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Preface xiii

Preface

The document describes architecture of the Hewlett-Packard 9000
V-Class Enterprise Server based on the PA-8200, the latest in a line of
high performance Precision Architecture - Reduced Instruction Set
Computer (PA-RISC) processors from Hewlett-Packard Company.

New in Second Edition
The Second edition incorporates corrections to the First edition. The
section entitled “Read Hint” has been removed from Chapter 2. A new
section entitled “Accelerated Cache Coherence” has been added to
Chapter 3.

System platforms
The HP-UX operating system is used on:

• K-Class servers

• D-Class servers

• V-Class servers
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Preface
Notational conventions

Notational conventions
This section describes notational conventions used in this book.

bold monospace In command examples, bold monospace
identifies input that must be typed exactly as
shown.

monospace In paragraph text, monospace  identifies
command names, system calls, and data
structures and types.
In command examples, monospace  identifies
command output, including error messages.

italic In paragraph text, italic identifies titles of
documents and provides emphasis on key
words.
In command syntax diagrams, italic identifies
variables that you must provide.
The following command example uses
brackets to indicate that the variable
output_file is optional:
commandinput_file [output_file]

Brackets ( [ ] ) In command examples, square brackets
designate optional entries.

Curly brackets ({}),
Pipe (|)

In command syntax diagrams, text
surrounded by curly brackets indicates a
choice. The choices available are shown inside
the curly brackets and separated by the pipe
sign (|).
The following command example indicates
that you can enter either a or b:
command {a | b}
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Preface
Notational conventions

NOTE A note highlights important supplemental information.

CAUTION A caution highlights procedures or information necessary to avoid
damage to equipment, damage to software, loss of data, or invalid test
results.

WARNING Warnings highlight procedures or information necessary to
avoid injury to personnel.

Horizontal ellipses
(...)

In command examples, horizontal ellipses
show repetition of the preceding items.

Vertical ellipses Vertical ellipses show that lines of code have
been left out of an example.

Keycap Keycap  indicates the keyboard keys you must
press to execute the command example.
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Chapter 1 1

1 Introduction

The V-Class server provides multipurpose, scalable computing resources
though shared memory and I/O designed to provide high throughput and
time to solution.

V-Class server uses the PA-8200, the latest in a line of high performance
Precision Architecture - Reduced Instruction Set Computer (PA-RISC)
processors from Hewlett-Packard Company.
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Introduction
The PA-8200 processor

The PA-8200 processor
The V-Class server uses the Hewlett-Packard PA-8200 processor, based
on the concept of Reduced Instruction Set Computers (RISC). The
PA-8200 was designed according to Hewlett-Packard’s PA-RISC
Architecture version 2.0 specifications.

NOTE The PA-RISC architecture is presented in the PA-RISC 2.0 Architecture
reference manual. Please refer to that document for detailed information
about the features of the PA-8200. This document does not attempt to
duplicate information in that manual. Instead, it presents only V-Class
server-specific information.

The processors of the system are supported by several Application-
Specific Integrated Circuit (ASIC) hardware controllers, an enhanced
memory system, and a high-bandwidth I/O subsystem. Special hardware
and software allow these processors to perform both as conventional
single processors or together in parallel to solve more complex problems.
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Introduction
The node

The node
The V-Class server can contain four to 16 processors. The processors and
the associated hardware comprise what is commonly called node. The
terms node and system are used interchangeably in this book. The node
uses a symmetric multiprocessor (SMP) design that can exploit fine-
grain parallelism.

A conceptual block diagram of the system is shown in Figure 1. Centrally
located in the diagram is the HP Hyperplane crossbar that is comprised
of four Exemplar Routing Attachment controllers (ERAC). The
Hyperplane crossbar allows all of the processors to access all available
memory. Processors are installed on Exemplar Processor Agent
controllers (EPACs). An EPAC allows the processor and the I/O
subsystem (the Exemplar PCI-bus Interface controller—EPIC) access to
the Hyperplane crossbar. Also connected to the Hyperplane crossbar are
the Exemplar Memory Access controllers (EMAC). Up to two processors
are located on each EPAC. Memory is controlled by the EMAC. Input and
output devices connect to the system through EPIC which is connected to
the processor agents.

The Exemplar Core Utilities board (ECUB—commonly called the
Utilities board) in the node contains a section of hardware called the core
logic. It provides interrupts to all of the processors in the system through
the core logic bus which connects to each processor agent. The ECUB
attaches to the Exemplar system Routing board (ENRB) centrally
located in the node.
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 Figure 1 Functional block diagram of a V-Class system
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Control and status registers (CSRs)
System hardware is manipulated by control and status registers located
in the processors and controllers.

CSRs provide control, status, or both to the processors and other
hardware in the system. Each CSR is memory mapped and is available
to all processors in the system. Many of the registers are described in
detail by functional groups, such as system configuration, messaging and
data copy, I/O, and so on. These descriptions appear throughout this
book.

Description of functional blocks
Each block in Figure 1 is described in the following sections.

Exemplar processor agent controller
The EPAC can connect to zero, one, or two PA-8200 processors. It can
also connect to zero or one EPIC (the I/O controller). With no processors,
the EPAC serves as an I/O-only interface. The EPAC has the following
buses:

• Runway bus (0, 1)—Two each, 64-bit, bidirectional buses for processor
0 and processor 1, respectively. These buses have a raw bandwidth of
960 MBytes per second.

• Hyperplane crossbar port bus (0, 1)—Four 32-bit, unidirectional
buses connected to two Hyperplane crossbar ERACs, two in each
direction. These buses have a total raw bandwidth of 1.9 GBytes per
second.

• I/O port—Two 16-bit or 32-bit, unidirectional interfaces to an I/O
device, one for reading data and one for writing data. The width of the
bus depends on the width of the I/O device connected. Each bus has a
bandwidth of 120 MBytes per second or 240 MBytes per second,
depending on the width of the interface.

• Core Logic Bus interface—A single bidirectional bus that supports
boot and support services.

The EPAC sends and receives transactions from the ERACs using four
unidirectional data paths. There are four ERACs in the Hyperplane
crossbar. Each processor agent, however, communicates with only two of
the four ERACs.
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The EPAC includes special hardware called the data mover for rapid
message and data movement between memory within a node. This
dedicated hardware greatly improves file I/O and networking over
software versions.

Exemplar routing attachment controller—
Hyperplane crossbar
The Hyperplane crossbar is comprised of four ERACs that provide an
interconnect for each processor and I/O device to memory.

Each of the four ERACs has the following buses:

• EPAC Port (A, B, C, D)—Eight 32-bit, unidirectional interfaces to four
EPAC ports, four in each direction. Each port has simultaneous
(input and output) bandwidth of 960 MBytes per second.

• EMAC Port (A, B, C, D)—Eight 32-bit, unidirectional interfaces to
four EMAC ports, four in each direction. Each port has simultaneous
(input and output) bandwidth of 960 MBytes per second.

Figure 2 shows how the ERACs connect to each EPAC and EMAC.
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 Figure 2 ERAC interconnection

Exemplar memory access controller
The EMAC controls all accesses to memory. Each EMAC controls four
banks of memory, allowing up to 32 banks in an eight-EMAC system.
Memory banks consist of Single Inline Memory Modules (SIMMs) of
Synchronous Dynamic Random Access Memory (SDRAM).
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The EMAC has the following buses:

• ERAC Port (A, B)—Four 32-bit, unidirectional interfaces, two in each
direction. This interface supports a total simultaneous read-write
bandwidth of 1.9 GBytes per second.

• Even Memory—A single 88-bit, bidirectional interface to the even
memory banks associated with the EMAC.

• Odd Memory—A single 88-bit, bidirectional interface to the odd
memory banks associated with the EMAC.

A processor accesses memory by sending a request, in the form of
packets, to an ERAC. The request is then forwarded to one of the
EMACs. The EMAC routes requests into even and odd pending queues.
Some packets not destined for memory are routed from processor to
processor through the EMAC. These packets are routed directly to the
output ports.

The EMAC accesses one of four available memory banks, checking the
Error Correction Code (ECC). The data accessed from memory is
returned to the processor by sending a response back to the ERAC, which
forwards the response to the EPAC.

ECUB and core logic bus
The ECUB, or Utilities board, connects to the core logic bus and contains
two field-programmable gate arrays (FPGAs): the Exemplar Processor
Utilities controller (EPUC) and the Exemplar Monitoring Utilities
controller (EMUC). The EPUC allows processors access to the system
core logic and booting firmware, and the EMUC processes the
environmental state of the system and interrupts the processors when
appropriate. V-Class servers use the core logic bus primarily to boot the
system and to issue environmental interrupts.

The core logic bus is a low-bandwidth, multidrop bus that connects each
processor to the control and interface logic (both RS232 and ethernet). A
processor can write to control and status registers (CSRs) accessed using
the core logic bus to initialize and configure the ERAC chips and Utilities
board logic.
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System configurations
Table 1 shows the available configurations.

Table 1 System configurations

Processors Processor
agents

Memory
boards

Total
memory
(EMB)

 I/O
chassis

4 2 2 256 1

4 2 2 512 1

4 2 2 1024 1

4 2 4 2048 1

8 4 4 512 1 or 2

8 4 4 1024 1 or 2

8 4 4 2048 1 or 2

8 4 8 4096 1 or 2

12 6 8 1024 1, 2, or 3

12 6 8 2048 1, 2, or 3

12 6 8 3072 1, 2, or 3

12 6 8 4096 1, 2, or 3

16 8 8 1024 1, 2, 3, or 4

16 8 8 2048 1, 2, 3, or 4

16 8 8 3072 1, 2, 3, or 4

16 8 8 4096 1, 2, 3, or 4
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Shared memory
V-Class servers use a shared-memory architecture to provide high-
performance. This allows the developer, compilers, and applications to
view the system as processors sharing a large physical memory and high-
bandwidth I/O ports.

Message passing hardware provides ahigh performance for applications
developed using a messaging scheme known as the Message Passing
Interface (MPI). For more information concerning message passing, see
the chapter entitled  “Data mover,”  for more information.

Compilers use shared memory to provide automatic, efficient
parallelization, while viewing memory as a single contiguous virtual
address space.

The Hyperplane crossbar provides high-bandwidth, low-latency
nonblocking access from processors and I/O channels to the system
memory. It prevents the performance drop-off associated with systems
that employ a system-wide bus for processor and I/O memory traffic.

Sequential memory references (linearly ascending physical address) to
shared memory are interleaved across up to eight memory boards on a
32-byte basis. See the chapter  “Physical address space,”  for more
information.

With all processor references to memory, copies of the accessed data are
encached into either the instruction or data caches of each processor. If
the processor making the memory reference modifies the data and if
another processor references that same data while a copy is still in the
first processor cache, a condition exists whereby the data has become
stale. The V-Class hardware continually works to ensure that the second
processor does not use an outdated copy of the data from memory. The
state that is achieved when both processors’ caches always have the
latest value for the data is called cache coherence.
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To maintain updated coherent copies, V-Class servers operate under the
following rules:

• Any number of read encachements of a cache line can be made at a
single time. The cache line can be read-shared in multiple caches.

• To write (store) data into a cache line, the cache line must be “owned”
exclusively by the processor. This implies that any other copies must
be invalidated.

• Modified cache lines must be written back to memory from the cache
before being overwritten.
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2 Physical address space

This chapter describes the V-Class server physical address space,
including coherent memory, core logic, and CSR address regions.
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Physical addresses
The PA-8200 processor is an implementation of the 64-bit PA-RISC 2.0
architecture. The processor translates all 32- and 64-bit, virtual and
absolute addresses to 64-bit physical addresses. External to the PA-8200
chip, however, only 40 bits of the 64-bit physical address are
implemented.

The I/O system uses controllers that have fewer than 40 address bits.
The mapping of I/O addresses to the corresponding 40-bit physical
address space occurs in the EPIC I/O subsystem.

V-Class server processors have four addressable physical address
regions. These are:

• Coherent memory space—Memory used for programs and data and
available to every processor. This is the bulk of the memory space.

• Core logic space—The space occupied by a group of hardware
registers that comprises the system core logic function and is
accessible to all processors within the system.

• Local I/O space—The space occupied by the PCI buses and prefetch
and context RAM CSRs associated with input and output devices
within the system.

• Non-I/O CSR space—The space occupied by the group of all other
CSRs within the system.

Figure 3 shows how the address space is partitioned.
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 Figure 3 Physical address space partitioning
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The left side shows the PA-8200 64-bit address map, and the right shows
the 40-bit external address map used by the system. The two regions
labeled unmapped space exist in the 64-bit physical address space but do
not exist for the 40-bit physical address space.
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Coherent memory space
As shown in Figure 3, coherent memory occupies the largest amount of
physical address space. Figure 4 shows both the 64-bit and 40-bit
physical address formats.

 Figure 4 Coherent memory space address formats

The field definitions are as follows:

• Row—Selects one of eight rows of memory.

• Virtual ring (VR)—Selects one of eight memory boards.

NOTE In V-Class systems, the term ring has the same meaning as memory
board (MB). The term ring is used in this document to remain compatible
with documentation of other similar servers.

• Virtual bank (VB)—Selects one of four memory banks.

• Page—Selects the page of memory.

• Page offset—Locates a line of memory within the selected page.

• Line offset—Locates the byte of memory within the selected line.
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Coherent memory layout
Memory physically resides in memory blocks, with each block controlled
by a single EMAC.

NOTE The term memory block is synonymous with memory board. There is a
difference, however, in that a block is considered a logical entity and a
board a physical entity. The EPAC maps logical memory blocks to
physical memory boards.

Each block has four banks of memory. Coherent memory is further
divided into memory lines 32bytes in size.

Memory blocks are implemented with memory DIMMs, up to 16 DIMMs
per block (one block per EMAC). Each DIMM can have one or two rows of
SDRAM chips, constructed with either 16-Mbit or 64-Mbit SDRAMs.

Figure 5 illustrates the layout for the coherent memory space.
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 Figure 5 Coherent memory space layout
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Addressing a byte of memory
Figure 6 represents a fully populated system with 16 Gbytes of physical
memory. It also shows how a byte of memory is addressed.

NOTE Figure 6 represents only the concept of how memory is configured in the
system. It does not depict the physical implementation.

The eight memory boards (MB) are at the top of the drawing. Each board
has 16 DIMMS and each DIMM is loaded with memory chips on both
sides. Each memory board has four banks comprised of four DIMMs in
the vertical direction. Also, each board has eight rows along the
horizontal direction. The top and bottom of each DIMM in the horizontal
direction are part of two separate and adjacent rows. For example, Row 0
consists of the memory mounted on the bottom of each of the four DIMMs
located on the bottom of the memory board in the horizontal direction. If
the memory chips were 64-MBit SDRAM, each board would contain two
GBytes of memory.

A pair of rows per bank (that is, rows 0 and 1) is sufficient to maintain
maximum memory bandwidth. Additional rows add memory capacity,
not additional bandwidth.
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 Figure 6 Conceptual layout of physical memory of a fully populated
system
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As shown in the physical address in Figure 4 and the conceptual memory
layout in Figure 6, a byte of memory is accessed as follows:

1. The Row field selects one of eight rows of SDRAMs.

2. VR field selects the memory board.

3. VB field selects one of four banks on the appropriate memory board.

4. The Row, VR, and VB components of the physical address point to one
side of a DIMM which contains 16,384 pages of 4,096 bytes each.

5. The Page field selects one of 16K pages on one side of the DIMM.

6. The Page offset field selects one of 128 memory lines in the page.

7. The Line offset field selects the appropriate byte in the line.

Each row contains 512 Mbytes of physical memory with 16-Mbit
SDRAMs or 2 Gbyte with 64-Mbit SDRAMs. Within a row, 32
subpartitions exist, one for each memory board-bank combination (eight
memory boards with four banks per board). Each subpartition is 64
Mbytes in size. If 16-Mbit SDRAMs are installed into a row of memory,
then only the first 16 Mbytes of each subpartition of a row is accessible.
Otherwise, with 64-Mbit SDRAMs, the entire 64 Mbyte subpartition is
accessible.

Memory interleaving
Memory interleaving distributes consecutive lines of memory across as
many banks as possible. It is supported across four, eight, 16, and 32
banks of memory as follows:

• A single memory block (four banks)

• An even-odd pair of memory blocks (eight-way interleave)

• Two pairs of memory blocks (16-way)

• Four pairs of memory blocks (32-way)

As noted earlier, the term memory block is synonymous with memory
board. When generating the interleave, the EPAC maps logical memory
blocks to physical memory boards. Therefore, describing memory
interleave should be done in terms of memory blocks.

Normal memory interleave supports only pairs of memory blocks. Three
pairs of memory blocks are interleaved with 16-way interleave.
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Noninterleaved memory accesses are different from interleaved. They
are divided into eight rows.

Memory interleave generation
Coherent interleave is performed on all memory references, except in the
single memory block mode. To optimize memory bandwidth, memory
blocks are installed on pairs of memory boards, even and odd. There are
a maximum of four even-odd pairs of memory blocks in a system.

Figure 7 shows the mechanism for interleave. The 40-bit physical
address provides the basis from which the memory blocks and memory
bank are selected.

The Memory Board Configuration register supplies the map used to
translate a memory block to the associated memory board where the
memory line resides. See the section “EPAC Memory Board
Configuration register” on page 39 for more information.
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 Figure 7 40-bit coherent memory address generation

The EMAC online field of the System Configuration register checks that
a valid VR value is specified in the memory address. An invalid VR value
results in an HPMC.

Ring (memory block) and bank index selection
The Page offset bits indicate the bank index and ring index. As noted
earlier, the term ring means memory block—the two terms are
synonymous in V-Class systems. If no memory interleaving is performed,
the ring index is zero. Table 2 shows which offset bits are used. The
numbers inside the parentheses indicate the appropriate address bits.
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Table 2 Bank/ring index selection

Memory block interleave pattern
The memory block generated for the noninterleaved case is simply the
VR field.

The memory blocks generated for interleave cases of one, two, and four
board pairs are given in Table 3, Table 4, and Table 5, respectively. The
tables show the memory board number with respect to the virtual ring
and ring index.

Table 3 Memory block interleave pattern for one pair

Block pairs Bank index (BI) Ring index (RI)

No Interleave Offset 33:34) RI=0

One Pair Offset (32:33) Offset (34)

Two or Three Pairs Offset (31:32) Offset (33:34)

Four Pairs Offset (30:31) Offset (32:34)

VR (9:11) RI=0 RI=1

0 0 1

1 1 0

2 2 3

3 3 2

4 4 5

5 5 4

6 6 7

7 7 6



26 Chapter 2

Physical address space
Coherent memory space

Table 4 Memory block interleave pattern for two pairs

Table 5 Memory block interleave pattern for four pairs

Memory bank interleave pattern
Memory bank interleaving occurs for all interleave spans. Memory
configurations allow either two or four memory banks per EMAC. To
support these two configuration options, two- and four-way memory
bank interleaving are supported. Table 6 shows the memory bank
interleave pattern for four banks.

VR (9:11) RI=0 RI=1 RI=2 RI=3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

4 4 5 6 7

5 5 6 7 4

6 6 7 4 5

7 7 4 5 6

VR (9:11) RI=0 RI=1 RI=2 RI=3 RI=4 RI=5 RI=6 RI=7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6
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Table 6 Memory bank interleave pattern for four banks

Bank interleaved memory pattern
Single memory board interleave mode forces contiguous memory lines to
reside in the same memory block. Within the memory block, memory
lines interleave across the four memory banks. Figure 8 shows the
interleave pattern for this mode. The pattern is the same independent of
the number of memory blocks in the system. The pattern shown is for a
4096-byte page of memory (128 memory lines per page).

 Figure 8 Single memory block interleave pattern
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Block and bank interleave memory pattern
In multiple memory board interleave modes, memory lines are
interleaved across the largest power-of-two memory banks. There are up
to eight memory blocks, resulting in 32-way memory line interleaving.
The minimum system configuration has two memory blocks, resulting in
eight-way memory line interleaving. With both four and six memory
blocks in the system, the interleave is 16-way. Figure 9 shows the
interleave pattern for a system with four memory blocks. The pattern
shown is for 4096-byte pages of memory (128 memory lines per page).
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 Figure 9 Memory line interleave pattern with four memory blocks
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Core logic space
Core logic space is used to access core logic hardware (EEPROM, SRAM,
and core logic CSRs) and is only accessible within the system. The
processor has a fixed decode for this space. Bits 8 through 15 of the 40-bit
physical address are ignored for address decoding.

 Figure 10 40-bit core logic space format

The addresses contain a 24-bit offset used as the core logic bus address.
The EPAC translates from the physical addresses to core logic bus
addresses. It also splits 64-bit requests into two, 32-bit requests. The
EPUC translates the core bus address to utility address. See Figure 11.

 Figure 11 Core logic address translation

Core logic space is further partitioned for EEPROM, SRAM, and CSR
Space. Table 7 shows the address ranges for each of these partitions.

Table 7 Core logic space partitions

Processor-dependent code (PDC) space is accessed using the core logic
bus attached to each processor. A PDC space access is not routed through
the Hyperplane crossbar.

0

F0

16

Offset (24-bits, 16 Mbyte)

8 39

XX

8

24-bit offsetF0 XX

0 16 39

24-bit Address

0 23

40-Bit physical address

24-Bit core logic space address

Partition Core logic space offset range

EEPROM 0x000000 - 0x7FFFFF

SRAM 0x800000 - 0xBFFFFF

CSR 0xC00000 - 0xFFFFFF
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Local I/O space
A processor can directly access all I/O space in the system using the I/O
controllers.

The EPAC of the source processor checks the value of the DXbr field
against the appropriate bit of the Processor Agent online field in the
System Configuration register of the source processor to verify that the
destination processor agent is online. The EPAC of the destination
processor checks to see if the EPIC online bit in its Chip Configuration
register is set. If either of the online bits are not set, the request will fail
with a high-priority machine check trap. See Figure 12.

 Figure 12 40-bit local I/O space format

The bits of the local I/O space address are as follows:

• DXbr field (bits 6:9)—Specifies to which of the eight Hyperplane
crossbar ports (connected to the EPAC chip) the request is to be
routed.

• Offset field (bits 33:39)—Specifies the offset into I/O space. In this
space, all PCI configuration, I/O CSRs and I/O memory space must be
allocated. See the section “Host-to-PCI address translation” on
page 106 for more information.
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Non-I/O CSR space
Non-I/O CSRs reside within the PA-8200, EPAC, EMAC, and EPIC.

 Figure 13 Non-I/O CSR space format

The bits and fields of the CSR space address are as follows:

• Local EPAC access bit (bit 14)—Indicates that the access is to the
local EPAC space within the associated EPAC ASIC.

• DXbr field (bits 18:19)—Specifies which of the eight Hyperplane
crossbar ports the request is to be routed.

• Chip field (bits 21:23)—Routes the packet to the appropriate chip at a
Hyperplane crossbar port.

• Page field (bits 28:36)—Separates groups of CSRs into similar usage
spaces.

• Register field (bits 28:36)—Specifies the register number.
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11111110000000
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Local EPAC access
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CSR access
There are three packet routing methods used for accessing CSRs:

• Processor-local

• EPAC-local

• Node

The 40-bit physical address determines which access method will be
used.

Processor-local access
Processor-local accesses reference CSRs that reside in the processor
issuing the request. These accesses are sent out and brought back into
the requesting processor on its Runway bus. The EPAC, which is also
connected to the Runway bus, ignores the request. The processor online
bits of the processor agent are not checked for processor-local accesses.

EPAC-local access
EPAC-local accesses are accesses to CSRs that reside in the EPAC
physically connected to the processor that is issuing the request. These
accesses are identified as EPAC-local and are not sent to the Hyperplane
crossbar. Table 8 shows which fields must be specified for EPAC-local
addressing.

This method accesses processor-specific CSRs that reside in an EPAC.
All processor-specific EPAC CSRs are identified as having bit 2 of the
Chip field set. When the EPAC detects a processor-specific page, it forces
bit three of the page field according to the processor issuing the request.

NOTE The EPAC online field of the System Configuration CSR is not checked
for EPAC-local accesses.
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System accesses
System accesses are used to access CSRs throughout the system. If the
access is to an EMAC, the DXbr field routes the request to the proper
EMAC. The EMAC Online field of the source EPAC System
Configuration register is checked to ensure the destination EMAC is
online. A high-priority machine check trap will result if the destination
EMAC is not online.

If the access is to an EPAC, EPIC, or processor, the request is first routed
to the EMAC specified by the Intermediate EMAC field of the EPAC
Configuration CSR. The EPAC Online field of the source EPAC System
Configuration CSR is checked to ensure the destination EPAC is online.
If the destination EMAC is not online, an HPMC results.

Table 8 Field specifications for system access

Field Specification

Bits 0:5 0x3F

Local EPAC 0

SXbr X

DXbr Destination Hyperplane crossbar port

Chip Destination chip
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Access to nonexistent CSRs
It is possible to send a request to a CSR in a controller that is not online.
Online bits are implemented for processors, EPACs, EMACs, and EPICs.
Memory uses existence bits.

Accesses to nonexistent CSRs terminate in one of the following ways:

• Requests with a response to a CSR covered by an online bit result in
an error response being returned to the processor. The processor
issues a high-priority machine check interrupt.

• Requests without a response to a CSR covered by an online bit result
in a time-out when the next synchronization operation is performed.
The synchronization time-out results in a high-priority machine
check interrupt.

• Requests with a response to a CSR not covered by an online bit result
in a time-out. The request time-out results in a high-priority machine
check interrupt.

• Requests without a response to a CSR not covered by an online bit
result in a time-out when the next synchronization operation is
performed. The synchronization time-out results in a high-priority
machine check interrupt.

System Configuration register
The System Configuration register specifies system configuration
parameters. The register is replicated on the EPAC and EMAC, but only
fields used by each controller type are implemented for a particular
controller. Therefore, not all fields exist on an EPAC or EMAC.

Figure 14 shows the generic format of the register. All fields are written
to by a write access and read from by a read access. All fields are
unaffected by reset unless specified.
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 Figure 14 System Configuration register definition

The bits and fields of the System Configuration register are defined as
follows:

• EPAC online field (bits 0:7)—Specifies which EPACs are accessible.
These bits are used to validate all I/O space and local CSR Space
requests. The field is cleared by reset.

• EMAC online field (bits 8:15)—Specifies which EMAC ASICs are
accessible. These bits are used to validate all Coherent Memory Space
and CSR Space requests. The field is cleared by reset.

• EMAC exist field (bits 16:23)—Indicates which EMAC ASICs exist in
the system. These bits are used by software to initialize the EMAC
online field. The field is initialized by reset. A CSR write is ignored.

• VI mask field (bits 35:41)—Specifies the Virtual Index bits generated
by the PA-8200 processor that are masked (forced to zero).

• Alternate TLB-U bit enable bit (bit 45)— Enables checking for
coherent accesses to noncoherent semaphore memory.

• Memory board routing bit (bit 46)—Selects the coherent memory
request to the memory board routing function. When the bit is zero,
even coherent memory requests are routed to even memory boards
and odd requests to odd boards. When the bit is one, even coherent
memory requests are routed to odd memory boards and odd requests
to even boards.

• MSB row select bit (bit 47)—Selects which bit of the 40-bit physical
address is the most significant bit of the three-bit row selection
information.

• Banks per memory board bit (bit 53)—Specifies whether two or four
banks exist per memory board.

• Normal memory interleave field (bits 54:55)—Specifies the number of
even/odd memory board pairs which normal interleaving should span.
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Rsvd

41

Banks per memory board

56

Normal memory interleave
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Memory board routing

Alternate TLB-U bit enable

EPAC
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EMAC
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EPAC Configuration register
Each EPAC has one Processor Agent Configuration register which
specifies information about the EPAC. Each EPAC can be configured
differently.

Figure 15 shows the format of the EPAC Configuration register. All fields
of the register are read by a read access.

 Figure 15 EPAC Configuration register definition

The bits and fields in the EPAC Configuration register are defined as
follows:

• EPAC part number field (bits 0:15)—Specifies the part number for the
EPAC. A write is ignored and a read returns the hard-wired value.

• EPAC version field (bits 16:19)—Specifies the version for the EPAC. A
write is ignored and a read returns the hard-wired value.

• EPIC online bit (bit 55)—Set by software to allow CSR accesses to the
EPIC. The bit is cleared by reset.

• EPIC installed bit (bit 56)—Specifies whether an EPIC ASIC is
connected to the EPAC. A value of one indicates an EPIC is installed.
This bit is read only.

• EPIC interface width bit (bit 57)—Specifies whether a 32-bit or 16-bit
interface exists between the EPIC and EPACs. A value of one
indicates a 32-bit interface, a value of zero indicates 16-bit. This bit is
read only.

• Intermediate EMAC field (bits 58:60)—Specifies the physical EMAC
used by the EPAC when routing a packet to another EPAC. Any
EMAC installed in the system can be specified and packet routing
will function properly.
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EPAC identification

number



38 Chapter 2

Physical address space
CSR access

• EPAC identification field (bits 61:63)—Specifies the identification
number for the physical EPAC. The value is obtained from pins on
the EPAC. A write to this field is ignored and a read access will
return the value of the pins.

EPAC Processor Configuration register
Each EPAC has a Processor Configuration register that contains specific
information about the EPAC processor. Each processor attached to the
EPAC can be configured differently. Figure 16 shows the format of the
EPAC Processor Configuration register. All fields of the register are read
by a read access.

 Figure 16 EPAC Processor Configuration register definition

The bits and fields in the EPAC Processor Configuration register are
defined as follows:

• Subcomplex mask field (bits 0:15)—Determines which processors
should receive broadcasted transactions.

• Implementation dependent field (bits 55:57)—Used by low-level
implementation dependent software. The value in this field should
not be modified during normal operation.

• Processor online bit (bit 58)—Indicates that the processor is
accessible. The value is initialized to the value of the processor
installed bit.

• Processor installed bit (bit 59)—Indicates that the processor is
installed. The value of this bit comes directly from a pin on the EPAC.
Writes to this bit are ignored; a read access will return the value of
the input pin.

• Processor identification field (bits 60:63)—Specifies the identification
number for the physical processor. The value read is obtained by
concatenating the three EPAC ID pins and bit 27 of the 40-bit address
used to read the register. A write to this field is ignored and a read
access will return the value of the pins/address bit.
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Subcomplex mask

Processor online
Processor installed

57 6355

Implementation dependent

EPAC identification
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EPAC Memory Board Configuration register
Each EPAC has a Memory Board Configuration register that specifies
the memory block to memory board mapping. Figure 17 shows the
format of the register. All fields are written by a write access and read by
a read access. Reset has no effect. Writes to reserved bits are ignored and
reads to reserved bits return the value zero.

 Figure 17 EPAC Memory Board Configuration register definition

The three-bit memory block generated by the memory block interleave
generation logic indexes into one of the eight memory board fields of the
Memory Board Configuration register.

The memory board fields specify the most significant two bits of the
physical memory board. The least significant bit of the memory block
index is the least significant bit of the physical memory board. This
forces even memory blocks to be mapped to even memory boards and odd
memory blocks to odd memory boards.

0 6254463830226 14

1 2 3 4 5 6 70

Memory boards



40 Chapter 2

Physical address space
CSR access

EMAC Configuration register
Each EMAC has a Configuration register that contains specific
information. Each EMAC can be configured differently.

Figure 18 shows the format of the register. All fields of the register are
read by a read access.

 Figure 18 EMAC Configuration register definition

The bits and fields in the EMAC Configuration register are defined as
follows:

• EMAC part number field (bits 0:15)—Specifies the part number for
the EMAC chip. A write is ignored and a read returns the hard wired
value.

• EMAC version field (bits 16:19)—Specifies the version for the EMAC
chip. A write is ignored and a read returns the hard wired value.

• Implementation dependent field (bits 20:42)—Used by low-level
implementation dependent software. The value in this field should
not be modified during normal operation.

• Refresh period field (bits 43:54)—Indicates how often refresh occurs.
For SDRAMs that need to be refreshed every 15.6us, this value
should be set to 0x3a8, which is 936 half clocks.

• Refresh frequency field (bits 55:56)—Controls the operation of refresh.
The value of this field after reset is 3.

• Implementation dependent field (bits 57:60)—Used by low level
implementation dependent software. The value of these bits should
not be modified during normal operation.

• EMAC identification field (bits 61:63)—Specifies the identification
number for the physical EMAC. The value is written by software.

0 636143
EMAC Refresh

Refresh frequency
Implementation dependent

55
EMAC
Version

16 20

Implementation dependent

40

EMAC identification

part number period
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EMAC Memory Row Configuration register
Associated with each EMAC are four banks of memory, each bank
having up to eight rows of SDRAMs. A table maps the row specified in
the physical address to a physically installed row of SDRAMs. The four
banks of memory controlled by an EMAC have the same memory row
mapping.

Each EMAC has a register that specifies the memory row mapping. The
format of the register is shown in Figure 19. All fields are written by a
write access and read by a read access. Reset has no effect. Writes to
reserved bits are ignored and reads to reserved bits return the value
zero.

 Figure 19 Memory Row Configuration register definition

The 3-bit row field of a physical address indexes one of the eight sets of
row fields of a Memory Row configuration register.

The bits and fields in the EMAC Memory Row Configuration Register
are defined as follows:

• 16 Mbit exist bits—Indicate that a DIMM with 16-Mbit SDRAMs
exists for the row. The field checks memory existence access.

• 64 Mbit exist bits—Indicate that a DIMM with 64-Mbit SDRAMs
exists for the row. The field checks memory existence access.

• Installed row fields—Map the row specified by the physical address to
the physical memory row.

0 6355

Installed row
64 Mbit exist
16 Mbit exist

Row 1 Row 2

Row 0

Row 3 Row 4 Row 5 Row 6 Row 7

473931237 15
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Caches compensate for memory latency by storing frequently accessed
memory lines, either data or instructions, locally on the processor board.
Whenever the particular data or instruction is required again, the
processor does not have to wait for it to return from the system memory.
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Processor caches
Each processor has two caches: a data cache and an instruction cache,
referred to as dcache and icache, respectively. These caches are two
Mbytes in size each. The data cache may be modified; the instruction
cache may not.

Whenever data is loaded into the data cache (this process is called move-
in), the processor can modify it there. If another processor makes a data
reference to the same item while the copy is still in the first processor’s
cache, hardware ensures that the original item and the copy are identical
to maintain coherency.

Often more than one memory line is encached. For data references, all
cache lines of the referenced page can be imported, and for instruction
references, all lines in the referenced page and the following page (both
virtual and physical) can be imported. A flush cache, purge cache, or
purge TLB instruction stops any subsequent move-in operations to that
page until another reference is made.

Each processor supports speculative execution of code, which is enabled
with virtual address translation. Speculative execution allows cache
move-in of any coherent memory line, provided that the virtual-to
physical address translation of the memory line is in the processor
translation lookaside buffer (TLB). Also, the virtual-to-physical
translation bit in the processor status word must be set and the TLB
entry must have the Uncacheable bit (U bit) cleared. See the section “PA-
8200 TLB Entry U-bit” on page 88.

Caches are flushed by one of two methods:

• Specifying a memory line address

• Specifying the cache entry to flush
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All cache operations are issued with a single processor instruction. These
include:

• Flush Data Cache (FDC)

• Purge Data Cache (PDC)

• Flush Data Cache Entry (FDCE)

• Flush Instruction Cache (FIC)

• Flush Instruction Cache Entry (FICE)

The FDC and PDC instructions have identical functionality on the PA-
8200. Both operations flush cache lines from the data caches of all
processors in the system. FDC and PDC instructions write data from
dirty cache lines back to memory.

The FDCE and FICE instructions flush an entry from the executing
processor’s cache only. If the cache line in the data cache is dirty, it is
written back to local memory.

NOTE Always follow cache flush instructions by a sync  instruction to ensure
that all flushes are complete.
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Cache coherence between processors
Cache coherence causes the system to behave as if it had a single data
cache and a single instruction cache (logically) for all processors. Since
there are many processors and, therefore, multiple data caches, each
processor must cross-interrogate for current data and broadcast purges
and flushes (except for FDCE and FICE).

All coherent data references are satisfied using cache coherence checks.
These checks ensure that the data has remained coherent since it was
moved in. Cache coherence checks are performed on write buffers in
order to ensure proper ordering of storage accesses.

Accelerated cache coherence
V-Class servers employ the Multi-Level Runway bus (MLR) mode on PA-
8200 processors for coherent memory transfers. This mode allows
multiple runway buses in the same system to have a coherent view of
memory.

In MLR mode during read requests, the processor does not take
ownership of a memory line until the EPAC accesses memory and the
EMAC sends a response back to the processor. When the processor
receives the response, it checks to see if the line is in its outbound queue.
If the processor does have the data in this queue, it issues a write back to
the EPAC.

Accelerated cache coherence is employed, because some applications that
do not take the MLR mode into account could use certain instruction
sequences. These would degrade system performance by causing
increased memory access latency and bandwidth.

Accelerated cache coherence hardware detects whether the processor
could have any data in its outbound queue. If the outbound queue is
empty, it tags the read request so that the EMAC determines the queue
is empty and does not need to send a flush to the processor. Since the
EMAC does not have to flush the queue, it can send the data to the
processor immediately. Without accelerated cache coherence, the read
transfer would require two memory accesses.

When several processors reference the same memory line, the EMAC for
that line maintains a tag for each line of main memory. The tag keeps
track of which processors are sharing the line and how they are accessing
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it. Using this tag, the EMAC forwards transactions to a limited number
of processors rather than to all of them. These tags are separate from the
cache tags maintained by the processor.



48 Chapter 3

Caches
Address aliasing

Address aliasing
The PA-RISC 2.0 Architecture manual describes address aliasing. For a
full discussion of PA-RISC address aliasing, refer to this document.

Two or more virtual addresses that map to the same physical address are
called aliases. The PA-RISC architecture recognizes two types of aliases:
equivalent and nonequivalent.

Equivalent aliasing
Equivalent aliases are virtual addresses for which offset bits 40 through
63 and space bits 36 through 47 are the same. This means that the offset
portions of the addresses differ by a multiple of 16 Mbytes. A virtual
address that is equal to the absolute address it maps is an equivalent
mapping; this is a simple case of equivalent aliasing.

The PA-RISC architecture allows unrestricted equivalent aliasing. There
may be any number of equivalent aliases, with any combination of
mappings (read-only, writable, etc). The V-Class server architecture
completely supports this type of aliasing.

Nonequivalent aliasing
Nonequivalent aliases do not satisfy the requirements for equivalent
aliases. If nonequivalent aliases exist, the PA-RISC architecture
requires that they must all be read-only. If a writable translation is
required, any aliases that are not equivalent to the writable translation
must be removed from the page table and flushed from the TLB before
the translation is made writable.

NOTE The V-Class architecture does not support nonequivalent aliasing
regardless of whether the aliases are read-only or not.
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Nonequivalent aliasing on V-Class servers may cause a hardware virtual
index error that results in an HPMC. Only processor coherent memory
references cause virtual index errors; processor instruction fetches and
references from I/O adapters can not cause these errors. The error only
occurs when the following two conditions are met:

• The reference is a processor data reference.

• The referenced line may have been encached by another processor
using an alias that is not equivalent to the current reference.

Nonequivalent aliasing can not be used on V-Class servers.
Furthermore, to prevent the unintentional introduction of nonequivalent
aliases, special cache flushing protocol must be observed when
unmapping a physical page and remapping it at a different virtual
address and when mixing absolute accesses and virtual accesses to the
same page.

Before a page is remapped, it must be completely flushed from all data
caches in the system.

This cache flushing must use FDC to avoid virtual index errors. Flushing
the data cache with FDCE is not sufficient to avoid virtual index errors,
because data may be left in other processors’ caches. Even flushing the
page with FDCE on every processor is insufficient, because the memory
system maintains coherency tags that are unaffected by FDCE.

The virtual address of the FDC is irrelevant; only the absolute address to
which it is mapped is important. This means that memory can be flushed
to prevent virtual index errors without knowing how it was previously
mapped.

Instruction aliasing
The V-Class server supports instruction aliasing. If none of the aliases
allows data references (i.e., all aliases are executable only or allow no
access at all), arbitrary aliasing is allowed, whether equivalent or not.
The V-Class server handles data and instruction references completely
separately, so there can be arbitrary instruction aliasing. Instruction
cache coherence must be maintained in software.

NOTE Any aliases that allow data references must be equivalent aliases.
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The EPAC contains a hardware section called the data mover that routes
messages and copies data between memory. This chapter describes how
message transfer is accomplished.
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Overview
In order for the V-Class server to process separate threads, it must send
process context messages from one thread in a process to another within
the same or different process. The messages and data shared between
threads are transferred between processors by way of common memory
(shared memory).

Message transfers
For message transfers, the message resides in the source memory
location before the transfer and in destination memory location after the
transfer. Source and destination addresses are specified with either a
virtual address or a physical address.

Data copy
For a data copy operation, the data resides in the memory of both the
source and destination location. The size of the data copy operation can
vary, with the source and destination address being specified within a
single page or with a list of pages.

Data mover features
The following list highlights the data mover hardware functions:

• Messaging and data copy can be to and from both interleaved and
noninterleaved memory.

• Each processor has an independent interface for copy transfers.

• The initiating processor notifies the destination processor of
impending messaging operations with queued completion status.

• The initiating processor receives a confirmation interrupt at the
completion of the transfer.

• Copy operations can be from virtual-to-virtual, virtual-to-physical,
physical-to-virtual, or physical-to-physical space.

• Messages can be performed from virtual or physical space.
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• The source or destination space can be specified as a single page
(where the page is up to four Mbytes in size), or with a Block
Translation Table (BTT) with each entry mapping a four-Kbyte page.
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Data mover implementation
The V-Class server uses CSRs in the EPACs and EMACs and memory
addresses along with the data mover to transfer messages and data.
These CSRs and addresses include:

• EPAC Operation Context register

• EPAC Operation address register

• EPAC Input Command register

• EPAC Source and Destination Physical Page Frame registers

• EPAC Source and Destination Offset registers

• EPAC Operation Status Queue register

• EMAC Message Reception Area Configuration registers

• EMAC Message Reception Area Offset registers

• EMAC Message Completion Queue Configuration registers

• EMAC Message Completion Queue Offset registers

• EMAC Memory Allocation address

• EMAC Message Completion Enqueue address

• EMAC Message Completion Dequeue address

The implementation uses memory structures for message reception,
message completion queues, and the BTT for I/O data copy transfers.
Memory structures are preallocated regions of memory. The actual data
resides in memory before and after transfer.
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Functional overview
Figure 20 shows a functional diagram of the messaging and data copy
transfers.

 Figure 20 Messaging and data copy transfers implementation
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Input registers
Each EPAC has two input registers for its two processors. To initiate a
messaging or data copying operation, a processor first determines if the
input registers are available. All transfer operations remain in the input
register until the transfer begins. Once the input registers are available,
a processor initiates an operation by programming the input registers.
The processor can set up a second transfer in the input registers while
the first transfer is in progress

Message and copy state machine
The message and copy state machine starts executing an input operation
when a set of input registers has been set up and the message and copy
state machine is idle. If both sets of input registers have operations
ready to execute, the hardware arbitrates between the two sets of input
registers to guarantee forward progress.

The state machine achieves the transfer operation by executing the
following three phases:

• It determines the destination address for message operations. If the
current operation is a copy operation, this phase of execution is
skipped. The destination address is determined by sending a
transaction to an EMAC. The EMAC performs a memory allocation
operation and responds with a destination memory address.

• It copies data from the source memory to the destination memory.
The copy operation executes until complete or until either a TLB
purge or error occurs. For more information on TLBs, see the PA-
RISC 2.0 Architecture manual.

• It sends a message completion transaction to the EMAC of the
destination address. This phase is not performed if the operation is a
data copy. The EMAC enqueues the completion status in a memory-
based queue and informs the destination processor by way of an
interrupt.

Operation status queues
The two processors connected to the EPAC each have an operation status
queue. The state machine places the message and copy operation
completion status in one of the appropriate status queues. Each status
queue is three entries deep to provide status space for multiple
overlapped operations.
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Once status is enqueued, an interrupt is sent to the processor that
initiated the operation.

Messaging and data copy CSRs
CSRs in both the EPACs and EMACs control messaging and data copy.
This section specifies the addresses used to access each CSR of the
messaging and data copy hardware.

EPAC Operation Context registers
Each EPAC has two Operation Context registers, one for each processor.
The operation context is applied to other CSRs in two ways. One is by
arming a register, and the other is by indicating that the armed register
was triggered, that is, it performed a specific function. Figure 21 shows
the format of the EPAC CSR Operation Context register.

 Figure 21 EPAC CSR Operation Context register definition

The bits of the CSR Operation Context register are defined as follows:

• Triggered bit (bit 62)—Indicates that a CSR operation executed when
the Armed bit was set. The Triggered bit is cleared by software and is
set by hardware.

• Armed bit (bit 63)—Set by software to arm the functionality of
specific EPAC processor CSRs. The EPAC CSRs armed by this bit
are:

• Data Mover Input Command register

• Fetch and Increment address

• Fetch and Decrement address

• Fetch and Clear address

• Noncoherent Read address

• Noncoherent Write address

• Coherent Increment address

0 63

Reserved

62

ArmedTriggered

61
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Each of these CSRs is discussed in this chapter. The Armed bit is set
by software and is cleared by either hardware or software.

Table 9 shows the Armed and Triggered bit transitions that the
hardware controls when software writes to one of the operation
addresses.

Table 9 CSR Operation Context register transitions when the operation
is issued

Table 10 shows the Armed and Triggered bit transitions that hardware
controls when a TLB invalidate transaction is detected.

Table 10 CSR Operation Context register transitions with TLB invalidate

Present value Next value

Triggered Armed Triggered Armed

0 0 0 0

0 1 1 0

1 0 0 0

1 1 1 1

Present value Next value

Triggered Armed Triggered Armed

0 0 0 0

0 1 0 0

1 0 1 0

1 1 1 1
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EPAC Operation Address registers
Each EPAC has two Operation Address registers, one for each processor.
The register stores the address used for CSR operations.

The format of the EPAC Operation Address register is shown in Figure
22. The field of the register is read by a read access.

 Figure 22 EPAC Operation Address register definition

The Operation address field (bits 24:63) designates the address for CSR
operations and also the Coherent Increment address.

EPAC Input Command registers
Each EPAC has two input command registers that set the modes and
lengths of messaging and data copy operations.

The Input Command register can be written when the Ready bit of the
CSR is zero and the CSR Operation Context register Armed bit is a one.
There are no restrictions for reading this register.

The format of the Input Command register is shown in Figure 23.

 Figure 23 EPAC Input Command register format

0 63

Reserved Operation address

23

0 6337

Reserved Length-1

42
Intr
Num

Completion interrupt enable
Input interrupt enable

Bzero operation
Message operation
Destination BTT enable
Source BTT enable
TLB purge seen

22

TLB purge abort enable
Status index
Ready

Gather operation
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The bits and fields of the Input Command register are defined as follows:

• Ready bit (bit 23)—Indicates that the input registers are ready to
perform an operation. Normally, this bit is set by software and
cleared by hardware. It should be set by software when the input
registers are completely set up for an operation. Hardware clears it
when the messaging and copy state machine has accessed all required
information from the input registers for the operation. The Ready bit
is written by a CSR write access. A CSR read will read the current
value. Reset clears the bit.

• Status index field (bits 24:25)—Indicates part of the status in the
Operation Completion status queue. Reset clears the field.

• TLB purge abort enable bit (bit 26)—Enables an operation to be
aborted if a TLB purge transaction is detected prior to or during the
operation. In system operation, software sets and clears the bit. The
operation aborts prior to starting if the TLB purge seen and TLB
purge abort enable bits are set at the time the messaging and copy
state machine starts the operation. Completion status for an aborted
operation is written to the appropriate status queue. The TLB Purge
Abort Enable bit is written by a CSR write access and read by a CSR
read. Reset clears the bit.

• TLB purge seen bit (bit 27)—Indicates that a TLB purge transaction
was detected by an EPAC. The bit is set by hardware and cleared by
software. It is written by a CSR write. A CSR access reads the current
value. Reset clears the bit.

• Source BTT enable bit (bit 28)—Indicates the Source Physical Page
Frame register contains the address of the BTT used for accessing the
source memory region of the operation. The bit is written by a CSR
write and read by a CSR read.

• Destination BTT enable bit (bit 29)—Indicates the Destination
Physical Page Frame register contains the address of the BTT used
for accessing the destination memory region of the operation. The bit
is written by a CSR write and read by a CSR read.

• Messaging operation bit (bit 30)—Forces the messaging and copy
state machine to use the messaging mechanism to determine the
destination address rather than the destination address of the input
register. The bit is written by a CSR write and read by a CSR read.
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• Bzero operation bit (bit 31)—Forces the messaging and copy state
machine to clear the destination memory region rather than copy the
source to destination memory region. The bit is written by a CSR
write and read by a CSR read.

• Gather operation field (bits 32:33)—Specifies the stride used for a
gather operation. Currently, this field is disabled and set to zero.

• Input interrupt enable bit (bit 34)—Enables an interrupt to the
associated processor when the Input Command register is available
for reprogramming by software. The most significant five bits of the
interrupt number that is sent is specified by this field. The least
significant bit of the interrupt number sent is zero. The bit is written
by a CSR write and read by a CSR read.

• Completion interrupt enable field (bits 35:36)—Enables an interrupt
to the associated processor when the messaging and copy state
machine completes the operation. The field also determines whether
an interrupt is sent when the operation completes with an error if it
is sent independently from the status of the operation. The field is
written by a CSR write and read by a CSR read.

• Interrupt number field (bits 37:41)—Specifies the most significant five
bits of the interrupt numbers to be sent to the processor that initiated
the request. An interrupt is sent when either of two events occur:

• When the messaging and copy state machine has completed
accessing the input registers

• When the messaging and copy state machine completes the
operation

The least significant bit of the interrupt number is a zero for the first
event and a one for the second. The bit is written by a CSR write and
read by a CSR read.

• Length-1 field (bits 42:63)—Specifies the length of the messaging and
copy operation. Messaging operations ignore the least significant 5
bits, forcing the length to be an integer number of memory lines (32-
byte increments). Copies, however, can be any byte length. A value of
zero in the field copies one byte (one memory line for messaging), and
a value of all ones in the field will clear four Mbytes of memory. The
bit is written by a CSR write and read by a CSR read.
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EPAC Source and Destination Physical Page Frame
registers
There are two Source/Destination Physical Page Frame registers on each
EPAC to specify the source and destination of messaging and data copy
operations.

The registers can be written to only when the Input Command CSR
Ready bit is zero and the CSR Operation Context register Armed bit is a
one. The register can be read at any time.

The format of the Physical Page Frame register is shown in
Figure 24.

 Figure 24 EPAC Physical Page Frame register definition

The Physical page frame field (bits 24:51) indicates the physical page
frame of a 40-bit PA-8200 address. If a BTT is being used, the field
specifies the address of the BTT. Otherwise, the field specifies the source
or destination page for the copy operation.

For messaging operations, the Destination Physical Page Frame register
must be programmed with Node ID = 000 and VR to that of the
destination EMAC receiving the message. The Node ID and VR
information are written in the normal physical address field positions.

0 6324

Reserved

52

Physical page frame Reserved
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EPAC Source and Destination Offset registers
There are two Source/Destination Offset registers on each EPAC to
specify the offset for the source and destination of a message or copy
operation.

The registers can be written to only when the Input Command CSR
Ready bit is zero and the CSR Operation Context register Armed bit is a
one. The register can be read at any time.

The format of the Offset register is shown in Figure 25.

 Figure 25 EPAC Source and Destination Offset register definition

The BTT/Page offset field (bits 42:63) is used in one of two ways:

• When a BTT is being used, the most significant 10 bits specify the
index into the BTT and the least significant 12 bits specify the offset
into the selected BTE memory page.

• When a BTT is not being used, the field is used as the offset into a
page of memory. The offset within a page can be up to four Mbytes in
size for support of larger page sizes.

For messaging operations, the Destination Offset register need not be
programmed.

0 6342

Reserved BTT/Page offset
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EPAC Operation Status Queue registers
There are two Operation Status Queue registers on each EPAC, one for
each of the two processors attached to the EPAC. Status can not be
inserted in a status queue in the same order the processor sets up the
input registers.

The format of the processor 0/1 Status registers is shown in Figure 26.

 Figure 26 Operation Status Queue register definition

The bits and fields of the Operation Status Queue register are defined as
follows:

• Valid bit (bit 0)—Indicates that the Status Queue has valid
messaging and copy state machine completion status. The bit is set
when the state machine has completed and writes status into the
queue. The bit is cleared when the status is read, and no other valid
status remains in the status queue. A CSR read access reads the
value, and a CSR write has no effect. Reset clears the bit.

• Overflow bit (bit 1)—Indicates that a status queue overflow occurred
resulting in the loss of status information. The bit is set when a
status queue is full and the messaging and copy state machine has
completed an operation and its status is destined for that queue. The
bit is cleared when the status register is read. A CSR write does not
effect the value of the bit. Reset clears the bit.

• Status index field (bits 2:3)—Indicates the status index. The two bits
are a direct copy of Input Command register Status Index field just
before the operation was started.

• Completion status (bits 4:7)—Indicates the messaging and copy state
machine completion status.

0 632

Reserved

42
Completion

status

Overflow
Valid

Completion
length-1

19

Detecting Hyperplane port
Detecting controller

Error
code

8 10 144

Status index

1
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Table 11 Completion status field values

• Detecting controller (bits 8:9) and Detecting Xbar port (bits 10:13)
fields—Specify which controller or crossbar port detected the error.
This informations is obtained directly from a transaction error
response.

• Error code field (bits 14:18)—Specifies the type of error that caused
the operation to fail.

Field values Completion status

0 Operation completed successfully

1 Data mover detected error

2 Source memory transaction error

3 Destination memory transaction error

4 Source BTE transaction error

5 Destination BTE transaction error

6 Message allocate transaction error

7 Message completion transaction error

8-F Reserved
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Table 12 Error code values

• Completion length-1 field (bits 42:63)—Indicates the amount
remaining to copy when the operation finished. The field is only valid
if the operation was aborted with the detection of a TLB purge. The
field contains the value of minus one when the operation completed
successfully and zero or greater if the operation was aborted. The
value restarts an operation when it aborted due to a TLB Purge being
detected. A CSR read access reads the value, and a CSR write has no
effect.

Field value Error code

0 TLB purge aborted operation

1 Insufficient queue space for message

2 Insufficient memory for message

3 Message reception disabled

4 Source BTE translation invalid

5 Destination BTE translation invalid

6 Transaction timed out

7-1F Reserved
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EMAC Message Reception Area Configuration
register
There is one Message Reception Area Configuration register on each
EMAC to specify the base address for the region of memory used to
receive messages.

The format of the Configuration registers is shown in Figure 27.

 Figure 27 EMAC Message Reception Area Configuration register definition

The Size field (bits 62:63) specifies the size of the Message Reception
Area. Table 13 shows the possible sizes for the Message Reception Area.

Table 13 Message Reception Area size options

0 6330

Reserved Page

49

Row Size

38 62

Receive Message Area base address

33

VBVR Reserved

Field value Size

0 32 Kbyte

1 256 Kbyte

2 2 Mbyte

3 16 Mbyte
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EMAC Message Reception Area Offset registers
There are two Message Reception Area Offset registers on each EMAC:

• Message Reception Area Available Offset register—Specifies the
region of the message reception area available for new messages.

• Message Reception Area Occupied Offset register—Specifies the
region presently occupied by messages.

One register specifies the offset into the message reception area where
the received messages start and the other specifies where occupied
memory starts.

The format of the Message Reception Area Offset registers is shown in
Figure 28.

 Figure 28 EMAC Message Reception Area Offset register definition

Offset field (bits 39:58) specifies an offset into the message reception
area. The register is normally read and written by hardware (to allocate
space for new messages). It is read by hardware to check if sufficient
available area exists for a new message and written by software to free
memory consumed by previously received messages.

Depending on the Size field of the register, some of the most significant
bits of the offset field are not used and must be set to zero when written
by software. Table 14 shows the bits for each possible size of the message
reception area.

Table 14 Offset bits used for each size option

0 63

Reserved Offset

39 59

Size option Bits used as offset

32 Kbyte 10-bits (49:58)

256 Kbyte 13-bits (46:58)

2 Mbyte 16-bits (43:58)

16 Mbyte 19-bits (40:58)
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The message reception area is full when the Message Reception Area
Available Offset is equal to the Message Reception Area Occupied Offset
in the bits specified in Table 14 and the single bit more significant to that
specified in the table is different. Bit 39 of the Offset field is never used
as an offset to the Message Reception Area, but rather is only used to
determine the full status of the Message Reception Area when the size is
16 Mbytes.

EMAC Message Completion Queue Configuration
register
Each EMAC has one Message Completion Queue Configuration register
that specifies the base address for a region of memory used to write the
message completion status.

Figure 29 shows the format of the register. All fields of the register are
read by a read access and written by a write access.

 Figure 29 EMAC Message Completion Queue Configuration register
definition

The bits and fields of the Message Completion Queue Configuration
register are defined as follows:

• Row (bits 30:32) and Page (bits 38:49) fields—Specify the Message
Completion Queue base address. The VB is not part of the base
address, because the hardware uses all banks on the EMAC with
specified Row and Page values as message completion queue area
memory.

• Interrupt processor field (bits 53:56)—Specifies which of the 16
processors to interrupt when message completion status is placed in
the message completion queue.

• Interrupt number field (bits 57:62)—Specifies the interrupt number
used to interrupt the destination processor when message completion
status is placed in the message completion queue.

• Queue enable bit (bit 63)—Enables receiving messages to the
associated message reception area. The bit is cleared by reset.

0 6330

Reserved Page

50

Row

38

Message status queue base address

33

Queue enable

Intr
num

Intr
proc

53 57
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EMAC Message Completion Queue Offset registers
Each EMAC has three Message Completion Queue Offset registers:

• Message Completion Queue Reserve Offset—Specifies the offset into
the message completion queue memory area where space has been
reserved for message completion status.

• Message Completion Queue Write Offset—Specifies the offset where
received message status is written.

• Message Completion Queue Read Offset—Specifies the offset where
message completion status is read.

Software must initialize these registers by writing a zero value, but,
thereafter, only hardware needs to read or write the registers.

Figure 30 shows the format of the three Message Completion Queue
Offset registers.

 Figure 30 EMAC Message Completion Queue Offset register definition

The Offset field (bits 49:60) specifies an offset into the message
completion queue memory area. The most significant bit of the field (bit
49) is not part of the offset, but determines the full or empty status of the
queue.

The Message Completion Queue is full when bits 50:60 of the Message
Completion Queue Read Offset register are equal to bits 50:60 of the
Message Completion Queue Write Offset register and bit 49 of each
register is different. The queue is empty when bits 49:60 of each offset
register have the same value.

0 63

Reserved Offset

49 61
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EMAC Message Allocation address
Each EMAC has a message allocation address. This address is special in
that it does not have registers associated with it, but rather manipulates
other CSRs when accessed. The operation performed is to check that
space exists in the message reception area and message completion
queue, and, if it does exist, to allocate space in the reception area and
reserve an entry in the message completion queue.

The following functionality is performed by an access to this address:

• Checking that the Message Reception Area has been enabled to
receive a message.

This is performed by checking the Queue Enable bit of the Message
Completion Queue Configuration register.

• Checking that an entry exists in the Message Completion Queue.

The information required for the check is the Message Completion
Queue Reserved Offset and Message Completion Queue Read Offset
registers. The check that is made is that the comparison of the two
offsets does not result in queue full.

• Checking that space exists in the message reception area.

The information needed for this check is the length of the message,
the Message Reception Area Available Memory Offset register, and
the Message Reception Area Occupied Memory Offset register. The
check which is made is that the occupied offset less the available
offset is greater than the length of the message.

• Returning status of the unsuccessful allocation attempt if any of the
above checks fail.

• Incrementing the Message Reception Area Available Offset register
by the length of the message.

• Incrementing the Message Completion Queue Reserved Offset
register by one, indicating one less entry available.



72 Chapter 4

Data mover
Data mover implementation

EMAC Message Completion Enqueue address
Each EMAC has a Message Completion Enqueue address that is special
in that it does not have registers associated with it, but rather other
CSRs are manipulated when the address is written to. The operation
performed is writing the completion status to a memory-based message
completion queue.

The message completion queue should not be full, because any previous
access to the Message Allocation register address will have reserved
space in the queue for the completion status.

The following functionality is performed by a write to this address:

• Writing of the completion status to the memory-based message
completion queue.

The memory address to be written is formed by the Row and Page
fields of the Message Completion Queue Configuration register and
the Offset field of the Message Completion Queue Write Offset
register. The data to be written is contained in the write request
packet.

• Incrementing by one the Offset field of the Message Completion
Queue Write Offset register.

If the Message Completion Queue was empty prior to accessing the
Message Completion Enqueue address, the processor specified by the
Message Completion Queue Configuration register is interrupted.

Figure 31 shows the format for the request data sent with a write to a
Message Completion Enqueue address.

 Figure 31 EMAC Message Completion Enqueue definition

0 6340 59

Completion status

27

Reserved

103

Start offsetLength-1
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The bits and fields of the response data returned from a read to the
address are defined as follows:

• Completion status field (bits 1:2)—Specifies the completion status of a
received message. Table 15 shows the possible completion status field
values.

Table 15 Message Completion Status field values

For completion status values 0 and 1, the space for the message was
allocated in the Message Reception Area and the memory must be
free.

• Length-1 field (bits 10:26)—Specifies the length of the allocated
memory in memory lines (32-byte increments) for the message. A zero
value specifies one memory line (32 bytes) and a value of all ones
specifies 131,072 memory lines (4 Mbytes).

• Start Offset field bits 40:58)—Specifies the offset into the memory
reception area to the start of the message.

Field value Completion status

0 Message received successfully

1 Message aborted

2, 3 Reserved
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EMAC Message Completion Dequeue address
Each EMAC has a Message Completion Dequeue address that is special:
it does not have registers associated, and it manipulates other CSRs
when the address is read. The operation performed is reading the
completion status from a memory based message completion queue.

The functionality performed by a read to this address is listed below:

• Returning a response with the valid bit as zero if the Message
Completion Queue is empty

• Reading the completion status from the memory-based Message
Completion Queue

The memory address read is formed by using the Row, and Page fields
of the Message Completion Queue Configuration register and the
Offset field of the Message Completion Queue Read Offset register.
The data that is read is returned in the response packet.

• Incrementing by one the Offset field of the Message Completion
Queue Read Offset register

Figure 32 shows the format for the response data returned from a read to
a Message Completion Dequeue address.

 Figure 32 EMAC Message Completion Dequeue definition

The bits and fields of the response data returned from a read to the
address are defined as follows:

• Valid bit (bit 0)—Indicates the empty status of the Message
Completion Queue at the time of the read access.

• Completion status field (bits 1:2)—Specifies the completion status of a
received message. Table 16 shows the possible completion status field
values.

0 6340 59

Completion status

27

Valid

Reserved

103

Start offsetLength-1
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Table 16 Message Completion Status field values

For completion status values 0 and 1, the space for the message
allocated in the Message Reception Area and memory must be freed.

• Length-1 field (bits 10:26)—Specifies the length of the allocated
memory in memory lines (32-byte increments) for the message. A zero
value specifies one memory line (32 bytes) and a value of all ones
specifies 131,072 memory lines (4 Mbytes).

• Start offset field (bits 40:58)—Specifies the offset into the memory
reception area to the start of the message.

Field value Completion status

0 Message received successfully

1 Message aborted

2, 3 Reserved
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Memory structures
This section describes the memory structures used by the messaging and
data copy hardware. The three data structures are:

• Message Reception Area

• Message Completion Queue

• Block Translation Table (BTT)

Message Reception area
The Message Reception area is a preallocated region of memory to which
messages can be written. The memory is controlled by hardware that
enqueues messages as they are received.

All accesses to message reception areas are through coherent memory
accesses. A processor can copy a message out from the Message
Reception area directly or by using the data copy hardware.

Message Completion Queue area
The Message Completion Queue area holds message completion status
until software is ready to process a received message.

The size of the Message Completion Queue area is fixed at 16 Kbytes.
Each entry is 8 bytes in size, resulting in 2048 entries per queue. The
Message completion queue area resides in memory that is physically
connected to the EMAC.

Figure 33 shows the format for a Message Completion Queue and one of
its entries.
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 Figure 33 Message Completion Queue and entry definition

The fields of the message status entry are as follows:

• Completion status field (bits 0:1)—Specifies the completion status of a
received message. Table 17 shows the possible completion status field
values.

Table 17 Message Completion Status field values

10/1/97
IOEXS115

Address

Completion status

0 10 63

Message status entry format

Message status entry #0

Message completion queue format

0

Base + 0

Reserved

27 40 59

Start offsetLength-1

Message status entry #1

Message status entry #2

Message status entry #2047

Base + 8

Base + 16

Base +

63

16376

Field value Completion Status

0 Message received successfully

1 Message aborted

2, 3 Reserved
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For completion status values 0 and 1, the space for the message
allocated in the Message Reception Area and the memory must be
freed.

• Length-1 field (bits 10:26)—Specifies allocated memory in number of
memory lines (32-byte increments) for the message. A value of zero
specifies one memory line (32 bytes), and a value of all ones specifies
131,072 memory lines (4 Mbytes).

• Start offset field (bits 40:58)—Specifies the offset into the Memory
Reception Area to the start of the message.

Block Translation Table definition
The BTT provides the I/O system a means to translate from a
peripheral’s address space to physical memory. It specifies a mapping of
contiguous addresses to pages of physical memory. The table is limited to
a single page of memory, with each entry being a word (four bytes) in
size.

Each entry in the table is called a Block Translation Entry (BTE), and it
specifies the page frame for a page of physical memory. A page is 4096
bytes. The BTT specifies a maximum address space of four Mbytes.

Figure 34 shows the format for a BTT and one of its entries.
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 Figure 34 Block Translation Table and Entry definition

The bits and fields of the BTE are as follows:

• Valid bit (bit 0)—Indicates a valid entry. If the messaging and copy
state machine needs to use an entry without the Valid bit set, the
operation is aborted, with completion status indicating the problem.

• Read/Write bit (bit 1)—Ignored by the messaging and copy state
machine.

• Physical page frame field (bits 4:31)—Indicates the page frame for
either the source or destination of the operation.

9/29/97
IOEXS114

4092

Offset

Physical page frame

Valid

0 4 31

Block translation table entry format

BTE 1023

BTE 2

BTE 1

BTE 0

Block translation table format

310

0

4

8

Reserved
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5 Synchronization

Synchronization allows processors executing multiple threads of the
same or different processes to share data by locking data structures until
the thread requiring the structure has completed. It is accomplished by
using a semaphore variable associated with each data structure.

The semaphore variable provides a flag to all processors sharing the data
structure. Each processor has access to the semaphore variable, but it
can only manipulate the variable atomically. That is, once a processor
starts a semaphore operation, it must complete it before any other
processor can modify this same data structure.
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Coherent semaphore instructions
There are two instructions for semaphore operations in coherent
memory:

• Load and Clear Word (LDCW)

• Load and Clear Double (LDCD)

The load implies that the semaphore variable memory line is loaded into
the processor data cache.

NOTE V-Class systems require the accelerated cache hint bit be set, because the
LDCW instruction without it set is a fetch and clear operation and does
not use the data cache. See “Accelerated cache coherence” on page 46.
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Noncoherent semaphore operators
The V-Class server supports six semaphore operators not defined in the
PA-RISC architecture. These special operators may enhance semaphore
operations in some applications, because they operate directly on
semaphore variables located in unencacheable memory pages (pages
with the U-bit set in the TLB entry; see the section “PA-8200 TLB Entry
U-bit” on page 88). They do not accelerate the semaphore into the data
cache.

These noncoherent semaphore operators include the single and double
versions of the following operations:

• Fetch and Clear

• Fetch and Increment

• Fetch and Decrement

The fetch implies that the semaphore variable goes directly into a
processor register. When either the fetch and increment or fetch and
decrement instruction reads the variable, the EMAC automatically
increments or decrements it.

In addition to these fetch instructions, noncoherent read and write
operations are also available to access semaphore variables. If a
noncoherent semaphore operator accesses a memory line that is
encached by a processor, the semaphore operation will fail, resulting in
an error being returned to the processor. All semaphore variables are 16-
byte aligned. Semaphore operations to nonaligned variables produce
undefined results.
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Implementing noncoherent semaphore operations requires the following
sequence of instructions using EPAC CSRs:

1. Check write access privilege for the semaphore address.

2. Arm the operation by writing to the EPAC Operation Context register
Armed bit. See “EPAC Operation Context registers” on page 57.

3. Write the physical address to the EPAC Operation Address register.

4. Read the Fetch Operation address. The value read is the return value
for the semaphore operation.

5. Check the EPAC Operation Context register Triggered bit to make
sure the operation was issued. If the Triggered bit is not set, the
operation must be restarted. The Armed bit is cleared when the
sequence is interrupted by either an external interrupt or a TLB
miss.

The other noncoherent semaphore operations and the noncoherent read
operation can also use this sequence by using a different Fetch Operation
CSR address. The noncoherent write operation is similar to the above
sequence, except that the load instruction is replaced with a store
instruction with the value to be stored.

As an example, the sequence of instructions for a fetch_and_inc32 is as
follows:

      PROBEW  fetch_addr             ;Check protection
loop
      LDI     1,%t1
      STD     %t1,(CSR_OP_ARMED)     ;Arm CSR Operations
      LPA     fetch_addr,%t2
      STD     %t2,(CSR_OP_ADDR)      ;Fetch operation addr
      LDW     CSR_FETCH_INC),%t3     ;Issue fetch semaphore
      LDD     (CSR_OP_ARMED),%t4
      BB,*>=  %t4,62,loop            ;check if triggered
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Barrier synchronization
Not all threads in a multithread process complete at the same time. All
threads, however, must typically wait until the last thread finishes. The
threads hit a barrier and must be synchronized before continuing.

The barrier synchronization semaphore is a running count of the number
of threads that have reached the barrier. The last processor to finish
writes a nonzero value to the semaphore address, signalling to the other
processors that the threads are synchronized.

An alternate method for barrier synchronization semaphore operations
requires a sequence of instructions using EPAC CSRs similar to the
sequence discussed in the section “Noncoherent semaphore operators” on
page 83.

The following sequence of instructions provides an alternative method
for the coherent_inc64() function:

PROBEW  cincd_addr        ;Check protection
loop

LDI    1,%t1
STD    %t1,(CSR_OP_CNTX)  ;Arm CSR Operations
LPA    cincd_addr,%t2
STD %t2,(CSR_CINCD)    ;Issue Coh. Inc.
LDD    (CSR_OP_CNTX),%t4
BB,*>= %t4,62,loop        ;check if triggered

The steps of the sequence are:

1. Check write protection for the operation address.

2. Arm the operation by writing to the CSR Operation Armed register
Armed bit.

3. Perform virtual-to-physical address translation.

4. Fetch the Operation address. The value read is the return value for
the semaphore operation.

5. Check the EPAC Operation Context register Armed bit to make sure
the operation was issued. If the Triggered bit is not set, then the
operation must be restarted. The Armed bit is cleared when the
sequence is interrupted by either an external interrupt or a TLB
miss.
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EPAC semaphore addresses
The EPAC has multiple registers and several addresses to implement
CSR-based semaphore operations. The two types of registers, the
Operations Context register and the Operation Address register, are
detailed in the chapter  “Data mover.” The addresses are discussed in the
following sections.

EPAC Fetch Operation addresses
Each EPAC has six Fetch Operation addresses, three for each processor
pair. Reading these addresses triggers one of the following noncoherent
fetch semaphore operations:

• Fetch and Increment

• Fetch and Decrement

• Fetch and Clear

If the Armed bit in the Operation Context register is set, an access to one
of the Fetch Operation addresses results in a fetch operation to memory.
When the Armed bit is set, the address contained in the Fetch Operation
Address register becomes the address for the fetch operation. If the
Armed bit is not set, the EPAC returns the value zero to the processor
rather than the data intended for the fetch operation.

The size field determines whether the operation is word or double word.
Any word-aligned address can be used for word operations, and any
double-word-aligned address can be used for double-word addresses.

EPAC Noncoherent Read and Write Operation
addresses
Each EPAC has two Noncoherent Read Operation addresses, one for
each processor pair. Each EPAC also has two Noncoherent Write
Operation addresses, one for each processor pair. A read of the
noncoherent read address triggers the noncoherent read operation. A
write to a noncoherent write address triggers a noncoherent write
operation.
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If the Armed bit in the Operation Context register is set, the address
contained in the Operation Address register becomes the address for the
operation. If the Armed bit is not set, the EPAC returns the value zero to
the processor rather than the data intended for the noncoherent read
operation. For a Noncoherent Write Operation, if the Armed bit is not
set, the EPAC drops the noncoherent write.

The access size determines whether the operation is word or double
word. Any word-aligned address can be used for word operations, and
any double-word-aligned address can be used for double-word addresses.

EPAC Coherent Increment addresses
Each EPAC has two Coherent Increment addresses, one for each
processor pair. Writes to these addresses trigger coherent increment
operations. If the armed bit in the Operation Context register is set, the
address contained in the Operation Address register becomes the
address for the fetch operation. If the Armed bit is not set, then the
EPAC ignores the write access.
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PA-8200 TLB Entry U-bit
Each PA-8200 TLB entry contains a bit that controls whether an access
to coherent memory space should accelerate the memory line into its
data cache. The V-Class server uses this bit to inhibit noncoherent
operations from being moved into data cache.

Table 18 lists the supported semaphore operators and the associated PA-
8200 instructions used to issue the operations for the accessed memory
page.

Table 18 Semaphore operation instructions

Mixing coherent and noncoherent accesses to a memory line generates
an error to the issuing processor.

TLB entry U-
bit

PA-8200
instruction Semaphore operation

0 (Coherent) LDCW Load and Clear 32-bit

LDCD Load and Clear 64-bit

CINCD Coherent Increment 64-bit

LDW Noncoherent Load 32-bit

LDD Noncoherent Load 64-bit

STW Noncoherent Store 32-bit

STD Noncoherent Store 64-bit
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6 Interrupts

This chapter discusses the interrupt mechanism of the V-Class server.

The PA-RISC 2.0 Architecture manual presents a detailed discussion of
the interrupt mechanism implemented for the PA-8200 processor, and
that material is not presented in this book. Instead, this chapter
discusses interrupts registers unique to the V-Class server.
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Overview
Interrupts cause process control to be passed to an interrupt handling
routine. Upon completion of interrupt processing, a Return From
Interrupt (RFI) instruction restores the saved processor state, and the
execution proceeds with the interrupted instruction.

When responding to an interrupt, the processor behaves as if a single
instruction were fetched and executed, not pipelined. Any interrupt
conditions raised by that instruction are handled immediately. If there
are none, the next instruction is fetched, and so on.

Faults, traps, interrupts, and checks are different classes of interrupts.

A fault occurs when an instruction requests a legitimate action that
cannot be carried out due to a system problem. After the problem has
been corrected, the instruction causing the fault executes normally.
Faults are synchronous with respect to the instruction stream.

A trap occurs when a function requested by the current instruction can
not or should not be carried out. For example, attempting to access a
page for which a user does not have privilege causes a trap. Another
example is when the user requires system intervention before or after
the instruction is executed, such as page reference traps used for
debugging. Traps are synchronous with respect to the instruction
stream.

An interrupt occurs when an external device requires processor
attention. The external device sets a bit in the External Interrupt
Request register (EIRR). Interrupts are asynchronous with respect to the
instruction stream.

A check occurs when the processor detects a malfunction. The
malfunction may or may not be correctable. Checks can be either
synchronous or asynchronous with respect to the instruction stream.
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Processor interrupts
System interrupts are applied to a processor by writing to its External
Interrupt Request Register. The V-Class server interrupts occur from
several sources which include:

• Other processors

• I/O subsystem

• Memory subsystem

• Messaging and data copying mechanism

• Time of Century counter loss of synchronization

• Utilities board

The EIRR is written to using a double word store.

NOTE The fact that the EIRR can only be written to using double word stores is
a deviation form the PA-RISC architecture. This is true of all processor
CSRs.

All fields of the register are undefined when read.

The format of the EIRR is shown in Figure 35.

 Figure 35 PA-8200 External Interrupt Request register definition

The Interrupt Number field (bits 26:31) specifies the external interrupt to
be set in the EIRR. The value of the interrupt, 0-63, is encoded in the six-
bit field.

0 63

ReservedInterrupt
number

26

Reserved

31
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Utilities board interrupts
Almost all interrupts are sent directly to the processor EIRR with the
exception of those associated with the core logic bus connected to the
Utilities board. The Utilities board collects system environmental
interrupts and applies them to the EIRR. The Utilities board handles the
following types of interrupts:

• Environmental conditions

• Transfer of control (TOC)

• External communications

• System warnings and failure

Figure 35 shows how these interrupts are presented to the processor.
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 Figure 36 Core logic interrupt system
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The Utilities board provides interrupt information to all EPACs in the
system. Each EPAC determines if one of its two processors is enabled to
handle the pending interrupt.

The Utilities board accepts eight separate interrupt sources listed in
Table 19.

Table 19 Core logic interrupt sources

The Utilities board processes interrupts as follows:

• Interrupts are latched into the Interrupt Status register in the
EMUC. Interrupts can also be forced into the Force Interrupts
register for testing purposes (these are not masked).

• Interrupts are compared to data in the Interrupt Mask register, and,
if they are not masked out, are sent across the core logic bus to the
Interrupt Delivery register in the EPAC.

• If the EPAC determines that one of its processors has the interrupt
enabled, it delivers the interrupt information to the processor by
writing to the processor EIRR with the level of the interrupt in bits
26:31 of the 64-bit register, sending a Runway bus transaction to
cause an HPMC or writing to the processor I/O Command register to
cause a TOC.

Core logic interrupt source Interrupt bit

DUART channel 0 0

DUART channel 1 1

SONIC controller 2

Transfer of control button 3

Transfer of control line (from test station) 4

Environmental warning 5

Environmental error 6

System hard error 7
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EPAC interrupt logic
Each EPAC receives an eight-bit mask from the EPUC (using the core
logic bus) that specifies the interrupt sources sent to the processors. Each
EPAC has interrupt delivery information for each of the eight possible
interrupt sources. Figure 37 shows the interrupt delivery data.

 Figure 37 EPAC interrupt delivery information

The information contains individual enables for each of the two
processors connected to an EPAC, the type of exception, and the
interrupt number or an interrupt exception type.

Figure 38 shows where these bits are located in the EPAC Interrupt
Delivery register.

EPAC Interrupt Delivery registers
There are two 64-bit Interrupt Delivery registers on each EPAC. Each
register specifies the delivery information for four of the eight interrupt
sources.

 Figure 38 EPAC Interrupt Delivery register definition
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The fields and bits of the EPAC interrupt delivery registers are defined
as follows:

Processor enable bits—Indicate that the processor is enabled to handle
the exception.

Exception type fields—Indicate the type of exception:

• Interrupt

• HPMC

• TOC loss of synchronization

• Power failure

Interrupt number fields—Indicate the interrupt source to the delivery
registers.



Chapter 6 97

Interrupts
Utilities board interrupts

The Utilities board interrupts map to the core logic interrupt delivery
registers as shown in Table 20. All fields are written to by a CSR write
and read using a CSR read. Reset has no effect on the register.

Table 20 Core logic interrupt delivery registers

Utilities board interrupt source Register and bits

DUART channel 0 Register 0, bits 6:15

DUART channel 1 Register 0, bits 22:31

SONIC controller Register 0, bits 38:47

Transfer of control button Register 0, bits 54:63

Transfer of control line (from test
station)

Register 1, bits 6:15

Environmental warning Register 1, bits 22:31

Environmental error Register 1, bits 38:47

System hard error Register 1, bits 54:63
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EPUC interrupt logic
The following EPUC interrupt registers comprise the EPUC interrupt
logic:

• Interrupt Status register

• Interrupt Mask register

• Interrupt Force register

EPUC Interrupt Status register
The EPUC contains one Interrupt Status register. The register
maintains the status of the pending Utilities board interrupts given in
Table 20. Figure 39 shows the definition of the register.

 Figure 39 EPUC Interrupt Status register definition

The Interrupt source field (bits 0:7) indicates the source of the EPUC
interrupt. The bits are set when the EPUC detects an active input
interrupt signal. The contents of the register are read by a CSR read
operation. Each bit set in the data of a CSR write operation clears the
associated bit of the status register, and a reset clears the register.

Table 21 shows the bit field assigned to each core logic interrupt source.

0 7 31

ReservedInterrupt source
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Table 21 EPUC Interrupt register field definitions

Each individual bit of the Interrupt Status register can be cleared
without affecting the other bits, even when the CSR is receiving an
interrupt. For all bits except the transfer of control button, clearing a bit
has precedence over setting it. This means that if an input interrupt is
still asserted when the bit is cleared, the status bit is set on the following
cycle, and a new interrupt is sent to each EPAC. The transfer of control
button interrupt is edge-level sensitive, and the other interrupts are
level sensitive.

EPUC Interrupt Mask register
The EPUC contains one Interrupt Mask register. The register enables
sending the pending interrupts to the EPAC. It provides the ability to
mask out any of the eight interrupt sources. Figure 40 shows the
definition of the register.

 Figure 40 EPUC Interrupt Enable register definition

Register bit  Interrupt source

0 DUART channel 0

1 DUART channel 1

2 SONIC controller

3 Transfer of control button

4 Transfer of control line (from test station)

5 Environmental warning

6 Environmental error

7 System hard error

0 7 31

ReservedInterrupt mask
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The Interrupt mask field (bits 0:7) indicates interrupts are masked. The
contents of the register are read by a CSR read operation and written by
a CSR write operation. A reset clears the register.

EPUC Interrupt Force register
The EPUC contains one Interrupt Force register. The register allows
software to force an interrupt on any of the eight interrupts. Figure 41
shows the definition of the register.

 Figure 41 EPUC Interrupt Force register definition

The Interrupt force field (bits 0:7) indicates the interrupt(s) being forced.
The contents of the register are read by a CSR read operation and
written by a CSR write operation. Setting a bit forces an interrupt,
regardless if it is enabled of not. A reset clears the register. Table 21
shows the interrupts assigned to each core logic interrupt force bit.

0 7 31

Interrupt force Reserved
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7 I/O subsystem

The I/O subsystem connects the system to its peripheral devices using
the industry standard 32-bit peripheral component interface (PCI) bus. A
fully configured system provides up to eight PCI buses, one for each
EPAC. Each bus supports three controllers for a maximum of 24 PCI
controllers for the system.
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Overview
The I/O subsystem transfers data coherently to and from the system
main memory, eliminating the need for flushing the processor caches.
Figure 42 shows a block diagram of the I/O subsystem based on the PCI-
bus Interface Controller (EPIC).

 Figure 42 I/O system block diagram

The EPIC provides memory-mapped access from the processor to the I/O
controllers and allows external devices to transfer data into and out of
system memory. There is one EPIC per EPAC. Each EPIC has a pair of
unidirectional links to the associated EPAC. Each EPIC has two physical
SRAM banks, one for EPIC data prefetch and one for PCI controller-
shared memory.
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Logical I/O channel
The EPIC uses the concept of a logical I/O channel to translate PCI
addresses and prefetch system coherent memory. A logical channel
defines a pipe between four Mbytes of PCI memory space to four Mbytes
of system coherent memory.

Each channel has a distinct address mapping between the PCI bus
address space and the system main memory. It also has a buffer for
storing prefetched data during read data transfers. The buffer hides PCI
start-up latencies associated with read data transfers.

The logical I/O channel also has a posted write buffer for collecting 32-
byte data cache lines before flushing them to system coherent memory.
Figure 43 depicts the logical I/O channel concept, and Figure 44 shows
the PCI bus command and address format.

 Figure 43 Logical I/O channel model
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 Figure 44 PCI bus command and address

The 10 most significant bits of the PCI address define the logical channel
number, providing a total of 1,024 logical channels. Channels 1008-1023
are reserved, leaving a maximum of 1,008 read channels and 1,008 write
channels. The 22-bit channel offset gives each channel a four-Mbyte data
space. Consecutive channels may be chained to allow transfers larger
than four Mbytes.

NOTE Each channel can be used for one or more DMA transfers on a controller.
Best performance is usually realized, however, with a single I/O transfer
per channel. A channel can not be used by multiple controllers at the
same time.

Channel initialization
Before a processor initializes an I/O operation, it must set up a channel
for the appropriate controller by writing to the EPIC Channel Builder
register.

The build consists of a single write to the Channel Builder register. See
the section “EPIC Channel Builder register” on page 124. The EPIC
initializes all the external SRAM channel context state and prefetches
any needed data and TLB entries.

Channel context and shared memory SRAM
The EPIC maintains both channel context and shared memory in its
external Channel Context SRAM (CCSRAM). The channel context space
reserves 64 Kbytes from the base of the SRAM, and shared memory for
both controller and expanded is available for the remainder. The EPIC
supports up from 256 Kbytes to 2 Mbytes of external CCSRAM. See
Figure 45.

ChannelPagePage offset

0 312111

Address
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 Figure 45 CCSRAM Layout

Channel context
The channel context portion of the SRAM contains information to
determine how to perform the DMA transfer between PCI and system
memory. Channel context is mapped into both PCI memory space and
processor I/O space. The channel context region, however, is only directly
accessed for diagnostic use. The processor programs channel context
state through the EPIC Channel Builder register.

Shared memory
The EPIC provides a locally shared memory region in the CCSRAM for
all status and control structures that support the PCI controllers. This
SRAM is not coherent with main memory. It is visible, however, from
both PCI memory space and processor I/O space.
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Host-to-PCI address translation
The 40-bit system address map, shown in Figure 46, reserves 16 Gbytes
from F8 0000 0000 to FB FFFF FFFF for host access to PCI devices.

 Figure 46 I/O address space format

The fields for the I/O address space are defined as follows:

• Dxbr field bits (6:9)—Specifies one of eight EPACs

• Offset field bits (11:39)—Specifies 29-bit EPIC mapping.

PCI configuration space
The PCI specification establishes three PCI address spaces:
configuration, I/O, and memory. Dedicated read and write commands
select a particular space for a PCI bus operation.

The PCI configuration space contains a set of configuration registers that
must be implemented by all bus targets except host bridges. The
configuration registers allow the EPIC to set up PCI I/O and memory
space requirements in the system address map. PCI configuration space
is 16 Mbytes (24 bits). Figure 46 shows the PCI configuration address
format.

 Figure 47 I/O PCI configuration space format
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The fields for the I/O configuration space format are defined as follows:

• Bus number field (bits 16:23)—Indicates PCI bus number. Bus 0 is the
bus directly attached to the EPIC. Any other PCI buses must be
assigned Bus numbers 1 to 255 during the software probe.

• Device number field (bits 24:28)—Specifies the device on one PCI bus
segment. Bus 0 only supports Device 0 through Device 3.

• Function number field (bits 29:31)—Specifies the function on a PCI
device.

• Register number field (bits 32:37)—Specifies the register within a PCI
function.

• Byte number field (bits 38:39)—Provides the byte address. This field
and the packet size code establish the PCI byte enables during the
access. Accesses must be aligned to their natural size. The EPIC does
not support 64-bit double-word accesses to PCI.

PCI I/O and memory space
PCI I/O and PCI memory space allow host access to device-specific CSRs.
Target implementation of either space is optional. However, if a device
implements either space, it must also implement a corresponding base
address register in PCI configuration space to allow consistent address
mapping.

PCI I/O and PCI memory space may each be as large as four Gbytes. PCI
I/O space uses a full byte address, so the EPIC combines the least
significant bits of the system address with the packet size code to create
the PCI byte address and the PCI byte enables. PCI memory space uses
four byte-aligned addresses; smaller entities are addressed by bus byte
enables.
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I/O space-to-PCI map
As shown in Figure 48, the EPIC maps its partition of I/O space into the
three PCI spaces. It also reserves an area for diagnostic windows into the
external EPIC context/shared memory and external EPIC prefetch
memory.

The PCI defines eight Gbytes of I/O and memory space, but the EPIC
only has 0.5 Gbyte of space in which to operate. Therefore, the address
map is necessarily sparse. Only the PCI configuration space maps on a
one-to-one basis.

The EPIC can generate PCI addresses, increasing from 0000 0000 in PCI
I/O space and decreasing downward from FFBF FFFF in PCI memory
space. The allocation boundary between I/O and memory space is
programmable in 64-Mbyte increments and can range from no I/O space
and all memory space to no memory space and all I/O space.

Maximizing the PCI I/O space also maximizes the number of available
PCI DMA channels, while increasing the PCI memory space comes at the
cost of 16 PCI DMA I/O channels per 64-Mbyte increment.
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 Figure 48 I/O space to PCI space mapping
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PCI-to-host memory address translation
Since most PCI controllers generate a 32-bit address, they are capable of
addressing up to four Gbytes. The V-Class server can have more than
this amount. Therefore, it provides for translating the 32-bit addresses to
system addresses. There are two types of address translation: physical
and logical. An Address Translation Enable bit (ATE) for each channel
determines the address translation between PCI and system coherent
memory.

In the physical translation mode, data is fetched directly from a four-
Mbyte buffer in system main memory.

Logical address translation implies that the translation process uses an
intermediate step to derive the system address. The process uses
translation tables in system memory for data transfers.

Most modern I/O controllers use part of the host memory for storing
control and status blocks. Typically, these are accessed using word
accesses over the PCI bus. Since the main memory access latency is
relatively large, part of the channel context SRAM is used for storing the
control and status structures.

By addressing logical channel 1023, a controller accesses the entire
SRAM.

Physical address translation
The simplest translation mode is the physical translation mode. In this
mode, the four-Mbyte PCI channel directly maps into a four-Mbyte,
physically contiguous block of system memory. The 22-bit PCI channel
offset is combined directly with the 18-bit channel physical base pointer
to generate the 40-bit system address.
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 Figure 49 Physical mode address translation

Some I/O transfers, specifically remote receive transfers with many
small I/O streams, need to be handled in a nondeterministic order. If
each transfer were located in its own channel, software could run out of
channels. If the transfers are packed into a single logical channel, the
TLB miss overhead when switching streams would then limit the
controllers throughput.

Software can pack remote receive buffers into a single physical channel
and reduce the number of channels used, reduce the number of channel
swaps, and eliminate TLB miss latencies.
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Logical address translation
The more common way to map the 32-bit PCI address into the 40-bit
system address is using a logical translation mode channel. For logical
translations, a translation table is used to generate the 40-bit system
address from the 32-bit PCI address.

 Figure 50 Logical mode address translation

The logical address translation mode is based on a translation lookaside
buffer much like the processor TLB. The translation table converts the
PCI bus addresses into system addresses on a page (four-Kbyte) basis,
and therefore, are aligned on page boundaries. A TLB base pointer
points to the page of TLB entries in system memory. The PCI page
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number indexes this table, pointing to a system page number. This
system page number and the PCI page offset are combined to generate
the 40-bit system address.

I/O TLB entry format
The I/O TLB entries in system coherent memory are the same as those
used by the data mover. They are not the same as the processor TLB
entries.

 Figure 51 I/O TLB entry format

An I/O page table consists of 1,024 TLB entries. Each 28-bit TLB entry
points to a four-Kbyte page of system coherent memory. Therefore, the
table consumes four Kbytes of system coherent memory. The channel
TLB base pointer points to its channel page table. The PCI page number
indexes the page table to address the needed TLB entry. See Figure 50.

V TLB entry

0 314

TLB Valid bit
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PCI memory read transfers
To handle long and variant system memory latencies, the EPIC uses
several different prefetch techniques in combination to ensure that the
data needed by a controller is available at the time it is needed. These
techniques include:

• Channel prefetch/refetch

• Device consumption-based prefetch

• Device stall prefetch

These techniques allow the EPIC to:

• Compensate for start-up latencies from memory

• Maintain a minimal prefetch depth that matches the memory latency
needed for prefetch data to the controller consumption rate of that
data

• Increase prefetch depth dynamically, as needed, to account for larger
latencies than the current depth of the prefetch buffer can hide

Read data is coherent at the point that the request is satisfied in system
memory. I/O transfers are not included, however, in system memory
sharing lists. Therefore, if the data is modified later, the EPIC prefetched
data will be stale. This fact dictates that direct memory accesses (DMA)
from system memory be used only for buffered data that is defined prior
to the EPIC issuing any prefetches for that data. To purge prefetched
data from the EPIC prefetch buffers, the channel must be either
reinitialized or rebuilt through the Channel Builder register.

To accommodate these prefetch techniques, the EPIC provides two types
of data prefetch storage:

• Channel Prefetch space

• Device Prefetch space

The channel prefetch space hides start-up latencies, and the device
prefetch space maintains the streaming data. When a PCI transfer
starts, data is supplied from the smaller channel prefetch buffer. Once
that data from this buffer is exhausted, the data is pulled from the larger
device prefetch buffer.
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Channel prefetch space
Channel prefetch space stores channel prefetch data. This space hides
the typical start-up latency for system accesses when a controller
switches from one channel to another.

There is one channel prefetch buffer per channel for a total of 1,008
channel prefetch buffers. The amount of storage space needed to cover
the start-up latency for system accesses determines the depth of each
channel prefetch buffer. The depth of the buffer is sized with the
following formula:

Channel prefetch depth = PCI bandwidth * Local memory latency

Device prefetch space
Device prefetch space stores the prefetch data of a streaming device. It
buffers a single controller stream of data from memory. The depth of the
buffer is sized to hide latencies with minimal stalls on the PCI bus.

There is one device prefetch buffer per controller. The depth of the buffer
is sized with the following formula:

Device prefetch depth = PCI bandwidth * Remote memory latency

Channel prefetch/refetch modes
For small transfer high bandwidth controllers, the start up latency
dictates the effectiveness of the controller to move data. The start up
latency is the time from which a controller provides the EPIC a new
address stream to the time the EPIC provides the first data word.

The EPIC provides a Channel prefetch enable (P) bit to hide controller
start-up memory latencies. When enabled (P is set to 1), the EPIC
Channel Builder register prefetches data at channel initialization time.
The prefetched data is stored locally in the channel space of the EPIC
external SRAM. Therefore, when a controller presents the EPIC with an
address mapping into this channel, the data is already local to the EPIC,
reducing the latency to first data word.

A controller that uses time-multiplexing on its read streams (for
example, an ATM controller) can also be programmed with a Channel
Refetch (R) bit. When this bit is enabled (R set to 1) and one channel is
swapped for another, the EPIC first refetches data into the channel
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prefetch buffer, starting where the controller left off. This guarantees
that when the controller comes back to this address stream, the next
needed data is available in channel prefetch space.

Device consumption-based prefetch
Each EPIC can be connected to controllers with different bandwidth
requirements. The EPIC must ensure that each controller has fair access
to the system memory.

The EPIC consumption-based prefetch algorithm keeps the prefetch
request rate matched to the amount of data that a controller is
consuming from the EPIC. Each time a line of data is transferred across
the PCI interface to a controller, a prefetch is scheduled for that EPIC
device prefetch buffer. This also ensures that the depth of the prefetch
buffer is maintained at the minimal level that satisfies the consumption
rate of the controllers, keeping the EPIC from over prefetching for a
particular controller.

Stall prefetch
Occasionally a controller needs data that is not available in the EPIC
device prefetch buffer (for example, when the controller address stream
jumps outside the depth of the device prefetch buffer). In this case, the
stall prefetch mechanism causes the EPIC to issue a constant stream of
data prefetches at a programmable interval until the critical line returns
to the EPIC. Once prefetch data is available, the prefetch algorithm
reverts to the consumption-based prefetch algorithm.
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PCI memory write transfers
The EPIC has one independent write buffer per PCI controller. In order
to minimize the write traffic to memory, a write buffer accumulates
sequential bytes into a cache line of data prior to sending it to system
memory. Any of the following events can cause the EPIC to flush this
write buffer to memory:

• The controller writes the last byte of a cache line.

• The controller writes a noncontiguous byte stream (a jump).

• A synchronization event forces a write pipe flush.

When the controller write buffer accumulates a cache line of data, a
WritePurge  operation flushes the line of data to memory. When the
memory subsystem receives the data, it purges this line from all
processors.

When a partial line needs to be flushed to memory, however, a
WritePurge  can not be used, since the current cache line in memory
must be merged with the partial cache line of the EPIC. The EPIC
provides a Write Purge Partial (W) mode bit per channel that defines
how the EPIC should perform this partial cache line merging.

Write purge partial disabled
If the Write Purge Partial bit is cleared, the nonwritten portion of the
cache line in memory must be maintained coherently. Therefore, the
EPIC must perform a Dflush_Alloc/Write_Mask  flow. The EPIC first
issues a Dflush_Alloc  to flush the line back to memory, locking down
the line. When Dflush_Alloc  is complete, the EPIC issues the
Write_Mask  operation. This operation writes the data to memory with a
mask to allow the memory subsystem to merge the two lines together
and release the line in memory.
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Write_Purge_Partial enabled
If the Write_Purge_Partial bit is set, there is no guarantee that the
nonwritten portion of the cache line in memory is coherently maintained.
Setting this bit provides accelerated partial line transfers to system
coherent memory, making this mode suitable for transfers like those to
kernel buffers but not suitable for I/O transfers directly to user space.

The Write_Purge_Partial provides a mask that defines the data to be
written to memory. The remaining bytes of the cache line come from
what is currently in memory. When this data is received, the memory
subsystem purges any users of the cache line.
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I/O subsystem CSRs
The EPIC is controlled by CSRs. All CSRs are 64-bit aligned and may
only be accessed using noncoherent Read Short and Write Short packets.
The EPIC registers include:

• EPIC Chip Configuration

• EPIC PCI Master Configuration

• EPIC PCI Master Status

• EPIC Channel Builder

• EPIC Interrupt Configuration

• EPIC Interrupt Source

• EPIC Interrupt Enable

• PCI Slot Configuration

• PCI Slot Status

• PCI Slot Interrupt

• PCI Slot Synchronization

EPIC CSR address decoding
The EPIC CSR address decoder looks at system address bits [4:5] to
determine the target address space (I/O or EPIC CSRs) and bits [24:39]
to index the CSR space. Accesses to unimplemented EPIC CSR space
return error responses to the requestor. Reserved addresses and bits
ignore writes and return zeros on reads.

The EPIC CSRs may be accessed by addressing, the mapping of which is
shown in Figure 52.

 Figure 52 EPIC CSR 40-bit address format
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The bits and fields of the EPIC CSR space address are as follows:

• DXbr field (bits 18:19)—Specifies which of the eight cross bar ports
the request is to be routed.

• Chip field (bits 21:23)—Routes the packet to the appropriate chip at a
crossbar port.

• Page field (bits 28:36)—Separates groups of CSRs into similar usage
spaces.
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EPIC CSR definition
This section describes the EPIC CSRs.

EPIC Chip Configuration register

The EPIC contains one EPIC Chip Configuration register on each EPIC.
It specifies configuration information.

 Figure 53 EPIC Chip Configuration register definition

The fields of the EPIC Chip Configuration register are defined as follows:

• EPIC part number field (bits 0:15)—Specifies the part number for the
EPIC chip. A write is ignored and a read returns the hardwired value.

• EPIC version code field (bits 16:19)—Specifies the version of the EPIC
chip. A write is ignored and a read returns the hardware value.

• Implementation dependent field (bits 20:63)—Specifies
implementation dependent information. The value in this field should
not be modified during normal use.

PCI Master Configuration register

There is one PCI Master Configuration register on each EPIC that
provides configuration information about the PCI Master interface. The
format of the register is shown in Figure 54. All reserved fields are read
as zero, and writes are ignored. All implemented fields are read with the
last value written.

0 63
EPIC

version

16
EPIC part

20

Implementation dependentnumber
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 Figure 54 PCI Master Configuration register definition

The fields and bits in the EPIC PCI Master Configuration register are
defined as follows:

• Arbitration disable timeout field (bits 0:15)—Defines the PCI
arbitration disable timeout threshold.

• Reset PCI bus field (bit 23)—Resets the PCI bus.

• PCI memory I/O boundary field (bits 29:31)—Controls the amount of
I/O space mapped to PCI MEM and PCI I/O address space in
contiguous 64-Mbyte blocks.

• PCI memory space limit field (bits 38:47)—Resets to 0x3f0 or 1008
decimal. The EPIC reserves the upper 60-Mbytes (channels 1008-
1022 inclusive) for PCI controller shared memory address space and
the highest four Mbytes (channel 1023) for EPIC context SRAM. The
EPIC does not respond to PCI Controller DMA from channels 1,022
down to the value stored in this register. This register value updates
on write to the PCI Memory_I/O Boundary field, and is read-only.

• Disable PCI retry counter bit (bit 50)—Specifies the PCI retry counter
is enabled.

• Enable data byte swap during host access to PCI bit (bit 51)—Causes
host accesses to the PCI to swap data bytes.

• Disable Host highest priority bit (bit 54)—Indicates the host is
participating in rotating priority with other devices.

• Disable PCI bus arbiter timeout on bus grants bit (bit 55)—Indicates
that the PCI bus arbiter does not timeout on bus grants.

0 29 38 59 63
Arbitration

Master parity error response

PCI memory space limit

Enable data byte swap during host access to PCI

Generate bad data parity on PCI master writes
Generate bad address parity on PCI master writes

disable timeout

54

Disable host highest priority

PCI memory I/O boundary

Disable PCI bus arbiter time-out on bus grants

Reset PCI bus

23 50

Disable PCI retry counter

15

Rsvd
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• Master Parity Error Response bit (bit 59)—Indicates that the EPIC
performs its normal operation when it detects a parity error as bus
master.

• Generate bad address parity on PCI master writes bit (bit 62)—Forces
bad address parity out to PCI (for diagnostic use only).

• Generate bad data parity on PCI master writes bit (bit 63)—Forces
bad data parity out to PCI (for diagnostic use only).

PCI Master Status register

Each EPIC has one PCI Master Status register that provides status
information for the PCI Master interface. All fields are cleared by a reset
except the EPIC Device Select Timing field; it is hardwired to the value
one.

 Figure 55 PCI Master Status register definition

The bits in the EPIC PCI Master Status register are defined as follows:

• PCI bus in reset bit (bit 0)—Indicates that the PCI bus is reset.

• Parity error detected bit (bit 3)—Indicates that the EPIC detected a
parity error on incoming read data while the EPIC was bus master.

• Data parity error detected bit (bit 7)—Indicates that a parity error
was detected on the bus while EPIC was PCI bus master.

14

PCI bus in reset

30

Parity error detected
Data parity error detected
Sent master abort
Saw target abort
Broken device
EPIC device select timing

117 63

Reserved
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• Sent master abort bit (bit 8)—Indicates that the EPIC was master
and sent a Master Abort (no target claimed the bus cycle). The Host
receives an error response.

• Saw target abort bit (bit 11)—Indicates that the EPIC was master
and received a Target Abort. The Host will receive an error response.

• Broken device bit (bit 12)—Indicates that the EPIC PCI interface
received a grant and an Idle bus for 16 clocks but did not run a bus
cycle. The EPIC returns an error response to the requestor and sets
the Master error in the Error Cause register.

• EPIC device select timing field (bits 14:15)—Sets medium-speed
address decode on PCI. This field is read-only.

EPIC Channel Builder register
The EPIC Channel Builder register on each EPIC sets up channel
context in preparation for an I/O operation. The format of the register is
shown in Figure 56. Writing to this register stores the value to all fields,
and reading it returns the last written value. A reset clears all fields. A
read from the Channel Builder register returns the current state. A
write to the Channel Builder register causes channel state to be modified
as defined by the written data.

 Figure 56 EPIC Channel Builder register definition

The fields and bits in the EPIC Channel Builder register are defined as
follows:

• Operation code field (bits 0:1)—Determines the operation the channel
builder will perform.

• Write channel field (bit 3)—Indicates a memory write channel when
set or a memory read channel when cleared.

• Controller PCI slot number field (bits 4:5)—Determines the PCI slot
that this channel uses.

Translation table entry/ATPRLinePageChannel

Controller PCI slot number
Write channel
Operation code

Physical base pointer

6336322616640

flags
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• Channel number field (bits 6:15)—Indicates the PCI channel to be
built. The valid range is from 0 to the PCI memory space limit.

• Page number field (bits 16:25)—Indicates the 10-bit PCI page number.

• Line number field (bits 26:31)—Indicates the line number inside the
page from which to start prefetch (only applies if a read channel, i.e.
the Write Channel bit = 0).

• A - Address translation enable bit (bit 32)—Indicates the channel is in
logical mode (translation on), if the A bit is set to a one value. If the A
bit is set to a zero value, the channel is in physical mode (address
translation off). This field also interprets the translation table base
Pointer field.

• T -TLB fetch enable bit (bit 33)—If set, TLBs are fetched from
memory; if T=0, only previously encached TLBs are available.

• P -Prefetch/Write purge partial enable bit (bit 34)—Indicates that
data prefetch starts at the same time as channel build for read
channels. It indicates that write purge partials are enabled for a write
channel.

• R -Refetch bit (bit 35)—Enables data refetch prior to a read channel
being swapped out.

• Translation table entry/Physical base pointer field (bits 36:63)—
Indicates EPIC function as follows:

• If the A bit is set to a one value and operation code is either a
Build  or Init , then the field is the translation table base pointer.
This 28-bit field points to the translation table base address where
TLBs are fetched.

• If the A bit is set to a one value and operation code is a Prefetch ,
this field is the 28-bit TLE for the data prefetch.

• If the A bit is set to a zero value the field is an 18-bit physical base
pointer for this channel number, pointing to a four-Mbyte
physically contiguous block of memory.
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EPIC Interrupt Configuration register

The EPIC has one EPIC Interrupt Configuration register that specifies
the interrupt number and processor when an interrupt occurs. The EPIC
forwards the interrupt by writing the interrupt number to a local
processor EIRR register. Since the EPIC can only send interrupts to one
of the 16 processor EIRR registers on the system, only four bits of the
address are programmable. All programmable fields are reset to zero.

 Figure 57 EPIC Interrupt Configuration register definition

The fields and bits in the EPIC Interrupt Configuration register are
defined as follows:

• Destination crossbar port field (bits 18:20)—Indicates the crossbar
port (and therefore which EPAC) to which the interrupt will be sent.

• Even/Odd processor chip field (bits 23)—Specifies which of the two
processors for the given EPAC the interrupt is to be sent.

• Interrupt number (bits 58:63)—Indicates the processor External
Interrupt register interrupt bit to be set.

EPIC Interrupt Source register

Each EPIC has one Interrupt Source register that holds pending EPIC
interrupts. Source bits are set when the source of the interrupt occurs
and remains set until cleared. Interrupts are accumulated regardless of
the state of the enable. If the interrupt is enabled in the EPIC Interrupt
Enable register, then EPIC sends an interrupt. If the interrupt enable is
written to a one value while the interrupt is pending in the Interrupt
Source register, the EPIC generates an interrupt following the response
to the register write.

18 23

Destination crossbar port

 Interrupt number

Even/Odd processor chip

0 58 63

ReservedReserved
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 Figure 58 EPIC Interrupt Source register definition

The bits in the EPIC Interrupt Source register are defines as follows:

• EPIC soft error bit (bit 15)—Indicates that a bit has been set in the
Error Cause register that is configured as a soft error.

• Saw SERR_ field (bit 31)—Indicates the EPIC received an SERR_ on
the PCI bus.

EPIC Interrupt Enable register

EPIC Interrupt Enable register has a bit for every source interrupt in
EPIC Interrupt Source. A one value in any EPIC Interrupt Enable bit
causes an interrupt when the corresponding source event in EPIC
Interrupt Source occurs. This register resets to zero (all interrupts
disabled). The format for this register is shown in Figure 59.

 Figure 59 EPIC Interrupt Enable register definition

The bits in the EPIC Interrupt Enable register are defined as follows:

• EPIC soft error enable field (bit 15)—Indicates that an interrupt can
be sent when a soft error occurs. A value of one enables the interrupt.

• SERR_ Interrupt Enable field (bit 31)—Indicates that an interrupt
can be sent when a PCI SERR_ occurs.

15 31

EPIC soft error
Saw SERR_

630

ReservedReservedReserved

15 31

EPIC soft error enable
SERR_ interrupt enable

630

ReservedReservedReserved
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PCI Slot Configuration register

There are four PCI Slot Configuration registers, one for each supported
PCI expansion slot. These registers provide control of the PCI interface.

 Figure 60 PCI Slot Configuration register definition

The bits in the PCI Slot Configuration register are defined as follows:

• PCIx interrupt synchronization disable bit (bit 19)—Disables the
synchronization of a device on interrupt.

• PCIx interrupt enable bit (bit 23)—Enables the forwarding of a device
interrupt.

• PCIx Perr response bit (bit 39)—Enables PCI_PERR_ data parity
error signalling.

• PCIx_Swap SRAM bit (bit 46)—Enables byte swapping on PCIx
shared memory transfers.

• PCIx_Swap DMA bit (bit 47)—Enables byte swapping on PCIx DMA
transfers.

• PCIx Arb Disable bit (bit 55)—Disables bus arbitration for PCIx.

• PCIx Read Manager Reset bit (bit 58)—Resets EPIC Read manager x.

• PCIx Write Manager Reset bit (bit 59)—Resets EPIC Write manager
x.

0 58 635519 23 39

PCIx interrupt sync disable
PCIx interrupt enable

46

PCIx Perr response
PCIx swap SRAM

PCIx swap DMA
PCIx Arbitration disable

PCIx read manager reset
PCIx write manager reset

Reserved Reserved
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PCI Slot Status register

Each EPIC has four PCI Slot Status registers that specify the status of
slot specific events. Bits in these registers are set when EPIC is the
target of one of the four controllers and a status event occurs. All
writable fields are reset to the value zero.

 Figure 61 PCI Slot Status register definition

The fields and bits in the PCI Slot Status register are defined as follows:

• PCIx interrupt line bit (bit 3)—Indicates the current state of the PCIx
INTA_ line (read only).

• PCIx sent target abort bit (bit 7)—Indicates that the EPIC sent this
slot a Target Abort bus cycle termination. This bit does not set the
PCI Controller x bit in the Error Cause register.

• Saw address parity error bit (bit 11)—Indicates that the EPIC
detected an address phase parity error on a transfer from this slot.
The EPIC terminates the transfer with target abort and relies on the
transaction master to report the error to software. This bit sets the
PCI Controller x bit in the Error Cause register.

• Broken device bit (bit 12)—Indicates this slot received a grant during
an idle bus for 16 clocks but did not run a bus cycle.

• Saw data parity error bit (bit 15)—Indicates the EPIC (as a target)
detected a PCI data phase parity error on incoming (write) data from
this slot. This bit does not set the PCI Controller x bit in the Error
Cause register.

• PCI card present/power requirements code field (bits 30:31)—
Indicates a PCI controller is present and the power requirements of
that controller. This field is read only.

0 3 7 15

Saw data parity error
Broken device
Saw address parity error
PCIx sent target abort
PCIx interrupt line

PCI present/power requirement code

11 30 63

ReservedReserved
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PCI Slot Interrupt Configuration register

Each EPIC has four PCI Slot Interrupt Configuration registers that
specify the interrupt number and processor when an interrupt occurs on
the corresponding PCI slot. The EPIC forwards the interrupt by writing
the interrupt number to a local processor EIRR register. Because the
EPIC can only send interrupts to one of the 16 processor EIRR registers
on the system, only four bits of the address are programmable. All
programmable fields are reset to zero.

 Figure 62 PCI Slot Interrupt Configuration register definition

The fields in the EPIC PCI Slot Interrupt Configuration register are
defined as follows:

• Destination crossbar port field (bits 18:20)—Determines to which
crossbar port (and therefore which EPAC) the interrupt will be sent.

• Even/Odd processor chip field (bits 23)—Specifies which of the two
processors for the given EPAC the interrupt is to be sent.

• Interrupt number field (bits 58:63)—Specifies the processor External
Interrupt register interrupt bit to be set.

18 23

Destination crossbar port
 Interrupt number

Even/odd processor chip

0 57 63

ReservedReserved
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PCI Slot Synchronization register

The EPIC has four PCI Slot Synchronization registers, one for each of
the four PCI bus slots. Software polls these registers to determine when
the write pipe has been flushed.

A processor reads these registers to synchronize the write pipe for the
corresponding device. The registers are read-only, and the CSR interface
returns zero status after the requested device operation completes. The
format of the PCI Slot Synchronization register is shown in Figure 63.

 Figure 63 PCI Slot Synchronization register definition

The Synchronization status bit (bit 55) specifies the completion status of
the device write manager for the corresponding slot.

0 55 63

Synchronization Status

Reserved Reserved
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Byte swapping
In order to address different byte ordering between the PCI bus and the
rest of the system, the EPIC provides CSR-configurable bits to define
how to handle byte ordering of data crossing from one domain into the
other. The CSRs configure byte swapping on the following data paths:

• PCI read and write of system coherent memory on a per-controller
basis via the PCI Slot Configuration register (see the section “PCI
Slot Configuration register” on page 128)

• PCI read and write of shared memory on a per-controller basis via the
PCI Slot Configuration register

• Host read and write of PCI I/O, Memory, and Configuration space via
the PCI Master Configuration register (see the section “PCI Master
Configuration register” on page 121)
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8 Performance monitors

This chapter discusses the hardware used to determine the performance
of the system. Some performance factors include:

• Parallel program efficiency

• Communications costs

• I/O bandwidth

• Cache-hit rate
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Performance factors
The performance of applications run on the V-Class server depends upon
the factors already stated. The V-Class server includes hardware to
measure each of the principal factors. The measurements indicate the
overall results and provide data that enables programmers to identify
changes to algorithms that improve overall performance. The process of
measuring performance is intrusive and can impact system performance.

Some of the important factors and concepts for their measurement are:

• Efficient parallel algorithms—Parallel algorithms pose both validity
and performance problems for the programmer and often prove more
difficult to debug than single-threaded applications. Useful tools
include:

• Trace data correlated between threads

• Deadlock detection

• Synchronization statistics

• Measurement of effective parallelism

• Granularity measurements of parallel regions

• Lock order enforcement

• I/O performance—The largest I/O factor is data transfer rates in the
disk subsystem. Of particular interest are peak measurements, as
most I/O is done in a burst mode. Also, information about disk access
patterns should be available.

• Communication costs—Concerns in communication include the
following:

• Memory usage

• Memory access patterns of particular code sections

• Communication costs between threads

• Cache-hit rate—Algorithms must optimize cache use to perform well.
Consequently, the V-Class server provides data on overall hit ratios,
hit ratios per processor, hit ratios over time, cache miss trace data,
and data that tells which program statements are causing the most
misses.
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Performance monitor hardware
The V-Class server provides registers to record events and enable
performance measurement. These registers include:

• The Processor interval timer

• The time-of-century clock (TIME_TOC)

• The performance monitor set for each processor

Interval timer
Each processor has a 32-bit timer in control register 16. These timers
count at a frequency between twice the peak instruction rate and half
the peak instruction rate. They are not synchronized, nor can they be
loaded by software. The timers may optionally generate an interrupt
when the count reaches a certain value.

These timers are used for:

• Generating periodic clock interrupts to the processors for scheduling
purposes.

• Measuring fine granularity time intervals within processors
independent of other processors.

• Implementing thread timer register (TTR) in software. The operating
system allows user-read access to this timer in order to use the TTR.

Time-of-Century clock
The V-Class server Time-of-Century clock (TIME_TOC) can be used to
time-stamp trace data stored within the system. It also provides time-
stamping of transmitted messages. The receiving processor can
determine the transmission time by subtracting time-stamp from the
current time.

Each EPAC has a 64-bit TIME_TOC register accessed with a single 64-
bit read. The ECUB core logic generates a 16-Mhz clock for the each
TIME_TOC register. The EPAC synchronizes the 16-Mhz clock to its own
clock and generates a TIME_TOC clock every seven or eight EPAC
clocks. The TIME_TOC logic generates a synchronization pulse every
256 TIME_TOC clocks.
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A single EPAC acts as the TIME_TOC synchronization master of the
system (the outputs of all other EPACs are in a high-impedance state).
The master EPAC sends its synchronization pulse to the nonmaster
EPACs.

Logic ensures that the TIME_TOC registers maintain synchronization
within their specified resolution. It checks to ensure the time between
TIME_TOC synchronization pulses is in the range of TIME_TOC
synchronization period plus or minus one-half the TIME_TOC
synchronization resolution. If it detects a TIME_TOC synchronization
pulse that occurs early or late, it sends an interrupt to one of the
processors connected to the EPAC.

When the resolution field of the EPAC TIME_TOC configuration register
has the value zero (TIME_TOC off), TIME_TOC synchronization pulse
checking is disabled.

EPAC TIME_TOC Configuration register
The format of the EPAC TIME_TOC configuration register is shown in
Figure 64.

 Figure 64 EPAC TIME_TOC Configuration register definition

The bits and fields of the EPAC TIME_TOC Configuration register are
defined as follows:

• Interrupt number field (bits 53:58)—Specifies the interrupt number
sent to one of the two processors when a synchronization pulse check
problem is detected. The field is not initialized by reset.

• Interrupt processor bit (bit 59)—Specifies the processor to which an
interrupt is sent when a synchronization pulse check problem is
detected. The field is not initialized by reset.

• Synchronization mode bit (bit 60)—Indicates whether the
synchronization pulse starts incrementing or synchronizing the
TIME_TOC and prescale registers. At reset the field is cleared and
indicates that the next synchronization pulse received will start
incrementing the TIME_TOC and prescale registers. The reception of

0 63

Reserved ResolutionMaster

60 61
Sync.
mode

59
Interrupt

proc.
Interrupt
Number

5852 62
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a synchronization pulse sets this bit. When the synchronization mode
field is set, the reception of a synchronization pulse causes the
prescale and least significant bits of the TIME_TOC register to be
rounded.

• Master bit (61)—Specifies that the EPAC is the TIME_TOC master.
The EPAC generates and delivers the synchronization pulse to the
other EPACs. A value of one enables this operation. The field is reset
to the value zero.

• Resolution field (bits 62:63)—Specifies the TIME_TOC register
resolution. The field is reset to the value zero (TIME_TOC off). Table
22 shows the supported resolutions.

Table 22 TIME_TOC resolutions

A value of zero (TIME_TOC off) disables TIME_TOC synchronization
pulse checking.

EPAC TIME_TOC Clock register
The TIME_TOC Clock register is a 64-bit, read-write register of which
only the least significant 48 bits are implemented (48 bits supports an
uptime of 8.9 years). Read access supports normal operation, and write
access supports initialization as well as testing.

The TIME_TOC register increments its 48-bit value when the pre-scale
register reaches the value 0xF. The format of the EPAC TIME_TOC
register is shown in Figure 65.

Value Resolution

0 TIME_TOC off

1 1 microsecond

2 2 microseconds

3 4 microseconds
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 Figure 65 TIME_TOC Clock register definition

The TIME_TOC field (bits 16:63) increments each time the prescale logic
has the value of 0xF. The register is accessible using a 64-bit CSR read or
write. Reset does not effect this register. The least significant two bits
may be rounded up or down when a synchronization pulse is received,
depending on the resolution selected for the TIME_TOC logic.

TIME_TOC reset and initialization
Reset has the following effect on the TIME_TOC logic:

• The synchronization mode bit of the EPAC TIME_TOC configuration
CSR register is cleared, forcing the prescale register to the value zero.

• The TIME_TOC register is inhibited.

• The master field of the EPAC TIME_TOC configuration register is
cleared. With this field set to zero, the TIME_TOC synchronization
pulse is disabled.

• The resolution field of the EPAC TIME_TOC configuration CSR is
cleared, disabling the TIME_TOC synchronization checking logic.

Performance monitoring counters
The PA-8200 processor has extensive performance monitoring
capabilities on board. It does require, however, minimal additional
hardware.

Each EPAC has two performance monitoring counters for both
processors that includes a latency counter and a memory access event
counters.

0 6316

Reserved TIME_TOC
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Latency counter
The latency counter is a 40-bit read-write register that increments by the
number of outstanding processor data reads (0 to 10) at the system clock
frequency. The EPAC has two latency registers, one for each processor.
Figure 66 shows the bit definition of the Performance Monitor Latency
Pn register counter (where n is the processor number).

 Figure 66 EPAC Performance Monitor Latency register definition

The PM latency field (bits 24:63) accumulates the total latency of all
coherent read requests.

Event counters
The EPAC has a 32-bit read-write memory access event counter shown
in Figure 67.

 Figure 67 EPAC Performance Monitor Memory Access Count Pn register
definition

0 63

Reserved

24

PM latency

0 31 6332

Not used Memory access count
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9 System utilities

Each V-Class server has a section of hardware known as the Exemplar
Core Utilities board (ECUB) located on the ENRB. On the ECUB are two
FPGAs: the Exemplar Processor Utilities (EPUC) and the Exemplar
Monitoring Utilities (EMUC). The EPUC provides the ECUB a means to
send interrupts and error messages to the processors and to receive
control messages from the processors. The EMUC performs all
environmental monitoring. The ECUB board connects to all EPACs
through the core logic bus.
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Utilities board
The ECUB, or Utilities board, handles all system housekeeping chores. It
connects directly to the ENRB where it attaches to the core logic bus, the
environmental sensors, and other test points. It interfaces to the liquid
crystal display (LCD), the optional teststation (an ethernet connection),
and other external devices. Figure 68 shows the Utilities board
functional layout.

The heart of the ECUB is the core logic. This section of hardware
connects internally with the EMUC for receiving environmental
interrupts and to the EPUC as an interface to the core logic bus. The core
logic contains initialization and booting firmware. It also interfaces to
the LCD and to serial RS232 links, as well as to ethernet links. An
optional teststation can be connected via these links to run diagnostics
and configure the system.

The EMUC latches system interrupts, most of which are from
environmental sensors located throughout the system. The EMUC and
the power-on circuit together control system power-up. The EMUC
interfaces to a light-emitting diode (LED) diagnostic display through the
power-on circuit.

The EPUC provides the core logic an interface to the core logic bus.
There are actually two buses; each one connects up to four EPACs. The
EPUC communicates to the EPACs using data packets.

The JTAG (Joint Test Action Group) interface supports a teststation and
a mechanism to fan out JTAG to all the boards in the system. It is used
only for testing.

The V-Class server uses a test method called scanning to test boards and
other hardware units. With the teststation connected to the ethernet
between nodes, you can test any part of the system.

The JTAG interface contains a microprocessor to capture packets from
the ethernet and apply them to the JTAG test bus controller or to take
scan information from the JTAG test bus controller and send it out on
the ethernet. The teststation can also read and write every CSR in the
system.
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 Figure 68 Utilities board
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Core logic
This section describes the core logic bus and core logic hardware
functions.

Flash memory
The core logic contains nonvolatile storage for processor-dependent code.
This code consists of primary loader code, the Open Boot PROM (OBP)
code, the OBP interface firmware, spp_pdc , and power-on self test
software (POST) (see the chapter  “Booting and testing,”  for more
information). This EEPROM memory is four MBytes, configured as one-
million addresses by 32 data bits with only 32-bit read and write
accesses allowed. It is writable by the processors for field upgrades and
can be written when the EPUC is scanned.

Nonvolatile static RAM
The core logic section contains a nonvolatile battery-backed static RAM
(NVSRAM). The NVSRAM is used to write system log information
(failures) and store configuration information. This RAM is byte
addressable and can be accessed even after power failures occur.

DUART
The ECUB logic contains a Dual Universal Asynchronous Receiver-
Transmitter (DUART). One port, configured as a basic RS232 port,
provides an interface to the simplest core system functions. With this
interface, you can connect a terminal as a local console to analyze
problems, reconfigure the system, or provide other user access. The
parallel port of the DUART drives the LCD. The second RS232 port can
be connected to a modem for field service.

RAM
RAM is needed to support the simple core system functions. When the
system powers up, the processors operate out of this RAM. They run self
test software to test and configure the rest of the system. Once the
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system is fully configured, the processors execute out of main memory.
The RAM is byte addressable and is 128 KBytes, configured as 32K
addresses by 32 data bits (with parity).

Console ethernet
The ethernet I/O port connects to another optional system console that
has an ethernet port. You can use the console for initializing, testing, and
troubleshooting the system.

LEDs and LCD
LEDs display environmental information, such as the source of an
environmental error that caused the ECUB to power down the system.

The LCD is driven by one of the processors via the ECUB. A large
amount of information can be displayed on the LCD. The core logic drives
the LCD via the parallel port on the DUART.

COP interface
COP chips (serial EEPROMs) are located on the major boards with
information such as serial number, error history, configuration
information, and so on. The EMUC connects to the COP bus selector
(CBS) chip on the ENRB and allows the system to read any COP in the
system.
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EPUC
The EPUC applies interrupts and error messages to the processors and
receives control messages from the processors. It has two 18-bit,
bidirectional buses. Each interface connects up to four EPACs. The
EPUC provides core logic bus arbitration for the sixteen processors.

Through the EPUC, the EPAC has an interface to the core logic bus on
the ECUB. This bus connects the EPUC, the EMUC, and the core logic
section together.

EPUC Processor Agent Exist register
The Processor Agent Exist register indicates which EPACs exist in the
system. During reset, all EPACs assert their REQ lines. This sets
corresponding bits in this register. The EPUC ignores the REQ lines
(with respect to core logic bus requests) approximately eight clocks after
reset to allow the EPACs to change from exist mode to request mode.

 Figure 69 EPUC Processor Agent Exist register definition

A value of one on any bit indicates that the respective EPAC 0-7 is active
and exists.

EPUC Revision register
The Revision register indicates the revision level of the EPUC FPGA.

 Figure 70 EPUC Revision register

Revision bits are read to determine the revision of the EPAC.

0 1 2 3 4 5 6 7

EPAC exist bits

0 1 2 3 4 5 6 7

EPAC revision bits
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EMUC and Power-on
The EMUC performs all environmental monitoring on the ECUB. It
attaches to the core logic bus so that processors can monitor the system
by accessing these CSRs.

The EMUC works in conjunction with a hardware section on the ECUB
known as the power-on circuit. This circuit controls powering up the
entire system. It operates when the rest of the system is powered off or in
some indeterminate state. It drives the environment LED display which
is a basic (minimal hardware, no software) indication of what
environmental error caused the ECUB to power down the system.

The teststation can also read the environmental LED display.

Environmental monitoring functions
The EMUC and the power-on circuit monitor the following
environmental conditions:

• ASIC installation error sensing

• FPGA configuration and status

• Thermal sensing

• Fan Sensing

• Power failure sensing

• 48V failure

• 48V maintenance

• Ambient air temperature sensing

• Power-on
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Table 23 Environmental conditions monitored by the EMUC and power-
on circuit

Environmental conditions detected by power-on
function
The power-on function detects environmental errors (such as ASIC
Install or FPGA Not OK) immediately and does not turn on power to the
system until the conditions are corrected. It also detects environmental
errors such as 48V Fail while the system is powering up and Midplane
Power Fail after the system has powered up. If a failure is detected in
these two cases, the power-on circuit turns off power to the system.

Condition Type Action

ASIC Not
Installed OK

Environmental
 error

Power not turned on, LED
indication

FPGA not OK Environmental
 error

Power not turned on, LED
indication

48V fail Environmental
 error

Power turned off, LED
indication

Midplane power
fail

Environmental
 error

Power turned off, LED
indication

Board over temp Environmental
 error

Power off in one second, LED
indication, Interrupt

Fan not turning Environmental
 error

Power off in one second, LED
indication, Interrupt

Ambient air hot Environmental
 error

Power off in one second, LED
indication, interrupt

Other power fail Environmental
 error

Power off in one second, LED
indication, interrupt

Ambient air warm Environmental
 warning

LED indication, interrupt

48V maintenance Environmental
 warning

LED indication, interrupt

Hard error Hard error LED indication, interrupt
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Environmental warnings such as 48V maintenance are also detected by
the power-on circuit. It applies these to the EMUC, which then sends an
environmental warning interrupt to the system processors.

In all cases, the power-on circuit lights an environmental LED display
code. The environmental LED display code is prioritized so that it only
displays the highest priority error or warning.

Environmental conditions detected by EMUC
The EMUC detects most of the environmental conditions. It samples
error conditions during a time period derived from a local 10-Hz clock
that drives the power-on circuit. It registers all the environmental error
conditions twice and then ORs them together. If the conditions persist
for 200 milliseconds, the environmental error bit is set, and an
environmental error interrupt is sent to the EPUC, which sends it on to
the processors. The EMUC then waits 1.2 seconds and commands the
power-on circuit to power down the system.

This same procedure exists for an environmental warning except that an
environmental warning interrupt is sent and the circuit does not power
down the system.

The environmental error interrupt and the 1.2 second delay provide the
system adequate time to read CSRs to determine the cause of the error,
log the condition in NVRAM, and display the condition on the LCD.

After the system is powered down, the ECUB is still powered up, but all
outputs are disconnected from the system.

Environmental LED display
Second-level registers in the EMUC drive the 6-bit display. The EMUC
prioritizes the environmental errors and warnings and passes the
information to the power-on circuit. This circuit prioritizes the 6-bit field
with its environmental conditions and produces a 7-bit field plus an
attention bit (ATTN) that drives the Display. ATTN is on if there is an
environmental warning.

In general, the power-on-detected errors are a higher priority than
EMUC-detected errors, the lower the error code number, the higher its
priority. Environmental warnings are lower priority than the
environmental errors. Table 24 shows the LED display error codes.
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Table 24 Environmental LED display

ATTN bit LED Display Description

1 00 ECUB 3.3V error (highest priority)

1 01 ASIC Install 0 (ENRB)

1 02 ASIC Install 1 (MEM)

1 03 FPGA not OK

1 04-07 DC OK error (UL, UR, LL, LR)

1 08-11 48V error, NPSUL fail, PWRUP=0-9

1 12-1B 48V error, NPSUR failure, PWRUP=0-
9

1 1C-25 48V error, NPSLL failure, PWRUP=0-
9

1 26-2F 48V error, NPSLR failure, PWRUP=0-
9

1 30-39 48V error, no supply failure,
PWRUP=0-9

1 3A 48V 7yo-yo error

1 3B ENRB power failure (ENRBPB)

1 3C Clock failure

1 3D-3F Not used (3)

1 40-47 MB0-MB7 power failure

1 48-4F PB0L, PB1R, PB2L, PB3R, PB4L,
PB5R, PB6L, PB7R power failure

1 50-57 PB0R, PB1L, PB2R, PB3L, PB4R,
PB5L, PB6R, PB7L power failure
(possibly switch R and L)

1 58-5B IOB (LR,LF,RF,RR) power failure

1 5C-61 Fan failure (UR,UM,UL,LR,LM,LL)
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The top of the table is the highest priority, the bottom the lowest. If a
higher condition occurs, that one is displayed.

Monitored environmental conditions
This section describes each environmental condition that is monitored by
the power-on circuit and the EMUC.

ECUB 3.3V error
This error indicates that the ECUB 3.3V power supply has failed, but the
5V supply has not.

ASIC installation error
Each ASIC has install lines to prevent power-up if an ASIC is installed
incorrectly (such as an EPAC installed in an ERACs position). If an ASIC
is improperly installed, the ECUB does not power up the system. This
condition is not monitored after power up.

1 62 Ambient hot

1 63 Overtemp ENRB

1 64-67 Overtemp quadrant (RL, RU, LL, LU)

1 68 Hard error

1 69 Ambient warm

1 6A-6F Not used (6)

1 70-73 DC supply maintenance
(UL,UR,LL,LR)

1 74-7F Not used (12)

0 00-09 PWRUP state (00=System all
powered up), attention LED off

ATTN bit LED Display Description
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DC OK error
When this error is displayed, the power-on circuit did not power up the
system, because one or more 48V power supplies reported an error. In
systems with redundant 48V power supplies, this error means that two
or more 48V supplies reported an error.

48V error
If the 48V supply has dropped below 42 volts for any reason other than
normally turning off the system or an ac failure, then this error is
displayed by the power-on circuit. Also, the 48V supply that reported the
error and the power-up state of the system at the time of the error is
displayed.

48V yo-yo error
This error indicates that a 48V error occurred and the ECUB lost and
then later regained power without the machine being turned off. The
power-on circuit will display this error and not power on the system,
because the 48V supply is likely at fault.

Clock failure
If the system clock fails, then the EMUC will be unable to monitor
environmental errors that could possibly damage the system. If the
power-on circuit receives no response from the EMUC, it powers down
the system and displays this error.

FPGA configuration and status
The EMUC is programmed by a serial data transfer from EEPROM upon
utility board power-up. If the transfer does not complete properly, the
EMUC cannot configure itself and many environmental conditions
cannot be monitored. The power-on circuit monitors both the EMUC and
EPUC and does not power up the system, if they are not configured
correctly.

Board over-temperature
There is one temperature sensor per board that detects board
overheating. The sensors are bussed together into four system quadrants
plus the ENRB and applied to the EMUC.
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Fan sensing
Sensors in the six fans determine if the fans are running properly. The
EMUC waits 12.8 seconds for the fans to spin up after power-up before
monitoring them.

Power failure
Because a power failure on a board could cause damage to other boards,
a mechanism is in place to detect 3.3V failures on each board. Power
failures are considered environmental errors, and the system is powered
down after they are detected.

ENRB power failure
If the ENRB power fails, the power-on circuit powers down the entire
system. The ECUB is still active, but the power-on circuit displays the
power failure condition and disables all ECUB outputs that drive the
system. This condition persists until power is cycled on the ECUB.

48V maintenance
There are up to four 48V power supplies. Each sends a signal to the
power-on circuit. If any supply fails at any time, the circuit asserts the
48V maintenance line to the EMUC, which reports the environmental
warning to the processors. The power-on circuit displays the highest
priority 48V supply that failed.

Ambient air sensors
The ambient air sensors detect a too warm or too hot condition in the
input air stream. Ambient air too warm is an environmental warning;
ambient air too hot is an environmental error that powers down the
system.

The temperature set points are set by the teststation. The digital
temperature sensor has nonvolatile storage for the temperature set
points. Power-on reset starts the digital temperature sensor without the
core logic microprocessor intervening.
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Environmental control
Described in the following sections are functions the ECUB performs to
control the system environment.

Power-on
When the power switch is turned on, the outputs of the 48V power
supplies become active. Several hundred milliseconds after the ECUB 5V
supply reaches an acceptable level, the power-on circuit starts powering
up the other dc-to-dc converters of the system in succession.

The power-on circuit does not power up the system if an ASIC is installed
incorrectly (see the section “ASIC installation error” on page 151) or if an
FPGA is not configured (see the section “FPGA configuration and status”
on page 152). It keeps the system powered up unless an environmental
condition occurs that warrants a power-down.

Voltage margining
Voltage margin is divided into four groups to minimize control, but
allows all boards that communicate with each other to be margined
separately for nominal, upper, and lower voltage.

EMUC CSRs
This section describes some of the EMUC CSRs.

EMUC Processor Report register
The Processor Report register indicates the processors that are working
in the system. Each processor reports by writing to this register and
setting the bit corresponding to the processor number.

 Figure 71 Processor Report register definition

P0-P15 comprise a fully readable and writable field. The bits are cleared
on reset. Once a bit is written to a one value, it remains set until cleared
by reset. Writes of a zero value do nothing. The bit, Px, set to a one value,
indicates that processor x has reported in working.

0 151 2 3 4 5 6 7 8 9 10 11 12 13 14

P15P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
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EMUC Processor Semaphore register
The Processor Semaphore register provides a signaling function for
processor synchronization. This is an atomic read-and-increment
register.

 Figure 72 Processor Semaphore register definition

Count is cleared on reset. Writes load any value. Reads return the value
of Count and then increment Count atomically.

EMUC ERAC Data register
The ERAC data register holds the data to be written to the destination
ERAC CSR or the data that has been read from the ERAC CSR.

 Figure 73 ERAC Data register definition

ERAC Data bits comprise a fully readable and writable field. After an
ERAC read operation, the ERAC Data register holds the data. After the
ERAC write operation, the data is stored in the ERAC register, and
ERAC Data is undefined.

EMUC ERAC Configuration Control register
The ERAC Configuration Control register selects the target ERAC, the
address of the CSR within that ERAC, and the type of CSR access (read
or write). It controls the ERAC CSR operation and then returns status of
the operation.

0 1511

CountReserved

0 15

ERAC Data
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 Figure 74 ERAC Configuration Control register definition

The fields and bits of the ERAC configuration Control registers are
defined as follows:

• Select field (bits 6:7)—Selects the target ERAC. This field is write
only.

• Address field (bits 10:11)—Selects the address of the CSR within that
ERAC.

• SB Start/Busy bit (bit 14)—Starts the ERAC operation by writing a
one value. Reading the bit returns the status of the operation (0=idle,
1=busy). SB and SEL must be written together.

• RW bit (bit 15)—Selects the type of operation: Read (RW=1), or Write
(RW=0).

EMUC Reset register
The EMUC Reset register initiates a reset or displays the type of the last
reset. This CSR also contains the revision status.

 Figure 75 EMUC Reset register definition

The bits and field of the Reset register are defined as follows:

• SR (Soft Reset) bit (bit 6)—Initiates a soft reset.

• HR (Hard Reset) bit (bit 7)—Initiates a hard reset.

The combination of SR and HR bits in the read mode indicate the
resets shown in Table 25. The combination of SR and HR bits in the
write mode indicate the resets given in Table 26.

SelectReserved Address SB RW

0 156 7 10 11 14

Revision levelReserved SR HR

0 156 7 8
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Table 25 Reset register read codes

Resets are initiated by writing to this register. Reset is asserted
according to the codes in Table 26. The only difference between a hard
and soft reset is the action taken by the software upon reading the
codes.

Table 26 Reset register write codes

• Revision field (bits 8:15) indicates the revision of the EMUC FPGA.
This field is read only.

SR HR - Read Last reset was

0 0 Power-on reset

0 1 Hard reset

1 0 Soft reset

SR HR - Write Action taken

X 1 Hard reset

1 0 Soft reset
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JTAG interface
The JTAG interface supports a teststation and a mechanism to fan out
JTAG to all the boards in a system. It is used only for testing.

The JTAG functions are described in the following sections.

Teststation interface
The teststation can be a PA-RISC based workstation. The interface to
the teststation is an ethernet AUI port for flexibility in connecting to
many workstations.

AC test
An ac test is performed by a Test Bus Controller (TBC) scanning in data
to all boards in the system and loading an ac test instruction into all
ASICs on one board.

Once all boards have been almost loaded with the ac test instruction and
paused, the TBC takes all boards out of pause mode simultaneously
causing them all to exit update together and execute the ac test.

The ac test enables clocks inside the ASICs so that they test internal and
external paths at the system clock rate. They all execute on the same
system clock.

Clock margining
Parallel ports on the core logic microprocessor select the nominal, upper,
or external clock that drives the system.
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The ECUB contains system booting and testing functions. It connects to
the system teststation to provide a means of initialization, diagnostic
testing, and remote booting of the system.
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Teststation-to-system communications
This section describes how the teststation communicates with the
system. Figure 76 shows the paths and processes for the V-Class server
using HP-UX.

 Figure 76 teststation-to-system communications
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The hardware components located on the ECUB are shown in the
diagram on the left side of the system. They include three ethernet ports
and one DUART.

A layer of firmware between HP-UX and OBP called spp_pdc  allows the
HP-UX kernel to communicate with OBP. spp_pdc  is platform-
dependent code and runs on top of OBP providing access to the devices
and OBP configuration properties.

LAN 0 communications
One system ethernet port connects to global LAN 0. Across this LAN
system events are reported to the teststation using the HP-UX daemon.
This daemon polls two databases, memlog and syslog, for errors and
reports these errors on the teststation. HP-UX loads memory errors into
the memlog database and recoverable cache errors into the syslog
database.

LAN 1 communications
The two other ECUB ethernet ports connect to the system LAN 1. The
JTAG port is used for scanning. The other port is used for downloading
system firmware via nfs , downloading disk firmware, and loading
firmware into the I/O subsystem. A configuration utility that is located
on the teststation obtains system configuration information.

Serial communications
The DUART port on the ECUB provides an RS232 serial link to the
teststation. Through this port HP-UX, OBP, firmware in EEPROM
known as Power-On Self Test (POST—see the section “Power-On Self
Test routine” on page 163) send console messages. POST and OBP also
send system status to the LCD connected the DUART.
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Booting
Booting a system refers to a sequence of events that loads and executes
the operating system code. This sequence, or boot procedure, begins at
power-on with the system in an unknown state and ends when the
system begins executing the operating system.

Hardware reset
When power is applied to the system, all controllers receive a power-up
reset signal. Hardware initialization occurs within the first few clocks
after the reset pulse is negated.

The reset signal has the following effects:

• EPAC initialization—Hard error reporting is disabled, and all error
registers hold their previous values if a hard error was logged before
reset was applied. The identification number of each processor is
loaded into a CSR. The registers can only be cleared by software.

• EPUC initialization—Hard error reporting is disabled, and all error
registers are cleared. All other EPUC CSRs hold their previous
values and can only be cleared by software.

• EPIC initialization—Hard error reporting is disabled, and all error
registers hold their previous values. The registers can only be cleared
by software.

• ERAC initialization—Hard error reporting is disabled, and all error
registers hold their previous values. The registers can only be cleared
by software. All ports are enabled.

• EMAC initialization—Hard error reporting is disabled, and all error
registers hold their previous values if a hard error was logged before
reset was applied. The registers can only be cleared by software.
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Power-On Self Test routine
When the system first powers up, all processors and supporting
hardware must be initialized before the system proceeds with
booting.

Upon power up, POST begins executing and brings up the system
from an indeterminate state and then executes OBP. POST
determines the system hardware configuration before running
OBP. If POST encounters an error during initialization, it passes
the appropriate error code to an LCD.

Figure 77 shows how POST initializes the processors up to
booting of OBP.
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 Figure 77 POST program flow

9/16/97
IOEXS104

Fetch processor
semaphore CSR

Master processor

EEPROM
checksum

Initialize
core logic

Node configuration
determination

ASIC
initialization

Main memory
initialization

Node
cleanup

PA-8200
Selftest

Processor 1 Processor 14 Processor 15

Other processors Command
wait
loop

"Ping" each processor

Processor ping response

EMB to initialize

Initialization result

Get all processors

Selftest
PA-8200

Selftest
PA-8200

Selftest
PA-8200

PA-8200
Initialization

Processor 0
PA-8200

Initialization Initialization
PA-8200

Initialization
PA-8200

Boot OBPBoot OBP Boot OBP Boot OBP

Processor 0 Processor 1 Processor 14 Processor 15

Master processor



Chapter 10 165

Booting and testing
Booting

Basic processor initialization and selftest
Upon reset, all processors are initialized and placed in selftest. The
extent of the selftest is determined by a mode bit in NVRAM. If both the
selftest and cache test NVRAM variables are enabled, cache testing is
performed. Data cache initialization is verified, and the portion of the
instruction cache used for memory initialization is pattern tested.

Each processor determines its identification (ID) from the EPAC. Also,
each processor fetches the Processor Semaphore register on the PUC.
Because register requests are queued, one processor will fetch this CSR
before the others and becomes the booting, or monarch, processor. All
others go into a command wait idle loop. The booting processor continues
executing POST code from the EEPROM.

Checksum verification of the core logic NVRAM
The EPUC EEPROM contains the POST, OBP, system diagnostics code,
and the spp_pdc  code. In addition, these four routines use shared data
structures. The routines and shared data structures all reside in sections
of the EEPROM know as code spaces. Each code space has an embedded
checksum word. POST checks the validity of each code space by reading
and comparing its checksum.

Core logic initialization
The core logic contains SRAM and DUARTs that support external
terminal connection for self test and the LCD panel. POST initializes the
SRAM, DUARTs, and all controller CSRs in the system.

System configuration determination
POST determines which and how many controllers reside in the system
(not every system contains a full complement of support hardware). It
also determines the number of memory modules and their sizes. Any
controller (ASIC) that does not respond to any CSR access is considered
to be not installed.
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System ASIC initialization
POST sets every system controller (ASIC) to a known state. The state is
based both on configuration parameters and the current hardware
configuration.

EPACs are reported in the EPUC EPAC-Exist register.

EMACs and EPICs are reported in the EPAC Configuration register.

ERACs are always all present (they are not sensed).

System main memory initialization
The processor reads the node ID from the COP EEPROM and uses its
information to load the node identification register.

Next, the monarch processor determines the memory configuration for
all EMACs. It determines the size, population, and installation of each
DIMM on a memory board and returns this information to POST. The
results are compared with the results of each other memory mapping
and the least common denominator is determined and mapped in. Once
the memory population is determined, the monarch processor assigns
available processors to the enabled EMBs, initializing memory and tags
in parallel.

System clean up and OBP boot process
POST resets the EPUC Processor Semaphore CSR and cleans up any
residual state information from the initialization process. All processors
now begin to execute the OBP routine at approximately the same time.
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HP-UX bootup
Once each processor in the system has completed initialization and
selftest, it loads and executes OBP. The following is the sequence of
events for booting the system starting with loading OBP (for every
processor) and finishing with the system ready for use:

• The processor loads OBP—After initialization and selftest, each
processor loads and begins executing OBP. OBP transfers its ROM
image to RAM, initializes the virtual mode, and turns on translation.

• OBP builds its device tree—It probes the system hardware.

• The processor loads spp_pdc  from flash RAM—This firmware is
layered over OBP and provides interface between OBP and the HP-
UX kernel. spp_pdc  must be loaded before OBP can perform any boot
functions.

• OBP loads system boot loader—It opens the boot disk, loads a special
system loading program, and closes boot disk.

• The processor executes spp_pdc —This firmware layer must be
executing so that OBP can complete booting the system.

• The processor executes system boot loader—The loader starts in
physical mode (32 bits) and performs the following tasks:

• Relocates itself

• Opens PCI devices through spp_pdc

When spp_pdc  calls OBP to perform PCI I/O transfers, OBP must
turn on its virtual mode and then turn virtual mode off again
when it returns control to spp_pdc . This means all buffers must
already be equivalently mapped in OBP's virtual mode page
tables.

• Reads in the kernel using spp_pdc  for I/O

• Starts the kernel

• The kernel reads /etc/ioconfig—spp_pdc  opens the boot device for I/O.

• The kernel boot I/O completes.

• spp_pdc  closes the boot device.

• OBP turns off Virtual Mode—It removes PCI CSR virtual mode
mapping.
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• The kernel switches to its virtual mode

• The kernel relocates the system boot loader

• Kernel continues booting in one of two ways: normal boot and install
boot.

Normal booting
For normal booting, the following additional tasks are performed:

• OBP loads the special system kernel loader into memory.

• The kernel loader loads /stand/vmunix or user-specified kernel.

• The kernel uses kernel loader for boot I/O to load /etc/ioconfig.
Booting is complete.

Install booting
For install booting, the following sequence is performed:

• OBP loads the kernel loader into memory.

• The kernel loader loads VINSTALL LIF image.

• VINSTALL uses the kernel loader for boot I/O to load ramdisk
VINSTALLFS

• VINSTALL completes booting, and the cold install GUI opens for the
user.
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Testing
The system uses LAN1 for testing, running diagnostics on the system,
and reconfiguring the system manually. All diagnostic accesses to
memory occur through CSR space. A 64-bit register holds eight bytes for
writing and reading memory. The memory transfer size is 64 bits. The
diagnostic operations are:

• Memory line data read

• Memory line data write

• Memory line initialization

• Memory read ECC

• Memory write ECC

• Memory line scrub

Diagnostic memory read Operations
A diagnostic memory read is performed by writing to the memory line
address of the Diagnostic Address CSR on the EMAC. The EMAC
interprets the write to the CSR address as a request to read the data at
the addressed memory line. The 64-bit data is read from the SDRAM
memory and written to the EMAC diagnostic data register. The processor
requesting the memory read can then access the data with a 64-bit CSR
access. Figure 78 illustrates the flow for a CSR memory read operation.
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 Figure 78 CSR memory read operation

Diagnostic memory write operations
A diagnostic memory write operation uses the same CSRs as the read.
The data is written to the CSR data register, and the address at which
the data is to be stored is written to the CSR diagnostic address register.

EMAC diagnostic CSRs and addresses
This section defines some of the EMAC CSRs that perform the diagnostic
memory operations.

EMAC Diagnostic Address register
There is one Diagnostic Address register on each EMAC that supplies
the address for diagnostic memory accesses.

The format of the Diagnostic Address register is shown in Figure 79.

 Figure 79 EMAC Diagnostic Address register definition
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The Row field (bits 30:32), Memory bank field (bits 36:37), Page field (bits
38:51), Page offset field (bits 52:58), and Longword field (bits 59:60)
together specify the memory address for diagnostic accesses.

The Longword bit is used for diagnostic memory data reads and writes
where a specific eight-byte longword must be accessed.

Bank interleaving is not performed by the EMAC; the processor must
perform the mapping from the virtual bank to the memory bank.

All fields are written by a CSR write and read by a CSR read. A
Diagnostic Memory Initialization operation increments the concatenated
Page and Page Offset fields as part of the operation.

EMAC Diagnostic Data register
The Diagnostic Data register holds eight bytes of data used for diagnostic
memory reads and writes. The format of the Diagnostic Data register is
shown in Figure 80.

 Figure 80 EMAC Diagnostic Data register definition

0 63

Data
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EMAC Diagnostic Read Memory Data address
Writing to the EMAC Diagnostic Read Memory Data address obtains
eight bytes of data from the address specified by the Diagnostic Address
register. The Diagnostic Address register is not modified by this
operation.

EMAC Diagnostic Write Memory Data address
Writing to the EMAC Diagnostic Write Memory Data address moves
eight bytes of data to the address specified by the Diagnostic Address
register. The operation is similar to the read memory data operation,
except that the Diagnostic Address register also specifies which of the
four eight-byte longwords of a 32-byte line is to be written with the data
in the Diagnostic Data register. Neither the Diagnostic Address nor
Diagnostic Data register is modified by the operation. ECC is
regenerated for the entire memory line by this operation.

EMAC Diagnostic Memory Read ECC address
The data in the memory line is stored in four consecutive SDRAM
locations. Each SDRAM location is protected with an eight-bit ECC.
Writing to the EMAC Diagnostic Memory Read address triggers a
memory read operation of the ECC associated with the address specified
in the Diagnostic Address register. The Longword field of the Diagnostic
Address register specifies which ECC (of the four SDRAM locations) is to
be read. The accessed ECC is written to the eight least significant bits of
the Diagnostic Data register. The Diagnostic Address register is not
modified by the operation.

EMAC Diagnostic Memory Write ECC address
Writing to the Diagnostic Memory Write ECC address triggers a memory
write operation of the ECC associated with the address specified in the
Diagnostic Address register. The Longword field of the Diagnostic
Address register specifies which of the four SDRAM locations the ECC is
to be written. The SDRAM ECC is written with the least significant
eight bits of the Diagnostic Data register.
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EMAC Diagnostic Memory Initialization address
Writing to the EMAC Diagnostic Memory Initialization address triggers
a memory write operation to the tag and data of a memory line. The
address of the memory line is specified by the Diagnostic Address
register. The memory tag is written with the contents of the Diagnostic
Data register, and the 32 bytes of memory data associated with the
memory line are written with the value zero. The Diagnostic Data
register is not modified. The concatenated Page and Page Offset fields of
the Diagnostic Address register are incremented to address the next
sequential memory line. The Longword field of the Diagnostic Address
register is ignored.

EMAC Diagnostic Scrub Memory address
Writing to the EMAC Diagnostic Scrub Memory address triggers a read
and write to the memory line at the address specified by the Diagnostic
Address register. If a single bit ECC error occurs when the data is read,
the data is corrected before it is written back into memory. If no ECC
error occurs, the data is written back unmodified.
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An error (or fault) is an abnormal condition with hardware or firmware
(processor-dependent code); the cause of the abnormality can be either
transient or permanent. The cause can also be classified as a recoverable
(soft or advisory) error or an unrecoverable (hard) error, depending on
whether continued operation of the system is possible.

Most hardware faults are transient in nature, not being the result of a
permanent hardware failure. The effect of these errors can many times
be contained while the system continues to operate. There are, of course,
occasions when hardware fails, continued operation is not possible, and
the system must be taken down for diagnostic evaluation.
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Soft errors
A recoverable error that results in the disabling of one or more processes
but allows continued operation of the system is a soft error. An example
of a soft error is a parity error on data read by a process. The process
cannot continue, but the system continues to operate.

Soft errors can occur only during transactions that require a response.
The error is reported to the requesting processor in one of two ways:

• The requesting processor detects the error itself (for example, a parity
error).

• The detecting hardware sends an error response instead of its normal
response. The error response contains some useful information about
the error.

Whenever a soft error is reported to a processor, it invokes an HPMC.
Any process running on a processor when an HPMC occurs is aborted by
the operating system. If the process is a kernel or server, an operating
system panic occurs. In this case, the system must be rebooted.
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Advisory errors
A special type of recoverable error is an advisory error. Advisory errors
are usually corrected by hardware or firmware. They are logged in the
appropriate CSRs of the detecting controller and do not affect any
processes running on the system. An example is a single-bit ECC
memory error.

Advisory errors are not reported. Software must poll the CSRs
periodically to determine their occurrence. Reading the CSRs when a soft
error is detected can determine if it propagated from an earlier detected
advisory error.

If a detected error causes corrupted data and another soft error is
detected before corrupted data is consumed, it is also considered an
advisory error. An example is a data parity error detected during a
“responseless” request, such as a write-back, where corrupted data is
written to memory. This error is logged as an advisory error. Any further
reference to the line will cause a soft error, an indication that the data is
corrupt.



178 Chapter 11

Error handling
Hard errors

Hard errors
Hardware can fail in such a manner that a process can receive corrupt
data without detecting it. If an error is detected that prevents returning
an error response or corrupts data so that future references cannot
detect the corruption, it is considered a hard error. An example is a
parity error detected on the address of a memory transaction. The
appropriate memory line cannot be updated, and future consumers of the
line can not be notified of the corruption.

A hard error is sent to the EMUC and then the EPUC may generate an
interrupt, HPMC, or transfer of control (TOC) to one or all processors in
the system. See “EPUC interrupt logic” on page 98 for more information
on EPUC interrupts.

All error CSRs are locked (or frozen) when a hard error is detected so
that additional errors caused by the propagation of the hard error are not
logged. Usually, only one controller fails in the error condition. If more
than one controller detects a hard error, however, the state in the EMUC
and clock phase information in each chip indicate the chip that first
detected the hard error.

When a hard error occurs, the system must be rebooted. The failed
hardware can be deconfigured, as part of reboot, to allow the system to
quickly resume operation (possibly with degraded performance) in the
presence of broken hardware.

The hard error is logged in the EMUC System Hard Error register. This
register logs the first hard error detected, allowing isolation to the
controllers or group of controllers that detected the error first.

Figure 81 illustrates the characteristics of the three error types: soft,
advisory, and hard.
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 Figure 81 Determining error types

Advisory error
Yes

No

When corrupted data

Yes
Soft error

Can processor

 used, will another
 recoverable error be

aborted?

Was error corrected

transparent to all
by hardware or firmware

processes?

Advisory error
Yes

No

associated with the error is

detected?

using corrupted data
be notified and the process

No

Hard error



180 Chapter 11

Error handling
Error responses

Error responses
When an error occurs during a response-expected data request, the
requested data is not returned. Instead, an error response is returned to
the requestor. This type of error is called a soft error and is logged as
such in the appropriate CSR of the requesting controller.

The response contains information that specifies the detecting controller
and the detected error condition or error code; it does not contain data.
After receiving an error response, the EPAC logs the error and returns a
directed error response packet to the requesting processor or EPIC (in
the case of an I/O request). The processor logs the error information in its
SADD_LOG register and the EPIC logs the error information in its
internal CSRs. Error recovery software can then read these CSRs and
take appropriate action.

Figure 82 shows the format for the processor SADD_LOG after an error
response.

 Figure 82 SADD_LOG after error response

The Error Source field (bits 28:31) indicates one of the sources as shown
in Table 27.
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Table 27 SADD_LOG error source field definition

The value in the Error Information field (bits 32:63) depends on the
source of the error response.

If the error source field indicates the response was from either
Hyperplane crossbar inputs (that is, external to the EPAC), the Error
Information field (bits 32:63) contains the information shown in Figure
83.

 Figure 83 EPAC error response information when received from either
crossbar input

Error source field Source

0x0 Hyperplane crossbar 0 input

0x1 Hyperplane crossbar 1 input

0x2 Hyperplane crossbar 0 output

0x3 Hyperplane crossbar 1 output
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0x5 EPAC CSRs
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The subfields and bits of the Error information field are defined as
follows:

• R0 bit (bit 33)—Indicates that the intended response in the crossbar
was an R0 packet.

• Crossbar T type field (bits 34:39)—Specifies the transaction type of
the intended Hyperplane crossbar response.

• Transaction ID field (bits 40:45)—Specifies the transaction ID of the
intended response.

• Detecting chip field (bits 46:48)—Specifies the controller that detected
the error.

• Detecting board field (bits 49:51)—Specifies the instance of the
controller that detected the error (there are eight instances of each
controller that can return an error response).

• Error code field (bits 52:56)—Specifies the error condition detected by
the chip that sent the error response.

If the error source field indicates the response was from the Hyperplane
crossbar output logic (internal to the EPAC), the Error information field
(bits 32:63) contains the transaction ID (TID) of the outgoing
transaction. If the error source field indicates an error detected by the
EPAC Runway bus input logic, the Error information field (bits 32:63)
contains the type of runway error. If the error source field indicates an
error in one of the EPAC CSRs, the Error information field (bits 32:63)
contains the CSR error code.
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Error handling CSRs
Most controllers contain at least one of the following registers:

• Error Cause

• Error Address

• Error Information

• Error Configuration

These registers are accessible through load and store instructions and
diagnostic scan.

The Error Cause register logs multiple errors. It has a sticky bit for every
possible error condition that can be detected for the controller. Because
an error condition can occur under multiple circumstances, a different
bit exists in the Error Cause register for each unique circumstance.

The Error Address register contains the address of any error that can be
isolated to a specific address. This register is loaded or held under the
same error conditions as the Error Information register.

The Error Information register contains error recovery or diagnostic
information. This register contains the type of error (listed in increasing
severity):

• None (00)

• Advisory (01)

• Soft (10)

• Hard (11)

It also contains the error number for advisory or soft errors. The error
number is undefined for hard errors. If an error is detected of the same
or lower severity as that already stored in the register, the Error
Information register is not overwritten, but the Multiple Error (M) bit is
set. If an error type of greater severity is detected, the Error Information
register is overwritten with new error information. When error
information is overwritten, the Overwritten (O) bit in the register is set.
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The Error Configuration register contains two bits for every bit in the
Error Cause register. They are encoded as follows:

• 00—Disable the error

• 01—Treat as an advisory error

• 10—Treat as a soft error

• 11—Treat as a hard error

These bits control updating of the Error Information and Error Address
registers. They have no effect on the controller behavior except for the
following conditions:

• If an error is disabled (bit-pair value is 00) and the controller can still
do something meaningful toward completing the operation, the error
is ignored. For example, a chip might ignore an address alignment
error and assume a certain address when the error is disabled. If no
behavior makes sense when an error occurs (that is, the error cannot
be ignored), then the disable has no effect on chip operation.

• If the controller scan ring option stop_on_hard bit is set and an error
is configured as a hard error (bit-pair value is 11), registers
containing information associated with the error must be held. This
allows access to the information through scan.
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Processor error detection
The processor detects errors that occur during transfers to and from its
Runway bus and cache interfaces. It logs these errors and invokes either
an LPMC or an HPMC. An LPMC is similar to a trap and allows the
process to be restarted. An HPMC is usually fatal to the process, but it
may not require a system reboot. Error handling code determines if a
processor detected error is treated as advisory, soft or hard.

When errors occur outside the processor that result in an error response
to the processor, error information is stored in the processor SADD_LOG
register. For timeout errors occurring during noncoherent load or fetch
operations, the address associated with the error is stored in the Read
Short Logging register. Miscellaneous diagnostic registers contain
information about cache parity errors.
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EPAC error detection
When the EPAC receives an error response from the Hyperplane
crossbar destined for a processor, it sends a directed error, followed (in
most cases) by a dummy response to the requesting processor. The error
response informs the processor that a soft error was detected during its
request and forces the processor to invoke an HPMC. There is no Error
Address register in the EPAC. When the EPAC receives an error
response destined for the EPIC, it forwards it as an error response
packet on the EPIC interface.

When detecting an error, the EPAC stores addresses and other error
information in two databases. The information in these databases is
accessible with loads and stores. When errors are detected, the EPAC
copies information from the database into certain error CSRs.

If an error response to a processor is received or a parity error is detected
on the Hyperplane crossbar during a response to a processor, the EPAC
copies the error information in the database and into the error CSRs.

If a timeout transaction is detected on the Runway bus, the information
corresponding to the timed out response is copied into error CSRs.

If an error is encountered during a message or copy operation, a
processor is interrupted, and the detected error condition is logged in the
operation status queue.

The EPAC has an interface to Utilities board functions by way of the core
logic bus. Processors receive interrupts, fetch instructions, and log error
information over the bus. Access to the bus is unaffected by most errors,
including a large percentage of hard errors, allowing the processors to
perform error logging and recovery.
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ERAC error detection
The ERAC routes Hyperplane crossbar packets between the EPAC and
the EMAC, checking parity on these packets to and from internal queues.
It does not regenerate parity, but passes received parity through queues
to its output ports. When the ERAC detects an error, it is logged in the
Error Cause and Error Information registers.

There is no Error Address register in the ERAC. The ERAC does not
detect when an address is being sent in a packet; therefore, it cannot log
the address in an Error Address register.
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EMAC error detection
The EMAC contains memory error detection and correction hardware
that corrects and logs single-bit errors. When a single-bit error occurs, an
interrupt is sent to a designated processor. Single-bit errors on memory
data persist in memory and must be scrubbed by error handling
software. When the EMAC detects a multibit error on a memory tag, the
EMAC generates a hard error. If it detects a multibit error on requested
memory data, it sends a parity error with the data to the requestor. If the
EMAC detects a multibit error on a read-modify-write operation, it
writes bad ECC (that results in a multibit error) to the line to notify any
potential users the data line is corrupted.
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Table 28 lists the CSRs in the V-Class server.

Table 28 V-Class server CSR map

40-Bit physical
address CSR space CSR register name

0xF0 0000 0000 -
0xF0 FFFF FFFF

Core Logic

0xF0 xx00 0000 -
0xF0 xx7F FFFF

PDC EEPROM V-Class implements 4 MBytes (0x0-0x1FFFFF)

0xF0 xx80 0000 -
0xF0 xxBF FFFF

SRAM V-Class implements 128 KBytes (0x820000-
0x81FFFF)

0xF0 xxC0 0000 -
0xF0 xxC0 FFFF

EPUC
byte access

EPUC CSR space

0xF0 xxC0 0000 Interrupt Status register

0xF0 xxC0 0004 Interrupt Enable register

0xF0 xxC0 0008 Interrupt Force register

0xF0 xxC0 000C EPAC Exist register

0xF0 xxC0 0010 EPUC Revision register

0xF0 xxC0 0014 EPUC Error register

0xF0 xxC1 0000 -
0xF0 xxCF FFFF

EMUC EMUC CSR space

0xF0 xxC1 0000 Half Word
Access

Processor Report register

0xF0 xxC1 0004 Processor Semaphore register

0xF0 xxC1 0008 ERAC Scan Data register

0xF0 xxC1 000C ERAC Scan Control register

0xF0 xxC1 0010 System Hard Error register

0xF0 xxC1 0014 System Hard Error Enable register
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0xF0 xxC1 0018 System Hard Error Control register

0xF0 xxC1 001C Error Cause register

0xF0 xxC1 0020 Environment Error A register

0xF0 xxC1 0024 Environment Error B register

0xF0 xxC1 0028 Environment Error C register

0xF0 xxC1 002C Environment Control register

0xF0 xxC1 0030 Reset register

0xF0 xxD0 0000 -
0xF0 xxD2 FFFF

M48T35Y Nonvolatile Ram and Real Time Clock

0xF0 xxD0 0000 -
0xF0 xxD0 7FF7

Byte, Half,
Word or Double
Word Access

Nonvolatile SRAM

0xF0 xxD0 7FF8 RTC Control register

0xF0 xxD0 7FF9 RTC Seconds register

0xF0 xxD0 7FFA RTC Minutes register

0xF0 xxD0 7FFB RTC Hour register

0xF0 xxD0 7FFC RTC Day register

0xF0 xxD0 7FFD RTC Date register

0xF0 xxD0 7FFE RTC Month register

0xF0 xxD0 7FFF RTC Year register

0xF0 xxD3 0000 -
0xF0 xxD4 5FFF

83932B Sonic
Ethernet

Ethernet Interface Chip

40-Bit physical
address CSR space CSR register name
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0xF0 xxD3 0000 Half Word
Access

Command register

0xF0 xxD3 0004 Data Configuration register

0xF0 xxD3 0008 Receive Control register

0xF0 xxD3 000C Transmit Control register

0xF0 xxD3 0010 Interrupt Mask register

0xF0 xxD3 0014 Interrupt Status register

0xF0 xxD3 0018 Upper Transmit Descriptor address

0xF0 xxD3 001C Current Transmit Descriptor address

0xF0 xxD3 0020 Transmit Packet Size register

0xF0 xxD3 0024 Transmit Fragment Count register

0xF0 xxD3 0028 Transmit Start address 0 register

0xF0 xxD3 002C Transmit Start address 1 register

0xF0 xxD3 0030 Transmit Fragment Size register

0xF0 xxD3 0034 Upper Receive Descriptor address

0xF0 xxD3 0038 Current Receive Descriptor address

0xF0 xxD3 003C Current Receive Buffer address 0 register

0xF0 xxD3 0040 Current Receive Buffer address 1 register

0xF0 xxD3 0044 Remaining Buffer Word Count 0 register

0xF0 xxD3 0048 Remaining Buffer Word Count 1 register

0xF0 xxD3 004C End of Buffer Word Count register

0xF0 xxD3 0050 Upper Receive Resource address register

0xF0 xxD3 0054 Resource Start address

0xF0 xxD3 0058 Resource End address

40-Bit physical
address CSR space CSR register name
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0xF0 xxD3 005C Resource Read Pointer

0xF0 xxD3 0060 Resource Write Pointer

0xF0 xxD3 0064 Temporary Receive Buffer address 0 register

0xF0 xxD3 0068 Temporary Receive Buffer address 1 register

0xF0 xxD3 006C Temporary Buffer Word Count 0 register

0xF0 xxD3 0070 Temporary Buffer Word Count 1 register

0xF0 xxD3 007C Last Link Field address

0xF0 xxD3 0080 Temporary Transmit Descriptor address

0xF0 xxD3 0084 CAM Entry Pointer

0xF0 xxD3 0088 CAM address Port 2 register

0xF0 xxD3 008C CAM address Port 1 register

0xF0 xxD3 0090 CAM address Port 0 register

0xF0 xxD3 0094 CAM Enable register

0xF0 xxD3 0098 CAM Descriptor Pointer register

0xF0 xxD3 009C CAM Descriptor Count register

0xF0 xxD3 00A0 Silicon Revision register

0xF0 xxD3 00A4 Watchdog Timer 0 register

0xF0 xxD3 00A8 Watchdog Timer 1 register

0xF0 xxD3 00AC Receive Sequence Count

0xF0 xxD3 00B0 CRC Error Tally register

0xF0 xxD3 00B4 FAE Tally register

0xF0 xxD3 00B8 Missed Packet Tally register

0xF0 xxD3 00BC Maximum Deferral Timer register

40-Bit physical
address CSR space CSR register name
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CSR map

0xF0 xxD3 00FC Data Configuration register 2

0xF0 xxD4 6000 -
0xF0 xxD4 9FFF

16552 DUART
Serial Port 0

Serial Port 0, used for console communication

0xF0 xxD4 6000 Byte Access Receiver Buffer register/
Transmitter Holding register/
LSB Divisor Latch

0xF0 xxD4 6004 Interrupt Enable register/
MSB Divisor Latch

0xF0 xxD4 6008 Interrupt Identification register/
FIFO Control register

0xF0 xxD4 600C Line Control register

0xF0 xxD4 6010 Modem Control register

0xF0 xxD4 6014 Line Status register

0xF0 xxD4 6018 Modem Status register

0xF0 xxD4 601C Scratch Pad register (SCR)

0xF0 xxD4 A000 -
0xF0 xxD4 BFFF

16552 DUART
Serial Port 1

Serial Port 0

0xF0 xxD4 A000 Byte Access Receiver Buffer register/
Transmitter Holding register/
LSB Divisor Latch

0xF0 xxD4 A004 Interrupt Enable register/
MSB Divisor Latch

0xF0 xxD4 A008 Interrupt Identification register/
FIFO Control register

0xF0 xxD4 A00C Line Control register

0xF0 xxD4 A010 Modem Control register

0xF0 xxD4 A014 Line Status register

40-Bit physical
address CSR space CSR register name
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CSR map

0xF0 xxD4 A018 Modem Status register

0xF0 xxD4 A01C Scratch Pad register

0xF0 xxD4 C000 -
0xF0 xxD4 FFFF

16552 DUART
Parallel Port

Parallel Port, used for communication

0xF0 xxD4 C000 Byte Access Read Data/
Write Data

0xF0 xxD4 C004 Read Status

0xF0 xxD4 C008 Read Control/
Write Control

0xF4 0000 0000 -
0xF7 FFFF FFFF

Nonaccelerated
I/O

0xF8 0000 0000 -
0xFB FFFF FFFF

Accelerated I/O

0xFC 0000 0000 -
0xFC 0000 FFFF

EPAC 0 EPAC CSR space

0xFC 0000 0000 EPAC 0, Page 0 System Configuration register

0xFC 0000 0008 EPAC Chip Configuration register

0xFC 0000 0010 EPAC Core Logic Interrupt Delivery register 0

0xFC 0000 0018 EPAC Core Logic Interrupt Delivery register 1

0xFC 0000 0020 Memory Board Configuration register

0xFC 0000 0080 EPAC Error Cause register 0

0xFC 0000 0088 EPAC Error Info register

0xFC 0000 0098 EPAC Error Configuration register 0

0xFC 0000 00A0 EPAC Error Configuration register 1

0xFC 0000 00A8 EPAC Error Cause register 1

0xFC 0000 0300 Time-of-Century Configuration register

40-Bit physical
address CSR space CSR register name
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CSR map

0xFC 0000 1308 EPAC 0, Page 1 Time-of-Century Count register

0xFC 0000 2000 EPAC 0, Page 2
Processor 0
Specific

Processor 0 Processor Configuration register

0xFC 0000 2010 Processor 0 CSR Operation Context register

0xFC 0000 2018 Processor 0 CSR Operation address register

0xFC 0000 2020 Processor 0 Fetch and Increment address

0xFC 0000 2028 Processor 0 Fetch and Decrement address

0xFC 0000 2030 Processor 0 Fetch and Clear address

0xFC 0000 2038 Processor 0 Noncoherent Read address

0xFC 0000 2040 Processor 0 Noncoherent Write address

0xFC 0000 2060 Processor 0 Coherent Increment address

0xFC 0000 2100 Processor 0 DM Input Command register

0xFC 0000 2110 Processor 0 DM Source Physical Page Frame
register

0xFC 0000 2118 Processor 0 DM Source Offset register

0xFC 0000 2120 Processor 0 DM Destination Physical Page
Frame register

0xFC 0000 2128 Processor 0 DM Destination Offset register

0xFC 0000 2130 Processor 0 DM Operation Status Queue register

0xFC 0000 2200 Processor 0 Performance Monitor Memory Access
Count 0 register

0xFC 0000 2208 Processor 0 Performance Monitor Memory Access
Count 1 register

0xFC 0000 2210 Processor 0 Performance Monitor Memory Access
Latency register

40-Bit physical
address CSR space CSR register name
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CSR map

0xFC 0000 3000 EPAC 0, Page 3
Processor 1
Specific

Processor 1 Processor Configuration register

0xFC 0000 3010 Processor 1 CSR Operation Context register

0xFC 0000 3018 Processor 1 CSR Operation address register

0xFC 0000 3020 Processor 1 Fetch and Increment address

0xFC 0000 3028 Processor 1 Fetch and Decrement address

0xFC 0000 3030 Processor 1 Fetch and Clear address

0xFC 0000 3038 Processor 1 Noncoherent Read address

0xFC 0000 3040 Processor 1 Noncoherent Write address

0xFC 0000 3060 Processor 1 Coherent Increment address

0xFC 0000 3100 Processor 1 DM Input Command register

0xFC 0000 3110 Processor 1 DM Source Physical Page Frame
register

0xFC 0000 3118 Processor 1 DM Source Offset register

0xFC 0000 3120 Processor 1 DM Destination Physical Page
Frame register

0xFC 0000 3128 Processor 1 DM Destination Offset register

0xFC 0000 3130 Processor 1 DM Operation Status Queue register

0xFC 0000 3200 Processor 1 Performance Monitor Memory Access
Count 0 register

0xFC 0000 3208 Processor 1 Performance Monitor Memory Access
Count 1 register

0xFC 0000 3210 Processor 1 Performance Monitor Memory Access
Latency register

40-Bit physical
address CSR space CSR register name
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CSR map

0xFC 0001 0000 -
0xFC 0001 FFFF

EPIC EPIC CSR space

0xFC 0001 0000 EPIC 0, Page 0 System Configuration register (Reserved on
EPIC)

0xFC 0001 0008 EPIC Chip Configuration register

0xFC 0001 0010 PCI Master Configuration register

0xFC 0001 0018 PCI Master Status register

0xFC 0001 0020 EPIC Channel Builder register

0xFC 0001 0080 EPIC Error Cause register

0xFC 0001 0088 EPIC Error Info register

0xFC 0001 0090 EPIC Error Address register

0xFC 0001 0098 EPIC Error Configuration register

0xFC 0001 00A0 EPIC Interrupt Configuration register

0xFC 0001 00A8 EPIC Interrupt Source register

0xFC 0001 00B0 EPIC Interrupt Enable register

0xFC 0001 0100 PCI Slot 0 Configuration register

0xFC 0001 0108 PCI Slot 0 Status register

0xFC 0001 0110 PCI Slot 0 Interrupt Configuration register

0xFC 0001 0118 PCI Slot 0 Synchronization register

0xFC 0001 0120 PCI Slot 1 Configuration register

0xFC 0001 0128 PCI Slot 1 Status register

0xFC 0001 0130 PCI Slot 1 Interrupt Configuration register

0xFC 0001 0138 PCI Slot 1 Synchronization register

0xFC 0001 0140 PCI Slot 2 Configuration register

40-Bit physical
address CSR space CSR register name
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CSR map

0xFC 0001 0148 PCI Slot 2 Status register

0xFC 0001 0150 PCI Slot 2 Interrupt Configuration register

0xFC 0001 0158 PCI Slot 2 Synchronization register

0xFC 0001 0160 PCI Slot 3 Configuration register

0xFC 0001 0168 PCI Slot 3 Status register

0xFC 0001 0170 PCI Slot 3 Interrupt Configuration register

0xFC 0001 0178 PCI Slot 3 Synchronization register

0xFC 0002 0000 Processor 0 External Interrupt Request register

0xFC 0003 0000 Processor 1 External Interrupt Request register

0xFC 0004 0000 -
0xFC 0004 FFFF

EMAC EMAC CSR space

0xFC 0004 0000 EMAC 0, Page 0 System Configuration register

0xFC 0004 0008 EMAC Chip Configuration register

0xFC 0004 0020 Memory Row Configuration register

0xFC 0004 0028 Unprotected Memory Region register

0xFC 0004 0080 EMAC Error Cause register

0xFC 0004 0088 EMAC Error Info register

0xFC 0004 0090 EMAC Error address register

0xFC 0004 0098 EMAC Error Configuration register 0

0xFC 0004 00A0 EMAC Error Configuration register 1

0xFC 0004 00B0 EMAC Error Interrupt register

0xFC 0004 0100 Message Reception Area Configuration register

0xFC 0004 0110 Message Reception Area Available Offset register

0xFC 0004 0118 Message Reception Area Occupied Offset register

40-Bit physical
address CSR space CSR register name
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CSR map

0xFC 0004 0120 Message Completion Queue Configuration
register

0xFC 0004 0128 Message Completion Queue Reserve Offset
register

0xFC 0004 0130 Message Completion Queue Write Offset register

0xFC 0004 0138 Message Completion Queue Read Offset register

0xFC 0004 0140 Message Completion Dequeue address

0xFC 0004 0200 Diagnostic Address register

0xFC 0004 0208 Diagnostic Data register

0xFC 0004 0220 Diagnostic Read Memory Data address

0xFC 0004 0228 Diagnostic Write Memory Data address

0xFC 0004 0230 Diagnostic Read Memory ECC address

0xFC 0004 0238 Diagnostic Write Memory ECC address

0xFC 0004 0240 Diagnostic Initialize Memory address

0xFC 0004 0248 Diagnostic Scrub Memory address

0xFC 0004 F148 EMAC 0, Page F Message Completion Enqueue address

0xFC 0004 F150 Message Allocation address

0xFC 0006 0000 -
0xFC 0006 FFFF

Reserved

0xFC 0007 0000 -
0xFC 0007 FFFF

Reserved

0xFC 0008 0000 -
0xFC 000F FFFF

Hyperplane
crossbar Port 1

0xFC 0010 0000 -
0xFC 0017 FFFF

Hyperplane
crossbar Port 2

40-Bit physical
address CSR space CSR register name
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CSR map

0xFC 0018 0000 -
0xFC 001F FFFF

Hyperplane
crossbar Port 3

0xFC 0020 0000 -
0xFC 0027 FFFF

Hyperplane
crossbar Port 4

0xFC 0028 0000 -
0xFC 002F FFFF

Hyperplane
crossbar Port 5

0xFC 0030 0000 -
0xFC 0037 FFFF

Hyperplane
crossbar Port 6

0xFC 0038 0000 -
0xFC 003F FFFF

Hyperplane
crossbar Port 7

40-Bit physical
address CSR space CSR register name
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Glossary

absolute address An address
that does not undergo virtual-to-
physical address translation when
used to reference memory or the
I/O register area.

address A number used by the
operating system to identify a
storage location.

address space Memory space,
either physical or virtual, available
to a process.

advisory error Errors that are
usually corrected by hardware or
firmware

architecture The physical
structure of a computer's internal
operations, including its registers,
memory, instruction set, and I/O
structure.

barrier synchronization A
control mechanism used in parallel
programming that ensures all
processors have completed the
prior operation before continuing
with the next operation.

block A group of data containing a
fixed number of bytes.

block TLB A type of TLB entry
that translates many contiguous
virtual pages to an equal number
of contiguous physical pages.

boot The procedure by which a
program is initiated the first time.
Typically, a bootstrap is performed
when power is first applied to the
processor.

buffer A temporary storage area.
Several types of buffers are used in
computer systems, in both
hardware and software. The most
common types of buffers are those
maintained by a computer
operating system to mediate
between processes and I/O devices.

bus A data path shared by several
components within a computer
system.

cache See cache memory.

cache memory A small, high-
speed buffer memory used in
modern computer systems to hold
temporarily those portions of the
contents of the main memory that
are, or believed to be, currently in
use.

check A type of interruption
caused by the detection of an
internal hardware detected
malfunction.

coherency A term frequently
applied to caches. If a data item is
referenced by a particular
processor on a multi-processor
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system, the data is copied into that
processor cache and is updated
there if the processor modifies the
data. The state that is achieved
when both processors’ caches
always have the latest value for
the data is called cache coherency.

crossbar See Hyperplane crossbar

CSR Control and status register.
A software-addressable hardware
register used to hold control or
state information.

data mover Hardware that routes
messages and copies data between
memory.

direct memory access (DMA) A
procedure or method defined for
gaining direct access to main
storage and achieving data
transfers without involving the
processor.

DMA See direct memory access.

EEPROM See electrically
erasable programmable read-only
memory.

electrically erasable
programmable read-only
memory (EEPROM) A read-only
memory module that can be
programmed repeatedly by first
erasing the previous contents of
the memory module. Unlike the
EPROM, the EEPROM can be
reprogrammed without removal
from the circuit board by applying
an erase signal to the device.

error code The status returned
by a function call.

ECUB Exemplar Core Utilities
board. Located on the ENRB, the
ECUB provides system booting
and testing functions.It connects to
the core logic bus, the system
environmental sensors, and other
test points, as well as the optional
teststation.

EMAC Exemplar Memory Access
Controller. The gate array that
controls system memory. It
interfaces to the routing array
controller (ERAC) Each EMAC
controls four banks of memory,
allowing up to 32 banks in an
eight-EMAC system.

EPAC Exemplar Processor agent
controller. The gate array that
interfaces to pairs of PA-RISC
processors.

EPIC Exemplar PCI Interface
Controller. The heart of the S-
Class and X-Class I/O subsystem.
The EPIC connects to the PCI bus
and provides and interface
between I/O devices and the
EPAC.

ERAC Exemplar Routing Array
Controller. The ASIC (four
required) used to in the system
Hyperplane crossbar. The
crossbar provides an interface
between the processors and I/O
devices and system memory.

error correction code (ECC)
Code used to decide which bit of a
memory read operation is in error.
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exception A hardware-detected
event that disrupts the running of
a program, process, or system. See
also fault.

fault A type of interrupt caused by
an instruction that requests a
legitimate action that cannot be
carried out immediately due to a
system problem.

shared memory A memory
architecture in memory can be
accessed by all processors in the
system. This architecture can also
support virtual memory. This type
of memory is sometimes referred to
as shared virtual memory or global
virtual memory.

hard error An uncorrectable
data error.

Hyperplane crossbar A
switching device used in
multiprocessor, shared-memory
computer systems that connects
processors to the various banks of
memory in the system.

HPMC High priority machine
check. Indicates that a process
error occurred and that the process
cannot continue. The system
requires rebooting after an HPMC.

instruction cache (Icache)
Memory used to hold frequently
accessed instructions.

interface A physical path
between any two modules or
systems.

interleaved memory Memory
that is divided into multiple banks
to permit concurrent memory
accesses. The number of separate
memory banks is referred to as the
memory interleave. Programs can
optimize memory accesses by using
stride intervals so that each of the
banks can be refreshed between
memory accesses.

interrupt An occurrence that
changes the normal flow of
instruction execution. An interrupt
originates from hardware, such as
an I/O device. See also maskable
interrupt.

interval timer An interval timer
is used to generate an interrupt
based on the passage of time.

JTAG Joint Test Action Group.
Formerly a group of European and
later American companies that
developed a boundary scan
technique to facilitate in-circuit
testing and functionality testing of
circuit boards. It was handed off to
the IEEE and refined as IEEE
Standard 1149.1.

latency The time delay between
the issuing of an instruction and
the completion of the operation. A
common metric used for comparing
parallel processor systems is the
latency of coherent memory.

LPMC Low priority machine
check.It is similar to a processor
trap in that it is not fatal to a
process.
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main memory See physical
memory.

maskable interrupt An
interrupt to which the operating
system may choose not to respond.

message passing A type of
programming in which program
modules (often running on
different processors or different
hosts) communicate with each
other by means of system library
calls that package, transmit, and
receive data.

move-in The operation of bringing
information from memory into a
cache.

node A complete system that
consists of a set of up to 16
processors and up to 64 Gbytes of
physical memory organized as a
symmetric multiprocessor (SMP)
running a single image of the
operating system microkernel.

noncoherent memory
reference A memory reference
that 1) does not cause a cache
move-in, or 2) causes a cache move-
in, but fails to obey cache
coherency rules.

PA-RISC The Hewlett-Packard
precision architecture reduced
instruction set computer. A RISC
instruction set is easy to decode in
hardware and for which a compiler
can generate highly optimized
code.

packet A group of related items. A
packet may refer to the arguments
of a subroutine or to a group of
bytes that is transmitted over a
network.

page The unit of logical memory
controlled by the memory
management algorithms. A page in
the V-Class server is 4 Kbytes
(4,096) contiguous bytes.

page frame Unit of physical
(main) memory in which pages are
placed. Referenced and modified
bits associated with each page
frame aid in memory management.

PDIR Physical page directory. PA-
RISC processors that implement
hardware TLB miss handlers may
fetch TLB entries from a PDIR
entry in the event of a TLB miss.
The PDIR serves as a cache of
virtual-to-physical page
translations and is maintained by
the operating system.

physical address A unique
identifier that selects a particular
device from the set of all devices
connected to a particular bus.

physical address space The set
of possible addresses for a
particular bus.

physical memory Memory
devices, usually RAM, connected
as a subsystem that provide fast-
access storage for the operating
system, applications, and data.
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process The fundamental unit of
a program that is managed by the
job scheduler. A collection of one or
more execution streams within a
single logical address space; an
executable program. A process is
made up of one or more threads.

register A hardware entity that
contains an address, operand, or
instruction status information.

reset The process of establishing a
known state in a machine register.

runway bus The data interface of
the Hewlett-Packard PA-8200
processor. It allows multiprocessor
systems to interface to memory
and I/O without additional
components.

SDRAM Synchronous Dynamic
Random Access Memory.

semaphore A group of bits
associated with data structures
that act as a flag to all processors
to synchronize the threads of a
multiple-thread process. See also
synchronization.

server A process that fulfills a
request issued by a client process,
and transmits a response back to
the client.

SIMM Single Inline Memory
Module.

snooping Externally flushing or
invalidating a cache line from a
processor cache. The flushing or
invalidating transaction is issued
by the processor agent and is

referred to as a “snoopy
transaction.” This action occurs
when one processor in the system
loads or stores to a dirty line in the
cache of another processor, or
when a processor stores to a line
that is shared by one or more
processors in the system.

soft error Correctable single-bit
memory error. May further be
defined as transient (non-
reproducible) or stuck
(reproducible).

space A contiguous range of
virtual addresses within the
system wide virtual address space.

synchronization A way to keep
two threads from accessing the
same critical region
simultaneously. You can
synchronize programs using
compiler directives, thread library
calls, or assembly-language
instructions. You do so, however,
at the cost of additional overhead;
synchronization may cause at least
one processor to wait for another.

system console The terminal or
workstation that serves as a
communication device between
the system manager and the
computer system. On the V-Class
server, the teststation serves as
the system console.

TLB Translation Lookaside
Buffer. A hardware structure in
each processor of the V-Class
server that contains the
information necessary to translate
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a virtual memory reference to a
physical page and to validate
memory accesses.

TOC Time of Century. Used
register to time stamp trace data
and interprocess messages.

teststation The workstation that
is used to diagnose problems and
install system software.

thread An independent execution
stream that is fetched and
executed by a processor. One or
more threads, each of which can
execute on a different processor,
make up each process. Threads are
created and terminated by
instructions that can be
automatically generated by
compilers, inserted by adding
compiler directives to source code,
or coded explicitly in Fortran, C, or
C++ programs.

thread-private or thread-
specific Data that is accessible by
a single thread only (not shared
among the threads constituting a
process). Thread-specific data
allows the same virtual address to
refer to different physical memory
locations.

trap A type of interrupt caused
when either the function requested
by the current instruction cannot
or should not be carried out, or
system intervention is desired by
the user before or after the current
instruction is executed. Typically,
this condition is a result of
unexpected arithmetic results.

virtual address An address used
by a program to access data or
instructions. The V-Class server
maps each virtual address to
physical memory location.

virtual alias Two different
virtual addresses that map to the
same physical memory address.

wall-clock time The time an
application requires to complete its
processing. If an application starts
running at 1:00 p.m. and finishes
at 5:00 a.m. the following morning,
its wall-clock time is sixteen hours.

wired-down The term that
applies to virtual-to-physical
address translation indicating that
the two addresses remain the same
after translation.
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Index

A
accelerated cache coherence, 46
address, 10, 14, 17, 20, 23, 33,

48, 57, 113, 144, 155, 170,
178, 201

absolute, 14, 49, 201
aliasing, 48
EPIC CSR format, 119
generation, 24
logical, 110, 205

translation, 112
mapping, 103, 107, 115
memory, 24, 54, 56, 72, 74,

110, 111, 122, 171, 173,
206

physical, 10, 14, 15, 16, 17, 22,
23, 30, 33, 36, 41, 44, 48,
52, 62, 84, 85, 110, 111,
112, 201, 204, 206
translation, 44, 85, 110

physical translation, 110
space, 10, 14, 16, 17, 78, 103,

201, 204
format of I/O, 106
partitioning, 15
PCI, 106, 122
target, 119

virtual, 10, 44, 48, 52, 85, 205,
206
translation, 44

Address Translation Enable bit
(ATE), 110

advisory error, 175, 177, 178,
179, 183, 184, 185, 201

aliases
arbitrary, 49
equivalent, 48, 49
instruction, 49
nonequivalent, 48, 49
virtual index error, 49

architecture, xiii, 1, 2, 10, 14,
48, 56, 83, 89, 201

B
block, 24, 25, 27, 28, 29, 39, 53,

54, 76, 78, 79, 110, 122,
125, 201

block TLB, 53, 54, 76, 110, 201
Block Translation Entry (BTE),

78, 79
Block Translation Table (BTT),

54, 76, 78, 79
booting, 5, 8, 142, 144, 159, 161,

162, 163, 164, 165, 166,
176, 178, 185, 201, 202, 203

checksum verification, 165
core logic initialization, 165,

166
hardware reset, 162
HP-UX, 167

installation, 168
normal, 168

node ASIC initialization, 166
node clean up and OBP boot

process, 166
node configuration

determination, 165
node main memory

initialization, 166
POST, 163, 164, 165, 166
processor initialization, 165
processor selftest, 165

buffer, 44, 46, 103, 110, 111,
113, 114, 115, 116, 117,
118, 201, 206

prefetch, 103, 114, 115, 116
receive, 111
write, 117

bus, 3, 5, 6, 8, 10, 101, 106, 110,
123, 124, 128, 129, 142,
143, 145, 146, 182, 185,
186, 201, 202, 204

COP, 145
core logic, 3, 4, 5, 8, 30, 92, 93,

94, 95, 143, 146, 147, 202
JTAG, 142, 143, 158

PCI, 14, 101, 103, 104, 106,
107, 110, 113, 115, 122,
123, 124, 127, 128, 129,
131, 132, 202

Runway, 5, 33, 46, 182, 185,
186, 205

byte swapping, 132

C
cache, 201

cache tag, 47
coherence, 10, 46
coherence checks, 46
data, 10, 46, 88
flush, 44, 49
Flush Data Cache (FDC), 45,

49
Flush Data Cache Entry

(FDCE), 45, 46, 49
Flush Instruction Cache (FIC),

45
Flush Instruction Cache Entry

(FICE), 45, 46
flush method

specifying a cache entry to
flush, 44

specifying a memory line
address, 44

hit, 134
hit rate, 133
instruction, 10, 44, 45, 46, 203
miss, 134
move-in, 44, 204
parity errors, 185
processor, 10, 49, 82
purge, 44
Purge Data Cache (PDC), 45
purge TLB, 44
recoverable errors, 161

cache memory, 201
channel context, 104, 105, 110,

124
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channel initialization, 104, 105,
114, 115, 119, 124

channel prefetch space, 115
channel prefetch/refetch modes,

115
check, 31, 34, 35, 90, 136, 201
checksum verification, 165
coherency, 8, 44, 202, 204
Coherent Increment Double

(CINCD), 88
coherent memory, 17, 44, 46, 49,

103, 113
coherent memory space, 13, 14,

15, 17, 18, 24, 36, 88
communication costs, 134
console ethernet, 142, 145, 158,

159, 169
control and status registers, 202

access, 33
of node CSRs, 34
software, 37
to nonexistent CSRs, 35

configuration
EMAC Configuration, 40
EMAC Memory Row Con-

figuration, 41
EMAC System Configura-

tion, 35
EMUC ERAC Configura-

tion Control, 155, 156
EPAC Configuration, 34,

37, 166
EPAC Memory Board Con-

figuration, 39
EPAC Processor Configura-

tion, 38
EPAC System Configura-

tion, 34, 35, 36
EPAC Time of Century

(TOC), 136
EPIC Chip Configuration,

119, 121
EPIC Interrupt Configura-

tion, 119, 126
EPIC PCI Master Configu-

ration, 121, 122
PCI Master Configuration,

132
PCI Slot Interrupt Configu-

ration, 130, 132
core logic, 30

EMUC Processor Report,
154

EMUC Processor Sema-
phore, 155

EMUC System Hard Error,
178

EPUC Processor Agent Ex-
ist, 146

EPUC Revision, 146
ERAC Configuration Con-

trol, 155, 156
ERAC Data, 155
ERAC Reset, 156
Reset, 156

core logic space, 30
data mover, 54

EMAC Message Allocation
address, 54, 71

EMAC Message Comple-
tion Dequeue address, 54,
74, 75

EMAC Message Comple-
tion Enqueue address,54,
72, 73

EMAC Message Comple-
tion Queue Configuration,
54, 69, 70

EMAC Message Comple-
tion Queue Offset, 54, 70

EMAC Message Reception
Area Configuration, 54,
67

EMAC Message Reception
Area Offset, 54, 68

EPAC Input Command, 54,

59, 60, 61
EPAC Operation Address,

54, 59
EPAC Operation Context,

54, 57, 58
EPAC Operation Status

Queue, 64, 65
EPAC Source and Destina-

tion Offset, 54, 63
EPAC Source and Destina-

tion Physical Frame, 54,
62

diagnostics
EMAC Diagnostic Address,

169, 170, 171, 172, 173
EMAC Diagnostic Data,

169, 171, 172, 173
EMAC Diagnostic Memory

Initialization address,
173

EMAC Diagnostic Memory
Read ECC address, 172

EMAC Diagnostic Memory
Write ECC address, 172

EMAC Diagnostic Read
Memory Data address,
172

EMAC Diagnostic Scrub
Memory address, 173

EMAC Diagnostic Write
Memory Data address,
172

discussed, 5, 8
EPAC

error response from cross-
bar, 181

operation status queue, 186
SADD_LOG, 180, 181

I/O, 31, 119
EPIC Channel Builder,

104, 105, 114, 115, 119,
124

EPIC Chip Configuration,
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119, 121
EPIC Interrupt Configura-

tion, 119, 126
EPIC Interrupt Enable,

119, 126, 127
EPIC Interrupt Source,

119, 126, 127
EPIC PCI Master Configu-

ration, 119, 121, 122, 132
EPIC PCI Master Status,

119, 123
PCI Slot Configuration,

119, 128, 132
PCI Slot Interrupt, 119,

130
PCI Slot Status, 119, 129
PCI Slot Synchronization,

119, 131
I/O memory space, 31
interrupt

EMUC Interrupt Status, 94
EPAC Interrupt Delivery,

94, 95, 97
EPUC Interrupt Force, 98,

100
EPUC Interrupt Mask, 94,

98, 99
EPUC Interrupt Status,98,

99
External Interrupt Request

register (EIRR), 90, 91,
92, 94, 126, 130

non-I/O CSR space, 15, 32
performance monitors

EPAC Time_TOC Clock,
137, 138

Time of Century (TOC), 91,
135, 136, 137

processor-specific, EPAC, 33
synchronization

EPAC Coherent Increment
Addresses, 87

EPAC Fetch Operation Ad-

dresses, 86
EPAC Operation Address,

84, 87
EPAC Operation Context,

84, 85, 87
EPAC Read and Write Op-
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