
July 20, 2000

Cray Inc. 1 of 39

The Benchmarker’s Guide for
CRAY SV1 Systems

Maynard Brandt, Jeff Brooks, Margaret Cahir, Tom Hewitt, Enrique Lopez-
Pineda, Dick Sandness

Cray Inc.

How to use the features of the CRAY SV1 series computers from a high-level
language to improve the performance of application code.

1.0 Introduction

The CRAY SV1 is the latest shared-memory vector processing system from Cray Inc..
The system represents a blend of an old architecture (the CRAY Y-MP) with some new
features such as dual vector pipes and vector data caches.

This paper is targeted at users who want to get the highest levels of performance out of
their programs on the CRAY SV1 system. The hardware is described, and programming
implications that fall out of the architecture and implementation are illustrated.

The programming examples presented here are written in FORTRAN, but the principles
described also apply to C and C++.

2.0 Hardware Overview

The CRAY SV1 is significantly different from previous Cray vector machines in that it
provides a cache for the data resulting from scalar, vector and instruction buffer memory
references. Like its predecessors, the SV1 provides high bandwidth to memory for both
unit and non-unit stride memory references.

The CRAY SV1 is configured with 4 to 32 CPUs. Each CPU has 2 add and 2 multiply
functional units, allowing each CPU to deliver 4 floating point results per CPU clock
cycle. With the 300 MHz CPU clock the peak floating point rate per CPU is 1.2 Gflop/s
and 38.4 Gflop/s for the system.

The SV1 memory architecture is uniform access, shared central memory. Uniform
memory access (UMA) means that the access time for any CPU memory reference to

Hardware Overview

2 of 39 Benchmarker’s Guide for Cray SV1 Systems

any location in memory is the same. Another commonly used term for UMA is “flat”
memory. Memory capacity for the system ranges from a minimum of 4 GBytes up to a
maximum of 32 GBytes.

The CRAY SV1 has two module types, processor and memory. The system must be
configured with eight memory modules and one to eight processor modules. Each pro-
cessor module has four CPUs. A CRAY J90 processor module can be upgraded with a
SV1 processor module and the CRAY J90 system can be configured with both processor
module types, J90 or SV1.

2.1 The Processor

The CRAY SV1 CPU is a custom CMOS. The processor is implemented using two chip
types, cpu and cache.

The cpu chip contains the vector and scalar units. Scalar registers, scalar functional
units and the instruction buffers reside in the scalar unit while the vector unit contains
vector registers and the vector functional units. As in previous Cray vector systems, the
CRAY SV1 processor contains 8 vector (V) registers, 8 scalar (S) registers backed by 64
T registers, and 8 address (A) registers backed up by 64 B registers. A parallel job also
has access to 8 shared B and 8 shared T registers which are used for low overhead data
passing and synchronization between processors.

A vector functional unit contains two pipes each capable of producing a result every
CPU clock cycle. This results in a peak rate for a functional unit of two results per clock
cycle. The maximum vector length, or VL, is 64. The floating point functional units, add
and multiply, combined deliver 4 results per CPU clock cycle and with the CPU clock
rate of 300 MHz a peak floating point rate of 1.2 Gflop/s for the processor is achieved.
In addition to the add and multiply units, the other vector functional units are reciprocal,
integer add, shift, pop/parity/leading zero, bit matrix multiply and logical. The vector
units are capable of full chaining and tailgating. Chaining is reading from a V register
that is still being written to and tailgating is writing to a V register that is still being read
from a prior vector instruction. Scalar floating point operations are executed using the
vector functional units. This is different from the Cray J90 which has separate floating
point functional units for scalar operations.

To move data between CPU registers and memory via the cache two data paths or ports
are provided to the cache. In any given clock cycle two memory requests can be active
and consist of two dual-port reads or one dual-port read and one dual-port write. If there
are no read requests there can be only one write request active. As mentioned in section
2.0 the processor can access up to 32 Gbytes of memory but an application is limited to
a 16 Gbyte address space.

Instructions are decoded by the scalar unit and when vector instructions are encountered
they are dispatched to the vector unit which maintains an independent instruction queue.
Barring instruction dependency the two units can execute independently.

There are 32 performance counters provided in 4 groups of 8 each. Only one group can
be active at a time with software providing user access to the data. The groups are

Hardware Overview

Benchmarker’s Guide for Cray SV1 Systems 3 of 39

labeled 0 thru 3 and the collection order based on how useful the performance informa-
tion is to the user would be is 0, 3, 2 and 1. The hardware performance moniter is cov-
ered in more detail in section 6.1.

In addition to the CPU clock there is a system clock which runs at the rate of 100 MHz.
When using the CPU instruction to return the count of clock ticks it should be noted that
the tick count is generated by the system clock rate.

2.2 Cache

The SV1 cache size is 256 KBytes and is 4-way set associative, write allocate, write
through with a least recently used (LRU) replacement strategy. The data resulting from
vector, scalar and instruction buffer memory references is cached. The cache-line size is
8 bytes, or 1 word long.

The SV1 cache is located between the cpu and the interface to main memory. The inter-
face between cache and the cpu consists of four 64-bit read data paths and two 64-bit
write data paths. The same number and types of paths exist between the cache and the
interface to memory.

The SV1 cache is 4-way set associative which means that the cache is organized into
sets, where each set is composed of 4 separate ways or cache lines. A memory address is
mapped in a manner that results in the data represented by that address being placed in
one particular cache set. That is, in an N-way set associative cache, an expression such
as “modulo (memory_address, cache_size/N)”, will indicate to which set in cache the
address maps. Since memory is much larger than cache, each set has many memory
addresses that map into it. The four ways allow up to four memory addresses to map
into the same cache set. If it becomes necessary to map a new address into a fully allo-
cated cache set, the way for the least recently used address will be used and its data will
be overwritten. (Note: direct-mapped cache and fully associative cache may be viewed
as special “end” cases of the general N-way set-associative cache, where for direct-
mapped cache N equals 1 and for fully-associative cache N equals the number of cache
lines.)

The write allocate attribute of the cache requires that the address and data for a cpu
write request to memory be mapped and placed into the cache if the request generates a
cache miss. Because SV1 has a write-through cache, any value that is updated in cache
will always be written through to memory at the same time. This is in contrast to a write
back cache where a value is updated in memory when there is no longer room for it in
cache, i.e., the value will be written back during a read to another value, which makes
reads more expensive. However, write through can mean that more writes to memory
are made than are strictly necessary when data is updated several times while remaining
cache-resident. The cache contains buffers capable of holding 384 outstanding refer-
ences. This is sufficient for the cache to handle 6 vector references of stride 1 (384 refer-
ences = 6 vectors * 64 references per vector).

The one-word cache line size is advantageous for non-unit vector strides as it doesn’t
cause the overhead of unnecessary data traffic when referencing memory using larger
cache line sizes. It has the disadvantage that a single scalar reference would not bring in

Hardware Overview

4 of 39 Benchmarker’s Guide for Cray SV1 Systems

surrounding data, thus potentially inhibiting a scalar code to take advantage of spatial
locality. For this reason, scalar references have a prefetch feature, whereby a scalar ref-
erence causes 8 words to be brought into cache. These 8 words are determined by
addresses which match the reference except for the lower 3 bits. This causes an effect
for scalar loads which is similar to having a cache line size of 8 words.

SV1 relies on software for cache coherency between processes that share memory.
Cache is invalidated as part of the test-and-set instruction. The test-and-set instruction
has been used for processor synchronization in previous generation Cray vector sys-
tems. Adding the cache invalidation feature to this instruction allows old Cray binaries
to run in parallel on the SV1 with the data cache enabled. The SV1 system libraries for
parallel processing have all been modified to invoke the test-and-set when it is necessary
to invalidate cache. Therefore users should be able to port codes written for Autotask-
ing, OpenMP, MPI, and PVM without modification for the purposes of cache coherency.
SHMEM codes should also port without modification with one exception as noted
below.

In the case of the shared-memory parallel programming models, Autotasking and
OpenMP, a test-and-set is issued at the beginning and end of parallel regions, at parallel
loop iterations and at critical regions (locks and guards). For MPI and PVM programs,
there is no shared data from the user’s view, and the libraries take care of managing con-
sistency within themselves. Although it is better to maximize the granularity of parallel
tasks and minimize synchronization on any architecture, for SV1 there is additional
incentive because it is best to avoid cache invalidations.

The SV1 SHMEM library routines that perform cache invalidates are shmem_barrier,
shmem_wait and shmem_udcflush. In order to avoid race conditions, a shmem_barrier
or shmem_wait is typically issued before remotely updated data is used. This will take
care of cache coherency considerations at the same time. Codes that were originally
written for the T3D may need to be modified if they make use of the
shmem_set_cache_inv and shmem_clear_cache_inv routines. These routines invali-
dated cache on the T3D and are no-ops on the T3E, but are not supported on the SV1
(i.e., you will get an unsatisfied external message when you try to load). These codes
will need to be reworked, probably by replacing each shmem_set/clear_cache_inv call
with a shmem_barrier or a shmem_udcflush.

When programs are run on the SV1, but data and instructions are cached by default. A
user can turn off data or instruction caching through the use of the “cpu” command. For
example:

$ /etc/cpu -m ecfoff a.out

Turns off cacheing of instruction buffer fetchs for the program (but leaves data caching
on).

Performance counter group 0 provides cache hit data. Some characteristics of this data
should be noted. Instruction buffer references that generate cache hits will be counted as
such but the references will not be counted as memory references. This can indicate that
a program is generating a higher cache hit rate for its data than is really the case. Use the

Hardware Overview

Benchmarker’s Guide for Cray SV1 Systems 5 of 39

“cpu” command to disable instruction buffer caching to determine this effect on the per-
formance data.

In Table 1 some typical processor latencies are listed.

2.3 Peak and Measured Bandwidths

This section reviews the memory architecture and the peak and sustained performance
rates between the CPU and Cache plus CPU and Memory. The following figure repre-
sents the relationship between CPUs, their caches and main memory.

Table 1: Cray SV1 Processor Latencies

Operation Time (300Mhz clocks)

V reg - cache 25

S reg - cache 22

V reg - memory 109

FP Add unit 8

FP Multiply unit 9

FP Reciprocal unit 16

Jump 6

 MEMORY

MEMORY INTERFACE

CACHE CACHE

CPU CPU

.

.

Hardware Overview

6 of 39 Benchmarker’s Guide for Cray SV1 Systems

Memory modules are the building blocks of the SV1 main memory, the type of which
determines the memory density, the number of banks and the bank busy time. A single
SV1 cabinet will have 8 memory modules, for 8x8 backplanes. A 4x4 backplane, with 4
memory modules, was available on J90 systems and can be upgraded with SV1 CPUs.

Central memory is divided into 8 sections and each processor module has an indepen-
dent path into each memory section. The 4 CPUs and the I/O on a processor module
share these eight paths. Each of the eight paths is capable of sending one request to
memory per memory subsystem clock period (100 Mhz.) and receiving read data from
memory at the same rate. The resulting theoretical peak bandwidth is 6.4 Gbytes/s per
module. This compares to the measured STREAMs rate of 5 Gbytes/s for 4 processors
on a common module. If the 4 processors are located on separate modules, then the
measured STREAMs rate is 9.7 Gbytes/s, which is approximately 4 times the individual
processor measured rate.

The memory modules can be one of two types which are named mem128 or mem512.
The type number indicates the size of the module in millions(1024) of 64 bit words.
Each memory section has eight subsections configured with eight banks plus eight
pseudo banks. This bank configuration is also known as a pseudo bank pair. A bank is
labeled pseudo because it shares a data path with its corresponding bank in the subsec-
tion. Every CPU data path or port, thru the cache and memory interface, has an indepen-
dent path to each memory section.

The peak rate between a CPU and memory can be viewed from the perspective of the
CPU’s ability to generate requests, and from the memory’s capability to satisfy requests.
Since a CPU can generate 4 memory requests perCPU clockcycle, 4 read or 2 read and
2 write, the resulting peak CPU to cache rate is 9.6 Gbyte/s. If we assume cache is
turned off the peak CPU to memory rate is 4 memory requestsper memory subsystem
clock periodor 3.2 Gbyte/s. The maximumsustainedbandwidth of a single processor to
memory is 2.5 Gbyes/s as seen in the STREAM benchmark results.

From the memory’s perspective, bank or pseudo bank pair can transfer 8 bytes of data
every N system clock cycles. N is called the bank or pseudo bank pair busy time. The
following formula calculates the peak rate achievable by a given memory configuration.

Gbyte/s = number of banks / bank busy cycles * system clock * 8 *.001

For a system configured with mem512 modules the memory rate would be:

Gbyte/s = 512 / 6 *100 * 8 *.001 or 68.3

Hardware Overview

Benchmarker’s Guide for Cray SV1 Systems 7 of 39

A summary of the configuration characteristics and peak rates for SV1 memory module
types is presented in Table 2.

Thesustainable rate between the CPU and cache or memory is defined as the rate mea-
sured by a program whose performance limit is determined by this capability.

The sustainable rate for CPU reads from cache is 5.1 Gbyte/s. This rate is most likely to
occur with vector reduction algorithms that fit in the cache.

To measure the sustainable rate between the CPU and memory the STREAM bench-
mark was used. Because of its memory reference patterns the performance of the bench-
mark is not affected by the cache. In Table 3 results for the benchmark are presented
representing different processor counts as well as processor assignments to modules.

Table 2: SV1 Memory configuration and peak rates

SV1 Configuration and Peak Rates

Memory module type mem128 mem512

Number of CPUs 32 32

Number of memory sections 8 8

Number of memory subsections 8 8

Number pseudo bank pairs 512 512

Pseudo bank pair busy clocks 8 6

Memory size Gbyte 8 32

CPU to cache rate, Gbyte/s 9.6 9.6

CPU to memory rate, Gbyte/s 3.2 3.2

Memory rate Gbyte/s 51.2 68.3

Table 3: CPU to Memory rate measured by the STREAM SUM Test

Stream SUM test Gbyte/s between the CPUs and Memory

Number
Number

cpu
Memory Module Type

CPUs Modules mem512 mem128

1 1 2.52 2.51

2 1 4.71 4.68

2 2 5.00 4.97

Single Processor Programming Implications

8 of 39 Benchmarker’s Guide for Cray SV1 Systems

3.0 Single Processor Programming Implications

In this section, we will discuss performance programming implications for the Cray
SV1 system.

3.1 Vectorization

Vectorized constructs perform up to a factor of 20X faster compared with non-vector
constructs. On non-cached Cray vector systems, performance on vector constructs gen-
erally increased as a predictable function of vector length. This is not always the case on
the Cray SV1, however, as long vectors can lead to a reduction in data cache efficiency.
In general, it is better to used blocked algorithms (similar to those commonly used on

4 1 5.08 5.07

4 2 9.25 9.10

4 4 9.89 9.76

8 2 9.95 9.74

8 4 16.76 15.00

8 8 18.89 18.26

12 4 14.22 13.51

12 6 21.72 19.58

12 8 22.93 20.62

16 4 17.69 16.30

16 8 25.04 21.66

20 8 24.85 21.65

24 8 24.98 21.84

28 8 25.37 21.83

32 8 25.44 21.93

Table 3: CPU to Memory rate measured by the STREAM SUM Test

Stream SUM test Gbyte/s between the CPUs and Memory

Number
Number

cpu
Memory Module Type

CPUs Modules mem512 mem128

Single Processor Programming Implications

Benchmarker’s Guide for Cray SV1 Systems 9 of 39

microprocessors) balancing the vector length against any potential data reuse that can be
exploited via the data cache.

The Cray cf90 compiler will generate a loop mark listing showing which loops in a pro-
gram vectorize or parallelize. This can be enabled with the-rm option under f90. Loops
with a very large number of lines (100s) may require the-Oaggressoptimization flag on
the compiler as this allows for larger internal tables for compiler analysis.

Vectorization inhibitors within DO loops include:

■ CALL statements

■ I/O statements

■ Backward branches

■ Statement numbers with references from outside the loop

■ References to character variables

■ Non-vector external functions

■ RETURN, STOP, or PAUSE statements

■ dependencies

Many of these can be addressed through slight modifications of the source code.

3.1.1 Dependencies

Dependencies may be real or potential, depending upon data sets in many cases. For
example, the compiler will not cleanly vectorize the following loop (NOTE: the com-
piler will mark this loop as “vectorized”, but the method used has extra overhead to
check for repeated index values):

 do i = 1, n

 A(index(i)) = A(index(i)) + b(i)

 enddo

In this case, there is a potential dependency on the arrayA. A dependency exists if the
index array has repeated values within a vector length (64 elements). If, for example, the
programmer knows thatindex(i) is monotonically increasing, orindex(i) is unique for
each value of i, then no dependency exists and the programmer can assert so through a
compiler directive:

!dir$ ivdep

 do i = 1, n

 A(index(i)) = A(index(i)) + b(i)

 enddo

Adding this directive to a “safe” loop can improve performance by up to a factor of 10.

The benchmarking group has also addressed four indirect update cases where an index
list is used. A set of routines has been developed which will vectorize four flavors of
indirect update loops by removing any vector dependency regarding the storing index.
The routines will exceed the performance of Fortran 90 generated code provided the

Single Processor Programming Implications

10 of 39 Benchmarker’s Guide for Cray SV1 Systems

storing index changes infrequently compared to the number of times the indirect update
loops are executed. The four cases covered are:

■ ind_update.f will vectorize the loop:

 do j=1,N

 A(I(j)) = A(I(j)) + B(j)

 enddo

■ ind_vpv.f will vectorize the loop:

 do j=1,N

 A(I(j)) = A(I(j)) + B(K(j))

 enddo

■ ind_vpvu.f will vectorize the loop:

 do j=1,N

 A(I(j)) = A(I(j)) + B(j) * C(K(j))

 enddo

■ ind_vpvv.f will vectorize the loop:

 do j=1,N

 A(I(j)) = A(I(j)) + B(K(j)) * C(L(j))

 enddo

The above routines are available from the benchmarking group upon request.

In many cases, the dependency is real but can be programmed around with some loop
restructuring. For example, in the following loop there is a vector dependency in both
the inner and outer loops:

 do j = 1, n

 do i = 1, m

 temp = .25*(x(i,j-1)+x(i-1,j)

* + x(i+1,j)+x(i,j+1))-x(i,j)

 x(i,j) = x(i,j) + omega * temp

 if (abs(temp).gt.err1) err1=abs(temp)

 enddo

 enddo

In this case, x(i,j) is defined using the north, south, east, and west neighbors. In the cur-
rent form of the loop, x(i-1,j) is needed to update x(i,j) which creates a dependency in

Single Processor Programming Implications

Benchmarker’s Guide for Cray SV1 Systems 11 of 39

the i direction. Switching the loops gives us a similar problem in the j direction. This
loop runs at about 20 Mflop/s on the Cray SV1. The stencil and resulting dependency is
shown in the following figure:

A solution to this problem is to change the vectors to run diagonally through the matrix
X. This can be coded as follows:

 do jd=2,n+m

!dir$ ivdep

 do j=max(1,jd-m),min(n,jd-1)

 i = jd - j

 temp = .25*(x(i,j-1) + x(i-1,j)

 * + x(i+1,j) + x(i,j+1)) - x(i,j)

 x(i,j) = x(i,j) + omega * temp

 if (abs(temp) .gt. err1) err1 = abs(temp)

 enddo

 enddo

Note that the leading dimension of the matrix should now be even because the stride is
LDA-1. This loop now vectorizes and runs at over 260 Mflop/s on a 1000x1000 grid.

About to be updated

Already updated

Not updated yet

Loop direction

Points in Stencil

About to be updated

Already updated

Not updated yet

Loop direction

Points in Stencil

Single Processor Programming Implications

12 of 39 Benchmarker’s Guide for Cray SV1 Systems

Cache hit rates run at about 50% because two of the four stencil points lie in the recently
updated vector and hence are in cache.

3.2 The Data Cache

The most important departure of the SV1 from previous CRAY vector machines, is the
addition of a data/instruction cache. The data cache can deliver operands to the func-
tional units at a rate 2 to 3 times greater than the main memory and this can result in a 2
to 3 times faster code if the data cache is utilized well.

The SV1 cache differs from those associated with mainstream microprocessors in sev-
eral important ways:

1. Cache line width: The cache-line width for vector references is a single word (8
Bytes). Unlike most microprocessors, contiguous memory references are not
required in order to achieve full cache/memory bandwidth.

2. Bandwidth: The SV1 data cache has very high memory bandwidth (up to 4 words
per clock period).

3. Size: 256KB is small by modern standards. You may need smaller blocking factors
than on many microprocessor-based systems.

4. Write-through: This means that any memory stores go all the way to main
memory. As system memory bandwidth is often a limiting resource it pays to mini-
mize unnecessary data stores.

5. Non-Coherence: Due to the need to be binary compatible with the Cray J90, the
Cray SV1 cache, does not maintain coherency with the other processors. This means
that if another processor performs a store to memory, that the users cache does not
obtain the new data value. We bear the cost when we perform multiprocessor
synchronization, at which time the cache is invalidated. The implication is that better
parallel performance is achieved with larger granularity.

Data in the SV1 cache is much closer to the processor than data in main memory. A sca-
lar loop running with data already in the cache can run very much faster than if the data
is in memory only. Scalar cache-misses load eight words, i.e. they act like the cache-line
size was 8 words (64 Bytes). For this reason scalar stride one loops (for non-cache resi-
dent data) will run faster than general stride loops.

The data cache tends to increase performance when temporal locality exists in an algo-
rithm. Consider a single-dimensional, complex fft of length N. Because an fft has
Nlog2(N) floating point operations and only 2N data, significant temporal re-use exists.
The following graph shows the performance of such an fft on the SV1 system (cached
vector system) and a Cray C90 (non-cached vector system). As expected, the non-
cached C90 runs faster with larger problems. The SV1 performance is fastest at N=4096
and then declines due to cache size.

Single Processor Programming Implications

Benchmarker’s Guide for Cray SV1 Systems 13 of 39

In this case, longer ffts can be “blocked” using an alternative formulation such as the
four-step method. In general, many of the same blocking techniques used with cache-
based microprocessors will work well with the SV1 system.

3.3 Memory layout

The Cray SV1 is a real memory machine and programs occupy a contiguous space in
memory. One benefit of this design is that programmers do not have to be concerned
with the performance bottlenecks associated with the page tables of demand paged vir-
tual memory systems. Random accesses to tables as large as the entire memory will per-
form well.

Like previous machines, the SV1 obtains high system memory bandwidth, by interleav-
ing memory banks. The SV1 contains 512 pseudo-bank pairs. A long odd-strided mem-
ory reference will cycle through all of these banks. In addition, the cache is banked 8
ways. The main effect from the programmers standpoint is that memory/cache band-
width is stride dependent. As a general rule:

Odd strides: These are optimal, any odd stride (positive or negative) should be as
good as any other. All strides within a loop should match in order to minimize cache
footprint conflict effects.

Even strides: Factor the stride, and look for powers of two If there is only a single
factor of two, the access will only be slowed slightly (say 20%). If it contains a fac-
tor of four, the best you can get is half, speed. Multiples of eight run at 1/4 speed.

The following code fragment is from the X-Ray crystallography program SHELXL. As
written here, it performs at 153 Mflop/s on the Cray SV1:

 REAL A(N),B(N),C(N),D(N),E(N)

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25

SV1

C90
Mflop/s

Log2 FFT Length

1 Dimensional Complex FFT Performance

Single Processor Programming Implications

14 of 39 Benchmarker’s Guide for Cray SV1 Systems

 M=(N/4)*4

 DO 1 I=1,M,4

 A(I)=A(I)+C(I)*D(I)

 B(I)=B(I)+C(I)*E(I)

 A(I+1)=A(I+1)+C(I+1)*D(I+1)

 B(I+1)=B(I+1)+C(I+1)*E(I+1)

 A(I+2)=A(I+2)+C(I+2)*D(I+2)

 B(I+2)=B(I+2)+C(I+2)*E(I+2)

 A(I+3)=A(I+3)+C(I+3)*D(I+3)

 B(I+3)=B(I+3)+C(I+3)*E(I+3)

 1 CONTINUE

 IF(M+1.GT.N)GOTO 2

 A(M+1)=A(M+1)+C(M+1)*D(M+1)

 B(M+1)=B(M+1)+C(M+1)*E(M+1)

 IF(M+2.GT.N)GOTO 2

 A(M+2)=A(M+2)+C(M+2)*D(M+2)

 B(M+2)=B(M+2)+C(M+2)*E(M+2)

 IF(M+3.NE.N)GOTO 2

 A(N)=A(N)+C(N)*D(N)

 B(N)=B(N)+C(N)*E(N)

 2 RETURN

 END

Upon close examination, we determine that this is a simple loop that has been unrolled
by 4. This was a common technique to speed up programs on non-vector systems
although today the unrolling task is better handled automatically by compilers. Unroll-
ing the loop by 4 causes the following problems on the SV1:

■ The loop still vectorizes, but we have introduced a stride of 4

■ We have reduced the effective vector length from N to N/4

We simplify the code and get rid of these two problems by re-rolling the loop as follows:

 DO 1 I=1,M

 A(I)=A(I)+C(I)*D(I)

 B(I)=B(I)+C(I)*E(I)

 1 CONTINUE

The resulting code improves to 357 Mflop/s.

3.4 Minimizing Stores

The SV1 cache policy is write-allocate and write-through. This means that any store
will consume memory bandwidth and cache footprint. In many cases, stores can be
reduced through unrolling and a technique called outer loop vectorization. We use the
following matrix-vector multiply kernel to illustrate the techniques. A matrix vector

Single Processor Programming Implications

Benchmarker’s Guide for Cray SV1 Systems 15 of 39

multiply of size N has 2*N^2 floating point operations and N^2 data. From an algorithm
perspective, a minimum of one memory operation will be required for every two float-
ing point operations giving us a maximum computational intensity of 2 (2 flops per
memory operation).

To inhibit full compiler optimization, the loop is compiled as follows:

f90 -Onopattern,nointerchange -rm mxv.f
 subroutine mxv(a,lda,n,b,x)

 real a(lda,n), b(lda), x(lda)

 1-----< do j = 1, n

 1 Vr--< do i = 1, n

 1 Vr x(i) = x(i) + a(i,j) *b(j)

 1 Vr--> enddo

 1-----> enddo

 return

 end

From the listing file, we see that the inner loop is vectorized (V) and unrolled (r). Note
that the unrolling here is on a vector chime basis (64-elements), not on a iteration by
iteration basis as illustrated in the last section. For example, if the compiler tells us that
a vector loop was unrolled by 2, it means two vector chimes (or 128 elements) are pro-
cessed before loop iterations are incriminated.

From HPM, we are able to determine that this loop runs at 250 Mflop/s is requesting
operands at the rate of 374 Mwords/s (3 words for every 2 flops, or a computational
intensity of 2/3). Of this 374 Mwords/s, 250 Mwords/s is satisfied by main memory and
the remaining 124 Mwords/s is satisfied from the data cache.

Since x(i) is updated for each pass of j, we can unroll the j loop into the inner loop and
reduce the number of times x(i) is updated. For example, if we unroll by 4 times, we
should reduce loads and stores to X by a factor of 4:

 subroutine mxv1(a,lda,n,b,x)

 real a(lda,n), b(lda), x(lda)

 1----< do j = 1, n, 4

 1 V--< do i = 1, n

 1 V x(i) = x(i) + a(i,j) *b(j)

 1 V 1 + a(i,j+1)*b(j)

 1 V 1 + a(i,j+2)*b(j)

 1 V 1 + a(i,j+3)*b(j)

 1 V--> enddo

 1----> enddo

 return

 end

Single Processor Programming Implications

16 of 39 Benchmarker’s Guide for Cray SV1 Systems

Performance has improved from 250 Mflop/s to 301 Mflop/s. In addition, overall band-
width consumed has dropped from 374 Mwords/s to 226 Mwords/s (38 Mwords/s from
cache and 188 Mwords/s from main memory)

Another alternative is to switch the loop ordering and go to a dot-product formulation.
This eliminates vector store traffic in the inner loop:

 subroutine mxv(a,lda,n,b,x)

 real a(lda,n), b(lda), x(lda)

 1-----< do i = 1, n

 1 cdir$ prefer vector

 1 Vr---< do j = 1, n

 1 Vr x(i) = x(i) + a(i,j) *b(j)

 1 Vr---> enddo

 1-----> enddo

 return

 end

This formulation runs at 298 Mflop/s consuming 306 Mwords/s of total bandwidth (153
Mwords/s from cache and 153 Mwords/s from memory). In this case, loads to b(j) are
cached and loads to a(i,j) are not. We have reached our algorithmic ideal ratio of 2 flops
for every memory operation. Dot products, however, are not ideal on vector systems due
to the final vector reduction operation where a vector register of operands is collapsed
down to a single scalar value.

The ideal algorithm would hold 64-elements of X in a vector register until all updates
are complete. The 64-elements of the completed vector X would be written to memory.
This technique is called “outer-loop vectorization” this can be achieved by writing the
loop in a dot-product formulation and then inserting acdir$ prefer vector directive on
the outer loop:

 subroutine mxv(a,lda,n,b,x)

 real a(lda,n), b(lda), x(lda)

 cdir$ prefer vector

 V-----< do i = 1, n

 V r---< do j = 1, n

 V r x(i) = x(i) + a(i,j) *b(j)

 V r---> enddo

 V-----> enddo

 return

 end

This loop now runs at 395 Mflop/s consuming only 201 Mwords/s of total bandwidth
(199 Mwords/s from memory and 2 Mwords/s from cache). Re-use has moved from
cache into a vector register. Note that in many cases the compiler will choose this for-
mulation automatically.

Single Processor Programming Implications

Benchmarker’s Guide for Cray SV1 Systems 17 of 39

The SV1 memory is capable of delivering operands at the rate of 2.5 GBytes/sec (312
Mwords/s). Since 2 flops are computed for every word of memory bandwidth, this algo-
rithm has a peak potential rate of 624 Mflop/s (312 Mwords/s * 2) on the SV1. When
coded in assembly language, vector loads to A can be very carefully scheduled to
achieve maximum bandwidth:

 subroutine mxv(a,lda,n,b,x)

 real a(lda,n), b(lda), x(lda)

 CALL SGEMV ('n', N, N, 1., A(1,1), LDA,

 $ B(1), 1, 1., X(1), 1)

 return

 end

The libsci code runs this problem at 600 Mflop/s, consuming 305 Mwords/s of memory
bandwidth (3 Mwords/s from cache and 302 Mwords/s from memory)

3.5 Choosing a Loop Ordering

When presented with a nest of loops, the compiler can make choices about which loop
to vectorize and which loop to parallelize or multi-stream based on stride and vector
length. Sometimes, incomplete information is presented to the compiler which can
result in a sub-optimal choice. In addition, the compiler does not make loop order
choices based on temporal locality considerations. Consider the following loop nest:

 real a(69,92,115)

 do k = 2,115

 do j = 2,92

 do i = 2,69

 c(i,j,k) = 2.5*(a(i,j,k)-a(i,j,k-1))

$ *(b(i,j,k)-b(i,j,k-1))

 enddo

 enddo

 enddo

In this case, the compiler vectorized the k loop because it has the largest iteration count.
Because array A has an even middle dimension and because K is the last index, this
results in an even-strided vectorized loop. The code runs at 109 Mflop/s.

 25. V------< do k = 2,115

 26. V 2----< do j = 2,92

 27. V 2 3--< do i = 2,69

 28. V 2 3 c(i,j,k)=

 29. V 2 3--> enddo

 30. V 2----> enddo

 31. V------> enddo

Single Processor Programming Implications

18 of 39 Benchmarker’s Guide for Cray SV1 Systems

The j loop (2nd dimension) will give us the longest vector length that is not a multiple of
2 so it makes sense to choose it for the innermost loop. Next, we see that a temporal re-
use opportunity exists on the K index because both K and K-1 are referenced for arrays
A and B. For this reason we choose K to be the next loop in the nest. This leaves the i
loop as the outermost. In addition, we can force the compiler to unroll the K loop into
the J loop with an unroll directive which facilitates register re-use opportunities. Finally,
we use the “prefer vector” directive to tell the compiler to vectorize the J loop. The
resulting code looks like this:

 real a(69,92,115)

 do i = 2,69

!dir$ unroll(4)

 do k = 2,115

!dir$ prefer vector

 do j = 2,92

 c(i,j,k) = 2.5*(a(i,j,k)-a(i,j,k-1))

$ *(b(i,j,k)-b(i,j,k-1))

 enddo

 enddo

 enddo

Performance improves to 247 Mflop/s.

A good general rule of thumb is to vectorize on the longest odd dimension, and then
look for temporal re-use opportunities for the next level loop.

3.6 Fast Intrinsics:

The Cray math libraries provide a set of vectorized intrinsic functions that are accurate
to the last ULP (Unit in the Least significant Place). In most cases, the majority of the
time in these functions is spent ensuring that the last bit or two are correct. For many
applications, accuracy to the last 2 bits is sufficient and a significant performance advan-
tage can be realized. A set of faster intrinsics functions is available from the benchmark-
ing group at Cray. The performance of these functions is shown in Table 4.

Table 4:

Intrinsic Function Performance
(300 Mhz clocks per result)

Function libm.a benchlib

ALOG 16 5

ATAN 17 13

Parallel Programming

Benchmarker’s Guide for Cray SV1 Systems 19 of 39

The following example is Livermore Loop number 22 which calls the EXP function:

fw = 1.0

do 22 k = 1, 101

 y(k) = u(k) / v(k)

 w(k) = x(k) / (exp(y(k)) - fw)

enddo

The default performance of this loop is 254 Mflop/s and improves to 449 Mflop/s with
the libbnch intrinsics (this software is available upon request from the authors).

4.0 Parallel Programming

In this section, we discuss the various parallel programming models that are available on
the Cray SV1.

4.1 Multi-Streaming Processor and Streaming

The Cray SV1 is the first system from Cray that features a Multi Streaming Processor
(MSP). An MSP is composed of 4 processors, chosen in such a way that each processor
is on a unique CPU module (if possible). In the hardware section, we pointed out that a
single processor can sustain about 2.5 Gbytes/s of main memory bandwidth. This CPU
placement allows an MSP to sustain four times this, or 10.0 Gbytes/s of main memory
bandwidth.The processors are gang-scheduled by UNICOS, and are tied tightly to the
requesting program.

Although it may seem that parallel processing on an MSP is similar to other shared-
memory directive-based models (Autotasking, OpenMP), it is different in some key
areas. For example, when Autotasking on 4 CPUs, a program will use all the processors
only in parallel regions and only when they are available (there are idle CPUs in the sys-
tem). An MSP, on the other hand, will lock 4 CPUs onto a job through both serial and
parallel sections of a program, regardless of the amount of user code that is actually par-
allelized. Autotasking was designed so that CPU time would not be wasted. It would

COS 19 7

EXP 12 5

SIN 19 7

SQRT 8 6

Table 4:

Intrinsic Function Performance
(300 Mhz clocks per result)

Function libm.a benchlib

Parallel Programming

20 of 39 Benchmarker’s Guide for Cray SV1 Systems

allow a program to efficiently soak up any idle cycles that might be available. An MSP
was designed for performance. Because 4 CPUs are gang-scheduled, lower overhead
methods can be used to synchronize CPUs and hence finer granularity parallelism can
be exploited.

A second component of a Multi-Streaming Processor is the streaming option in the
compiler itself. To generate multi-streamed code for running on an MSP, use the follow-
ing compiler option:

f90 -Ostream[0-3] file.f

The compiler will automatically stream inner vector loops, and parallel outer loops
where available. The parallel code differs from Autotasking code as follows:

■ Static scheduling. All parallel constructs are divided into 4 equal parts by the stream-
ing compiler. Autotasking defaulted to guided scheduling for inner loops and to sin-
gle-iteration scheduling for outer loops.

■ Shared B registers are used for synchronization. This wasn’t possible with Autotask-
ing because gang-scheduling is required to make use of this hardware and this was
generally at odds with the design goals of Autotasking.

■ Inner vector loops are streamed by default. Under Autotasking, an extra option was
required because this usually wasn’t desirable.

■ High level parallelism (across the subroutine level) cannot be exploited by the
streaming compiler. Under Autotasking, user directives could be used to parallelize
code across subroutine boundaries.

The loop-mark listing (-rm) will show which loops streamed.

Consider the following loop (Livermore Loop number 7):

DO 7 k = 1, 1000

 X(k) = U(k) + R*(Z(k)) + R*Y(k)) +

 T*(U(k+3) + R*(U(k+2) + R*U(k+1)) +

 T*(U(k+6) + Q*(U(k+5) + Q*U(k+4))))

CONTINUE

This loop runs at 665 Mflop/s on a single processor of an SV1. When this loop is
streamed and run on an MSP, the first processor takes iterations 1-250, the second pro-
cessor takes 251-500, and so on. The performance on an MSP of the streaming code is
1018 Mflop/s, only 1.5 times faster than the single processor.

The main reason for the disappointing performance is the software cache-coherence on
the SV1. The Livermore loops are run with many repetitions and when multi-streamed
the cache is invalidated each time the loop is completed. Because the cache-line width
on the SV1 is only one word, this cache invalidation is usually not necessary. If we man-
ually edit the assembler language and pull out the test and set instruction responsible for
invalidating the cache, performance increases to 1542 Mflop/s. Unfortunately, under-
standing when it is safe to do this is beyond the scope of the compiler. The next-genera-
tion vector system from Cray will have hardware cache coherence so this invalidation
step will go away.

Parallel Programming

Benchmarker’s Guide for Cray SV1 Systems 21 of 39

Long-vector codes tend to stream well on the SV1, in part because they do not use the
cache well to begin with and so the extra cache invalidations do not hurt. Codes which
are dominated by nested loops can also stream well.

4.2 Autotasking/OpenMP

Autotasking and OpenMP are available on the Cray SV1. As mentioned above, the data
caches on the SV1 are not hardware coherent. The SV1 is also upwardly compatible
with the Cray J90. Parallel binaries from the J90 are able to run with the cache enabled
on the Cray SV1 due to the design of the test-and-set instruction. On the J90, this
instruction was used whenever it was necessary to synchronize processors in a parallel
program. On the SV1, a side-effect of this instruction is to also invalidate the caches,
allowing J90 binaries to run in parallel with cache enabled.

Because of this invalidation issue, the best performance can be obtained by synchroniz-
ing as little as possible. Consider the following example (from the Tomcatv SPEC 95
benchmark):

 DO 60 J = 2,511

 DO 50 I = 2,511

 XX = X(I+1,J)-X(I-1,J)

 YX = Y(I+1,J)-Y(I-1,J)

 XY = X(I,J+1)-X(I,J-1)

 YY = Y(I,J+1)-Y(I,J-1)

 A = 0.25D0 * (XY*XY+YY*YY)

 B = 0.25D0 * (XX*XX+YX*YX)

 C = 0.125D0 * (XX*XY+YX*YY)

 AA(I,J) = -B

 DD(I,J) = B+B+A*REL

 PXX = X(I+1,J)-2.D0*X(I,J)+X(I-1,J)

 QXX = Y(I+1,J)-2.D0*Y(I,J)+Y(I-1,J)

 PYY = X(I,J+1)-2.D0*X(I,J)+X(I,J-1)

 QYY = Y(I,J+1)-2.D0*Y(I,J)+Y(I,J-1)

 PXY = X(I+1,J+1)-X(I+1,J-1)-X(I-1,J+1)+X(I-1,J-1)

 QXY = Y(I+1,J+1)-Y(I+1,J-1)-Y(I-1,J+1)+Y(I-1,J-1)

C

C CALCULATE RESIDUALS

C

 RX(I,J) = A*PXX+B*PYY-C*PXY

 RY(I,J) = A*QXX+B*QYY-C*QXY

 50 CONTINUE

 60 CONTINUE

The inner loop consists of two 9-point stencils. Eight of the nine stencil points hit in the
data cache provided that we can hold three columns of array X and Y in the data cache.

Parallel Programming

22 of 39 Benchmarker’s Guide for Cray SV1 Systems

Note that the outer loop works across columns of these matrices. On a single processor,
this code runs at 502 Mflop/s.

With default Autotasking, the outer loop is parallelized as follows:

 105. 1 P------< DO 60 J = 2,511

 106. 1 P C

 107. 1 P V----< DO 50 I = 2,511

 108. 1 P V XX = X(I+1,J)-X(I-1,J)

 109. 1 P V YX = Y(I+1,J)-Y(I-1,J)

 110. 1 P V XY = X(I,J+1)-X(I,J-1)

 LOOP BODY OMMITTED

 128. 1 P V C

 129. 1 P V----> 50 CONTINUE

 130. 1 P-------> 60 CONTINUE <- invalidate here

On 4 CPUs, we see 1475 Mflop/s, or only a 2.9x speedup from Autotasking. This is
because Autotasking hands out iterations one at a time to available processors, and
issues the necessary test-and-set after every iteration. This all but assures that 3 columns
of X and Y will NOT be held in cache by any available processor. In this case, parallel
processing has destroyed the high level of cache re-use we enjoyed on a single proces-
sor.

Static scheduling provides a solution to this problem. If we break the iteration space up
into 4 contiguous pieces (for 4 processors), we will only synchronize (and invalidate)
once at the end of the parallel region. Each processor will handle a contiguous chunk of
the outer iteration space and hence will likely have the required 3 columns of X and Y
cached for performance. This can be accomplished with thenumchunks scheduling
directive in autotasking:

 !cmic$ do all autoscope numchunks(4)

 105. 1 P------< DO 60 J = 2,N-1

 106. 1 P C

 107. 1 P V----< DO 50 I = 2,N-1

 108. 1 P V XX = X(I+1,J)-X(I-1,J)

 109. 1 P V YX = Y(I+1,J)-Y(I-1,J)

 110. 1 P V XY = X(I,J+1)-X(I,J-1)

 LOOP BODY OMMITTED

 128. 1 P V C

 129. 1 P V----> 50 CONTINUE

 130. 1 P-------> 60 CONTINUE <- invalidate once

Autotasking didn’t use static scheduling because gang scheduling is required to make it
work well. Fortunately, we can run an autotasking binary on a gang-scheduled MSP by
using the following command (the environment variable NCPUS has been set to 4):

Parallel Programming

Benchmarker’s Guide for Cray SV1 Systems 23 of 39

/etc/cpu -a 1 a.out

This improves performance to 1850 Mflop/s, or a 3.7X improvement.

If we compile the kernel with the-Ostream2 option, the outer loop is multi-streamed.
This breaks up the outer loop into the same contiguous pieces as above, but with lower
overhead streaming primitives:

 105. 1 M------< DO 60 J = 2,N-1

 106. 1 M C

 107. 1 M V----< DO 50 I = 2,N-1

 108. 1 M V XX = X(I+1,J)-X(I-1,J)

 Loop body omitted…

 129. 1 M V----> 50 CONTINUE

 130. 1 M------> 60 CONTINUE

In this case, our speedup is almost perfect. The streamed loop nest runs at 2005 Mflop/s,
or 3.99 times faster than the single processor code.

Keep the following rules of thumb in mind when writing code using Autotasking or
OpenMP:

■ Be aware than any parallel loop will generate cache invalidate instructions

■ Push parallel regions as far outward as possible.

■ Consider static scheduling by using the numchunks directive.

■ Static scheduling works especially well on an MSP, due to the gang scheduling.

4.3 Message Passing

Message passing programs tend to exhibit coarse granularity parallelism, hence they can
work very well on the SV1. In fact, our implementation of the linpack benchmark is
written entirely in message passing.

The SV1 supports two modes of MPI. When running with-nt (number of tasks), the
MPI library uses shared memory for communication. The-npoption on mpirun will use
the much slower TCP/IP communication. When communication latency is an issue,
lower overhead shmem calls can be substituted for MPI sends and receives. Perfor-
mance of the SV1 message passing software is shown in Table 5.

Table 5: SV1 Message Passing Performance

Library
Latency
(microsec.)

Bandwidth
(Mbyte/sec)

mpi -np 501 23

mpi -nt 75 793

Case Study: The NAS benchmark Kernels

24 of 39 Benchmarker’s Guide for Cray SV1 Systems

5.0 Case Study: The NAS benchmark Kernels

In this section, we examine the NAS Kernel benchmark test. When originally compiled
with zero changes and run on the Cray SV1 system, we get the results shown in Table 6
on a single processor.

Simple compilation gives fair to good performance for the kernels, with the compiler
doing a good job of doing library substitutions and loop optimizations in a few of the
kernels. All of the performance improvement with simple compilation is achieved with
the-O2flag, with some degradation occurring with the-O3flag. This degradation is due
to the compiler’s tasking optimization techniques. In particular, in optimizing code for
parallel computation, the compiler will attempt to interchange loops as it deems neces-
sary for improved parallelism. In some cases, this may adversely effect single CPU per-
formance, as is clearly seen in the MXM and BTRIX kernels. One way to improve the
performance when using-O3 is to add the option:-Onointerchange. If maximum sin-
gle CPU performance is the main goal, one really wants to just specify a minimum task-
ing level, with a maximum vectorization level. This is best accomplished by using:-
Ovector3. This will default to a tasking level of 1 (task1) which will not optimize for
parallel performance (but will interpret any tasking directives), and will allow the com-
piler to do loop interchange if it finds it important for vector optimization.

shmem 2 2320

Table 6: NAS kernels with zero changes

PROGRAM
f90 -O1
Mflop/s

 f90 -O2
Mflop/s

f90 -O3
Mflop/s

MXM 500.2 697.2 590.6

CFFT2D 75.4 87.6 86.7

CHOLSKY 84.9 108.4 107.9

BTRIX 185.3 215.4 183.7

GMTRY 87.9 325.8 325.8

EMIT 442.2 493.6 491.9

VPENTA 57.8 63.2 62.2

Total 112.2 144.1 139.4

Table 5: SV1 Message Passing Performance

Library
Latency
(microsec.)

Bandwidth
(Mbyte/sec)

Case Study: The NAS benchmark Kernels

Benchmarker’s Guide for Cray SV1 Systems 25 of 39

The following sections give a deeper analysis of each of the seven kernels. Analysis is
followed using the-O2 results. Parallel performance optimization will also be pre-
sented, aimed particularly at obtaining maximum advantage of the MSP, especially
insuring outer-loop cache reuse.

5.1 Kernel 1: MXM

As implemented from FORTRAN, MXM (matrix multiply) is unrolled by 4 and is run-
ning at about 697 Mflop/s.

Matrix multiply exists as part of Cray’s Scientific Library, so we could simply call the
matrix multiply (SGEMM) routine itself. Furthermore, the CF90 3.0 compiler supports
pattern recognition, so it normally recognizes and replaces this kernel automatically.
However, the compiler doesn’t recognize this unrolled variant of SGEMM:

 C = 0.0

 DO 110 J = 1, M, 4

 DO 110 K = 1, N

 DO 110 I = 1, L

 C(I,K) = C(I,K) + A(I,J) * B(J,K)

 $ + A(I,J+1) * B(J+1,K) + A(I,J+2) * B(J+2,K)

 $ + A(I,J+3) * B(J+3,K)

110 CONTINUE

If we make the change to the simplified loop:

 C = 0.0

 DO 110 J = 1, M

 DO 110 K = 1, N

 DO 110 I = 1, L

 C(I,K) = C(I,K) + A(I,J) * B(J,K)

110 CONTINUE

the compiler automatically converts it to a call to SGEMM.

This compiler substitution can be quickly verified by generating a listing (-r2), by run-
ning the code (which now sits at 961 Mflop/s) or by looking for the entry point in the
object file:

$ nm -g mxm.o
mxm.o:
 288 T MXM
 U SGEMMX@

Performance for the MXM kernel is also enhanced in parallel with the library substitu-
tion. The library routine SGEMM performs in parallel, running in 3.6 Glop/s when run
with 4 CPUs. Furthermore, when the code is run using MSP (by using the /etc/cpu com-
mand as follows: /etc/cpu -a 1), the performance for this kernel reaches 3.7 Gflop/s on 1
MSP processor.

Case Study: The NAS benchmark Kernels

26 of 39 Benchmarker’s Guide for Cray SV1 Systems

5.2 Kernel 2: CFFT2D

This kernel performs a series of complex Fast Fourier Transforms (FFTs) on a 2-dimen-
sional matrix of size 128x256. Two subroutines are used to perform this operation (W1
and W2 are trigs arrays set up in the program for the FFTs):

 PARAMETER(M = 128, N = 256, LDX = 128)

 COMPLEX X(M, N)

 ...

c perform forward ffts on columns

 CALL CFFT2D1 (1, M, LDX, N, X, W1, IP)

c perform forward ffts on rows

 CALL CFFT2D2 (1, M, LDX, N, X, W2, IP)

c perform inverse ffts on rows

 CALL CFFT2D2 (-1, M, LDX, N, X, W2, IP)

c perform inverse ffts on columns

 CALL CFFT2D1 (-1, M, LDX, N, X, W1, IP)

Optimization for this kernel starts by re-dimensioning arrayX, in order to avoid mem-
ory bank conflicts caused by the dimensions of arrayX:

 PARAMETER(M = 128, N = 256, LDX = 128, M1 = 129)

 COMPLEX X(M1, N)

This eliminates bank conflicts and improves the performance of the code from 87 to 199
Mflop/s.

Second, we can again turn to the math libraries to improve our performance. The routine
CCFFT2D from libsci performs a two-dimensional complex to complex fft on an array
of data. This call is equivalent to the pair of calls made by the kernel (CFFT2D1 and
CFFT2D2). The calls then become:

 PARAMETER(M = 128, N = 256, LDX = 128, M1 = 129)

 COMPLEX X(M1, N)

 real table(100+2*(N+M)),work(512*N)

 ...

c perform forward ffts

 CALL CCFFT2D (1, M, N, 1.0, X, M1, X, M1, TABLE, WORK, 0)

c perform inverse

 CALL CCFFT2D (-1, M, N, 1.0, X, M1, X, M1, TABLE, WORK, 0)

This simple substitution, although requiring an extra workspace array, brings the overall
single CPU performance of this kernel to 463 Mflop/s. This library routine also runs in
parallel, giving 1.2 Gflop/s in performance when ran on 4 CPUs.

Case Study: The NAS benchmark Kernels

Benchmarker’s Guide for Cray SV1 Systems 27 of 39

5.3 Kernel 3: CHOLSKY

This kernel performs a Cholesky decomposition and solve. Here, NMAT=250 is the
number of independent systems, NRHS = 3 is the number of right-hand-sides. Since the
loops count from zero, this means we have 251 independent systems, each with 4 right-
hand-sides. The performance analysis tools tell us that most of the time is spent in the
forward-backsolve stage of the algorithm, which is currently written to vectorize over
the number of systems:

 DO 6 I = 0, NRHS

 DO 7 K = 0, N

 DO 8 L = 0, NMAT

 B(I,L,K) = B(I,L,K) * A(L,0,K)

 8 CONTINUE

 DO 7 JJ = 1, MIN (M, N-K)

 DO 7 L = 0, NMAT

 B(I,L,K+JJ) = B(I,L,K+JJ) - A(L,-JJ,K+JJ) * B(I,L,K)

 7 CONTINUE

C

 DO 6 K = N, 0, -1

 DO 9 L = 0, NMAT

 B(I,L,K) = B(I,L,K) * A(L,0,K)

 9 CONTINUE

 DO 6 JJ = 1, MIN (M, K)

 DO 6 L = 0, NMAT

 B(I,L,K-JJ) = B(I,L,K-JJ) - A(L,-JJ,K) * B(I,L,K)

 6 CONTINUE

All the inner loops run over the number of systems, all of which vectorize. The B array
is problematic, however, since the inner loops run over the second dimension. This is
easily changed via the “flipper” utility, permuting the indices of the B matrix. This
improves performance from 108.4 Mflop/s to 197.8 Mflop/s.

Furthermore, since the outer K loop is from 0 to 3, we can unwind this loop into the
inner loops “fattening” them up a bit. We accomplish this by using f90 array syntax as
follows:

 DO 7 K = 0, N

 DO 8 L = 0, NMAT

 B(L,0:3,K) = B(L,0:3,K) * A(L,0,K)

 8 CONTINUE

 DO 7 JJ = 1, MIN (M, N-K)

 DO 7 L = 0, NMAT

 B(L,0:3,K+JJ) = B(L,0:3,K+JJ) - A(L,-JJ,K+JJ) * B(L,0:3,K)

 7 CONTINUE

C

 DO 6 K = N, 0, -1

Case Study: The NAS benchmark Kernels

28 of 39 Benchmarker’s Guide for Cray SV1 Systems

 DO 9 L = 0, NMAT

 B(L,0:3,K) = B(L,0:3,K) * A(L,0,K)

 9 CONTINUE

 DO 6 JJ = 1, MIN (M, K)

 DO 6 L = 0, NMAT

 B(L,0:3,K-JJ) = B(L,0:3,K-JJ) - A(L,-JJ,K) * B(L,0:3,K)

 6 CONTINUE

This brings the overall single CPU performance to 242 Mflop/s.

In order to run this kernel in parallel, we want to strip-mine theNMAT loops in order to
get vector loops working over one-quarter of the iteration space. In doing so, we are able
to distribute work to 4 CPUs with a strip-mined vector length of 63:

 parameter(ncpus=4)

 lstride = (nmat + 1 + ncpus -1)/ncpus

!mic$ do all autoscope

 do ll = 0,nmat,lstride

 ltop = min(nmat, ll+lstride-1)

 DO 1 J = 0, N

 I0 = MAX (-M, -J)

 DO 2 I = I0, -1

 DO 3 JJ = I0 - I, -1

 DO 3 L = ll, ltop

3 A(L,I,J) = A(L,I,J) - A(L,JJ,I+J) * A(L,I+JJ,J)

 DO 2 L = ll, ltop

2 A(L,I,J) = A(L,I,J) * A(L,0,I+J)

 DO 4 L = ll, ltop

4 EPSS(L) = EPS * A(L,0,J)

 DO 5 JJ = I0, -1

 DO 5 L = ll, ltop

5 A(L,0,J) = A(L,0,J) - A(L,JJ,J) ** 2

 DO 1 L = ll, ltop

1 A(L,0,J) = 1. / SQRT (ABS (EPSS(L) + A(L,0,J)))

 DO 7 K = 0, N

 DO 8 L = ll, ltop

8 B(L,0:3,K) = B(L,0:3,K) * A(L,0,K)

 DO 7 JJ = 1, MIN (M, N-K)

 DO 7 L = ll, ltop

7 B(L,0:3,K+JJ) = B(L,0:3,K+JJ)-A(L,-JJ,K+JJ)*B(L,0:3,K)

C

 DO 6 K = N, 0, -1

Case Study: The NAS benchmark Kernels

Benchmarker’s Guide for Cray SV1 Systems 29 of 39

 DO 9 L = ll, ltop

9 B(L,0:3,K) = B(L,0:3,K) * A(L,0,K)

 DO 6 JJ = 1, MIN (M, K)

 DO 6 L = ll, ltop

6 B(L,0:3,K-JJ) = B(L,0:3,K-JJ) - A(L,-JJ,K) * B(L,0:3,K)

 enddo

This parallel version brings the MSP/tasking performance to 618 Mflop/s.

5.4 Kernel 4: BTRIX

Kernel BTRIX is a vectorized block tri-diagonal solver. According to the performance
tools, there are several loop constructs in this kernel which take a significant percentage
of the total time. We should point out that there is an outer-loop in this subroutine that
runs over J and that the L index represent the independent systems. As such, most loops
run over L as this allows for effective vectorization. We start by looking at the two larg-
est time users:

 DO 100 J = JS,JE

C Original Code:

 DO 3 M = 1,5

 DO 3 N = 1,5

 DO 3 L = LS,LE

 B(M,N,J,L) = B(M,N,J,L) - A(M,1,J,L)*B(1,N,J-1,L)

 $ - A(M,2,J,L)*B(2,N,J-1,L) - A(M,3,J,L)*B(3,N,J-1,L)

 $ - A(M,4,J,L)*B(4,N,J-1,L) - A(M,5,J,L)*B(5,N,J-1,L)

 3 CONTINUE

 ...

 Other code omitted...

 100 CONTINUE

 DO 200 J = JEM1,JS,-1

 DO 200 M = 1,5

 DO 200 L = LS,LE

 S(J,K,L,M) = S(J,K,L,M) - B(M,1,J,L)*S(J+1,K,L,1)

 $ - B(M,2,J,L)*S(J+1,K,L,2) - B(M,3,J,L)*S(J+1,K,L,3)

 $ - B(M,4,J,L)*S(J+1,K,L,4) - B(M,5,J,L)*S(J+1,K,L,5)

 200 CONTINUE

Arrays A and B are 5 X 5 in the first two dimensions. We have a nice vector loop on L
which is independent for each iteration. We attempt to keep the current loop structure,
but permute the array indices so that L is in the first dimension and J is the last dimen-
sion (a 4123 permutation in flipper). We do this for the A, B, and C arrays (C is a similar
array in another less important loop). The S array has a K index which is a constant
passed into the routine so we move K to the last position and give S a 3412 permutation:

 DO 100 J = JS,JE

C

Case Study: The NAS benchmark Kernels

30 of 39 Benchmarker’s Guide for Cray SV1 Systems

 IF(J.EQ.JS) GO TO 4

 DO 3 M = 1,5

 DO 3 N = 1,5

 DO 3 L = LS,LE

 B(L,M,N,J) = B(L,M,N,J) - A(L,M,1,J)*B(L,1,N,J-1)

 $ - A(L,M,2,J)*B(L,2,N,J-1) - A(L,M,3,J)*B(L,3,N,J-1)

 $ - A(L,M,4,J)*B(L,4,N,J-1) - A(L,M,5,J)*B(L,5,N,J-1)

 3 CONTINUE

 ...

 Other code omitted.

 100 CONTINUE

 DO 200 J = JEM1,JS,-1

 DO 200 M = 1,5

 DO 200 L = LS,LE

 S(L,M,J,K) = S(L,M,J,K) - B(L,M,1,J)*S(L,1,J+1,K)

 $ - B(L,M,2,J)*S(L,2,J+1,K) - B(L,M,3,J)*S(L,3,J+1,K)

 $ - B(L,M,4,J)*S(L,4,J+1,K) - B(L,M,5,J)*S(L,5,J+1,K)

 200 CONTINUE

Matching strides for all arrays minimizes the cache interference between these arrays
and increases the overall performance of this kernel to 248 Mflop/s. Finally, we attempt
to “fatten up” the inner loops by unrolling the small loops of length 5 into the inner loop
as follows:

 DO 100 J = JS,JE

C

 IF(J.EQ.JS) GO TO 4

 DO 3 L = LS,LE

cdir$ unroll(5)

 DO 3 M = 1,5

cdir$ unroll(5)

 DO 3 N = 1,5

 B(L,M,N,J) = B(L,M,N,J) - A(L,M,1,J)*B(L,1,N,J-1)

 $ - A(L,M,2,J)*B(L,2,N,J-1) - A(L,M,3,J)*B(L,3,N,J-1)

 $ - A(L,M,4,J)*B(L,4,N,J-1) - A(L,M,5,J)*B(L,5,N,J-1)

 3 CONTINUE

 ...

 Other code omitted.

 100 CONTINUE

 DO 200 J = JEM1,JS,-1

 DO 200 L = LS,LE

cdir$ unroll(5)

 DO 200 M = 1,5

 S(L,M,J,K) = S(L,M,J,K) - B(L,M,1,J)*S(L,1,J+1,K)

Case Study: The NAS benchmark Kernels

Benchmarker’s Guide for Cray SV1 Systems 31 of 39

 $ - B(L,M,2,J)*S(L,2,J+1,K) - B(L,M,3,J)*S(L,3,J+1,K)

 $ - B(L,M,4,J)*S(L,4,J+1,K) - B(L,M,5,J)*S(L,5,J+1,K)

 200 CONTINUE

By unwinding the short loops, these statements become part of longer vector loops,
bringing the single CPU performance of this kernel to 260 Mflop/s.

For parallel performance, we looked at the way the routine is being called:

 DO 120 K = 1, KD

 CALL COPY (NB, BX, B)

 CALL BTRIX (JS, JE, LS, LE, K, B)

120 CONTINUE

and notice that each call the values forK are independent. We call the routine in paral-
lel, maximizing granularity:

!mic$ do all autoscope private(k,b) shared(js,je,ls,le,bx) numchunks(4)

 DO 120 K = 1, KD

 CALL COPY (NB, BX, B)

 CALL BTRIX (JS, JE, LS, LE, K, B)

120 CONTINUE

When running with 4 CPUs, this kernel now gives a performance of 924 Mflop/s.

5.5 Kernel 5: GMTRY

Kernel GMTRY performs Gaussian elimination in its most time-consuming loop. About
90% of the time is spent in Gaussian elimination of a 500x500 matrix:

C GAUSS ELIMINATION

C

 DO 8 I = 1, MATDIM

 RMATRX(I,I) = 1. / RMATRX(I,I)

 DO 8 J = I+1, MATDIM

 RMATRX(J,I) = RMATRX(J,I) * RMATRX(I,I)

 DO 8 K = I+1, MATDIM

 RMATRX(J,K) = RMATRX(J,K) - RMATRX(J,I) * RMATRX(I,K)

8 CONTINUE

The inner two loops represent a rank-1 update, similar to the algorithm used in LIN-
PACK without pivoting. Since the inner loop on K causes a strided reference pattern to
RMATRX, a simple thing to do from FORTRAN is to interchange the J and K loops.
Close examination of the listing file proves this is unnecessary, however, as CF90 3.0
has replaced the inner two loops with a call to SGER, a BLAS-2 rank-1 update routine.
The manual replacement would look like this:

C GAUSS ELIMINATION

C

Case Study: The NAS benchmark Kernels

32 of 39 Benchmarker’s Guide for Cray SV1 Systems

 DO 8 I = 1, MATDIM

 RMATRX(I,I) = 1. / RMATRX(I,I)

 DO J = 1, MATDIM - I

 RMATRX(I+J,I) = RMATRX(I+J,I)*RMATRX(I,I)

 END DO

 CALL SGER (MATDIM-I, MATDIM-I, -1., RMATRX(I+1,I), 1,

 1 RMATRX(I,I+1), 500, RMATRX(I+1,I+1), 500)

 8 CONTINUE

This can also be done using theSGETRF routine from LAPACK.SGETRF uses a block
algorithm which is much better suited for cache reuse. However, our particular kernel
does no pivoting, while the LAPACK routine provides a decomposed matrix in pivoted
row order. Hence, it is best to rewrite the above construct using a similar blocking algo-
rithm for maximum efficiency. We implement a block algorithm as follows (courtesy of
Ed Anderson):

 PARAMETER (NW=100, NB=5, LDR=NW*NB)

 REAL ONE, ZERO

 PARAMETER (ONE = 1.0E+0, ZERO = 0.0E+0)

 ...

C GAUSS ELIMINATION

C

 MB = 64

 DO II = 1, MATDIM-MB+1, MB

 I2 = MIN(MATDIM,II+MB-1)

 IB = I2-II+1

 DO I = II, I2

 RMATRX(I,I) = 1. / RMATRX(I,I)

 DO J = I+1, MATDIM

 RMATRX(J,I) = RMATRX(J,I) * RMATRX(I,I)

 END DO

 IF(I2-I.GT.0)

 & CALL SGER(MATDIM-I, I2-I, -ONE, RMATRX(I+1,I), 1,

 & RMATRX(I,I+1), LDR, RMATRX(I+1,I+1), LDR)

 END DO

 IF(II+IB.LE.MATDIM) THEN

 CALL STRSM(’Left’, ’Lower’, ’NoTranspose’, ’Unit’, IB,

 & MATDIM-II-IB+1, ONE, RMATRX(II,II), LDR,

 & RMATRX(II,II+IB), LDR)

 CALL SGEMM(’NoTranspose’, ’NoTranspose’, MATDIM-II-IB+1,

 & MATDIM-II-IB+1, IB, -ONE, RMATRX(II+IB,II),

 & LDR, RMATRX(II,II+IB), LDR, ONE,

 & RMATRX(II+IB,II+IB), LDR)

Case Study: The NAS benchmark Kernels

Benchmarker’s Guide for Cray SV1 Systems 33 of 39

 END IF

 END DO

With this construct, single CPU performance increases to 646 Mflop/s overall.

Furthermore, there is a considerable amount of work in the intrinsic functions LOG and
complex EXP. We can take advantage of special libraries aimed at performing faster
than the library-supplied routines for these functions. By linking with thebenchlib rou-
tines, we improve the performance of this kernel to 721 Mflop/s. When this code is run
on 4 CPUs, the resulting parallel performance is 1.7 Gflop/s.

5.6 Kernel 6: EMIT

According to the performance tools, a majority of the time in the EMIT kernel is spent
in intrinsic functions, particularly in ALOG. The most time consuming loop is shown
below:

 COMPLEX DUM1, EXPZ(NVM), EXPMZ(NVM), WALL, EXPWKL, EXPMWK

 DO 6 K = 1, NWALL(L)

 EXPWKL = CEXP (WALL(K,L) * PIDP)

 EXPMWK = 1. / EXPWKL

 SPS = 0.

 DO 4 I = 1, NV

 DUM1 = EXPZ(I) * EXPMWK - EXPWKL * EXPMZ(I)

 PS(I) = GAMMA(I) * LOG (REAL(DUM1) ** 2 +

 & AIMAG(DUM1) ** 2 + SIG2)

 SPS = SPS + PS(I)

4 CONTINUE

 PSI(K) = AIMAG(WALL(K,L) * CONJG (UUPSTR + CMPLX (0., U0)))

 & - SPS * 0.25 / PI

6 CONTINUE

Although the standard libraries give a respectable 494 Mflop/s, if we link with the
benchlibroutines, we are able to improve the performance of this kernel to 835 Mflop/s
overall. Running this code in parallel on 4 CPUs gives a performance of 1.7 Gflop/s.

This parallel performance can be improved by dividing the parallel work from theDO 6
loop into 4 chunks (i.e. static scheduling):

!mic$ do all autoscope numchunks(4)

 DO 6 K = 1, NWALL(L)

This improves the 4 CPU performance to 2.5 Gflop/s.

Case Study: The NAS benchmark Kernels

34 of 39 Benchmarker’s Guide for Cray SV1 Systems

5.7 Kernel 7: VPENTA

The VPENTA kernel inverts 3 pentadiagonals simultaneously. There are two double-
nested loops where most of the time is spent. For simplicity, we show only one here:

 PARAMETER (NJA=128, NJB=128, JL=1, JU=128, KL=1, KU=128)

 COMMON /ARRAYS/ A(NJA,NJB), B(NJA,NJB), C(NJA,NJB), D(NJA,NJB),

 $ E(NJA,NJB), F(NJA,NJB,3), X(NJA,NJB), Y(NJA,NJB)

 ...

 DO 3 J = JL+2,JU-2

 DO 11 K = KL,KU

 RLD2 = A(J,K)

 RLD1 = B(J,K) - RLD2*X(J-2,K)

 RLD = C(J,K) - (RLD2*Y(J-2,K) + RLD1*X(J-1,K))

 RLDI = 1./RLD

F(J,K,1) = (F(J,K,1) - RLD2*F(J-2,K,1) - RLD1*F(J-1,K,1))*RLDI

F(J,K,2) = (F(J,K,2) - RLD2*F(J-2,K,2) - RLD1*F(J-1,K,2))*RLDI

F(J,K,3) = (F(J,K,3) - RLD2*F(J-2,K,3) - RLD1*F(J-1,K,3))*RLDI

 X(J,K) = (D(J,K) - RLD1*Y(J-1,K))*RLDI

 Y(J,K) = E(J,K)*RLDI

11 CONTINUE

3 CONTINUE

As implemented here, the inner loop on K is completely independent. Arrays A, B, C,
D, E, X, Y, and F are all referenced in the inner loop on the second dimension, so all
memory access patterns are strided references, in this case stride 128. Also note that all
arrays are dimensioned 128x128 which means memory conflicts. Thus, by re-dimen-
sioning the leading dimension (NJA) of the arrays to 129, we eliminate such conflicts
and improve the performance of this kernel from 62 Mflop/s to 285 Mflop/s.

Finally, for parallel optimization, we introduce a strip-mine loop based on the inner
loops (which have a vector length of 128). As with CHOLSKY, this maximizes granu-
larity and minimizes synchronization. The code, for our 4 processor case study looks as
follows (all inner loops, not shown below, are now of length 32):

 J = JL

 kstride = (kku-kkl+1 + ncpu-1)/ncpu

!mic$ do all shared (A, B, C, D, E, F, JL, JU, KKL, KKU)

!mic$* shared (KSTRIDE, X, Y)

!mic$* private (J, JX, K, KK, KL, KU, RLD, RLD1, RLD2, RLDI)

 do kk = kkl,kku,kstride

 kl = kk

 ku = min(kku,kk+kstride-1)

 (rest of code omitted)

The resulting parallel performance for this kernel is now 640 Mflop/s.

Performance Tools

Benchmarker’s Guide for Cray SV1 Systems 35 of 39

5.8 Summary

Table 7 summarizes the improvements that were made for the 7 NAS Kernels. For com-

parison purposes, we have included the single processor optimized Cray T90 results.
Using tasking plus the MSP, the SV1 averages 1.6 Gflop/s across these kernels verses
about 1.1 Gflop/s for a single-processor T90.

6.0 Performance Tools

In this section, we describe some of the tools that can be used to analyze and improve
performance of code on the Cray SV1.

6.1 Hardware Performance Monitor (hpm)

The hardware supports 32 counters in 4 groups of 8 each. The groups are labeled 0, 1, 2,
and 4 with group 0 usually selected by UNICOS as the default.

Group 0 provides floating point operation and memory reference data. The data repre-
sents both scalar and vector operations. To determine the vector and scalar components
for the floating point data collect group 3 data. Also, group 3 provides data for the other
vector functional units. Note that a divide in FORTRAN will result in a reciprocal
approximation operation and 3 multiplies. If a program is doing a large number of
divides the multiply data should be adjusted accordingly. The group 0 cache data is a
count of the read requests which result in cache hits. Write requests which result in
cache hits are not counted. Instruction buffer memory references which result in cache
hits are counted but they are not counted as memory references. Because of this, pro-
grams generating a large amount of instruction buffer references might appear to have a
much higher cache hit rate for data references than is really the case. One way to check

Table 7: Modified NAS kernels

Kernel
SV1 (1cpu)

Original
(Mflop/s)

SV1 (1cpu)
Optimized
(Mflop/s)

T-90 (1cpu)
Optimized
(Mflop/s)

SV1 (1 MSP)
Optimized
(Mflop/s)

MXM 697 961 1574 3747

CFFT2D 88 463 1339 1220

CHOLSKY 108 242 674 618

BTRIX 215 260 430 924

GMTRY 326 711 1195 1699

EMIT 494 835 1369 2517

VPENTA 63 285 1086 640

Average 284 537 1096 1624

Performance Tools

36 of 39 Benchmarker’s Guide for Cray SV1 Systems

this is to multiply the instruction buffer reference count by 32 and add this value to the
memory reference count. Using the new memory reference count calculate the cache hit
ratio and compare it to the original. A second way is to use the cpu command to turn of
instruction buffer caching off and run the program to see the effect on the cache hit ratio.
A command example is:cpu -m ecfoff a.out.

Group 2 data provides the detailed information about the cpu memory references
reported in group 0. CPU read and write data is reported along with scalar and vector
data. Also, a memory conflict count is reported. A large conflict count could indicate a
large power of 2 stride or bank conflicts with vector gather / scatter instructions.

Group 1 data rarely provides any useful data to the application user or developer.

6.2 Code Profiling: profview

This utility processes the data generated by theprof command, and reports information
about the execution of each program module. This information identifies the segments
of the program which are using the most time, helping the user in focusing optimization
efforts on these particular areas of the code. Information processed is based on grouping
of addresses of instructions executed, allowing for detailed analysis of time-consuming
routines, even at the loop level. Particularly useful information fromprof is the display
of library entry points (data which is not provided by eitherPerftrace or Flowtrace), as
this can help the user in identifying heavy usage of intrinsic routines; routines which
could have a faster version available (for example, inbenchlib; see section 3.6).

Usage of this tool is as follows:

 f90 -G1 -lprof -o prog.exe prog.F

 prog.exe

 prof -x prog.exe > prog.prof

 profview prog.prof

Although the compilation with debugging turned on (-G1) is not necessary, it is helpful
in identifying code segments within a program module. In the above example, the For-
tran programprof.F is compiled and linked to the profiling library. Execution of the pro-
gramprog.exe produces a profiling work-file, namedprof.data. This work-file is
combined with the executable by theprof utility, storing the output to be used for inter-
active execution byprofview. The information presented byprofview can be displayed
graphically or in text line mode. Time-consuming portions of the code are readily iden-
tified by module name and symbol name (if debugging is enabled) as displayed or listed.
Each module is presented with percentage of activity based on counts for instructions as
executed.

This tool can also be used to identify potential inlining candidates with very little over-
head (as compared toperfviewandflowview). This is done by analyzing the entry points
and starting points of a routine. If a particular routine shows a high percentage of activ-
ity (hit counts) in the entry point and the start of the executable code for the routine
(marked asE.name andP.name respectively), then this routine could be a good candi-
date for inlining.

Performance Tools

Benchmarker’s Guide for Cray SV1 Systems 37 of 39

Furthermore,profview is capable of capturing interactively the statistics of a running
process (if loaded with thelibprof.a library). This capability allows for analysis to be
done without waiting for the code to finish. This is done by providing the process ID
number (PID) at the graphical interfaceCapture Running Process file menu option, or
by issuing the following:

 prof -p PID a.out > prof.x ; profview prof.x

6.3 Flowtracing: flowview

This tool is used to obtain information on program flow, number of calls per subroutine,
total time, and time per subroutine. It is useful in identifying subroutines which are
called excessively and identifying the calling tree for the program.

Theflowview tool processesFlowtrace information to display timings and other infor-
mation about procedure calls such as inlining factor, number of calls, and average time
per call.Flowtracing can be done for an entire code as follows:

 f90 -ef -o prog.exe prog.F

 prog.exe

 flowview

Execution ofprog.exe produces a file calledflow.data which is used byflowview to
present the information graphically or in text line mode.

Flowtracing can be done at the routine level by including the directive:

!DIR$ FLOW

Also, one can useFlowtracing on blocks of code using theFLOWMARK subroutine.
By surrounding the particular program block of interest with calls toFLOWMARK
Flowtrace will treat it as if it were a subroutine.

Flowview can also be used to capture a running process, which becomes particularly
important if a particular routine is called often (which may indicate that it is a good can-
didate for inlining), as this will slow down the execution of the program considerably. In
order to capture a running process, one can do it from the graphical interfaceCapture
Running Processfile menu option or by using theflodumpcommand as follows (PID is
the process ID number, obtained by issuing aas command):

 flodump -p PID -e | flowview

Flodumpcan also be used to produceFlowtrace output from an abnormally terminated
program.

6.4 Flowtracing with performance counters: perfview

Theperfview utility reports hardware performance statistics of the execution of a pro-
gram as gathered byPerftrace. This information uses the hardware performance moni-
tor (hpm) on individual routines within the program, as well asFlowtrace information.

Performance Tools

38 of 39 Benchmarker’s Guide for Cray SV1 Systems

This information includes, but is not limited to, time, Mflop/s, cache use, number of
calls, and inline factor.

This tool is important in identifying how well a particular routine (or code segment) is
performing, regardless of time spent executing.Perftrace works by using the
Flowtrace compilation and linking to theperf library as follows:

 f90 -ef -lperf -o prog.exe prog.F

 prog.exe

 perfview

After execution ofprog.exe, a fileperf.data is created which is used byperfview to
present the information graphically, or in text line mode.

As with Flowtrace, Perftrace allows for selective analysis of specific blocks of code by
using the!DIR$ FLOW compiler directive or by using calls toFLOWMARK .

Information can be accumulated for the varioushpmcounters by using the environment
variablePERF_GROUP, thus allowing a complete analysis by perfview as follows:

 env PERF_GROUP=0 PERF_DATA=group0.raw prog.exe

 env PERF_GROUP=1 PERF_DATA=group1.raw prog.exe

 env PERF_GROUP=2 PERF_DATA=group2.raw prog.exe

 env PERF_GROUP=3 PERF_DATA=group3.raw prog.exe

 cat group*raw > perf.total

 perfview perf.total

Perfview can also be used to capture a running process; this is done by providing the
process ID number (PID) at the graphical interfaceCapture Running Process file menu
option, or by using the underlying commandperfdmp:

perfdmp -p PID -e | perfview

Perfdmp can also be used to producePerftrace output from an abnormally terminated
program.

6.5 Makefile Generator: fmaker

A good makefile is essential for optimization activities because it allows for easy incre-
mental builds and compiler option manipulation on a routine by routine basis.Fmaker
is a csh script available from the benchmarking group, which is used to split out all of
the Fortran subroutines from a file and produce amakefileto use for compiling and load-
ing. Fmaker will change the case of the files split to lowercase.

This tool produces a very simplisticmakefilewithout many comments, and very explicit
targets and rules. The resultingmakefileis meant to assist the user in simplifying compi-

Performance Tools

Benchmarker’s Guide for Cray SV1 Systems 39 of 39

lation when working on optimizing a program. The user will need to edit themakefilein
order to obtain the necessary compiler options and link to the proper libraries as needed.

The syntax for this utility is as follows:

 Usage: fmaker [-m makefile] [-o command] [-s] [-b] [-c] [-r] [-help] files

-m makefile makefile is the name of the makefile generated by the fmaker command (Makefile
by default).

 -o command command is where the resulting executable is placed (a.out by default).

-s strip flag (passed directly to the fsplit(1) program) will strip columns 73+ and all trail-
ing blanks.

 -b indicates that the SHELL makefile variable should be set to the Bourne shell (/bin/sh).

 -c indicates that the SHELL makefile variable should be set to the C shell (/bin/sh).

 -r retain the case of the split files (as fsplit does).

 -help produces help screen.

6.6 Flipper

Flipper is a perl script available from the benchmarking group. It allows you to permute
the indices of an array around quickly in a subroutine or function. This is often neces-
sary in order to get stride-1 memory access on key inner loops or in reducing the num-
ber of memory reference streams. The syntax is:

 Usage: flipper [-v] [-o order] [-i permute] variable filename

 -v verbose mode

 -o order the order of variable (default: 2)

 -i permute the permuted sequence of indices (default: 21)

 variable the name of the array whose indices you want swapped

 filename the name of the input source file

For example, to convert array A(M, N, 3, 3, 2) to A(2, 3, 3, M, N), we would invoke
flipper with a 53412 permutation:

% flipper -o 5 -i 53412 A file.f > newfile.f

Flipper will not work if there are references to A with fewer than the full number of
indices. For example, in this case, it would not like:

 DO I = 1, M*N*3*3*2

 A(I) = 0.0

 ENDDO

