send(to=j,tag=100);

}
}
pvm_recv(from=0, tag=100);
pvm_upkint(&message, len=1, stride=1);
printf("PE#%d: message=%d\n", mype, message);

}

Compile, link and run the program as follows (3 processors):

t3e% cc -o pvmprog.x pvmprog.c
t3e% mpprun -n 3 ./pvmprog.x
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PE#2: tid=393218 nproc=3
PE#0: tid=393216 nproc=3
PE#1: tid=393217 nproc=3
PE#0: message=0
PE#2: message=2
PE#1: message=1

7.3.3 Further information about PVM

CSC has published a textbook on PVM in Finnish [Saa95].

The Cray implementation of PVM is described in the publication Message
Passing Toolkit: PVM Programmer’s Manual [Crah].

Some examples of PVM programs are available in the WWW system, see
the address

http://www.csc.fi/programming/examples/pvm/

7.4 Shared Memory Library (SHMEM)

In addition to the standard message-passing libraries MPI and PVM, there
is a package of very fast routines for transferring data between the
local memories of the PEs. The collection of these routines is known as
the Shared Memory Library, usually referred to as the SHMEM library.
SHMEM routines can be used either as an alternative for MPI or PVM or
together with them in the same program.

Examples of the SHMEM routines available on the T3E are listed in Ta-
ble 7.2. For a complete list and manual summary pages give the com-
mand

man intro_shmem

Because of their low-level nature SHMEM routines have minimal over-
head and latency. Thus they offer almost always the fastest way to carry
out operations involving one or several remote memories. The routines
are one-sided, which means that there is no pairing of send and receive
calls as in MPI or PVM, but instead just one call from the PE that reads
from or writes into the memory of another PE.

As a drawback, the programmer must pay special attention to data co-
herence, i.e., that the data actually transferred is also the data that was
meant to be transferred in the first place, or that no relevant data is
overwritten in the remote memory. Furthermore, the programs using
SHMEM routines are not portable to other systems.

To have all the necessary constants and structures at your disposal you
must give an include command at the beginning of the program. For the
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Routine Description

num_pes Returns the total number of PEs.
shmem_add Performs an atomic add operation on a

remote data object.
shmem_barrier A barrier routine for synchronization purposes.
shmem_broadcast Sends a local variable to all other PEs.
shmem_collect Concatenates data from several PEs to each

of them.
shmem_fence An auxiliary routine for ordering calls to

shmem_put.
shmem_get Reads from a remote (another PE) memory.
shmem_lock An auxiliary routine for protecting a part of the

memory from simultaneous update by multiple
tasks.

shmem_max A collective routine for finding the maximum.
value of a symmetric variable between all PEs.

shmem_min A collective routine for finding the minimum.
value of a symmetric variable between all PEs.

shmem_my_pe Returns the identity number of the calling PE.
shmem_prod A reduction routine for calculating the product

of one or several variables from every PE.
shmem_put Writes into a remote (another PE’s) memory.
shmem_sum A reduction routine for summing up the values

of one or several variables from every PE.
shmem_swap Changes variables between two PEs.
shmem_wait Waits for a variable on the local PE to change.

Table 7.2: Some SHMEM routines.

C language this is

#include <mpp/shmem.h>

and for Fortran 90:

INCLUDE ’mpp/shmem.fh’

The Fortran compiler in T3E knows automatically where to search for
SHMEM constants and thus the INCLUDE command is not obligatory for
Fortran programs.

Use man shmem_command for finding instructions on how to use the
SHMEM library. A good way to start is by giving the command man
intro_shmem.
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7.4.1 Using the SHMEM routines

SHMEM routines can be divided into a few basic categories according
to their respective tasks. The point-to-point communication routines
transfer data between two PEs, whereas collective routines involve data
transfer between several PEs. Reduction routines are used to find out
certain properties of data stored in the memories of a group of PEs.
Synchronization routines give the programmer a possibility to control
the order of calls to other SHMEM routines. Finally, there are some
cache management routines for taking care of data coherence.

7.4.2 Data addresses

Data objects are passed by address to SHMEM routines. This means that
the address of the remote data object must be known to the PE calling a
SHMEM routine. This is typically realized by having a corresponding data
object in the local memory. The data objects are then called symmetric.
The following data objects are symmetric on the T3E:

• Fortran data objects in common blocks or with the SAVE attribute

• Fortran arrays allocated with shpalloc

• Fortran stack variables declared with a !dir$ symmetric direc-
tive.

• non-stack C and C++ variables

• C and C++ data allocated by shmalloc

• C and C++ stack variables declared with a #pragma symmetric
directive

There is also another possibility besides having symmetric data objects
on different PEs, namely passing the address of a remote data object to
the calling PE before the actual call to a SHMEM routine is carried out.
In this case the remote data object is called asymmetric accessible. The
following data objects are asymmetric accessible on the T3E:

• C and C++ data allocated by malloc and C++ data allocated by the
new operator

• C and C++ variables with the automatic or register storage class

• Fortran arrays allocated with hpalloc

• Fortran PE-private data objects on the stack.
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7.4.3 Point-to-point communication

Point-to-point communication is the most widely occuring form of data
transfer in parallel computing in shared-memory computers. There are
two basic routines for this purpose in the SHMEM library, shmem_get
and shmem_put. Since SHMEM routines are one-sided, only one of these
is needed to transfer data.

shmem_get

The C language syntax of a call to shmem_get is

void shmem_get(void *target, void *source, int len, int pe);

For Fortran 90, the syntax is

INTEGER :: len, pe
CALL SHMEM_GET(target, source, len, pe)

The routine shmem_get copies data of length len (in 8-byte words) from
the memory of PE pe. The copying is started at address source in this
PE, and the data is moved to the address target in the calling PE’s
memory. The calling PE is blocked during the transfer, i.e., it waits until
the transfer is finished before moving on to the next command in the
program.

shmem_put

The C syntax of a call to shmem_put is

void shmem_put(void *target, void *source, int len, int pe);

For Fortran 90 the syntax is

INTEGER :: len, pe
CALL SHMEM_PUT(target, source, len, pe)

The routine shmem_put copies data of length len (in 8-byte words) from
the memory of the calling PE starting at address source to address
target in the memory of PE pe. The calling PE is not blocked during
the transfer, but it continues with the program as soon as the transfer
is initiated. Therefore, the programmer should consider using some
synchronizing routine such as shmem_wait.

In terms of efficiency, there is not much difference between shmem_put
and shmem_get. For faster performance one should try to concentrate
data transfers into as few and large blocks of data as possible. Having
len a multiple of 8 is optimal for these routines.
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Other point-to-point routines

The routines shmem_put and shmem_get operate correctly when the data
being transferred consists of items with a size of 8 bytes. If the size
of a single data item is only 4 bytes (32 bits), one must call instead
the routines shmem_put4 or shmem_get4 in Fortran or shmem_put32,
shmem_get32 in C and C++.

Another crucial restriction for the basic versions of shmem_put and
shmem_get is that they accept only consecutive data items. To move
data with a non-unit stride from a PE to another (or to itself, for that
matter), there are extended versions shmem_iget and shmem_iput.

The C language syntax for shmem_iget is

void shmem_iget(void *target, void *source, int target_inc,
int source_inc, int len, int pe)

For Fortran 90 this is

CALL SHMEM_IGET(target, source, target_inc, source_inc, &
len, pe)

The syntax is similar for the routine shmem_iput and the correspond-
ing 4-byte versions. The integer valued arguments target_inc and
source_inc contain the strides between consecutive data items in the
target and the source data, respectively.

Atomic operations

SHMEM library contains several fast routines for updating or checking
the value of a single variable on a remote PE. These routines are called
atomic operations. These include, e.g., shmem_inc for incrementing the
value of a remote data object and shmem_swap for exchanging the values
of a single remote and local variable.

7.4.4 Reduction routines

A reduction routine computes a single value from a data object dis-
tributed over several PEs’ memories, e.g., the sum of the elements of a
vector. SHMEM contains the following reduction routines: shmem_and,
shmem_max, shmem_min, shmem_or, shmem_prod, shmem_sum and
shmem_xor. A general call to these routines in C is of the form

void shmem_type_op_to_all(type *target, type *source,
int nreduce, int PE_start, int logPE_stride, int PE_size,
type *pWrk, long *pSync);

where type is one of {short,int,float,double,complex,complexd}
and op is one of {sum,prod,min,max,and,or,xor}. In Fortran, the cor-
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responding call would be

CALL SHMEM_type_op_TO_ALL(target, source, nreduce, &
pe_start, logpe_stride, pe_size, pwrk, psync)

and here type is one of {INT8,INT4,REAL8,REAL4,COMP8,COMP4}, and
op is one of the operations already mentioned.

The call above applies reduction operation op on data of type type at ad-
dress source in the memories of all PEs involved. The result is stored at
address target. The argument nreduce tells on how many consecutive
data items the reduction operation is to be performed.

Let us suppose that we have two PEs both of which store a vector of 4
integer elements. If we call shmem_int8_sum_to_all with nreduce =
1, the result will be one integer which equals the sum of the first elements
of the vectors. If nreduce equals 4, we get an array of 4 integers, and
each element in this array is the sum of the corresponding elements
in the original vectors. Thus, if the total sum of all elements in both
vectors is to be calculated, one must first call a SHMEM routine to form
an array of partial sums, and then finish the calculation by summing up
the elements in the resulting array with, e.g., a BLAS routine.

The triple pe_start, logpe_stride, pe_size is used to define the so
called active set, which includes the PEs taking part in the reduction op-
eration. The value of pe_start is simply the number of the first PE in
the active set. The value of logpe_stride is the logarithm (in base 2) of
the stride between the PEs, and pe_size is the number of PEs in the ac-
tive set. Thus {pe_start,logpe_stride,pe_size} = {0,1,5} indicates
that the active set consists of the PEs 0,2,4,6,8. As another example,
{pe_start,logpe_stride,pe_size} = {0,0, n} indicates that the ac-
tive set is PEs {0,1, . . . , n− 1}.

Note: all the PEs in an active set and only these should call a collective
routine!

Finally, pwrk and psync are symmetric work arrays. The argument
psync is of integer type, and of size shmem_reduce_sync_size (this
constant is defined in the file mpp/shmem.h or in the file mpp/shmem.fh.
They should be included at the beginning of a code utilizing SHMEM
library). The variable psync must be initialized so that the value of each
entry is equal to shmem_sync_value. After initialization it is a good
idea to call a barrier routine to guarantee synchronization before using
psync.

The argument pwrk should be of the same type as the reduction routine
and of size max(nreduce/2+ 1,shmem_reduce_min_wrkdata_size).
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7.4.5 Other important routines

There are two very important routines which a parallel program on T3E
will almost certainly call, namely shmem_my_pe and shmem_n_pes. The
former reveals the calling PE its identity, while the latter returns the
total number of PEs in use. Their syntaxes are as follows:

int shmem_my_pe(void);
int shmem_n_pes(void);

For Fortran 90 the syntax is

INTEGER :: mype, npes
INTEGER, EXTERNAL :: SHMEM_MY_PE, SHMEM_N_PES
mype = SHMEM_MY_PE()
npes = SHMEM_N_PES()

In some cases it may be necessary to stop the execution of a program
and wait until all other PEs have performed some critical tasks. For
these situations, there is a routine called shmem_barrier. However, on
the T3E there is a simpler (and faster!) routine for this purpose called
simply barrier :

void barrier()

In Fortran 90 the call is

CALL BARRIER()

The most important difference between shmem_barrier and barrier
is that with shmem_barrier it is possible to interrupt temporarily the
action of just some of the PEs in use. Because of its speed, we suggest
that the barrier routine be preferred whenever all PEs are halted. See
man shmem_barrier for more information.

7.4.6 Example of using SHMEM

The following simple code illustrates the use of some of the routines
discussed above. Each PE has two four-component vectors of integers,
called source and target, and PE number 0 copies its source vector
into the location of target vector of PE number 1. Finally, target vector
is used to compute the values of vector c.

Note that in the Fortran 90 version the attribute SAVE is assigned to
both source and target vectors in order to make them symmetric data
objects. The call to barrier routine is necessary, because without it,
PE number 1 might use the original target vector while computing the
value of c, not the one passed by PE number 0.

Here is the example program in Fortran 90:

PROGRAM shmemex
IMPLICIT NONE
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INCLUDE ’mpp/shmem.fh’

INTEGER, PARAMETER :: n = 4
INTEGER, DIMENSION(n), SAVE :: &

source_pe = (/1,2,3,4/), &
target_pe = (/5,6,7,8/)

INTEGER, DIMENSION(n) :: c
INTEGER :: i, mype
INTEGER, EXTERNAL :: shmem_my_pe

mype = shmem_my_pe()
IF (mype == 0) THEN
CALL shmem_put(target_pe, source_pe, n, 1)

ENDIF
CALL barrier()
DO i = 1, n
c(i) = 2*target_pe(i)

END DO
WRITE (*,’(i2,a7,8i3)’) mype, ’ : c = ’, c

END PROGRAM shmemex

Here is the same example program in C:

#include <stdio.h>
#include <mpp/shmem.h>

main() {
static long source[4] = {1,2,3,4};
static long target[4] = {5,6,7,8};
long c[4];
int i;

if(_my_pe() == 0)
shmem_put(target,source,4,1);

barrier();
for(i=0; i<4; ++i)
c[i] = 2*target[i];

printf("PE:%d c is: %d %d %d %d \n",
_my_pe(), c[0], c[1], c[2], c[3]);

}

Above, we have used the function _my_pe to find out the task id number.
The Fortran 90 program can be compiled with the command

f90 -o shmemex shmemex.f90

and the C program with the command

cc -o shmemex shmemex.c

After this, the program is started on two PEs by typing

mpprun -n 2 ./shmemex

The result of the Fortran 90 program will be
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0 : c = 10 12 14 16
1 : c = 2 4 6 8

The output of the C program is similar.

7.5 High Performance Fortran (HPF)

The Cray T3E system at CSC has a High Performance Fortran (HPF) com-
piler. HPF is a developing standard agreed by several computer and
software vendors. The Portland Group HPF (PGHPF) version 2.3 on T3E
also supports the CRAFT programming model used on Cray T3D sys-
tems.

Both HPF and CRAFT are implicit Fortran programming models where
the user writes a Fortran 90 program and specifies how arrays are to be
distributed among the processors. The compiler then analyzes the data
dependencies in the code and generates a parallel executable version of
the code. In these data-parallel programs individual processes execute
the same operations on their respective parts of the distributed data
structures, and the parallelism is mainly on the loop level. Since both the
HPF and CRAFT directives are actually Fortran 90 comments, the parallel
programs can be compiled using the standard Fortran 90 compilers for
serial execution.

These implicit programming models provide a much faster and simpler
way to parallelize programs than the explicit message passing libraries.
On the other hand, in many cases hand-tuned message passing codes
can outperform the HPF compilers. Typically the HPF version is at most
two times slower. Moreover, the HPF language currently has little sup-
port for problems with irregular data structures, but this will change
in future revisions of the language. HPF is well suited for prototyping
at the development phase, while later critical parts of the code can be
parallelized with the message passing libraries or the shared memory
library on the T3E.

With the CRAFT programming model, the user can specify also the dis-
tribution of work in more detail. It also supports parallel I/O, private
data and task parallelism in MIMD style.

On Cray T3D systems the CRAFT programming model was the only im-
plicit programming model available. On T3E systems the CRAFT model
is incorporated into the HPF compiler with some syntactical changes.
The data distribution directives of the original CRAFT model have been
changed to conform with the HPF standard in the following way:

• The directive !DIR$ has been changed to !HPF$.

• The directive DOSHARED has been changed to INDEPENDENT.
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• The directive SHARED has been changed to DISTRIBUTE.

• The distribution specification : for a degenerate distribution has
been changed to *.

• The distribution specification :BLOCK has been changed to BLOCK.

• The intrinsic function called IN_DOSHARED is called (in HPF_CRAFT)
IN_INDEPENDENT.

The PGHPF 2.3 compiler conforms with HPF standard version 1.1. Fort-
ran 90 internal procedures and recursion are not supported and pointers
are supported with certain restrictions.

The following is a simple example of an HPF code:

PROGRAM dot
IMPLICIT NONE
INTEGER :: n
REAL, DIMENSION(:), ALLOCATABLE :: a, b
REAL :: d
!HPF$ DISTRIBUTE A(BLOCK)
!HPF$ ALIGN B(:) WITH A(:)

WRITE (*,*) ’Input the number of points:’
READ (*,*) n
ALLOCATE (a(n), b(n))

a = 1.0
b = 2.0
d = SUM(a*b)

WRITE (*,*) d
END PROGRAM dot

The code is standard Fortran 90 code except for the two directive lines
starting with !HPF$. The line

!HPF$ DISTRIBUTE A(BLOCK)

instructs the compiler that the array a should be so distributed along
the processors that each processor gets a contiguous block of the array.

The directive

!HPF$ ALIGN B(:) WITH A(:)

says that the array b should also be distributed and the corresponding
elements of b and a should reside in the same processor.

For the line d = SUM(a*b) the compiler generates code that computes
the local partial sum in each processor and then gathers the partial sums
into a global sum.

The PGHPF compiler must be initialized with the command
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t3e% module load pghpf

The compiler is invoked with the command pghpf. It accepts files ending
with .hpf, .f, .F,.for or .f90. Files ending with .F are processed
using the C preprocessor. Suppose that the previous program is in the
file dot.f90. The program can be compiled and run with the following
commands:

t3e% pghpf -Minfo -Mstats -Mautopar dot.f90 -o dot
t3e% mpprun -n 4 dot -pghpf -stat alls

The compiler option -Minfo produces messages about parallelization
of do loops and arrays that are not distributed. The option -Mstats en-
ables collection of performance data during the run and -Mautopar par-
allelizes the parallelizable DO loops without the directive independent.
The options -pghpf -stat alls print statistics about timing, memory
use and message passing after the run. These options are not necessary,
but they provide useful information about the program.

An introduction to HPF with a plenty of examples is presented in The
High Performance Fortran Handbook [KLS+94]. In 3/97 and 5/97 is-
sues of the @CSC magazine there are articles considering HPF on the
T3E. The manual pages of the compiler are available with the command
man pghpf and the complete documentation for PGHPF 2.3 can be ac-
cessed at http://www.csc.fi/programming/doc/pghpf/2.3. More
information on the HPF standard can be obtained at the WWW address
http://www.mhpcc.edu/doc/hpf/hpf.html.
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Chapter 8

Batch queuing system

The batch queuing system ensures an optimum load on the computer
and a fair distribution of resources for the users. On the Cray T3E the
queuing system is called Network Queuing Environment, NQE .

8.1 Network Queuing Environment (NQE)

The NQE system makes it possible to submit batch jobs from different
computers (client computers) to the target computer (execution server).
NQE takes the submitted job script and reserves the requested resources.
Thereafter the commands in the script file are executed and the results
are returned to the user. The configuration of the NQE on the T3E
ensures that the distribution of jobs is as fair as possible.

8.2 Submitting jobs

The sequence of commands or programs that you want to run on a
computer is called a job. In the NQE system the jobs are sent to a queue
which handles the job and executes it with appropriate resources. In the
NQE system the jobs are sent to a pipe queue which redirects the job to
a batch queue.

To submit jobs on the T3E, you must first create a job script file in
normal shell script format. An example is given below:

#!/bin/ksh
# QSUB -q prime
# QSUB -l mpp_p=16
# QSUB -l mpp_t=7000
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# QSUB -l p_mpp_t=7000
# QSUB

cd $HOME/sn6309
mpprun -n $NPES ./mmloop 6000 6000

First, the given command shell (here /bin/ksh) is used to run the script.
The default shell is /bin/sh. These two shells are recommended.

The option -q tells the NQE system which queue the job should be sent
to. Here we have requested the prime queue. At the moment this is the
only queue a normal user on the T3E can submit jobs to. This queue
redirects the request to the batch queue small (maximum limits:64-PE
and 2 hours), medium (64-PE, 12 hours) or large (128-PE, 12 hours).
The option -l specifies certain limits for the batch job: mpp_p is the
maximum number of processors, mpp_t is the maximum execution time
for all the programs in the script, and p_mpp_t is the maximum process
time for any program in the script. It is mandatory to specify mpp_p and
mpp_t either in the T3E job script or as qsub command line options.

These options are covered in more detail in Table 8.1.

qsub option Meaning

-q queue The job is run in the given batch queue.
-r name The name of the batch job.
-lT time Maximum single processor time for the job

to be run. Should be at least same as mpp_t.
-l mpp_p=xx The number of PEs requested for the job. This

number is available later in the script in
the environment variable $NPES.

-l mpp_t=yyy Maximum execution time of
all the programs in the script.

-l p_mpp_t=yyy Maximum processing time of any
single program in the script.

-e file Name of the error file. Default name of the
error file is name.erequest-id.

-o file Name of the output file. Output to terminal
is redirected to this file. Default output
file name is name.orequest-id.

-eo Combines error messages to the output file.
-s shell Selects the command shell.

Table 8.1: Some qsub options.

After the options you have to specify the commands to be executed. In
the example the first command (cd) changes the current directory to
$HOME/sn6309. The parallel program mmloop is run with the mpprun
command. Here the environment variable $NPES indicates the number
of PEs allocated for the batch job (16 in the case above).



Chapter 8. Batch queuing system 83

The batch job is submitted with the command

qsub [options] jobfile

The output from the command looks like this:

nqs-181 qsub: INFO
Request <2227.sn6309>: Submitted to queue <prime> by <jbond(007)>.

The identifier 2227.sn6309 is the request-id of the job. This can be
used to check the status of the job with the qstat command.

The most often encountered error is the following:

nqs-4517 qsub: CAUTION
No such queue <pirme> at local host.

which usually means that the name of the queue is not written correctly
(here pirme instead of prime).

The most important and frequent options to the qsub command are
shown in Table 8.1. Options can be given in a script file as in the example
above or in a command line. The options in the script file are written on
pseudocomment lines starting with the characters #QSUB.

Options can be mixed so that some of them are given in the script file and
some in the command line. If the same options are given, the options in
the command line override the options in the script file.

8.3 Status of the NQE job

When you have submitted a job to be executed, you usually want to
know how the job is running or if it is running at all. There are several
different commands for checking the status of jobs. The easiest to use
is the cqstat command, which starts a graphical tool to check out the
status of jobs. Figure 8.1 shows an example of a cqstat session.

You have access only to those jobs that are owned by you. With the
cqstat command you can also delete running jobs. This is done by
first selecting the job to be deleted and after that selecting the Delete
command from the Action menu. The cqstat command needs an X
Window System to work.

Another command to get the status of batch jobs is qstat. This is a
text based tool and it does not require the X Window System. The qstat
command has special options for MPP machines only. Table 8.2 lists
the most used options of the qstat command. These options accept
either a queue name or a request id. If both are missing, the command
shows requested data from all queues. Listing 8.1 shows an example of
the output of command qstat -a. Listing 8.2 shows an example of the
output of the command qstat -f request-id.
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Figure 8.1: An example of a cqstat session.

---------------------------------
NQS 3.3.0.4 BATCH REQUEST SUMMARY
---------------------------------
IDENTIFIER NAME USER LOCATION/QUEUE JID PRTY REQMEM REQTIM ST
------------- ------- -------- --------------------- ---- ---- ------ ------ ---
18996.sn6309 O-As32r vsammalk small@sn6309 38633 20 494 7200 R03
19021.sn6309 CHARMM santa small@sn6309 38730 20 604 1000 R04
18999.sn6309 p-IV-g2 jmozos small@sn6309 999 262144 7200 Qce
18979.sn6309 AlO2_pb honkala medium@sn6309 37966 20 512 43200 R03
18929.sn6309 SIC128. torpo medium@sn6309 999 262144 43200 Qce
18930.sn6309 SIC128. torpo medium@sn6309 999 262144 43200 Qce
18993.sn6309 sub hhakkine large@sn6309 37763 20 455 43200 R03

Listing 8.1: An example of a qstat -a command.
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qstat option Meaning

-a Display summary information for all jobs.
-b Display summary information for batch jobs.
-r Display summary information for running jobs.
-m Display information about MPP queue limits.
-u user Display information about user ’s jobs.
-f Display full information about queues or requests.

Table 8.2: Some qstat options.

----------------------------------------
NQS 3.3.0.4 BATCH REQUEST: espy.sn6309 Status: RUNNING
---------------------------------------- 3 Processes

Active
NQE Task ID: --
NQS Identifier: 2230.sn6309 Target User: jbond

Group: csc
Account/Project: <csc007>
Priority: ---
URM Priority Increment: 1
Job Identifier: 52 Nice Value: 25

Created: Thu Apr 24 1997 Queued: Thu Apr 24 1997

<LOCATION/QUEUE>
Name: small@sn6309 Priority: 30

<RESOURCES>
PROCESS LIMIT REQUEST LIMIT REQUEST USED

CPU Time Limit <7200sec> <7200sec> 0sec
Memory Size <256mw> <256mw> 614kw
Permanent File Space <unlimited> <0> 0kw
Quick File Space <0> <0> 0kw
Type a Tape Drives <0> 0
Type b Tape Drives <0> 0
...
Type h Tape Drives <0> 0
Nice Increment <0>
Temporary File Space <0> <0>
Core File Size <unlimited>
Data Size <unlimited>
Stack Size <unlimited>
Working Set Limit <unlimited>
MPP Processor Elements 8 8
MPP Time Limit 7100sec 7100sec 0sec
Shared Memory Limit <0> 0kw
Shared Memory Segments <0> 0

<FILES> MODE NAME
Stdout: spool sn6309:/mnt/mds/.../espy.o2230
Stderr: spool sn6309:/mnt/mds/.../espy.e2230
Job log: spool sn6309:/mnt/mds/.../espy.l2230
Restart: <UNAVAILABLE>

<MAIL>
Address: jbond@sn6309 When:

<PERIODIC CHECKPOINT>
System: off Request: System Default
Cpu time: on 60 Min Cpu time: def <Default>
Wall clock: off 180 Min Wall clock: def <Default>
Last checkpoint:None

<SECURITY>
Submission level: N/A
Submission compartments: N/A
Execution level: N/A
Execution compartments: N/A

<MISC>
Rerunnable yes User Mask: 007
Restartable yes Exported Vars: basic
Shell: DEFAULT
Orig. Owner: 007@sn6309

Listing 8.2: An example of a qstat -f command.
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8.4 Deleting an NQE batch job

Sometimes it is necessary to delete a job before it is finished. For exam-
ple, the input may be erroneous and you do not want to waste any CPU
time. A job is deleted with the command qdel. The most usual way to
use the qdel command is

qdel request-id

You can ensure the deletion of a job by sending a SIGKILL signal to the
running job. Use the option -k of the qdel command:

qdel -k request-id

8.5 Queues

The pipe queue available on the T3E is called prime. This pipe queue
redirects the jobs to the appropriate batch queues.

To see the current batch queues and their limits use the command qstat
-m, which displays the names of batch queues and the time limits. Here
is an extract from the output:

----------------------------------
NQS 3.3.0.4 BATCH QUEUE MPP LIMITS
----------------------------------
QUEUE NAME RUN QUEUE-PE’S R-PE’S R-TIME P-TIME

LIM/CNT LIM/CNT LIMIT LIMIT LIMIT
----------------------- --- --- ------ ------ ------ ------ ------
csc 2/0 224/0 224 14400 14400
fmi 4/0 256/0 128 7200 7200
fmi192 4/0 192/0 192 7200 7200
small 10/2 128/36 64 7200 7200
medium 10/1 160/32 64 43200 43200
large 1/1 **/128 128 43200 43200
----------------------- --- --- ------ ------ ------ ------ ------
sn6309 10/4 **/196
----------------------- --- --- ------ ------ ------ ------ ------

To see which pipe queues are redirected to which batch queues, use the
command qstat. Here is an extract of the command:

------------------------------
NQS 3.3.0.4 PIPE QUEUE SUMMARY
------------------------------
QUEUE NAME LIM TOT ENA STS QUE ROU WAI HLD ARR DESTINATIONS
----------------------- --- --- --- --- --- --- --- --- --- ------------
nqebatch 1 0 yes on 0 0 0 0 0 input
csc_pipe 1 0 yes on 0 0 0 0 0 csc
prime 1 0 yes on 0 0 0 0 0 input
input 1 0 yes on 0 0 0 0 0 small

medium
large

----------------------- --- --- --- --- --- --- --- --- --- ------------
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sn6309 5 0 0 0 0 0 0
----------------------- --- --- --- --- --- --- --- --- --- ------------

8.6 More information

More information on NQE is available in the CSC help system:

help nqe

See also the manual pages of the commands qsub, qstat and qdel.
Another good reference to check out is CSC’s T3E Users’ Information
Channel in the WWW address:

http://www.csc.fi/oppaat/t3e/t3e-users/archive/
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Chapter 9

Programming tools

9.1 The make system

The make utility executes commands in a makefile to update one or
more targets, which typically are programs. The make system is mainly
used to maintain programs consisting of several source files. When
some of the source files are modified, the make system recompiles only
the modified files (and those files that depend on the modified files).

Here is a typical makefile:

OBJECTS= func1.o func2.o
OPTS= -O
LIBS= -lnag

all: myprog

myprog: $(OBJECTS)
$(CC) $(LDFLAGS) $(OBJECTS) $(LIBS) -o $@

.c.o:
$(CC) -c $(OPTS) $<

clean:
rm -f $(OBJECTS)
rm -f core
rm -f myprog

Each indented line of the makefile should start with a Tab character.
There should also be an empty line at the end.

The Unix command
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make

compiles the source codes func1.c and func2.c, and links them with
the NAG library, producing an executable file myprog.

The line .c.: in the example specifies that .c files should be compiled
into .o files using the command on the following tabulated line:

$(CC) -c $(OPTS) $<

The symbol $(CC) is already defined by the make system, but you could
have redefined it to the appropriate compiler in the beginning of the
makefile. The symbol $(OPTS) was defined as follows:

OPTS= -O

Therefore, this symbol is replaced by the string -O, which means code
optimization. The symbol $< refers to the actual .c file. Thus, if we
need to produce the file func1.o, the symbol $< will be replaced by the
filename func1.c.

The dependencies and compiler options for the executable program
myprog are introduced by the lines

myprog: $(OBJECTS)
$(CC) $(LDFLAGS) $(OBJECTS) $(LIBS) -o $@

Here we specify that the program myprog depends on the files defined
by the symbol $(OBJECTS) (e.g., the files func1.o and func2.o). The
compilation command used the default linker options, which are given
by the symbol $(LDFLAGS). The symbol $(LIBS) is replaced by the
string -lnag, which means that the NAG library will be linked with our
program. The symbol $@ refers to the name of the target file, here the
name is myprog.

The command

make clean

can be used to clean up the directory, that is, to remove all the executable
and object files and a possible core file.

You find more information on the make system with the command

man make

9.2 Program Browser

The Program Browser, Xbrowse, provides an interactive environment
in which to view and edit Cray Fortran 90, FORTRAN 77 as its subset
and Cray Standard C codes. Cross-reference information is given about
aspects of the code being browsed and is updated when the code is
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changed. The browser may act upon a routine, a file, or an entire pro-
gram, which is composed of one or more distinct files, but treated by
the browser as a single unit.

Xbrowse also acts as a base for other Cray Research tools that reference
source code. To display a list of available tools, use the left mouse
button to click on the Tools menu button.

Suppose you want to obtain information about all of your C code. You
can start Xbrowse by entering the following command:

xbrowse *.c &

This command causes Xbrowse to run in the background. It displays the
Xbrowse main window on your screen.
            

Figure 9.1: An example of an Xbrowse session.

The main window is composed of the following segments:

• The menu bar is located at the top of the main window. It displays
buttons that open Xbrowse menus. To open a menu, position the
cursor on the menu name and press the left mouse button.

• The upper display pane is composed of three separate information
displays that list names of loaded files, routines, common blocks,
and so forth. All lists have vertical scroll bars on the right. If infor-
mation in a list exceeds the width of the listing area, a horizontal
scroll bar is also displayed.
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• The source code pane, located in the middle of the Xbrowse win-
dow, is the largest area of the window. This pane displays the
current source code.

• The information pane is located at the bottom of the main Xbrowse
window and provides information about the status of Xbrowse.
You can also type equivalents of the Xbrowse commands for many
menu options in this pane. (A list of these commands is available
through the Help menu option.)

To open a file, position the cursor on the File menu button and press the
left mouse button to open the menu. With the menu displayed, click on
the Open option. A window is displayed on which you enter the name
of the file (or files) to be opened.

A common activity while browsing code is to look for various types of
objects. The following list names a few of the objects you can locate by
Xbrowse:

• calls and callers
• common blocks (Fortran only)
• loops
• routines
• variables.

You can look for routine-based information with the commands in the
Find menu. These commands let you look for file-based or application-
based information. Most commands work in a similar manner, so trying
a couple of searches will give you an idea of how to find objects in your
code.

Call trees make it easy to see the structure of your code through a
clear graphical format. The Display menu provides the following two
commands for generating call trees:

• Call Tree
• Caller/Call Tree

Xbrowse gives you visual clues to help you identify various parts of
your code within the call trees. External routines are shown in green
and intrinsic routines are shown in yellow. An external call is one for
which Xbrowse does not have the source code loaded.

The command Call Tree produces a static call tree of loaded source
code. The name of the application or the file used by this option is
shown at the top of the display. The called routines and subprograms
are displayed in the middle.

The small, empty boxes following some nodes (routine names) on the
tree indicate subtrees that stem from these nodes. To open the tree one
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level position the cursor on the box and press the left mouse button. To
close the tree one level position the cursor on the node name and press
the right mouse button. When you click on a node, that node becomes
the current node and is displayed in the main Xbrowse window.

The command Caller/Call Tree displays a static call tree of routines
that call a specified subprogram and, in turn, displays any subprograms
called by the specified subprogram. Selecting a node on the tree high-
lights the subprogram. The name of the source file (or the application
when in application mode) used by this option is shown at the top of the
window. Calling sequences are displayed in the middle of the window.

You find more information on the Program Browser with the command
man xbrowse, from the help system of the Program Browser itself, or
from the manual Introducing the Program Browser [Crag], available on-
line at http://www.csc.fi:8080.

9.3 Debugging programs

9.3.1 Cray TotalView parallel debugger

The Cray TotalView is a symbolic debugger for parallel (or non-parallel)
programs written in Fortran, C, C++ or HPF. The principal difference
between conventional Unix debuggers and TotalView is that TotalView
can debug multiple processes of parallel programs simultaneously and
synchronously.

The Cray TotalView is available in both X Window System and line-mode
versions. To use the Cray TotalView debugger, compile and link pro-
grams with the option -g. The option -G in Fortran, C and C++ compilers
may also be used.

You may inspect either a malleable or non-malleable code by TotalView.
The following example illustrates usage of TotalView with a fixed num-
ber of 16 processors:

t3e% f90 -X16 -g -o prog.x prog.f90
t3e% totalview ./prog.x &

When debugging a malleable code, use the TotalView option -X, e.g.,

t3e% totalview -X 16 ./prog.x &

The space before the number of processors is mandatory.

The TotalView graphical interface shows the program code, the call se-
quence, local variables and TotalView messages. Program execution can
be controlled by pressing execution buttons or by typing in commands.
The currently active section of source code is always displayed. When
a subroutine is called, the debugger opens corresponding source files.
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The user can move to the source of a subroutine by clicking on the name
of the subroutine with the right mouse button.

TotalView has two execution modes: “all” or “single-processor”. In the
execution mode “all”, the breakpoints and execution commands are ap-
plied to all processors simultaneously. In the single-processor execution
mode, the user can set breakpoints individually for each processor. The
execution mode is selected from the PSet menu. In the single-processor
mode the active processor is selected from a slider marked PE just below
the Pset menu.

The value of any variable can be examined by pressing the Print... button
in the middle of the TotalView window. This brings up another window
with the name of the variable as input. The actual values are shown
in a third window, where the processor can be selected using a slider.
The value can also be displayed by choosing the variable name in the
program listing or the variable listing with the right-hand mouse button.
There is also a graphical browser for arrays.

Figure 9.2 shows an example of a TotalView session. The two uppermost
window panes show the call sequence and the values of local variables.
Below these panes are buttons to control execution. Underneath is the
program code.

The user can press the oval buttons on the left to define breakpoints.
The current position is indicated with an arrow. The bottom pane in the
large window shows messages from the debugger and can be used to
issue commands manually. The small window at the bottom shows the
value of the variable mehigh for the processor number 1.

A typical debugging session could consist of the following steps:

• Set the initial breakpoint either with the mouse or select Set Break-
point in Function or Set Breakpoint at Line from the Events menu.

• Run the program to the breakpoint with the Run button. If the pro-
grams uses command-line arguments, use the Run (args) command
from the Control menu.

• Examine the values of some variables with the Print button or by
selecting the variable name with the right mouse button.

• Step through the code using the Step button.

• Step through the code without going into the called subroutines
with the Next button.

9.3.2 Examining core files

When a program terminates with an error condition, a core file is often
produced. This file contains the status of the program at the time of the
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Figure 9.2: An example of a Cray TotalView session.
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error, and it can be used to determine the cause of the problem.

The TotalView debugger can be used to examine core files. Start the
debugger with the executable name (prog.x in the example) and the
core file name:

totalview prog.x core

After this the debugger shows where each process has been stopped
and you can examine the values of the variables. Some of the processes
may have been stopped in an assembly routine. To get back to a user
subroutine, select the subroutine name in the call sequence pane located
at the upper left corner.

More information on the TotalView debugger can be obtained with the
command man totalview, from the help system of the TotalView pro-
gram itself or from the manual Introducing the Cray TotalView Debug-
ger [Crae], available online at the WWW address http://www.csc.fi:
8080.

9.4 Obtaining performance information

You can use the MPP Apprentice software to inspect possible perfor-
mance bottlenecks in your program. There is also a text-based command
appview for viewing the same profiling data. The Performance Analysis
Tool (PAT) is a low-overhead profiling tool available on the T3E.

9.4.1 MPP Apprentice

MPP Apprentice is a postexecution performance analysis tool that helps
you to locate bottlenecks on Fortran 90, C, C++ and HPF programs on the
Cray T3E. It can be applied to both single processor and multiprocessor
programs. MPP Apprentice reports, for example, time statistics summed
across all processing elements for the whole program, as well as each
DO loop, conditional clause or other statement groups in a program.
It shows the total execution time, synchronization and communication
time, the time to execute a subroutine and the number of instructions
executed. It does not record time-stamped events, but collects summary
information of the program execution.

MPP Apprentice works for both optimized and non-optimized code. It
offers suggestions for improving performance and how to get rid of the
bottlenecks. Apprentice works under the X Window System.

You have to use specific compiler options to generate a compiler infor-
mation file (CIF) at compile time and a run-time information file (RIF)
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when the program is executed. The files are passed to the Apprentice
tool for graphical examination.

MPP Apprentice is used by the following steps. Fortran 90 programs
are compiled with the option -eA and object codes linked with the MPP
Apprentice library using the option -lapp:

t3e% f90 -c -eA prog.f
t3e% f90 -o prog.x prog.o -lapp

The compiler option -eA and the linker option -lapp work also with the
PGHPF High Performance Fortran compiler. ANSI C and C++ programs
are compiled with -happrentice option and object codes linked with
the MPP Apprentice library libapp.a:

t3e% cc -c -happrentice prog.c
t3e% cc -o prog.x prog.o -lapp

The corresponding commands for C++ are:

t3e% CC -c -happrentice prog.c
t3e% CC -o prog.x prog.o -lapp

The next step is to run the parallel program. Be aware that the exe-
cution time of the instrumented code can now be considerably longer
than without the MPP Apprentice hooks. After the execution you will
have a run-time information file (RIF) called app.rif in your directory.
After the program has been run start the MPP Apprentice tool with the
command apprentice.

t3e% mpprun -n 4 ./prog.x
t3e% apprentice app.rif &

An example session with Apprentice is show in Figure 9.3. The top pane
shows execution time for each subroutine. You can exclude or include
the time spent in called subroutines with the buttons on top of the pane.
You can click on the triangles to the right of the subroutine names to
show or hide internal information about called subroutines.

The lower pane shows the number of instructions for a subroutine or a
loop that has been selected in the upper pane. In some cases you can
also get information on the shared memory usage or message passing
usage for the selected routine.

The Apprentice tool can also provide textual reports on the performance
of the code. Choose either Observations or Reports from the Displays
menu to get the reports for the currently selected subroutine.

More information on the Apprentice tool can be obtained with the com-
mand man apprentice, from the help system of the Apprentice tool
itself or from the manual Introducing the MPP Apprentice Tool [Craf],
available online at the WWW address http://www.csc.fi:8080.
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Figure 9.3: An example of an MPP Apprentice session. The upper pane
shows timing statistics and the lower pane shows the number of instruc-
tions for the selected subroutine.
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9.4.2 The appview command

In addition to MPP Apprentice, the appview command that a quick sum-
mary of the profiling data. Its output is similar to the output from the
conventional Unix profiler prof. The appview command was developed
at CSC and it relies on a few scripts that extract and sort information
from the textual report produced by the command apprentice -r.

The following example illustrates the usage. The command line is

appview app.rif | more

The default RIF file name is app.rif and can be omitted from the com-
mand line. The output looks like this:

# # #
# # ##### ##### # # # ###### # #

# # # # # # # # # # # #
# # # # # # # # # ##### # #
####### ##### ##### # # # # # ## #
# # # # # # # # ## ##
# # # # # # ###### # #

Fri Feb 21 13:32:07 EET 1997

Total time 24.273 seconds.
No. of routines 8

Routine Exclusive (%) Inclusive in_Called Parallel
======= ========= === ========= ========= ========
COLL2 14.968 ( 61.67) 14.968 0.000 14.946
_HSIN 8.216 ( 33.85) <not instrumented>
INIT 1.062 ( 4.38) 9.277 8.216 1.062
_FWF 0.022 ( 0.09) <not instrumented>
f$init 0.005 ( 0.02) <not instrumented>
COLL2_TEST 0.000 ( 0.00) 24.250 24.250 0.000
BARRIER 0.000 ( 0.00) <not instrumented>
$END 0.000 ( 0.00) <not instrumented>

The columns Exclusive and Inclusive show the execution time with-
out and with the time spent in called subprograms, respectively. The
column in_Called show the time for called subprograms.

9.4.3 PAT

The Performance Analysis Tool (PAT) provides a low-overhead method
for profiling programs and obtaining timing and performance counter
information. PAT can also be used for determining load balance across
processing elements, generating and viewing trace files, performing
event traces, etc. These advanced features are not available in the MPP
Apprentice. On the other hand, PAT lacks the graphical interface of the
Apprentice. PAT is used in evaluating the performance and scaling new
T3E projects at CSC.

PAT periodically samples the program counter to generate an execution-
time profile and uses the processor performance counters to gather
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performance information and instruction counts.

PAT is able to analyze programs written in Fortran 90, C, C++ and HPF.
The executable only needs to relinked, no recompiling is necessary. The
linker option -l pat along with the PAT specific cld file pat.cld are
required.

As an example, suppose that a Fortran 90 program in the file prog.f90
is to be analyzed. The following commands can be used:

t3e% f90 -c prog.f90
t3e% f90 prog.o -o prog -l pat pat.cld

C, C++ and HPF programs are linked similarly. A log file of the type
pdf.1234 is produced during the execution.

Timing information is then displayed with the command

t3e% pat -T prog pdf.1234

Sample output for a four PE run looks like

Elapsed Time 4.229 sec 4 PEs
User Time (ave) 3.441 sec 81%
System Time (ave) 0.023 sec 1%

The PAT option -m produces performance counter statistics:

t3e% pat -m prog pdf.1234

Performance counters for FpOps

Values given are in MILLIONS.

PE cycles operations ops/sec dcache misses/sec
misses

0 425.34 152.45 134.39 5.48 4.83
1 1574.81 152.40 36.29 5.61 1.34
2 1574.87 152.40 36.28 5.62 1.34
3 1575.15 152.40 36.28 5.62 1.34

The column ops/sec contains the floating point performance given in
Mflop/s for each PE. A high cache miss rate can be caused by less than
optimal program design. Instead of floating point operations it is pos-
sible to measure integer performance by setting

t3e% setenv PAT_SEL INTOPS

Memory load and store operations can also be monitored.

Profile information can be obtained with the option -p. Normally only
subroutine-level profile is available. To produce a line-level profile the
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program must be compiled with the option -g, which disables optimiza-
tion and thus increases the run time.

More information about PAT in general and on its advanced features can
be found on the manual pages (man pat).

9.5 Tracing message passing: VAMPIR

VAMPIR Visualization and Analysis of MPI Resources is a profiling tool for
MPI applications. It consists of two parts: the VAMPIRtrace library which
is linked to the program to be profiled, and the VAMPIR visualization
tool which is used to analyze the trace file after the program execution.

The VAMPIR trace library is installed on the Cray T3E. The trace files
must, however, be inspected with the visualization tool on Caper.

9.5.1 The VAMPIRtrace library

VAMPIRtrace is an MPI profiling library that generates VAMPIR traces.
It hooks into the MPI profiling interface which guarantees low tracing
overhead. The effects of distributed clock drifts are corrected automat-
ically. Tracing can be enabled or disabled during runtime. The profiling
library is suitable for Fortran 90, FORTRAN 77, C and C++ programs.

Before using the VAMPIRtrace library the VAMPIR environment on the
T3E must be initialized with the command use vampir. The VAMPIR-
trace library can be linked to a user’s program, without any amendments,
with the options -lVT -pmpi. In practice, however, one needs to add
calls to VAMPIRtrace API routines in the source code to facilitate the
analysis. This is done most conveniently using the source code pre-
processor to maintain a single version to be run with or without the
VAMPIRtrace. When a parallel program linked with the trace library is
executed, it generates a trace file with the suffix .bvp. The trace file may
be so large that you should run the program in the temporary or work
directory ($TMPDIR or $WRKDIR).

The following example shows how to generate a trace file from a For-
tran 90 master-slave application. The source code in the example is
divided into modules in files loadbal.F90, pgamma.F90, mpi.f and
vt.F90, and can be found at the Web address http://www.csc.fi/
programming/examples/vampir_mod/

t3e% use vampir
[vampir is now in use]
t3e% f90 -I $PAL_ROOT/include -o loadbal mpi.f vt.F90 \
loadbal.F90 pgamma.F90 -lVT -lpmpi -DUSE_VT
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The source code includes the VAMPIRtrace API calls by the preprocessor
macro USE_VT. It is recommended to include the definitions in the file
$PAL_ROOT/include/VT.inc with the option -I. The program may be
run now, e.g., by the command

t3e% mpprun -n8 loadbal < input

If the program is run as a batch job (see Chapter 8), the command use
vampir has to be included in the jobfile.

By default, the trace file is generated between the calls MPI_INIT and
MPI_FINALIZE. Tracing may also be disabled and enabled by the API
calls VTTRACEOFF and VTTRACEON.

VAMPIRtrace gathers information of activities, i.e., process states with a
start and stop time. Activities are identified by a class name and a sym-
bolic name. A class can contain an arbitrary number of activities. Ac-
tivities can also be nested like subroutines calls. MPI calls automatically
belong to the class MPI. The class and symbolic names are subsequently
used by the VAMPIR visualization tool.

The following Fortran code shows how to define a section of code to
belong to the class Application with the symbolic name initialization.
The integer value 1 is a user-chosen label which must be applied in a
globally consistent manner with and only with the initialization tag.
The variable ierr is an error indicator.

INTEGER :: ierr
CALL VTSYMDEF(1, ’initialization’, ’Application’, ierr)
CALL VTBEGIN(1, ierr)
... initialization code to be marked ...
CALL VTEND(1, ierr)

In Fortran 90, it is a good idea to define symbolic names for the tag
integers, e.g., in a separate MODULE vt by

INTEGER, PARAMETER :: INIT=1

A corresponding C code segment is

VT_symdef(1, "initialization", "Application");
VT_begin(1);
... initialization code to be marked ...
VT_end(1);

9.5.2 The VAMPIR visualization tool

The trace file must be transferred to Caper for the analysis with the X
Window System based VAMPIR visualization tool. The VAMPIR environ-
ment on Caper must be set up using the command

use vampir
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Figure 9.4: A sample of a VAMPIR session. On the lower right corner
is the global timeline display showing the communication pattern. The
communication statistics display on the upper left corner shows the
number of messages sent between processors. The two pie charts show
the activities of individual processors.

Before the VAMPIR visualization tool is used for the first time, the user
should create a directory .VAMPIR_defaults in one’s home directory
and copy the configuration file $PAL_ROOT/etc/VAMPIR.cnf there.

The VAMPIR visualization tool is started with the command

vampir tracefile

The VAMPIR program can also open trace files that have been com-
pressed using the gzip or compress commands.

There are three basic display modes to visualize the activities and mes-
sage passing. These can be selected from the Global Displays menu:

• Timeline visualizes activities and message passing in a time in-
terval along a time axis. The interval or a processor set can be
selected from the display by drawing a rectangle with the left but-
ton of the mouse. The displayed messages may also be restricted
or identified by the message tags, communicators or size.

• Chart view shows the time spent in different activities in a time
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interval by selected processors.

• Process view shows the portion of time spent in a given activity
class.

All the displays have several options which can be controlled through
the pop-up menu from the right mouse button. These include

• Communication statistics: the total amount of communication be-
tween all processor pairs is shown. This is opened from the Global
timeline display by selecting Comm. Statistics. The communication
statistics display can be linked to the Global timeline display to
show the statistics for the currently visible portion of time only.
This is done in the communications statistics window by selecting
Use timeline portion from the pop-up menu.

• Message lengths: the lengths of individual messages are shown. In
the Global timeline, select Identify Message and point to a message
line in the Global timeline display.

• Components/Parallelism: the number of processors engaged in a
given activity is shown in the Global timeline.

Figure 9.4 shows a sample session of the VAMPIR visualization tool
with the global timeline, communication statistics and processor activity
chart displays.

9.5.3 More information

A compressed version of the user’s guide of the VAMPIR visualization
tool is available on Caper as $DOC/VAMPIR-userguide.ps.gz. Copy
this file to a temporary directory and use the command gunzip to un-
compress the file. A user’s guide for the VAMPIRtrace library is available
on Caper as $DOC/VT-userguide.ps.



104 Cray T3E User’s Guide

Chapter 10

Miscellaneous notes

This chapter discusses some additional topics, such as timing of pro-
grams and defining the scalability of parallel programs.

10.1 Obtaining timing information

The most useful measure of processing time in a parallel environment
is the wall clock time. This is due to the fact that traditional CPU times
are processor-based, whereas the wall clock time gives a global view of
aggregate parallel performance. All CSC’s Cray T3E processors run at
375 MHz.

10.1.1 The timex command

The easiest way to find out wall clock times is to use the Unix command
timex in front of the executable name:

t3e% timex mpprun -n 16 ./prog.x

10.1.2 The wall clock timer

On all Cray platforms the following C routine can be used to return the
elapsed wall clock time in seconds:

#include <unistd.h>
double SECS(void) {
static long cpcycle = 0;
/* Get cycle time in picoseconds */
if (cpcycle == 0) cpcycle = sysconf(_SC_CRAY_CPCYCLE);
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/* Wall clock time in seconds */
return (double) _rtc() * cpcycle * 1.0e-12;

}

This routine can be called either in C/C++ or Fortran. In C/C++ the
syntax is as follows:

extern double SECS(void);
double t1, t2, dt;
t1 = SECS();
... perform calculations ...
t2 = SECS();
dt = t2 - t1;
printf("Elapsed time: %f\n",dt);

In Fortran 90:

REAL :: t1, t2, dt
REAL, EXTERNAL :: secs
t1 = secs()
... perform calculations ...
t2 = secs()
dt = t2 - t1
WRITE (*,*) ’Elapsed time: ’, dt

To use the SECS routine from Fortran you have to first compile the C
routine and then link it with your program:

t3e% cc -c secs.c
t3e% f90 -o prog.x prog.f90 secs.o

10.1.3 The CPU clock timer

You can use the library function ICPUSED() in Fortran codes. This
function returns the CPU time of a task in real-time clock ticks:

INTEGER :: time

time = ICPUSED()

...computation...

time = ICPUSED() - time
WRITE (*,*) ’CPU time in user space = ’, &

time, ’ clock ticks’

C programmers can use the function cpused():

#include <time.h>

time_t before, after, utime;

before = cpused();
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...computation...

after = cpused();
utime = after - before;
printf("CPU time in user space = %ld clock ticks\n",

utime);

10.1.4 Example of timing

Here is an example of a C program, which computes the matrix product
using the SGEMM routine from Libsci:

#include <stdio.h>
#include <fortran.h>
#include <time.h>
#include <unistd.h>

#define DGEMM SGEMM

#define l 450
#define m 500
#define n 550

main()
{
double a[n][l], b[l][m], c[n][m], ct[m][n];
int ll, mm, nn, i, j, k;
double alpha = 1.0;
double beta = 0.0;
void DGEMM();
char *transposed = "t";
_fcd ftran;
time_t before, after, utime;

/* Initialize */

for (i = 0; i < n; i++)
for (j = 0; j < l; j++)
a[i][j] = i-j+2;

for (i = 0; i < l; i++)
for (j = 0; j < m; j++)
b[i][j] = 1/(double)(i+2*j+2);

ftran = _cptofcd(transposed, strlen(transposed));

ll = l; mm = m; nn = n;

before = cpused();

DGEMM(ftran, ftran, &nn, &mm, &ll, &alpha, a, &ll,
b, &mm, &beta, ct, &nn);
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after = cpused();
utime = after - before;

printf("ct[10][10] is %.6f\n", ct[10][10]);
printf("CPU time in user space = %ld clock ticks\n",

utime);

exit(0);
}

See Section 6.3 on page 54 for more details on calling Fortran routines
(here SGEMM) from C.

Here is an example of compiling and executing this program:

t3e% cc matmul.c
t3e% timex mpprun -n 2 ./a.out
ct[10][10] is -345.015608
ct[10][10] is -345.015608
CPU time in user space = 371395739 clock ticks
CPU time in user space = 371379536 clock ticks

seconds "clocks"
real 3.979838 (1193951546)
user 2.063669 (619100700)
sys 0.254990 (76497000)

Here we executed the program identically on two processors.

10.2 Parallel performance prediction

Several different models can be used to measure the scalability of a
parallel program. Depending on your application and preferences, you
may want to use parallelism to decrease execution time, to run bigger
models or to optimize the speedup of parallel processing.

The so-called Amdahl’s law applies to a fixed model size when you are
using different numbers of processors. This model supposes that you
can split the program in two parts, sequential and parallel. The sequen-
tial part takes W1 seconds in all cases. The parallel part takes Wp/p
seconds, where the Wp is the size of the parallel task and p is the num-
ber of parallel processors.

Speedup Sp is defined as the ratio of the time on one processor divided
by the time on p processors:

Sp =
W1 +Wp
W1 +Wp/p

.
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This equation can be normalized by setting W1 +Wp = 1. Here W1 = α
(the sequential portion) and Wp = 1−α (the parallel portion). Now you
get

Sp =
1

α+ (1−α)/p .

For example, if you have a program which contains a 10 % sequential
part the equation reads

Sp =
1

0.1+ 0.9/p
.

Setting p → ∞, you get the maximum speedup, which is 1/0.1 = 10.
Therefore, the sequential part starts to dominate, when you add more
processors.

Efficiency e measures how well the code is parallellized:

e = Sp
p
.

In the best case the efficiency is 1 and we say that the scalability is linear.

Ambdahls’ law gives a rather pessimistic picture of scalability. In many
cases it is not necessary to keep the model size fixed when doing parallel
computing. This way, the parallel part of the program (1 − α) can be
increased at the same time you add more processors.

Gustafson’s law specifies a different scalability concept: you do not keep
the model size fixed — instead, you keep the solution time fixed. This
means that you want to solve the largest problem size possible, given a
time limit. A typical case is weather forecasting: you want to get a 24-
hour forecast within one hour, since the value of this forecast decreases
rapidly as time goes by.

Gustafson’s scaling law can be expressed as follows:

S′p =
W1 + pWp
W1 +Wp

.

Note that the time on p processors is compared to the time it would take
to compute this task on one processor. By normalizing (W1+Wp = 1, as
above) you find

S′p = p −α′(p − 1).

Suppose that you have 128 processors available. Now,

S′128 = 128−α′(128− 1) = 128− 127α′.

If the sequential part is α′ = 0.1, you obtain a speedup of 128− 12.7 =
115.3. If α′ = 0.05, you get a speedup of about 122. However, note
that the bigger model size might actually not fit in the memory of one
processor, so you most probably are not able to do the comparison runs.
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You can derive the following connection between the parameters α and
α′ in Amdahl’s and Gustafson’s laws:

α = α′

p −α′(p − 1)
,

α′ = αp
1+α(p − 1)

.

Figure 10.1 shows how these scalability laws are connected. Figure 10.2
shows how the speed of the code scales (according to Amdahl’s law)
when α = 0.02 and α = 0.002.

W1 Wp

1–aa

W1 Wp/p
(1–a)/pa

1

W1 pWp

p(1–a')a'

W1 Wp

(1–a')/pa'

1

Amdahl's
law

Gustafson's
law

Figure 10.1: Illustration of Amdahl’s and Gustafson’s scalability laws.
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Figure 10.2: Illustration of Amdahl’s scalability law for α = 0.02 (−−)
and α = 0.002 (− · −).

In addition to Amdahl’s and Gustafson’s laws, there is also a model
for memory-bounded speedup. In this case the actual constraint is the
memory of the parallel machine, and you want to scale the program to
use all available memory. A typical case of this is 3D fluid mechanics,
where you usually want to solve large problems (dense grid) as efficiently
as possible.
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10.3 Scalability criteria at CSC

CSC imposes the following scalability criteria for Cray T3E applications:

The speed of the application has to increase by 50%, when
the number of processors is doubled.

For example, when doubling the processors from 8 to 16, the speed of
the code should be 1.5 times as much.

You can use Gustafson’s law for nice formulation of this criteria: com-
pute the same calculation using p and p/2 processors. Then you get the
relative speedup S′2 from Gustafson’s law:

S′2 = 2−α′.

CSC’s criteria is S′2 > 1.5, which corresponds to the criteria

α′ < 0.5

based on Gustafson’s law. This can be also formulated as follows:

In a large application, less than half of the time should be
used for sequential processing.

10.4 More information

See the manual pages for more information about timing, e.g., man
timex or man ICPUSED.

The basics of parallel programming are discussed in the textbook De-
signing and Building Parallel Programs [Fos95]. Another good textbook
is Introduction to Parallel Computing — Design and Analysis of Algo-
rithms [KGGK94].
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Appendix A

About CSC

Center for Scientific Computing, or simply CSC, is a national service cen-
ter that specializes in scientific computing and data communications.
CSC provides modeling, computing and information services for univer-
sities, research institutes and industry. For example, Finland’s weather
forecasts are computed with the Cray supercomputers operated by CSC.

All services are based on versatile supercomputing environment, ultra-
fast FUNET data communications and high standard of expertise in var-
ious branches of science and information technology.

The premises of CSC are located in the building of TT-Tieto in Otaniemi,
Espoo (street address: Tietotie 6) in the neighborhood of the Helsinki
University of Technology (HUT) and the Technical Research Centre of
Finland (VTT).

The mail address is

Center for Scientific Computing (CSC)
P.O. Box 405
FIN-02101 Espoo
Finland

The international phone number is +358-9-457 2001 and the fax number
is +358-9-457 2302.

The best way to get help in problems is to use e-mail. You can send e-mail
to customer advisers through Internet by using the address helpdesk@
csc.fi.

CSC experts are available on the CSC premises and they can be reached
by phone on weekdays from 9 am to 4 pm. Customers can also get
customer information and answers to operational questions by calling
the CSC Help Desk, tel. (09) 457 2821. The Help Desk answers in this
service number on weekdays from 8 am to 4 pm. Outside the working
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hours you can leave a message. The Help Desk registers the call, writes
down the problem and tries to solve the problem immediately. If this is
not possible, the problem is forwarded to the right experts to take care
of it.

See the WWW pages at the address

http://www.csc.fi

for more information about CSC services.
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Appendix B

Glossary

ANSI American National Standards Institute, organization
deciding on the U.S. computer science standards.

Bandwidth The amount of data that can be sent through a given
communications circuit per second.

BLACS Basic Linear Algebra Communication Subroutines, a
subroutine package for interprocess communication
in PBLAS and ScaLAPACK.

BLAS Basic Linear Algebra Subroutines, a subroutine pack-
age for fundamental linear algebra operations.

Cache A small fast memory holding recently accessed data,
designed to speed up subsequent access to the same
data.

CSC Center for Scientific Computing, a national service
center that specializes in a scientific computing and
data communications.

Data-parallel A SIMD programming style where the programmer
specifies the data distribution between processes, and
the compiler generates a parallel executable code.

Data passing A communication technique between parallel pro-
cesses where the routines for sending or receiving
data are performed by only one of the processes.

Emacs A popular screen editor used on Unix, VMS and other
systems.

FUNET Finnish University and Research Network, maintained
by CSC.
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HPF High Performance Fortran, a data-parallel language
extension to Fortran 90.

HTML Hypertext Markup Language, a language for writing
hypertext documents in the Web.

IEEE Institute of Electrical and Electronics Engineers, the
world’s largest technical professional society, based
in the USA.

IMSL Fortran subroutine library for numerical and statisti-
cal computation.

LAPACK Linear Algebra PACKage, a collection of subroutines
for solving systems of linear equations and eigen-
value problems.

Latency The time that it takes to start sending a package
across the interconnection network.

Libsci Cray’s numerical subroutine library.

Malleable Malleable programs can be run on any number of
processors, specified at execution by the command
mpprun.

Message passing A communication technique between parallel pro-
cesses where the data transfer from the local memory
of one process to the local memory of another re-
quires operations to be performed by both processes.

Microkernel An operating system design which puts emphasis on
small modules that implement the basic features of
the system kernel and can be flexibly configured.

MIMD Multiple Instruction, Multiple Data, a parallel com-
puter architecture or programming style where many
functional units perform different operations on dif-
ferent data.

MPI Message Passing Interface, a standardized and
portable de facto standard message-passing library.

NAG Fortran subroutine library for numerical computa-
tion.

Netlib An Internet archive accessed through e-mail to obtain,
e.g., subroutine libraries.

Node Processing element plus the interconnection network
components.
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Non-malleable Non-malleable programs are fixed at compile time to
run on a specific number of processors.

NQE Network Queueing Environment, the batch queuing
system on the T3E.

PBLAS Parallel BLAS, parallelized version of BLAS.

PDF Portable Document Format, a format defining the final
layout of a document. The native file format for the
Adobe Acrobat software package.

PE Processing Element, consisting of a microprocessor,
local memory and support circuitry.

PostScript A widespread page description and printer language.

PVM Parallel Virtual Machine, a standardized and portable
message-passing library that is somewhat older than
MPI.

RISC Reduced Instruction Set Computer , a processor whose
design is based on the rapid execution of a sequence
of simple instructions rather than on a large variety
of complex instructions.

Scalability A measure of how efficiently a parallel program will
work when the number of processors is increased.

ScaLAPACK Scalable LAPACK, parallelized version of LAPACK.

SHMEM Shared Memory Library, Cray’s data-passing library.

SIMD Single Instruction, Multiple Data, a parallel computer
architecture or programming style where many func-
tional units perform the same operations on different
data.

Ssh Secure Shell, a program for encrypted communication
between two hosts over an insecure network.

Streams Stream buffers, a mechanism to fetch data in advance
from the local memory of the T3E PEs.

Unix The most widely used multi-user general-purpose op-
erating system in the world.
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Appendix C

Metacomputer Environment

• help topic (CSC help system)

• ls (list directory)
• less (print a file to the screen)
• cp (copy a file)
• rm (delete a file)
• mv (move or rename a file)
• cd (change the current directory)
• pwd (print name of the current directory)
• mkdir (create a directory)
• rmdir (delete a directory)
• exit (quit the session)
• passwd (change password)

Unix commands

• less file (print a file to the screen)
• ls -la | less (page the output of a command)
  • return (next line)
  • space bar (next screen)
  • b (previous screen)
  • h  (list the commands of less)
  • q (quits the less program)

Paging with less

• emacs file  (start the emacs editor)
• Notation Ctrl-c means: “hold down the 
  Control key and press the c key”
• Moving: cursor keys and Ctrl-f  (forward), 
  Ctrl-b (back), Ctrl-n (next line), 
  Ctrl-p (previous line) 
• Ctrl-x Ctrl-c (quit and save)
• Ctrl-x Ctrl-s  (save)
• Ctrl-g (interrupt an emacs command)
• Ctrl-h Ctrl-h (Emacs help system)

Emacs editor

lynx, mosaic, netscape (hypertext 
  information system)
• 

• usage program  (quick help for programs)
• man program  (manual pages)
• msgs (system messages)

Help commands

• ftp computer  (file transfer program,
  help lists commands, quit ends the session)
• Example with ftp:
  ftp cypress.csc.fi (open session)
  bin (binary transfer)
  dir (directory listing in Cypress)
  put file1 (put the file to Cypress)
  get file2 (get the file from Cypress)
  quit (end of session)
• scp computer1:file1 computer2:file2
  (copy files between computers).
• rcp computer1:file1 computer2:file2
  (copy files between computers).

File transfer

• saldo (show CPU quota)
• quota -v (disk quota)
• ps (process status)
• top (continuous process status)
• uptime (show the load of the computer)
• who (list logged-in users)
• finger user@computer (gives information
  about a user)
• df -k (disk status in kilobytes)
• du -k (disk space used by a directory)
• qsub, nqeq, nqestatus (submit and get status
  of batch jobs)

System status

• fsput file (put the file to the file server)
• fsget file (get the file from the file server)
• fsls (list the files in the file server) 
• man fsput (manual page for the command)

Fileserver

© Center for Scientific Computing 1998

ssh computer  (open a new secure session)
• telnet computer  (open a new session)
•  

• rlogin computer  (open a new session)
• Modem lines (1200–28800 bps):
  (09) 455 0399, (09) 455 0322 

•  
•  

Networking



Appendix C. Metacomputer Environment 117

• pine (start the e-mail program)
• Reading: choose a message with arrow
  keys and press return
  • i (index of received messages)
  • c (send mail)
  • r (reply to mail)
  • f (forward mail)
  • q (quit)
  • ? or Ctrl-g (help); notation Ctrl-g means 
    “hold down the control key and press g”
  • Ctrl-c (interrupt the current operation)

Sending mail:
• pine First.Surname@csc.fi (send e-mail to 
   the given e-mail address)
  Subject: Hello! (subject line)
  Cc: (other receivers)
  Write the message
  Ctrl-x (send the message)

E-mail Compilers

• nn (read the Usenet news)
  • ?  (get help)
  • Q  (quit the program)

Usenet News

• tcsh is CSC's standard command shell with
  advanced command line editing
• Left and right arrow keys move the
  cursor in the command line
• Up and down arrow keys recall old
  command lines
• The Tab key tries to complete a file name
  or a command name 
• Ctrl-d is the end-of-file character on Unix 
   systems
• Ctrl-d lists possible choices while you write
  a file name or a command name
• Output of a command to a file:
   ls -la > file
• Chaining multiple commands:
   ls -la | less

Command shell tcsh

Example of a compilation command (Cypress):
  f90 -o prog prog.f -lcomplib.sgimath
Run the program: ./prog  

Compiling

• Address: Center for Scientific Computing, 
  P.O. Box 405, FIN-02101 Espoo, Finland
• Street Address: Tietotie 6, Otaniemi, Espoo
• Exchange: (09) 457 2001, telefax (09) 457 2302
• CSC HelpDesk (09) 457 2821 or
  e-mail address helpdesk@csc.fi 
• Accounts and passwords: (09) 457 2075 or
  e-mail address usermgr@csc.fi 
• List of application software and specialists
  with the command help ohjelmistolista 
• Operators' phone: 0400 465 293, 
  e-mail oper@csc.fi

Contact information

• cypress.csc.fi (compute server)
• cypress2.csc.fi (compute server)
• caper.csc.fi (compute server)
• azalea.csc.fi, orchid.csc.fi (graphics servers)
• voxopm.csc.fi (interactive front end machine)
• fs.csc.fi (file server)
• t3e.csc.fi (Cray T3E massively parallel computer)

• cray.csc.fi (Cray C94 vector computer)

Computers

lpr -Pcsc_post file
Print a PostScript or text file:
  
Check the status of the print job: lpq -Pcsc_post  
Remove a print job: lprm -Pcsc_post  job_id 

Printing

f90,f90nagCypress
f90

f90
f90,f95

Fortran 90 Fortran 77 C C++
Cray C94 cf77 cc CC

f77 cccc CCg++, 
Cypress2 f77 cc g++, CC
Caper f77 cc g++, cxx

f90Cray T3E f90 cc CC
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