
New Compaq AlphaServer GS Series

Architecture White Paper

The new AlphaServer GS Series for
the next generation e-Business

Contents

Customer Focussed Features  . . . . . . . . . . . . . . . . . . . . . . . . .2

AlphaServer GS Series Descriptions  . . . . . . . . . . . . . . . . . . .4

AlphaServer GS Series Performance  . . . . . . . . . . . . . . . . . . .4

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11



2

Customer Focussed Features
There has historically been a common misconception that enterprise class

servers are developed with only one goal in mind—maximum performance.

That, in fact, is not the reality. Today’s sophisticated enterprise customers 

need much more from their computer systems in terms of reliability,

availability, manageability and reduced cost of ownership. To that end, 

the AlphaServer GS Series family’s design is built on a foundation of six 

key system parameters:

• Capacity

• Performance-Enabling Infrastructure

• Economic Scalability

• Flexible and Forgiving Software Model

• Robust Data Center Features

• Performance

Each of these parameters will be explored briefly in the following sections. 

Capacity

The AlphaServer GS Series features industry leading system capacity,

particularly in terms of main memory storage capacity and IO connectivity. 

The combination of industry leading storage capacity and connectivity, 

when combined with the power of the Alpha processor, provides substantial

advantage to the enterprise class customer. Consider:

• Thirty-two processors may not represent the industry’s highest processor

count; but thirty-two 731MHz Alpha 21264 processors certainly represents

industry leading compute capacity.

• The memory capacity of the AlphaServer GS Series further extends 

Compaq’s lead into the Very Large Memory (VLM) computing domain. 

The VLM paradigm was established with the AlphaServer 8400 Series’ 

16GB of memory capacity. With the AlphaServer 8400 series, performance

gains of between 10x and 100x were demonstrated on large commercial

workloads. These gains were realized by the machine’s ability to provide

large, in-memory caches for commercial databases. The AlphaServer GS Series

not only continues the VLM theme, but it pushes it forward an order of

magnitude with 256GB of memory capacity. This capacity provides 

the AlphaServer GS Series with the ability to handle the largest, 

most demanding, enterprise applications.

• The AlphaServer GS Series’ 224 PCI adapter capability sets a new standard for

enterprise class connectivity. This magnitude of connectivity provides the

resources necessary to support the massive data base storage farms and

network requirements common in the enterprise today. It allows for a wide,

bottleneck free system configuration and a flexible data center layout. 

Performance-Enabling Infrastructure

The AlphaServer GS Series resource capacities, by themselves, represent 

little more than potential performance to the customer. To bring all of these

resources to bear on the customer’s application, the system provides significant

“performance-enabling infrastructure”.  This refers to the interconnect

resources and supporting logic that tie the system’s resources together. 

Some of the key measures of the AlphaServer GS Series infrastructure

capabilities are as follows: 

• An advanced memory system design that supports up to 256-way 

interleave and up to 51.2GB/s of aggregate memory bandwidth

• A system topology that, as it grows, maintains a constant, 1.6GB/s 

of per-cpu bandwidth

• A distributed IO subsystem that features an aggregate of 12.8GB/s 

of IO system bandwidth 

Compaq AlphaServer GS Series Architecture White Paper 
An Architectural Overview of the Compaq AlphaServer Series

The AlphaServer GS Series computer family is the next generation enterprise class server family from Compaq Computer Corporation. This family of server systems

provides a variety of server solutions ranging from 8 processor capable systems to 32 processor capable systems. These systems introduce an innovative new

switch-based interconnect topology and distributed shared memory (DSM) architecture. This new architecture is combined with world class availability and a host

of customer focussed features to make the AlphaServer GS Series the ideal solution for a variety of enterprise class problems, ranging from the largest commercial

database applications to the most demanding high performance technical computing applications. 

This paper presents an architectural overview of the AlphaServer GS Series system design. It consists of three sections that address the “why”, the “what” and the

“how” of the system architecture. The first section describes why the system is designed as it is. Particularly, this first section describes the specific customer

problems that were addressed by the basic design and architecture of the AlphaServer GS Series. The second section outlines briefly what the system design and

architecture look like. The third section, focuses in more detail on the architecture of the system compute kernel and analyzes how the AlphaServer GS Series

architecture delivers the outstanding performance for enterprise applications.
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Economic Scalability

While the massive capacities and support outlined herein provide wonderful

resources for the largest enterprise customers, the AlphaServer GS Series also

directly addresses the needs of customers with smaller requirements, or even

small initial requirements and future growth plans. In particular, the system

design addresses these varying capacity needs in a most economical manner,

wherein the customers really do get what they pay for.

Specifically, the AlphaServer GS Series has been designed in a modular manner,

wherein each module delivers not only incremental capacity, in terms of

processors, memory storage, or IO connectivity, but delivers incremental

performance-enabling infrastructure as well.

With this system family, for example, the purchase of an 8 processor system

does not require the purchase of 32 or 64 processors worth of supporting

infrastructure. It requires only the purchase of 8 processors worth of

infrastructure. This way the customer need not pay for any unused 

resources or infrastructure.

Flexible and Forgiving Software Model

It is important to provide the customer with a software model that allows 

for straight forward porting of applications as well as some measure of

flexibility with regard to how applications or operating domains are 

applied to the system.

Near-UMA

Although the AlphaServer GS Series architecture is technically a Non-Uniform

Memory Access (NUMA) architecture, the latency profile of the system,

particularly the profile under system load, makes it perform very much like 

a Uniform Memory Access (UMA) system. The AlphaServer GS Series features 

a basic latency profile wherein remote reference latencies differ from local

reference latencies by only a factor of 3x, and the latency profile exhibits very

little growth under system load. 

Bus-based UMA systems on the other hand feature only a single latency value,

but tend to exhibit latency growth of 3-4x their nominal latency when under

load. As a consequence, applications that run on the simple bus-based UMA

systems should port directly to the AlphaServer GS Series in a very straight

forward manner.

That said, it is still worth noting that the best system performance is achieved

by embracing the NUMA capabilities of the AlphaServer GS Series. This allows

an application to truly take advantage of the potential of the system design.

For many applications, the advanced capabilities of Tru64 UNIX will provide 

the required hooks into the NUMA model.

Partitions

In terms of software flexibility, the AlphaServer GS Series supports both soft

system partitions, through the OpenVMS Galaxy operating system, and hard

partitions, through hardware and firmware support. 

The OpenVMS soft partitions allow compute resources to be apportioned and

then dynamically reapportioned under the control of the OpenVMS Galaxy

kernel. Security between soft partitions is provided within the OpenVMS kernel.

This type of partitioning is used primarily for workload management. It

provides the ability to allocate specific resources to specific applications. It is

also able to provide a very light weight and low latency method for transferring

resources between applications. This is made possible by virtue of the fact that

all resources and partitions are controlled by a single operating system kernel.

Hard partitions allow for multiple operating systems or multiple versions of 

the same operating system to operate within discrete partitions of the same

multiprocessor box. Dynamic repartitioning, like soft partitioning, allows for

the partitioned resources in a running system to be migrated between multiple

hard partitions, although at a coarser granularity than with soft partitions.

Security between the partitions in the hard partition model is implemented in

hardware, providing an additional level of security. With these characteristics,

hard partitions provide a variety of useful features for the customer. With

robust hardware based security and support for multi-operating system

environments, hard partitions are ideal for server consolidation. With the

addition of support for dynamic repartitioning, hard partitions can also address

workload management needs and support rolling operating system upgrades. 

Robust Data Center Features—
Reliability, Availability, Serviceability (RAS)

Reliability and availability are critical characteristics for all computer users. 

They are particularly important for the enterprise customer employing

computer systems in business critical applications. The AlphaServer GS Series

meets the needs of these customers with a design that emphasizes not only

reliability and availability, but also serviceability and data center layout issues. 

Reliability and availability begin with the fundamental design. The

fundamental design of the AlphaServer GS Series includes ECC protected 

RAM storage and interconnect. This includes protection on memory data as

well as system coherency data. The system also features N+1 redundant main

power supplies, redundant power converters and ultra-reliable cooling fans.

The system design further bolsters system availability and serviceability 

with an abundance of hot-swap capabilities. These include the support for 

the direct hot-swap of processors, IO subsystems, power supplies and even

multiprocessor modular units. The hot-swap capabilities also include support

for the indirect hot-swap of memories, Directories and Global Port modules,

through the use of the modular unit hot-swap procedure.

Many of the key data center features of the AlphaServer GS Series, including 

hot-swap, are managed by a robust “back door” network of micro-controllers.

This network provides basic services for powering, initializing and partitioning

the system. It also provides services for tracking the state of the system

configuration, as well as monitoring and modulating the system environment.

In addition, this network, which operates on auxiliary power source, provides

key access to system error state even in the presence of insidious system

failures such as processor or power supply failures. The system micro-controller

network provides both direct and remote dial-in access to the system and

features a redundant failure over capability.

A final feature of the AlphaServer GS Series that merits mention here is its

remote IO support. Remote IO refers to the practice of including a system’s 

IO busses (e.g., PCI busses) in a separate rack or enclosure from the system

kernel. In the case of the AlphaServer GS Series, IO busses can reside as far as 

10 meters away from the kernel of the system. This provides clear advantages

from the data center layout perspective. Customers with enterprise class IO

requirements are able to spread out their IO subsystem, easing cable

congestion problems. Every bit as important, however, is the fact that remote

IO support enhances system serviceability. Moving IO cabling away from the

kernel of the system allows the system to be serviced without contending with

the disassembly, and associated destabilization, of the machine’s IO subsystem.

This is critical given the huge investment made in the storage and network

infrastructure of today’s enterprise applications.

Each of the RAS and/or data center features of the AlphaServer GS Series 

adds value for the enterprise customer. Together, they serve to reduce the 

Total Cost of Ownership.
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Performance

While all of the factors discussed in this section are critical to the enterprise

customer, performance is still critical in allowing the customer to execute 

their business efficiently and cost effectively. Since the third section of this

paper will deal with the performance of the AlphaServer GS Series in great

detail, it will suffice to note here that the system is designed to provide

outstanding performance in a variety of commercial and high performance

technical applications.

AlphaServer GS Series System Description

The following sections provide a brief overview of the modular components 

of the AlphaServer GS Series and the manner in which the components are

combined to build up the various members of the AlphaServer GS Series family

of computer systems. In the course of this description, the manner in which

some of the foundational factors of the system effected the system structure

will become evident. This is particularly true of the system’s capacity,

infrastructure and economic purchasing model.

The Quad Building Block

The AlphaServer GS 32-way Series is a modular system design. The fundamental

modular unit of the system is the “Quad Building Block” or “QBB”.  The QBB,

shown in figure 1, is comprised of the following resource capacities:

• Up to four 731Mhz Alpha 21264 Microprocessor modules

• Up to 32GB of memory storage across up to 4 carriers

• Support for up to 8 PCI busses, which in turn support up to 28 PCI adapters.

The aforementioned resource capacities are supported by the following

performance enabling infrastructure capabilities:

• 17.6GB/s of raw interconnect bandwidth

• 6.4 GB/s of maximum, realizable memory bandwidth

• 1.6 GB/s of IO bandwidth

• 1.6 GB/s of per processor bandwidth

Figure 1: Quad Building Block (QBB) Block Diagram

The AlphaServer GS 8-way Series

The systems that comprise the AlphaServer GS 8-way Series family are 

formed by aggregating QBBs. The AlphaServer GS 8-way, for example, 

is formed by abutting two QBBs. The resultant system, shown in figure 2, 

scales in both its resource capacities and performance-enabling infrastructure.

Its resource capacities now consist of:

• Up to eight 731Mhz Alpha 21264 Microprocessor modules

• Up to 64GB of memory storage across up to 8 carriers

• Support for up to 16 PCI busses, which in turn support up to 56 PCI adapters

These scaled resource capacities are supported by similarly scaled performance

enabling infrastructure capabilities consisting of:

• 32GB/s of raw interconnect bandwidth

• 12.8 GB/s of maximum, realizable memory bandwidth

• 3.2 GB/s of IO bandwidth

• 1.6 GB/s of per processor bandwidth

Figure 2: AlphaServer GS 8-way Block Diagram

The AlphaServer GS 16-way and the
AlphaServer GS 32-way

The AlphaServer GS16-way and AlphaServer GS 32-way systems are 

formed by attaching QBBs to a “Global” or “Hierarchical” switch. 

The AlphaServer GS 16-way is formed by attaching four QBBs to the switch,

while the AlphaServer GS 32-way, shown if figure 3, is formed by attaching 

8 QBBs to the switch. As in the case of the AlphaServer GS 8-way, the

AlphaServer GS 16-way and AlphaServer GS 32-way capacities and 

infrastructure scale together. The AlphaServer GS 32-way, for example, 

provides the following resource capacities:

• Up to thirty-two 731Mhz Alpha 21264 Microprocessor modules

• Up to 256GB of memory storage across up to 32 carriers

• Support for up to 64 PCI busses, which in turn support up to 224 PCI adapters

To support these capacities, the GS 32-way system provides the following

performance enabling infrastructure capabilities:

• 140.8GB/s of raw interconnect bandwidth

• 51.2 GB/s of maximum, realizable memory bandwidth

• 12.8 GB/s of IO bandwidth

• 1.6 GB/s of per processor bandwidth

Figure 3: AlphaServer GS 32-way Block Diagram

AlphaServer GS 32-way System Performance

To understand the AlphaServer GS Series performance characteristics, it is

instructive to take a three-step approach to analyzing performance in general. 

The first step involves analyzing what it takes to realize the best performance

when executing a single processor thread in isolation. In this case the processor
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will experience no sharing of data or resources. The second step involves analyzing

what it takes to realize the best performance for each of a number of multiple

independent threads executing in the same system. In this case, the processor will

experience the sharing of resources but not the direct sharing of data. The third

and final step involves analyzing what it takes to continue to realize the best

performance on mutually exclusive threads, but wherein those threads are

communicating and sharing data and system resources. The completion of the

analysis in this third step will effectively answer the question of what it takes to

realize the best overall performance in a multiprocessor server system.

Step 1—Single Processor Thread Performance

Idle system latency, examples of which are shown in figure 4, is a common number

given as an indicator of system performance. It is, however, just one piece of a larger

puzzle. To understand the best metrics for evaluating system performance effects,

and to better understand how idle system latency fits into the overall performance

puzzle, we should begin back at the source of the performance—the processor.

Figure 4: Idle System Latency

Processor performance is governed largely by “demand latency”  the time it 

takes a processor to access an instruction or data item. Processor designs have, 

for many years, been using schemes like caching and pre-fetching to try to 

minimize demand latency. 

While caching is a technique used to minimize a processor’s system references,

pre-fetching, out of order issue and speculative execution are schemes that

processors now employ to get a head start on bringing system data into the

processor’s cache system. These methods allow a processor to issue multiple

references to the system, often in anticipation of the need for data, instead of

forcing a processor’s operation to degenerate to the point where it must issue

individual demand references. The latency measure associated with these multiple,

anticipatory references is referred to as  “perceived latency”. It is equal to the

latency, as perceived by the issuing processor, when the latencies of system

references are amortized over the number of references issued by the processor. 

In modern systems that employ advanced processor techniques, the perceived

latency is the best measure of a system’s impact on a processor’s demand latency.

Perceived latency is a function of three key system parameters: the forementioned

idle system latency, as well as bandwidth and the number of outstanding

references. Figure 5 illustrates perceived latency as a function of these parameters.

Figure 5: Perceived Latency

The front-most curve in figure 5 illustrates the effect of both the idle system latency

and the number of outstanding references on perceived latency. The left most bar

illustrates the case of a single outstanding reference. Its value is therefore equal to the

idle system latency. Idle system latency is therefore a starting point value from which

all other values are derived. As the number of outstanding references increases, and

the curve moves from the left of the chart to the right, the perceived latency per

reference decreases proportionally. Thus, the more outstanding references that can be

supported, the smaller the perceived latency and the better the system performance.

The right-most curve in the chart illustrates the effects of bandwidth on perceived

latency. The latency values for the front bars are derived by assuming that the

bandwidth that is required to get the best result is made available. As available

bandwidth is diminished, and the curves move from the front to the back of the chart,

the system is unable to support as many outstanding references. As a result, it cannot

achieve the best possible perceived latencies. This, in turn, limits the system’s ability 

to achieve the best performance.

This chart allows a number of conclusions to be drawn with regard to achieving

the best system performance for a single processor in isolation. Assuming the

assertion that the best system performance is a achieved by a system design that

achieves the best perceived latency, it can be concluded, in turn, that to achieve the

best system performance, a system design must provide:

• Low idle system latency

• Support for as many outstanding references as possible

• Sufficient system bandwidth to support the maximum number of outstanding

references that a processor may issue

Step 2—Multiple Independent Threads

To get the best performance result from multiple, independent threads, a system

must be capable of providing the best perceived latency result for each processor in

the system. To achieve this, all the requirements from the single thread case must

be applied to each processor in the multi-thread case. Specifically:

• Idle system latency must still be kept to a minimum, even as the system grows 

to support more processors and memory.

• Bandwidth must still be maximized, but in a bifurcated manner. Bandwidth

in the memory system must grow, so as not to limit the number of supported

references for all of the processors combined. Bandwidth at each processor

interface must, at the very least, be maintained so that as processors are 

added to the system, no individual processor’s outstanding reference 

potential is limited. 

• The total number of supported outstanding references must now grow, 

so that each processor can achieve its best perceived latency through the 

highest possible level of amortization. 

To understand how these goals may be met, it is instructive to examine some

lower level computer system characteristics. A computer system’s memory

subsystem design, the overall system interconnect topology and bandwidth 

profile and the system’s “occupancy” profile are of particular interest. 

Memory system design

There are two primary design goals for the memory system of an 

enterprise class shared memory server. The memory system must first 

provide sufficient storage capacity to support enterprise class applications. 

The memory capacity design goal for the AlphaServer GS 32-way series was

256GB of storage. The memory system must also provide the bandwidth

support for a maximum number of references from all of a multiplicity of

processors. The first goal primarily dictates form factor restrictions on the

system design. The second goal, however, plays directly into the bandwidth

requirements for attaining minimum perceived latency, and maximum

performance, for a system’s processors.
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It is important to recognize that the bandwidth delivered by any multiprocessor

shared memory subsystem is highly dependent upon the reference patterns

issued to that subsystem. Some system designs may work well for well defined

pathological reference patterns, but may not work well for more general,

random reference patterns. In modern systems it is important to note that the

memory reference patterns generated by processors that feature out of order

issue and speculative execution tend to be irregular. In a multiprocessing

machine with many such processors, the reference patterns as seen by the

memory system tend to be even more irregular. Therefore, in most modern

shared memory multiprocessors, a memory system designed around only

regular, pathological reference patterns will not work very well.

The AlphaServer GS Series memory system development involved substantial

simulation, including the simulation of both random and pathological

reference patterns. The simulation results indicated that the two most critical

factors in extracting bandwidth from a memory system are the memory

system’s interleave structure and the memory system’s interconnect topology.

The study of system interleave indicated that the interleave and bandwidth

properties of a system interact such that, if interleave is provided behind a

bandwidth bottle neck of some sort, the effectiveness of that interleave is

diminished in proportion to the severity of the bandwidth bottleneck. So, 

for example, interleave across the switch ports of a system, where data

movement is free of bottlenecks, is the best kind of interleave. Behind these

switch ports, interleave between independently interconnected arrays of

SDRAMs is the next best kind of interleave. It is only limited by the bandwidth

bottleneck of the switch port. Finally, interleave within an SDRAM part is the

least effective type of interleave. It is severely limited by the bandwidth 

bottle-neck at the pins of the SDRAM part.

A system that makes heavy use of SDRAM interleave will therefore work 

well on rare, well behaved reference patterns, but will work poorly on 

random reference patterns.

The AlphaServer GS Series memory system design is biased toward 

the best types of interleave. It includes 32 interleaved switch ports 

and 64 independently interconnected memory arrays, and it relies on 

a relatively small 4-way interleaving within its SDRAMs to round out 

its full 256 interleave units.

To deliver the bandwidth made available by this interleave system to the

system’s processors, the AlphaServer GS Series includes massive, cross-bar

switch based memory system interconnect bandwidth. Each memory port

provides 1.6GB/s of bandwidth, while each QBB provides 6.4GB/s of bandwidth.

With eight QBBs, this provides for a system aggregate of 51.2GB/s of

bandwidth. In the AlphaServer GS 32-way and AlphaServer GS 16-way systems,

the QBBs are interconnected by a Global Switch that provides a maximum

12.8GB/s of cross section bandwidth.

Of course the RAMs and wires of a memory system represent little more 

than memory system bandwidth potential. To deliver that potential to the

application, the AlphaServer GS Series design supplements the powerful

infrastructure elements of interleave and interconnect with two additional

performance enabling strategies: “aggressive memory resource scheduling”

and “aggressive data link bandwidth management”.

The first of these strategies, “aggressive memory resource scheduling”, 

refers to the manner in which the AlphaServer GS Series issues references 

to the memory system. Specifically, the system issues references to memory 

by means of a scheduling circuit in each QBB’s local switch that can choose

from, and expeditiously reorder, up to 28 pending references. It issues these

references to the 32 interleaved memory units within its QBB in a manner 

that best utilizes the memory resources.

Most systems employ simple round-robin type arbitration schemes to

guarantee fairness between processors. This, as one might imagine, does 

not yield the best reference patterns with respect to memory utilization. 

The AlphaServer GS Series still maintains the same processor fairness as 

round-robin schemes, but only on the architecturally required memory 

block basis. This frees the system to issue reference patterns that take 

best advantage of the memory system.

The second strategy, “aggressive data link bandwidth management”, refers to

optimizing the utilization of every interconnect link in the system. The practice

of aggressive data link bandwidth management in the AlphaServer GS Series is

made possible by means of specially designed buffered switch ASICs in both

the QBB’s local switch and the system’s Global Switch. Unlike the simple,

unbuffered switches found in systems like HP 9000 V2600 or the Sun E10000,

these switches allow an input reference packet to be driven into a switch’s

buffer regardless of output conflicts with other incoming references. This

allows each link to be associated with its own independent link controller, 

the sole job of which is to maximize the bandwidth on the associated link. 

The cumulative effect of all of these independent controllers is a higher overall

system interconnect utilization.

In summary, the AlphaServer GS Series interleave strategy and memory

interconnect topology, combined with the aggressive memory resource

scheduling and aggressive data link bandwidth management, result in a 

huge memory system bandwidth, capable of supporting hundreds of

outstanding system references

Processor port bandwidth

To achieve the best perceived latency result for multiple mutually exclusive

threads, a system must continue to provide enough bandwidth to each

processor to support that processor’s maximum number of outstanding

references, even as the system grows. 

Many system designs on the market today aggregate processors behind

common switch ports as they grow. This severely limits the bandwidth

available per processor and therefore limits the number of outstanding

references that each processor can support. As shown in figure 5, this limits

perceived latency and overall system performance. 

Systems like the HP 9000 V2600 and the Sun E10000 are designed such that

the bandwidth available per processor diminishes as processors are added to

the system. A fully loaded Sun UE10000, for example, requires four processors

to share 1.6GB/s of bandwidth. This yields only 400MB/s for each processor.

Similarly, a fully loaded HP 9000 requires four processors and an IO port to

share 1.92GB/s of bandwidth. This leaves only 420MB/s for each processor. 

The AlphaServer GS Series topology does not aggregate processors behind

switch ports. As processors are added to the AlphaServer GS Series system, 

so too is processor bandwidth. In that way, each processor in a 32 processor

system still has access to the same 1.6GB/s of bandwidth to which a single

processor in isolation had access. Each processor can, therefore, continue to

support its maximum number of outstanding references, its minimum

perceived latency and its best performance.

Occupancy and outstanding references

All of the bandwidth made available by the AlphaServer GS Series memory

system, the system-wide interconnect, and the processor port interconnect 

is nothing more than potential bandwidth made available to outstanding

references. The system design, in terms of logic design and protocols, must 

be specifically designed to support large numbers of outstanding references 

to take advantage of this potential. 
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The AlphaServer GS Series logic is designed according to a principle referred 

to as “low occupancy”, where “occupancy” is defined as the amount of time

that any given reference consumes in any given resource in the system. 

A low occupancy design is therefore a design that minimizes the time 

that any reference in the system consumes at any given resource.

The occupancy of the references in a computer system directly determines the

number of outstanding references the system can support. To understand this

intuitively, consider a juggler. A juggler has two resources—his hands. The

longer a juggler holds any one ball in his hands, the lesser number of balls he

can keep in flight. In other words, the higher the occupancy of any given ball,

the lower the number of balls in flight.

With its low occupancy design, the AlphaServer GS Series is capable of

supporting a huge number of outstanding references. The system is

theoretically capable of supporting in excess of 500 outstanding references. 

In practice, 200-300 outstanding references at steady state would not be an

unreasonable expectation. To put these numbers in perspective, consider that

the AlphaServer GS 14-way system, still an outstanding machine at solving real

world problems, can support, at most, 16 outstanding references. 

The effect of the low occupancy nature of the AlphaServer GS Series, and its

corresponding ability to support hundreds of outstanding references, allow the

system to amortize the latencies of individual references to the lowest possible

perceived latencies. This in turn yields the best overall performance result.

Idle system latency

With an understanding of the system bandwidth and the outstanding

reference properties of the AlphaServer GS Series, the only variable of the

perceived latency equation left to address is the idle system latency. The most

noteworthy feature of the idle system latency in the AlphaServer GS Series is

that, given the system’s hierarchical design, there are actually two classes of

system latencies. The first class, local latency, refers to references that address

memory locations that map to the same QBB as the issuing processor. The

AlphaServer GS Series’ local latency, at approximately 330ns, is a best-in-class

enterprise server latency. The second class of latency, global latency, refers to

references that address memory locations that map to a QBB other than the

QBB of the issuing processor. The AlphaServer GS Series’ remote latency, 

at 960ns, is just under 3x its local latency.

Our understanding of perceived latency has, to this point, only involved a 

single idle system latency variable. With the introduction of two latencies to

this model, we must introduce a new metric, “average idle system latency”.

Average idle system latency is defined to be equal to the local latency times 

the percentage of references that address a local memory location, plus the

remote latency times the percentage of references that address a remote

memory location. If 100% of the references are local references, then the

average idle system latency will be equal to the local latency. If 100% of the

references are remote references, then the average idle system latency will 

be equal to the remote latency. Otherwise, the resulting average idle system

latency will fall somewhere between the local and remote latencies.

When the distribution of references is weighted in favor of local references, the

processors perceive a better average idle system latency and as a result, achieve

better performance. This means that the memory location of data structures,

relative to the processor on which their associated process is executing, can have

a significant effect on system performance. This, in turn, means that software

applications, and operating systems in particular, can have a direct effect on

average idle system latency. Specifically, process specific pages can be mapped 

to the same QBB as the processor on which the process is running, system data

structures can be distributed across all QBBs, and text pages can be replicated in 

all relevant QBBs. All of these techniques allow software to minimize average

idle system latency, and as a result, improve system performance.

The concepts of average idle system latency and manipulation of latency via

software not withstanding, the AlphaServer GS Series’ variable average system

latency needs to be reconciled with respect to the fixed latencies of competing

uniform memory access (UMA) computer systems. Consider the chart in figure

6, which contrasts the average idle system latency of the AlphaServer GS 32-way

system with the fixed idle system latency of Sun E10000. This chart seems to

indicate that if more than 55% of the references in a AlphaServer GS 32-way

system are local references then the AlphaServer GS will perform better than

the E10000. Conversely, if more that 45% of references in the GS 32-way system

are remote references then the E10000 will perform better then the GS system.

What is important to remember is that the latency values illustrated in this

chart are simply idle system latency values. They are simply one variable in the

perceived latency equation. As a result, it is important to explore how these

values function within the perceived latency framework before trying to draw

relative performance conclusions.

Figure 6: Comparison of Average Idle System Latency

To formulate an effective perceived latency comparison between systems with

vastly different interconnect topologies, it is instructive to analyze a number 

of basic system interconnects. In doing so it is possible to characterize a variety

of systems’ perceived latency profiles as functions of the systems’ combined

latency, bandwidth and occupancy properties. 

A small, switch-based system, similar to the AlphaServer GS 23-way’s QBB, is 

a good starting point for a topological analysis. Such a system is illustrated in

figure 7. With a geographically small switch and only one processor or memory

unit per switch port, this topology has ideal bandwidth and latency properties.

As such, the characteristics of this topology can best be described by the front,

ideal curve in the perceived latency chart, shown again in figure 8.

Figure 7: Small, Ideal Switch



8

This topology, however, is too limiting in terms of resources to be considered

for an enterprise class system. To find a topology for an enterprise class system,

this small topology must be grown.

Figure 8: Perceived Latency for Small, Ideal Switch

The first manner in which this small switch can be grown is by literally

stretching the switch and adding many more processor and memory ports. 

This type of topology, shown in figure 9, preserves the ideal bandwidth

properties of the small switch. The massive geographical size of the switch,

however, pushes the limits of physics and results in a much larger idle system

latency. This, in turn, produces a perceived latency curve, shown in figure 10,

similar to our ideal curve. This new curve, labeled “stretched” in figure 10, has 

a similar shape as the ideal curve, but at each point on the curve, the larger

topology exhibits a substantially larger latency.

Figure 9: Stretched Switch

Figure 10: Perceived Latency for Stretched Switch

Another manner in which the small switch can be grown is by stretching 

the switch in a more moderate manner, and then aggregating processors 

and memory units behind the reduced number of switch ports. This type 

of topology, shown in figure 11, is employed in the Sun E10000, the 

HP 9000 V2600 and a number of other competing enterprise servers. 

Figure 11: Aggregate Switch

This topology provides an idle system latency that is necessarily larger than

that of the small switch, but it is substantially better than that of the stretched

switch. The aggregating of processors and memory resources behind a smaller

number of switch ports, however, creates substantial bandwidth bottlenecks 

in the system. This limits the number of outstanding transactions that the

system can support and, as shown in the “aggregate” curve in figure 12,

enforces a limit on the perceived latency that the system can achieve. This 

in turn limits the system’s performance.

Figure 12: Perceived Latency for Aggregate Switch

A third manner in which the system can be grown is by interconnecting

multiple copies of our small switch through a hierarchical or global switch. 

This topology, shown in figure 13, is the AlphaServer GS 32-way model.

Figure 13: Hierarchical Switch

This topology maintains the ideal processor and memory port bandwidth

properties of the small switch. At the same time, it introduces a cross-section

bandwidth that can become a bottleneck when operating with a high

percentage of remote references. This topology also introduces the

local/remote idle system latency profile. These elements together produce 

a set of amortized latency curves, as opposed to a single curve. The set of

curves, illustrated in figure 14, range from the unencumbered ideal latency

curve, when all system references are to local memory locations, to a

bandwidth limited, higher latency curve when all references are to remote

memory locations. 
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Figure 14: Perceived Latency for Hierarchical Switch

All of the topologies enumerated here can be evaluated with respect to 

each other by putting all of their perceived latency curves on the same chart.

This chart, shown in figure 15, demonstrates that the hierarchical topology

exhibits a far greater potential for minimizing perceived latency and

maximizing performance.

Figure 15: Comparison of Perceived Latencies

Even in the 75% remote traffic case of the hierarchical topology, where the 

idle system latency of the hierarchical topology is worse that the idle system

latency of the aggregate topology, the hierarchical system needs to get only

four outstanding references per processor to achieve a better perceived latency

than the comparable latency in a aggregate system. At 50% remote traffic, 

a much more reasonable, if still pessimistic, operating point, the hierarchical

system need only get 2 outstanding references per processor to achieve a 

better perceived latency than any other topology.

The overall conclusion from this chart, therefore, is that even though that

hierarchical system may not, in the strictest sense, exhibit the smallest idle

system latency, it does exhibit the best perceived, or amortized, latency 

profile and can therefore deliver the best overall performance of all of 

the system topologies.

Performance summary—Multiple mutually exclusive threads

The chart in figure 15 summarizes most of the elements required to achieve the

best performance in a system with multiple mutually exclusive threads. It is

worth, however, calling these elements out explicitly.

In summary, minimum perceived latency per processor thread is the primary

system requirement for achieving the best performance for multiple, mutually

exclusive processor threads. To achieve this, a superior memory system design

is required. This design should include a superior memory interleave strategy,

massive interconnect bandwidth, aggressive resource scheduling and

aggressive data link bandwidth management. The system should also be

designed according to the principles of low occupancy, with system references

consuming as little time as possible in any given system resource. Finally, the

system’s topology should be optimized for minimum perceived latency, not 

idle system latency. Based on the preceding topological analysis, this implies

that the system should provide multiple system latencies, including an

extremely low “local” latency. It implies that the topology should preserve 

per processor bandwidth, and it implies that the topology should include 

any bandwidth bottlenecks in such a manner as software can mitigate 

their effect.

Step 3—Multiple Threads Sharing Data 
and Communicating

The analysis of multiple, mutually exclusive threads established specific

requirements regarding system bandwidth, latency and occupancy, toward the

goal of establishing the best possible perceived latency and associated system

performance.  When layering data sharing and processor communication on

top of these mutually exclusive threads, the goal is to do so in such a way 

that the aforementioned bandwidth, latency and occupancy requirements 

are impacted as little as possible.

The new overhead introduced with data sharing and inter-processor

communication, is comprised of two fundamental components: a data 

(or cache) coherency scheme and a data (or memory) consistency scheme.

The first component, a cache coherency scheme, is required to support the

sharing of data. Cache coherency schemes typically consist of a coherency 

state storage system and a protocol that runs on the stored coherency state. 

To preserve performance, the coherency storage system must be implemented

such that it does not limit system bandwidth as processor and memory

bandwidths grow, or as processor and memory capacities grow. The coherency

protocol, on the other hand, must be implemented such that it does not

substantially increase either the average system latency or the occupancy of

any given system reference. If any of these values are affected substantially,

perceived latency will increase and system performance will suffer.

The second component, a memory consistency scheme, is required to support

inter-processor communication. This is normally done through some notion 

of ordering events in the system. The maintenance of ordering events in a

system represents a new system wide overhead. The key to minimizing the

effects of this new overhead is to try to include it in such a way that only the

relatively rare inter-processor communication event suffers any additional

penalty associated with ordering; all normal computational references should,

ideally, be able to proceed with no additional overhead. In addition, the entire

consistency model should be implemented such that it does not increase the

occupancy or latency of any system references. 
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Coherency Storage Topologies

The foundation for any cache coherency scheme is the coherency state storage

topology – the collection of directory or tag stores that track the state of

memory blocks. For best system performance it is critical that this system 

not limit system bandwidth and not increase system occupancy. All of the

common coherency storage topologies either fail to meet these performance

goals, or are simply impractical.

Snoop based coherency schemes are the most common schemes employed 

in the industry. They are employed in many small-scale multiprocessors and

even some enterprise class servers such as the Sun E10000. On the positive

side, these schemes tend to allow for low system occupancy. On the negative

side, they also tend to limit system bandwidth. Adding duplicate tag stores, 

or even interleaved duplicate tag stores in the case of the Sun E10000, can

mitigate the bandwidth limitations of this scheme somewhat. However, they

are not adequate to support a memory system with the 51.2GB/s of bandwidth

required in a system like the AlphaServer GS 32-way system.

Traditional, full directory schemes, wherein there is a comprehensive directory

entry, with some number of bits for every processor in the system, for each

memory block in the system, tend to meet both the bandwidth and occupancy

requirements for best performance. However, their size and cost make them

impractical for most systems.

In lieu of full directory schemes, system designs that choose directory based

coherency often employ managed or cached directories. These provide the

same bandwidth as the full directory scheme without the size and expense.

Cached directory schemes, however, require cache replacement policies. When

applied to directory stores, replacement policies entail the blocking or retry of

traffic while all copies of memory blocks associated with a directory entry are

returned to memory. This necessarily increases the occupancy and lowers the

performance of the system as a whole.

The AlphaServer GS Series employs a coherency storage scheme based on a full

but abbreviated directory. This directory includes one entry for every data block

in memory, but limits the size of each directory entry. Since it is a full directory

scheme, the AlphaServer GS Series coherency storage scheme exhibits ideal

bandwidth and occupancy properties. Unlike the traditional full directory

scheme, it is abbreviated in size, so it is practical in terms of implementation

and cost. It adds a paltry 2.5% cost overhead to its associated memory system.

To enable the AlphaServer GS 32-way system to run a meaningful and

performance optimized cache coherency protocol based on an abbreviated

directory store, the system also includes distributed duplicate tag stores.  

One duplicate tag store is implemented in each of the system’s eight possible

QBBs. Each of these tag stores is responsible for directly supporting only the

6.4GB/s of memory bandwidth associated with its QBB. As a result, the

duplicate tags, which inherently exhibit excellent occupancy characteristics,

can be included in the system without limiting overall system bandwidth.

Cache Coherency Protocol

To complete a cache coherency system, a protocol must be layered on top 

of the coherency storage elements. For the overall system to achieve the best

performance, this protocol must neither cause the occupancy of references in

the system to increase, nor cause the average system latency to grow in any

substantial way.

When data sharing is added to the system, it is inevitable that average latency

will grow to a certain extent. The need to occasionally fetch data from other

caches instead of memory will certainly cause latency to grow. Similarly, 

delays as a result of data dependencies between simultaneously pending

references will also cause latencies to grow. Fortunately, the effect of this

inevitable type of latency growth can be limited such that it penalizes only

specific dependent references. 

Many common cache coherency schemes resolve data and coherency

dependencies by means of retrying references. In such schemes, if a reference 

is issued to a memory location to which a previous reference is still pending,

the system will not process the new reference. Instead the system will send 

a message back to the issuing processor causing the processor to retry the

reference. In systems that employ a dependency retry mechanism, latency

growth as a result of dependencies can be quite unpredictable. For heavily

contended blocks, the latency for a retried reference as seen by a given

processor can grow quite large. In fact, it can actually grow to the point of

being infinite, in which case a processor will be starved to a halt. In addition,

the regular retry of references diminishes the amount of real usable bandwidth

made available for other work. 

Other common cache coherency schemes resolve data and coherency

dependencies by means of blocking references. In these schemes, if a reference

is issued to a memory location to which a previous reference is still pending,

the system will cause the new reference to wait at the coherency storage

element associated with the addressed memory block until all previous

references are resolved. To support such schemes, system designs must include

some type of wait station at each of the coherency storage elements. These

wait stations, unfortunately, are inherently high occupancy structures, with

significant impact on overall system occupancy. As outlined in the mutually

exclusive threads section, high occupancy limits the number of outstanding

references that a system can support. This limits the ability to amortize

perceived latency down to its lowest values. The high occupancy of a coherency

protocol, in particular, also directly impacts latencies due to the substantial

queuing delays it inserts into the system. The unfortunate characteristic of

these queuing delays is that, given that they build up around the common

coherency storage elements, they tend to not only increase the latencies of

specific dependent references, but all references that require access to a given

general coherency storage resource. This brings down the performance of the

whole machine.

The AlphaServer GS Series implements a new, starvation-free, low occupancy,

cache coherency protocol. This protocol neither blocks nor retries references

when they experience dependency issues. All dependencies are resolved in such

a way that only dependent references experience latency penalties. To this end,

all dependency resolution occurs at the periphery of the system, so that

independent references from one set of processors need not suffer any penalty

as a result of dependent references from some other set of processors. In other

words, there is no coherency based queuing penalty at the common resources

in the system. The resulting protocol effectively eliminates any occupancy

penalty due to cache coherency and minimizes the latency penalty associated

with data dependencies to approximately equal the aforementioned inevitable

latency penalties. 

While the AlphaServer GS Series’ coherency protocol was designed for straight

forward implementation and verification, it is a theoretically complex protocol.

Since its completion as a formal protocol, it has been rigorously simulated 

and subjected to a full formal proof of correctness. While these efforts

discovered some minor implementation problems, no errors were found 

in the protocol itself. 
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Memory Consistency

An ordering or consistency scheme is required to support inter-processor

communication. As previously noted, the keys to minimizing the effects of 

the overhead of a consistency model consist of: limiting the effects of the

consistency overhead to references explicitly involved in the communication

and by minimizing the impact of the consistency model on system occupancy

and latency.

System designs today use a variety of memory consistency models ranging

from “sequential consistency”, to “processor consistency”, to more relaxed

consistency models. Many of these models are very restrictive in terms of the

optimizations that the systems are allowed to make. Sequential consistency, 

for example, even disallows read-to-read reordering, forcing a given read to

literally complete and retire before a subsequent read can retire. Some of the

more relaxed models, such as the Sun SPARC, IBM PowerPC and the Compaq

Alpha models, support significant reference reordering and optimization. 

To provide functional guarantees to software, each of these models includes

fence or barrier instructions. At the time of a given barrier instruction’s

completion, it is guaranteed that the executing processor has a view of 

the system memory state that is consistent with all processors that have

previously executed barriers. It is also guaranteed that all processors that

subsequently issue barriers will have a view of memory that is consistent 

with the issuing processor. 

Consistency in all models requires “inheritance of ordering”.  This means 

that, for every reference n to block X, the issuing processor is consistent, with 

respect to the rest of the system, not only when it has a consistent view of the

references that occurred between reference n and reference n-1 to block X, but

also when it has a consistent view of all references that preceded reference 

n-1. Simply put, when determining what happened before reference n, you

must “inherit” everything that happened before reference n-1. This may 

seem obvious and trivial, but in distributed shared memory servers, it is a

complicated problem to solve. Most system designs typically leverage the

blocking or retry mechanisms used in their cache coherency schemes to

guarantee proper inheritance of ordering. Reference n would be blocked 

at the directory, or forced to retry at the directory, until the entire system 

was guaranteed a consistent view of memory with respect to reference n-1. 

This type of scheme, however, not only burdens all references with ordering

overhead, it also does so in a way that both increases the average latency per

transaction and increases the occupancy per transaction. Both, of course,

degrade system performance.

The AlphaServer GS Series’ consistency model has two key properties that allow

it to avoid the pitfalls of the more common protocols. These properties are

what we refer to as “Eager Data Replies” and  “Active Inheritance”.

The term “Eager Data Replies” refers to the practice of divorcing the data

movement, or coherency change portion of a memory reference, from the

ordering or consistency portion of a reference. The data portion of the reference

is returned to the issuing processor as expeditiously as possible, while the

consistency portion is returned, in an independent pipelined manner, as

expeditiously as possible, but only after all consistency requirements have 

been met. Eager Replies allow processors to execute upon the data returned

from a system reference as soon as the data portion of that reference is

“eagerly” returned to the processor. Only the relatively rare barrier instructions

need to wait for the consistency portions of system references. More generally

this means that only instructions explicitly involved in inter-processor

communication—the aforementioned barrier instructions—are burdened 

with the added overhead of system ordering.

“Active Inheritance” refers to the practice of resolving memory consistency

without resorting to the high occupancy and high latency tactics of blocking

and retrying references. This technique allows a reference n to inherit

consistency information from reference n-1, even if reference n-1’s consistency

is not yet completely resolved. Active Inheritance is, as a result of the low

occupancy cache coherency protocol in the AlphaServer GS 32-way, a necessity

in this system. The AlphaServer GS Series’ support for active inheritance is 

made possible by the unique division of labor the system employs in the

management of its ordering messages and the “bus-like” nature of certain

channels of transactions through its Global Switch. Unlike many common

systems, the AlphaServer GS Series does not employ “Invalidate Acks” 

or “Write Acks” for the purpose of maintaining ordering. Instead, the

AlphaServer GS 32-way system associates ordering messages with both 

read and write references and uses what is effectively a single ordering point 

in the Global Switch as a central point of consistency. This arrangement allows

the system design to simply maintain hints regarding the state, relative to the

central point of consistency, of previously issued references. 

The combination of Eager Data Replies and Active Inheritance allows 

the GS Series consistency model to meet all performance requirements—

normal operations are not burdened with ordering overhead, and consistency

(including inheritance) is maintained without increasing average latency 

or occupancy. In addition to its operational advantages, this model is

advantageous in that, although it is theoretically complex, it is very 

simple in practice and implementation. Even with regard to its theoretical

complexity, it is worth noting that its correctness, like the correctness of 

the AlphaServer GS Series’ coherency protocol, has not only been rigorously

simulated but formally proved as well.

Performance Summary

With our analysis of cache coherency and system consistency complete, we

have finished our three step analysis of system performance. We can now

answer the question of what it takes to deliver the best performance in an 

SMP server system. The general answer is that it takes a system design that

delivers the best perceived latency. The more specific answer is that it takes: 

• A system topology that is optimized for perceived latency, 

not idle system latency

• A system topology that preserves per processor bandwidth 

• A superior, high bandwidth memory system design

• A low occupancy system design that can take advantage of 

the provided bandwidth

• A cache coherency protocol that preserves available bandwidth, 

low occupancy and low latency

• A consistency model that that also preserves available bandwidth, 

low occupancy and low latency

Conclusion

The architecture of the AlphaServer GS Series family of systems integrates

aggressive switch-based interconnect topology with an innovative new cache

coherency and memory consistency architecture. The combination of these

technologies makes the AlphaServer GS Series ready to grow past the

limitations of conventional snoop and bus based systems. These performance

advantages, combined with customer focussed data center, availability and

maintainability features, make the AlphaServer GS Series the ideal choice for 

a wide range of enterprise applications.
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