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Preface

Cluster computing is not a new area of computing. It is, however, evident that there is a
growing interest in its usage in all areas where applications have traditionally used parallel
or distributed computing platforms. The mounting interest has been fuelled in part by the
availability of powerful microprocessors and high-speed networks as off-the-shelf commodity
components as well as in part by the rapidly maturing software components available to
support high performance and high availability applications.

This rising interest in clusters led to the formation of an IEEE Computer Society Task Force
on Cluster Computing (TFCC1) in early 1999. An objective of the TFCC was to act both as a
magnet and a focal point for all cluster computing related activities. As such, an early
activity that was deemed necessary was to produce a White Paper on cluster computing and
its related technologies.

Generally a White Paper is looked upon as a statement of policy on a particular subject. The
aim of this White Paper is to provide a relatively unbiased report on the existing, new and
emerging technologies as well as the surrounding infrastructure deemed important to the
cluster computing community. This White Paper is essentially a snapshot of cluster-related
technologies and applications in year 2000.

This White Paper provides an authoritative review of all the hardware and software
technologies that can be used to make up a cluster now or in the near future. These
technologies range from the network level, through the operating system and middleware
levels up to the application and tools level. The White Paper also tackles the increasingly
important areas of High Availability and Embedded/Real Time applications, which are both
considered crucial areas for future clusters.

The White Paper has been broken down into twelve chapters, each of which has been put
together by academics and industrial researchers who are both experts in their fields and
where willing to volunteer their time and effort to put together this White Paper.

On a personal note, I would like to thank all the contributing authors for finding the time to
put the effort into their chapters and making the overall paper an excellent state-of-the-art
review of clusters. In addition, I would like to thank the reviewers for their timely comments.

Mark Baker
University of Portsmouth, UK
December 2000

1 TFCC – http://www.ieeetfcc.org/



1. An Introduction to PC Clusters for High Performance
Computing

Thomas Sterling
California Institute of Technology and NASA Jet Propulsion Laboratory

1.1. High Performance Computing in Transition

The halcyon days of specialized supercomputers, built and acquired at any cost to deliver
orders of magnitude greater floating point performance than contemporary mainframes on
grand challenge (often defense related) applications are rapidly diminishing in to the past
along with the Cold War to be replaced by a more pragmatic cost-constrained reality that
today permeates the community of high performance computing. Once the stars and
vanguard of advanced computing, in appearance at least, supercomputers have been eclipsed
by an Internet-enabled Web-driven future of opportunity and challenge. High end computing
had been perceived as having become just too hard, too expensive, and of too narrow interest
to justify a self-sustained industry.

Yet, in spite of statements to the contrary by a number of authority figures, performance or
capability computing is important and, in fact, may matter very much. In no uncertain way,
the futures of many of the path-finding fields that will determine the evolution of civilization
throughout this new century will themselves be determined in their contributions by the
degree to which they exploit the possibilities of trans-Teraflops (even Petaflops) scale
computation. Energy including controlled fusion, medical science and molecular biology
including genetic engineering, space exploitation and cosmology, climate and Earth science,
materials including semiconductors and composites, machine intelligence and robotics,
financial modeling and commerce, and information communication and human-machine
interface will all be governed in their rate of progress and degree of impact on human culture
by the magnitude of computational performance they are able to engage. In fact many of the
strategic problems that plague our planet and species may only be solved through our ability
to harness the most powerful computing engines possible and the capabilities of those
machines.

Unfortunately, the market value of such extreme performance systems appears to be, in the
short term at least, well below that required to justify industry investment in the
development of these specialty-class supercomputer architectures. Fortunately, this conflict
between the requirements for high performance and the availability of resources needed to
provide it is being addressed through an innovative synergy of some old ideas from the
parallel computing community and some new low-cost technologies from the consumer
digital electronics industry. The legacy concepts are the physical clustering of general-
purpose hardware resources and the abstract message-passing model of distributed
computing. The low cost computing capability is derived from the mass market COTS PC and
local networking industries. Together, these basic capabilities and founding principles,
derived for very different purposes, have emerged as the new domain of high performance:
commodity cluster computing. Commodity clusters including clusters of workstations, PC
clusters, and Beowulf-class systems have become the single most rapidly growing class of
high performance computing systems.

1.2. The Emergence of Cluster Computing for HPC



The annual Supercomputing Conference provides a snapshot of the state, accomplishments,
and directions of the field and industry of high performance computing. At SC99 in Portland,
Oregon, it was a surprise to some and a lesson to all to find a broad range of industrial and
research exhibits highlighting their production and application of commercial clustered
computer systems. These ranged from the high end commercial clustering of SMP servers
with high-speed proprietary networks and commercial software to the self-assembled
Beowulf-class PC clusters using freely distributed open source Linux and tools. A year later
at SC00 in Dallas, commodity clusters dominated the exhibitions with more clusters
operational on the floor than all other forms of parallel/distributed computing systems
combined. Thus the beginning of the new century has been marked by a major shift in the
means by which much of high performance computing will be accomplished in the future.
Cluster systems are exhibiting the greatest rate in growth of any class of parallel computer
and may dominate high performance computing in the near future.

But why should this have come to be? In contrast, conventional wisdom easily exposes
serious problems with the cluster approach. Parallel processing and parallel computer
architecture is a field with decades of experience that clearly demonstrates the critical
factors of interconnect latency and bandwidth, the value of shared memory, and the need for
lightweight control software. Generally, clusters are known to be weak on all these points.
Bandwidths and latencies both could differ by two orders of magnitude (or more) between
tightly couple MPPs and PC clusters. The shared memory model is more closely related to
how applications programmers consider their variable name space and such hardware
support can provide more efficient mechanisms for such critical functions as global
synchronization and automatic cache coherency. And custom node software agents can
consume much less memory and respond far more quickly than full-scale standalone
operating systems usually found on PC clusters. In fact, for some application classes these
differences make clusters unsuitable. But experience over the last few years has shown that
the space and requirements of applications are rich and varying. While some types of
applications may be difficult to efficiently port to clusters, a much broader range of
workloads can be adequately supported on such systems, perhaps with some initial effort in
optimization. Where conventional application MPP codes do not work well on clusters, new
algorithmic techniques that are latency tolerant have been devised in some cases to overcome
the inherent deficiencies of clusters. As a consequence, on a per node basis in many instances
applications are performed at approximately the same throughput as on an MPP for a
fraction of the cost. Indeed, the price-performance advantage in many cases exceeds an order
of magnitude. It is this factor of ten that is driving the cluster revolution in high performance
computing.

1.3. A Definition

A “commodity cluster” is a local computing system comprising a set of independent computers
and a network interconnecting them. A cluster is local in that all of its component
subsystems are supervised within a single administrative domain, usually residing in a
single room and managed as a single computer system. The constituent computer nodes are
commercial-off-the-shelf (COTS), are capable of full independent operation as is, and are of a
type ordinarily employed individually for standalone mainstream workloads and
applications. The nodes may incorporate a single microprocessor or multiple microprocessors
in a symmetric multiprocessor (SMP) configuration. The interconnection network employs
COTS local area network (LAN) or systems area network (SAN) technology that may be a
hierarchy of or multiple separate network structures. A cluster network is dedicated to the
integration of the cluster compute nodes and is separate from the cluster’s external (worldly)
environment. A cluster may be employed in many modes including but not limited to: high
capability or sustained performance on a single problem, high capacity or throughput on a



job or process workload, high availability through redundancy of nodes, or high bandwidth
through multiplicity of disks and disk access or I/O channels. A “Beowulf-class system” is a
cluster with nodes that are personal computers (PC) or small symmetric multiprocessors
(SMP) of PCs integrated by COTS local area networks (LAN) or system area networks (SAN),
and hosting an open source Unix-like node operating system. An Windows-Beowulf system
also exploits low cost mass market PC hardware but instead of hosting an open source Unix-
like O/S, it runs the mass market widely distributed Microsoft Windows and NT operating
systems. A “Constellation” differs from a commodity cluster in that the number of processors
in its node SMPs exceeds the number of SMPs comprising the system and the integrating
network interconnecting the SMP nodes may be of custom technology and design. Definitions
such as these are useful in that they provide guidelines and help focus analysis. But they can
also be overly constraining in that they inadvertently rule out some particular system that
intuition dictates should be included in the set. Ultimately, common sense must prevail.

1.4. Benefits of Clusters

Clusters allow trickle-up; hardware and software technologies that were developed for broad
application to mainstream commercial and consumer markets can also serve in the arena of
high performance computing. It was this aspect of clusters that initially made them possible
and triggered the first wave of activity in the field. Both network of workstations and
Beowulf-class PC clusters were possible because they required no expensive or long-term
development projects prior to their initial end use. Such early systems were far from perfect
but they were usable. Even these inchoate cluster systems exhibited price-performance
advantage with respect to contemporary supercomputers that approached a factor of 50 in
special cases while delivering per node sustained performance for real-world applications
often within a range of a factor of 3 and sometimes well within 50% of the more costly
systems with the same number of processors. But the rapid rate of improvement in PC
microprocessor performance and advances in local area networks have led to systems capable
of tens or even hundreds of Gigaflops performance while retaining exceptional price-
performance benefits as recognized by the 1997 and 1998 Gordon Bell Prizes for Price-
Performance which were awarded to PC cluster systems.

Commodity clusters permit a flexibility of configuration not ordinarily encountered through
conventional MPP systems. Number of nodes, memory capacity per node, number of
processors per node, and interconnect topology are all parameters of system structure that
may be specified in fine detail on a per system basis without incurring additional cost due to
custom configurability. Further, system structure may easily be modified or augmented over
time as need and opportunity dictate without the loss of prior investment. This expanded
control over system structure not only benefits the end user but the system vendor as well,
yielding a wide array of system capabilities and cost tradeoffs to better meet customer
demands. Commodity clusters also permit rapid response to technology improvements. As
new devices including processors, memory, disks, and networks become available, they are
most likely to be integrated in to desktop or server nodes most quickly allowing clusters to be
the first class of parallel systems to benefit from such advances. The same is true of benefits
incurred through constantly improving price-performance trends in delivered technology.
Commodity clusters are best able to track technology improvements and respond most
rapidly to new component offerings.

1.5. Hardware Components

The key components comprising a commodity cluster are the nodes performing the
computing and the dedicated interconnection network providing the data communication



among the nodes. Significant advances for both have been accomplished over the last half-
decade and future improvements are ensured for at least the next two to three years. While
originally clusters were almost always assembled at the user site by staff local to the user
organization, now increasingly clusters are being delivered by vendors as turnkey solutions
to user specifications. Where once such systems were packaged in conventional “tower” cases,
now manufacturers are providing slim, rack mounted, nodes to deliver more capacity per
unit floor area. Although original clusters leveraged industry investment in the development
of local area networks, today multiple manufacturers have developed and are marketing
system area networks optimized to the needs of commodity clusters. Here is briefly
summarized the basic elements that comprise both the node and network hardware and
some of the principal offerings available today from major vendors.

1.5.1 Cluster Node Hardware

A node of a cluster provides the system computing and data storage capability. It is
differentiated from nodes of fully integrated systems such as an MPP in that it is derived
from fully operational standalone computing subsystems that are typically marketed as
desktop or server systems. Thus, no additional hardware development cost is incurred by
vendors to provide nodes for cluster configurations and they directly benefit from the cost
advantage of the consumer mass market. The node integrates several key subsystems in a
single unit. These are:

• Processor – the central processing unit today is a complex subsystem including the
core processing element, two layers of cache, and external bus controllers. Both 32 bit
and 64 bit processors are available with popular architectures including the Intel
Pentium II/III family and the Compaq Alpha 21264. Others include the IBM
PowerPC, the Sun Microsystems Super Sparc III, and the AMD K7 Athelon. Clock
rates in excess of 1 GHz are becoming increasingly available along with peak
performance greater than 1 Gflops. For some nodes, more than one processor is
combined in SMP configurations providing full mutual cache coherency.

• Memory – Dynamic Random Access Memory (DRAM) has dominated the main
memory business for two decades providing high density with moderate access times
at reasonable cost. Node main memory capacities range from 64 Mbytes to greater
than 1 Gbytes packaged as DIMMs or SIMMs. Individual memory chips may contain
64 Mbits and employ several possible interface protocols. SDRAM is the most widely
used to provide high memory bandwidth.

• Secondary Storage – for both high capacity and nonvolatile storage, most nodes (but
not all) will incorporate one or more forms of mass storage. Hard disks are the
primary form of secondary storage with SCSI II and EIDE the two most popular
classes. SCSI provides higher capacity and superior access bandwidth while EIDE
provides exceptional cost advantage. Current generation disk drives can provide
between 20 and 100 Gbytes of spinning storage with access times on the order of a
few milliseconds. Optical CD-ROMs and CD-RW are becoming another source of
storage, especially for low cost portability, code and data delivery, and backing store.
A single disk may hold more than 600 Mbytes and cost less than $1 in small
quantities. Writable disks are rapidly becoming typical, at least for master nodes.
Floppy disks are still found on many nodes, especially for bootup, initial installs, and
diagnostics, but with a capacity of only 1.4 Mbytes they are of diminishing value to
system nodes. Zip drives holding up to 250 Mbytes and of a form factor only slightly
larger than that of a floppy drive are another type of removable storage found on
some nodes.

• External Interface - standard interface channels are provided to connect the compute
node to external devices and networks. While most nodes still include venerable



EISA ports on the motherboards, these are slow and provided almost entirely for
backward compatibility. The primary interface today is PCI to which the majority of
control cards including network NICs are connected. PCI comes in four
configurations employing 32 or 64 bit connections driven at 33 MHz or 66 MHz clock
rates with a peak throughput of between approximately 1 and 4 Gbps. USB is rapidly
replacing other interfaces to connect medium speed external devices but parallel
printer ports and serial RS-232 ports will still be found on most nodes, again for
backward compatibility. Keyboard and video monitor interfaces ordinarily are
provided for local diagnostics and control although such functionality is increasingly
being handled remotely over the internal system area network.

1.5.2 Cluster Network Hardware

Commodity clusters are made possible only because of the availability of adequate inter-node
communication network technology. Interconnect networks enable data packets to be
transferred between logical elements distributed among a set of separate processor nodes
within a cluster through a combination of hardware and software support. Commodity
clusters incorporate one or more dedicated networks to support message packet
communication within the distributed system. This distinguishes it from ensembles of
standalone systems loosely connected by shared local area networks (LAN) that are
employed primarily as desktop and server systems. Such computing environments have been
successfully employed to perform combined computations using available unused resources.
These practices are referred to as “cycle harvesting” or “workstation farms” and share the
intercommunication network with external systems and services, not directly related to the
coordinated multi-node computation. In comparison, the commodity cluster’s system area
network (SAN) is committed to the support of such distributed computation on the cluster,
employing separate external networks for interaction with environment services.

Parallel applications exhibit a wide range of communication behaviors and impose diverse
requirements on the underlying communication framework. Some problems require the high
bandwidth and low latency found only in the tightly coupled massively parallel processing
systems (MPP) and may not be well suited to commodity clusters. Other application classes
referred to as “embarrassingly parallel” not only perform effectively on commodity clusters,
they may not even fully consume the networking resources provided. Many algorithms fall in
between these two extremes. As network performance attributes improve, the range of
problems that can be effectively handled also expands. The two primary characteristics
establishing the operational properties of a network are the bandwidth measured in millions
of bits per second (Mbps) and the latency measured in microseconds. Peak bandwidth is the
maximum amount of information that can be transferred in unit time through a single
channel. Bi-section bandwidth is the total peak bandwidth that can be passed across a
system. Latency is the amount of time to pass a packet from one physical or logical element
to another. But the actual measurement values observed for these parameters will vary
widely even on a single system depending on such secondary effects as packet size, traffic
contention, and software overhead.

Early PC clusters such as Beowulf-class systems employed existing LAN Ethernet
technology the cost of which had improved to the point that low cost commodity clusters were
feasible. However, their 10 Mbps peak bandwidth was barely adequate for other than the
most loosely coupled applications and some systems ganged multiple Ethernet networks
together in parallel through a software means called “channel bonding” that made the
multiplicity of available channels at a node transparent to the application code while
delivering significantly higher bandwidth to it than provided by a single channel. With the
emergence of Fast Ethernet exhibiting 100 Mbps peak bandwidth and the availability of low



cost hubs and moderate cost switches, commodity clusters became practical and were found
to be useful to an increasing range of applications for which latency tolerant algorithms could
be devised. Hubs provide a shared communications backplane that provides connectivity
between any two nodes at a time. While relatively simple and inexpensive, hubs limit the
amount of communication within a cluster to one transaction at a time. The more expensive
switches permit simultaneous transactions between disjoint pairs of nodes, thus greatly
increasing the potential system throughput and reducing network contention.

While local area network technology provided an incremental path to the realization of low
cost commodity clusters, the opportunity for the development of networks optimized for this
domain was recognized. Among the most widely used is Myrinet with its custom network
control processor that provides peak bandwidth in excess of 1 Gbps at latencies on the order
of 20 microseconds. While more expensive per port than Fast Ethernet, its costs are
comparable to that of the recent Gigabit Ethernet (1 Gbps peak bandwidth) even as it
provides superior latency characteristics. Another early system area network is SCI (scalable
coherent interface) that was originally designed to support distributed shared memory.
Delivering several Gbps bandwidth, SCI has found service primarily in the European
community. Most recently, an industrial consortium has developed a new class of network
capable of moving data between application processes without requiring the usual
intervening copying of the data to the node operating systems. This “zero copy” scheme is
employed by the VIA (Virtual Interface Architecture) network family yielding dramatic
reductions in latency. One commercial example is cLAN which provides bandwidth on the
order of a Gbps with latencies well below 10 microseconds. Finally, a new industry standard
is emerging, Infiniband, that in two years promises to reduce the latency even further
approaching one microsecond while delivering peak bandwidth on the order of 10 Gbps.
Infiniband goes further than VIA by removing the I/O interface as a contributing factor in
the communication latency by directly connecting to the processor’s memory channel
interface. With these advances, the network infrastructure of the commodity cluster is
becoming less dominant as the operational bottleneck. Increasingly, it is the software tools
that are limiting the applicability of commodity clusters as a result of hardware advances
that have seen improvements of three orders of magnitude in interconnect bandwidth within
a decade.

1.6. Software Components

If low cost consumer grade hardware has catalyzed the proliferation of commodity clusters
for both technical and commercial high performance computing, it is the software that has
both enabled its utility and restrained its usability. While the rapid advances in hardware
capability have propelled commodity clusters to the forefront of next generation systems,
equally important has been the evolving capability and maturity of the support software
systems and tools. The result is a total system environment that is converging on previous
generation supercomputers and MPPs. And like these predecessors, commodity clusters
present opportunity for future research and advanced development in programming tools
and resource management software to enhance their applicability, availability, scalability,
and usability. However, unlike these earlier system classes, the wide and rapidly growing
distribution of clusters is fostering unprecedented work in the field even as it is providing a
convergent architecture family in which the applications community can retain confidence.
Therefore, software components, so necessary for the success of any type of parallel system,
is improving at an accelerated rate and quickly approaching the stable and sophisticated
levels of functionality that will establish clusters as the long-term solution to high-end
computation.



The software components that comprise the environment of a commodity cluster may be
described in two major categories: programming tools and resource management system
software. Programming tools provide languages, libraries, and performance and correctness
debuggers to construct parallel application programs. Resource management software relates
to initial installation, administration, and scheduling and allocation of both hardware and
software components as applied to user workloads. A brief summary of these critical
components follows.

1.6.1 Application Programming Environments

Harnessing of parallelism within application programs to achieve orders of magnitude gain
in delivered performance has been a challenge confronting high end computing since the
1970’s if not before. Vector supercomputers, SIMD array processors, and MPP
multiprocessors have exploited varying forms of algorithmic parallelism through a
combination hardware and software mechanisms. The results have been mixed. The highest
degrees of performance yet achieved have been through parallel computation. But in many
instances, the efficiencies observed have been low and the difficulties in their
accomplishment have been high. Commodity clusters, because of their superior price-
performance advantage for a wide range of problems, are now undergoing severe pressure to
address the same problems confronted by their predecessors. While multiple programming
models have been pursued, one paradigm has emerged as the predominant form, at least for
the short term. The “communicating sequential processes” model more frequently referred to
as the “message passing” model has evolved through many different implementations
resulting in the MPI or Message Passing Interface community standard. MPI is now found
on virtually every vendor multiprocessor including SMPs, DSMs, MPPs, and clusters. MPI is
not a full language but an augmenting library that allows users of C and Fortran to access
libraries for passing messages between concurrent processes on separate but interconnected
processor nodes. A number of implementations of MPI are available from system vendors,
ISVs, and research groups providing open source versions through free distributions.

Parallel programming to be effective requires more than a set of constructs. There needs to
be the tools and environment to understand the operational behavior of a program to correct
errors in the computation and to enhance performance. The status of such tools for clusters is
in its infancy although significant effort by many teams has been made. One popular
debugger, Totalview, has met part of the need and is the product of an ISV, benefiting from
years of evolutionary development. A number of performance profilers have been developed
taking many forms. One good example is the set of tools incorporated with the PVM
distribution. Work continues but more research is required and no true community wide
standard has emerged.

While the message-passing model in general and MPI in particular dominate parallel
programming of commodity clusters, other models and strategies are possible and may prove
superior in the long run. Data-parallel programming has been supported through HPF and
BSP. Message driven computation has been supported by Split-C and Fast messages.
Distributed shared memory programming was pursued by the Shrimp project and through
the development of UPC. And for the business community relying on coarse-grained
transaction processing, a number of alternative tools have been provided to support a
conventional master-slave methodology. It is clear that today for cluster programming there
is an effective and highly portable standard for building and executing parallel programming
and that work on possible alternative techniques is underway by researcher groups that may
yield improved and more effective models in the future.



1.6.2 Resource Management Software

While a couple of strong standards have been accepted by the community for programming
commodity clusters, such can not be said for the software environments and tools required to
manage the resources, both hardware and software, that execute the programs. However, in
the last two to three years substantial progress has been made with number of software
products available from research groups and ISVs that are beginning to satisfy some of the
more important requirements. The areas of support required are diverse and reflect the
many challenges to the management of cluster resources.

• Installation and Configuration – the challenge of “build it yourself supercomputers”
lies first with the means of assembling, installing, and configuring the necessary
hardware and software components comprising the complete system. The challenge
of implementing and maintaining common software image across nodes, especially
for systems comprising hundreds of nodes requires sophisticated, effective, and easy
to use tools. Many partial solutions have been developed by various groups and
vendors (e.g. Scyld) and are beginning to make possible quick and easy creation of
very large systems with a minimum of effort.

• Scheduling and Allocation - the placement of applications on to the distributed
resources of commodity clusters requires tools to allocate the software components to
the nodes and to schedule the timing of their operation. In its most simple form, the
programmer performs this task manually. However, for large systems, especially
those shared among multiple users and possibly performing multiple programs at
one time, more sophisticated means are required for a robust and disciplined
management of computing resources. Allocation can be performed at different levels
of task granularity including: jobs, transactions, processes, or threads. They may be
scheduled statically such that once an assignment is made it is retained until the
culmination of the task or dynamically permitting the system to automatically
migrate, suspend, and reinitiate tasks for best system throughput by load balancing.
Examples of available schedulers that incorporate some, but not all, of these
capabilities include Condor, the Maui Scheduler, and the Cluster Controller.

• System Administration – the supervision of industrial grade systems requires many
mundane but essential chores to be performed including the management of user
accounts, job queues, security, backups, mass storage, log journaling, operator
interface, user shells, and other housekeeping activities. Traditionally, high-end
computing systems have lacked some or most of these essential support utilities
typical of commercial server class mainstream systems. However, incremental
progress in this area has been made with PBS as a leading example.

• Monitoring and Diagnosis – continued operation of a system comprising a large
number of nodes requires low level tools by which the operator may monitor the
state, operation, and health of all system elements. Such tools can be as simple as
distributed versions of command line Unix-like ps and top commands to GUI visual
depictions of the total parallel system updated in real time. While a number of such
tools has been devised by different groups, no single tool has achieved dominance in
community wide usage.

• Distributed Secondary Storage – almost all computations require access to secondary
storage including both local and remote disk drives for support of file systems. Many
commercial applications and even some technical computations are disk access
intensive. While NFS has continued to serve in many commodity cluster
configurations, its many limitations in both functionality and performance have
resulted in a new generation of parallel file systems to be developed. No one of these
fully satisfies the diversity of requirements seen across the wide range of
applications. As a result, commercial turnkey applications often incorporate their
own proprietary distributed file management software tailored to the specific access



patterns of the given application. But for the broader cluster user base, a general-
purpose parallel file system is required that is flexible, scalable, and efficient as well
as standardized. Examples of parallel file systems that have been applied to the
cluster environment include PPFS, PVFS, and GPFS.

• Availability – as the scale of commodity clusters increases, the MTBF will decrease
and active measures must be taken to ensure continued operation and minimal down
time. Surprisingly, many clusters operate for months at a time without any outage
and are often taken off line just for software upgrades. But especially during early
operation, failures of both hardware (through infant mortality) and software
(incorrect installation and configuration) can cause disruptive failures. For some
cluster systems dedicated to a single long running application, continuous execution
times of weeks or even months may be required. In all these cases, software tools to
enhance system robustness and maximize up-time are becoming increasingly
important to the practical exploitation of clusters. Checkpoint and restart tools are
crucial to the realization of long-run applications on imperfect systems. Rapid
diagnostics, recursion testing, fault detection, isolation, hot spares, and maintenance
record analysis require software tools and a common framework to keep systems
operational longer, resume operation rapidly in response to failures, and recover
partial computations for continued execution in the presence of faults.

1.7. This Special Issue

This special of the International Journal of High Performance Computing and Applications is
dedicated to providing the most current and in-depth representation of the field of PC
Cluster Computing, its enabling technologies, system software components, programming
environments, and research directions. A number of experts have collaborated on this
important survey and summary of the state of the field to provide a comprehensive reflection
of the practical capabilities, their application, and future research directions. This issue
comprises a set of separate but coordinated papers that provide both useful guidance and
exploratory insight into the present and future of commodity cluster computing. The issue
begins with the critical subject of enabling network technologies. It describes the many
choices, their properties, and tradeoffs as well as future directions. Equally important is the
local node operating system of which a number are being employed for clusters. These
include commercial versions of Unix, open-source Unix-like systems such as Linux, and other
commercial systems such as Microsoft Windows-2000. But other experimental systems are
considered as well along with the many underlying issues that determine the effectiveness of
node operating systems to support cluster computation. The fourth paper addresses the
broader issues related to making a distributed ensemble of essentially disparate processing
nodes into a single homogenous computing resource. This paper considers the issues,
requirements, and methodologies for achieving single system image at multiple levels of
abstractions necessary for ease of management and programming. Following that is the
central issue of managing distributed input output including secondary storage and the
challenges faced by the sometimes-conflicting requirements of generality, robustness, and
performance. The challenge to achieving high availability for large and complex systems is
considered in the next paper that examines the hardware and software means of improving
system reliability. The succeeding next two chapters explore the realm of computation on
commodity clusters from the perspective of shared numerical libraries and example
applications. These papers provide quantitative evidence of the effectiveness and power of
the cluster approach while exposing the challenges to extracting their best performance. This
special issue concludes with a particularly interesting domain of application that while
special purpose has extremely wide usage nonetheless. Embedded computing represents an
installed base more than an order of magnitude greater than all desktop and server systems
combined and the role of cluster computing in this arena is only now being explored for



commercial, industrial, and defense related applications. This last paper provides an
introduction to a range of embedded applications and the enabling hardware and software
technologies that are making cluster computing available to support their growing
performance and availability requirements. This special issue is offered as a contribution to a
rapidly growing field that is likely to dominate high performance computing in the near
future.



2. Network Technologies

Amy Apon, University of Arkansas, USA, and Mark Baker, University of Portsmouth, UK.

2.1 Introduction

A broad and growing range of possibilities is available to designers of a cluster when
choosing an interconnection technology. As the price of network hardware in a cluster can
vary from almost free to several thousands of dollars per computing node, the decision is not
a minor one in determining the overall price of the cluster. Many very effective clusters have
been built from inexpensive products that are typically found in local area networks.
However, some recent network products specifically designed for cluster communication have
a price that is comparable to the cost of a workstation. The choice of network technology
depends upon a number of factors, including price, performance, and compatibility with other
cluster hardware and system software as well as communication characteristics of
applications that will use the cluster.

Performance of a network is generally measured in terms of latency and bandwidth. Latency
is the time to send data from one computer to another, and includes the overhead for the
software to construct the message as well as the time to transfer the bits from one computer
to another. Bandwidth is the number of bits per second that can be transmitted over the
interconnection hardware. Ideally, applications that are written for a cluster will have a
minimum amount of communication. However, if an application sends a large number of
small messages, then its performance will be impacted by the latency of the network, and if
an application sends large messages, then its performance will be impacted by the bandwidth
of the network. In general, applications perform best when the latency of the network is low
and the bandwidth is high. Achieving low latency and high bandwidth requires efficient
communication protocols that minimize communication software overhead, and fast
hardware.

Compatibility of network hardware with other cluster hardware and system software is a
major factor in the selection of network hardware. From the user’s perspective, the network
should be interoperable with the selected end node hardware and operating system, and
should be capable of efficiently supporting the communication protocols that are necessary
for the middleware or application. Section two of this article gives a brief history of cluster
communication protocols, leading to the development of two important standards for cluster
communication.

Section three of this paper gives an overview of many common cluster interconnection
products. A brief description of each technology is given, along with a comparison of products
on the basis of price, performance, and support for standard communication protocols.
Finally, section four presents a short conclusion and future developments for cluster network
technologies.

2.2 Communication Protocols

A communication protocol defines the rules and conventions that will be used by two or more
computers on the network to exchange information. Communication protocols can be
classified as:
• Connection-oriented or connectionless,
• Offering various levels of reliability, including fully guaranteed to arrive in order

(reliable), or not guaranteed (unreliable),



• Not buffered (synchronous), or buffered (asynchronous), or
• By the number of intermediate data copies between buffers, which may be zero, one, or

more.

Several protocols are used in clusters. Traditional network protocols that were originally
designed for the Internet are used, and protocols that have been designed specifically for
cluster communication are used. In addition, two new protocol standards have been specially
designed for use in cluster computing.

2.2.1 Internet Protocols

The Internet Protocol (IP) is the de facto standard for networking worldwide. IP offers a best-
effort (unreliable) messaging service between two computers that have an IP address. The
Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP) are both
transport layer protocols built over the Internet Protocol. TCP (or TCP/IP) offers a reliable,
connection-oriented service between two hosts on a network. UDP is an unreliable,
connectionless transport layer service. TCP and UDP protocols and the de facto standard
BSD sockets Application Programmer’s Interface (API) to TCP and UDP were among the
first messaging libraries used for cluster computing [1].

Traditionally, TCP and UDP protocols are typically implemented using one or more buffers
in system memory and with the aid of operating system services. To send a message, a user
application constructs the message in user memory, and then makes an operating system
request to copy the message into a system buffer. A system interrupt is required for this
operating system intervention before the message can be sent out by network hardware.
When a message is received by network hardware, the network copies the message to system
memory. An interrupt is used to copy the message from system memory to user memory and
to notify the receiving process that the message has arrived.

Operating system overhead and the overhead for copies to and from system memory are a
significant portion of the total time to send a message. As network hardware became faster
during the 1990’s, the overhead of the communication protocols became significantly larger
than the actual hardware transmission time for messages, as shown in Figure 2.1.

Transmission Time

Protocol Overhead

10Mbps 100Mbps 1000Mbps

Figure 21. Traditional Protocol Overhead and Transmission Time



2.2.2 Low-latency Protocols

Several research projects during the 1990’s led to the development low-latency protocols that
avoid operating system intervention while at the same time providing user-level messaging
services across high-speed networks. Low-latency protocols developed during the 1990’s
include Active Messages, Fast Messages, the VMMC (Virtual Memory-Mapped
Communication) system, U-net, and Basic Interface for Parallelism (BIP), among others.

2.2.2.1 Active Messages

Active Messages [2] is the enabling low-latency communications library for the Berkeley
Network of Workstations (NOW) project [3]. Short messages in Active Messages are
synchronous, and are based on the concept of a request-reply protocol. The sending user-level
application constructs a message in user memory. To transfer the data, the receiving process
allocates a receive buffer, also in user memory on the receiving side, and sends a request to
the sender. The sender replies by copying the message from the user buffer on the sending
side directly to the network. No buffering in system memory is performed. Network
hardware transfers the message to the receiver, and then the message is transferred from
the network to the receive buffer in user memory. This process requires that user virtual
memory on both the sending and receiving side be pinned to an address in physical memory
so that it will not be paged out during the network operation. However, once the pinned user
memory buffers are established, no operating system intervention is required for a message
to be sent. This protocol is also called a “zero-copy” protocol, since no copies from user
memory to system memory are used.

Active Messages was later extended to Generic Active Messages (GAM) to support multiple
concurrent parallel applications in a cluster. In GAM, a copy sometimes occurs to a buffer in
system memory on the receiving side so that user buffers can be reused more efficiently. In
this case, the protocol is referred to as a “one-copy” protocol.

2.2.2.2 Fast Messages

Fast Messages was developed at the University of Illinois and is a protocol similar to Active
Messages [4]. Fast Messages extends Active Messages by imposing stronger guarantees on
the underlying communication. In particular, Fast Messages guarantees that all messages
arrive reliably and in-order, even if the underlying network hardware does not. It does this
in part by using flow control to ensure that a fast sender cannot overrun a slow receiver, thus
causing messages to be lost. Flow control is implemented in Fast Messages with a credit
system that manages pinned memory in the host computers. In general, flow control to
prevent lost messages is a complication in all protocols that require the system to pin main
memory in the host computers, since either a new buffer must be pinned or an already-
pinned buffer must be emptied before each new message arrives.

2.2.2.3 VMMC

The Virtual Memory-Mapped Communication [5] system, later extended to VMMC-2, is the
enabling low-latency protocol for the Princeton SHRIMP project. One goal of VMMC is to
view messaging as reads and writes into the user-level virtual memory system. VMMC works
by mapping a page of user virtual memory to physical memory, and in addition makes a
correspondence between pages on the sending and receiving sides. VMMC also uses specially



designed hardware that allows the network interface to snoop writes to memory on the local
host and have these writes automatically updated on the remote hosts memory. Various
optimisations of these writes have been developed that help to minimize the total number of
writes, network traffic, and overall application performance. VMMC is an example of a
paradigm known as distributed shared memory (DSM). In DSM systems memory is
physically distributed among the nodes in a system, but processes in an application may view
“shared” memory locations as identical and perform reads and writes to the “shared” memory
locations.

2.2.2.4 U-net

The U-net network interface architecture [6] was developed at Cornell University, and also
provides zero-copy messaging where possible. U-net adds the concept of a virtual network
interface for each connection in a user application. Just as an application has a virtual
memory address space that is mapped to real physical memory on demand, each
communication endpoint of the application is viewed as a virtual network interface mapped
to a real set of network buffers and queues on demand. The advantage of this architecture is
that once the mapping is defined, each active interface has direct access to the network
without operating system intervention. The result is that communication can occur with very
low latency.

2.2.2.5 BIP

BIP [7] (Basic Interface for Parallelism) is a low-latency protocol that was developed at the
University of Lyon. BIP is designed as a low-level message layer over which a higher-level
layer such as Message Passing Interface (MPI) [8] can be built. Programmers can use MPI
over BIP for parallel application programming. The initial BIP interface consisted of both
blocking and non-blocking calls. Later versions (BIP-SMP) provide multiplexing between the
network and shared memory under a single API for use on clusters of symmetric
multiprocessors. Currently BIP-SMP is only supported under the Linux operating system.

BIP achieves low latency and high bandwidth by using different protocols for various
message sizes and by providing a zero or single memory copy of user data. To simply the
design and keep the overheads low, BIP guarantees in-order delivery of messages, although
some flow control issues for small messages are passed to higher software levels.

2.2.3 Standards for Cluster Communication

By 1997, research on low-latency protocols had progressed sufficiently for a new standard for
low-latency messaging to be developed, the Virtual Interface Architecture (VIA).. During a
similar period of time industrial researchers worked on standards for shared storage
subsystems. The combination of the efforts of many researchers has resulted in the
InfiniBand standard. The VIA and InfiniBand standards will likely dominate cluster
network architectures in the coming years.

2.2.3.1 VIA

The Virtual Interface Architecture [9] is a communications standard that combines many of
the best features of various academic projects. A consortium of academic and industrial
partners, including Intel, Compaq, and Microsoft, developed the standard. Version 1.1 of
VIA includes support for heterogeneous hardware and is available as of early 2001. Like U-
net, VIA is based on the concept of a virtual network interface. Before a message can be sent
in VIA, send and receive buffers must be allocated and pinned to physical memory locations.



No system calls are needed after the buffers and associated data structures are allocated. A
send or receive operation in a user application consists of posting a descriptor to a queue.
The application can choose to wait for a confirmation that the operation has completed, or
can continue host processing while the message is being processed.

Several hardware vendors and some independent developers have developed VIA
implementations for various network products [10][11]. VIA implementations can be
classified as native or emulated. A native implementation of VIA off-loads a portion of the
processing required to send and receive messages to special hardware on the network
interface card. When a message arrives in a native VIA implementation, the network card
performs at least a portion of the work required to copy the message into user memory. With
an emulated VIA implementation, the host CPU performs the processing to send and receive
messages. Although the host processor is used in both cases, an emulated implementation of
VIA has less overhead than TCP/IP. However, the services provided by VIA are different
than those provided by TCP/IP, since the communication may not be guaranteed to arrive
reliably in VIA.

Although VIA can be used directly for application programming, the Virtual Interface
Architecture is considered by many systems designers to be at too low a level for application
programming. With VIA, the application must be responsible for allocating some portion of
physical memory and using it effectively. It is expected that most operating system and
middleware vendors will provide an interface to VIA that is suitable for application
programming. For example, there is an implementation of the MPICH version of MPI [8]
(Message Passing Interface), called MVICH [12] that runs over VIA. In fall, 2000, most
database vendors offer a version of their product that runs over VIA, and other cluster
software such as file systems that run over VIA are rapidly becoming available.

2.2.3.2 InfiniBand

A large consortium of industrial partners, including Compaq, Dell, Hewlett-Packard, IBM,
Intel, Microsoft and Sun Microsystems, supports the InfiniBand standard [13]. The
InfiniBand architecture replaces the shared bus that is standard for I/O on current
computers with a high-speed serial, channel-based, message-passing, scalable, switched
fabric. All systems and devices attach to the fabric through host channel adaptors (HCA) or
target channel adaptors (TCA), as shown in Figure 2.2. A single InfiniBand link operates at
2.5Gbps point-to-point in a single direction. Data is sent in packets, and six types of transfer
methods are available, including:

• Reliable and unreliable connections,
• Reliable and unreliable datagrams,
• Multicast connections, and
• Raw packets.

In addition, InfiniBand supports remote direct memory access (RDMA) read or write
operations, which allows one processor to read or write the contents of memory at another
processor, and also directly supports IPv6 [14] messaging for the Internet.

Since InfiniBand replaces the standard shared bus, new equipment is needed to introduce
InfiniBand into the network, although this can be done incrementally. InfiniBand requires
that new system software be implemented in the operating system of the host platforms, and
that embedded logic be included within the enclosures and devices that attach to the fabric.



2.3 Hardware Products

Network hardware products may be classified into four categories, depending on whether the
internal connection is from the I/O bus or the memory bus, and depending on whether the
communication between the computers is performed primarily using messages or using
shared storage [15]. Table 1 illustrates the four types of interconnections.

Message Based Shared Storage

I/O Attached Most common type, includes
most high-speed networks;
VIA, TCP/IP

Shared disk subsystems

Memory
Attached

Usually implemented in
software as optimizations of
I/O attached message-based

Global shared memory,
Distributed shared memory

Table 1: Categories of Cluster Interconnection Hardware

Of the four interconnect categories, I/O attached message-based systems are by far the most
common since this interface to the computer is well understood. The I/O bus provides, at
least, a hardware interrupt that can inform the processor that data is waiting for it. How
this interrupt is handled may vary, depending on the firmware or software stack that is used
to receive the data.

I/O attached message-based systems includes all commonly-used wide-area and local-area
network technologies, and includes several recent products that are specifically designed for
cluster computing. I/O attached shared storage systems include computers that share a
common disk sub-system. Memory attached systems are less common, since the memory bus
of an individual computer generally has a design that is unique to that type of computer.
However, many memory-attached systems are implemented in software or with memory-
mapped I/O, such as Memory Channel [16]. Hybrid systems that combine the features of
more than one category also exist, such as the Infiniband standard [13], which can be used to
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Figure 2.2: The InfiniBand Architecture [13]
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send data to a shared disk sub-system as well as to send messages to another computer.
Similarly, SCI [17][18] may also be used for both shared memory and message passing.
Networks that are designed specifically for cluster computing generally have additional
hardware support, such as support for VIA, that lowers the latency in communication.

The topology of the network is generally determined by the selection of the specific network
hardware. Some networks, such as Ethernet, only allow a configuration that can be viewed
as a tree because of the hardware-implemented transparent routing algorithm. Other
networks, such as Myrinet [19], allow a configuration with multiple redundant paths
between pairs of nodes. In general, the primary factor with respect to topology that may
affect the performance of the cluster is the maximum bandwidth that can be sustained
between pairs of nodes in the cluster simultaneously. This is a function of both the topology
and the capability of the switches in the network and depends on the specific network
products that are chosen.

 Gigabit
Ethernet

Giganet Myrinet Qsnet SCI ServerNet
2

MPI Bandwidth 

(MBytes/s) 

35 – 50 105 140 208 80 65

MPI Latency (µµµµs) 100 – 200 20-40 ~18 5 6 20.2

List price per port $1.5K $1.5K $1.5K $3.5K $1.5K $1.5K

Maximum 

#nodes 

1000's 1000's 1000's 1000's 1000's 64K

VIA support NT/Linux NT/Linux Over GM None Software In
hardware

MPI support MPICH
over
MVIA,
TCP

3rd party 3rd party Quadric
s/

Compaq

3rd party Compaq/

3rd party

Table 2: Network Technology Comparison

Table 2 compares several commonly used network products for high-performance clusters as
of fall, 2000. Products are listed in alphabetic order across the table. Because new products
are continually becoming available, this table only shows some of the most common, but is
representative of the capabilities typically found for network products of this type. Note that
the measured latencies and bandwidths shown here are the best published measurements
available for MPI at the time of this article, but should only be used for a very rough
comparison, as these numbers change depending on the configuration of the host computers
and other factors. For example, the host CPU speed, bus speed, swap space, size and type of
memory and cache will affect network performance. In addition, various parameters of the
underlying communication protocol, such as whether or not a checksum is computed, can
have an effect on network performance measurements.

2.3.1 Ethernet, Fast Ethernet, and Gigabit Ethernet

Ethernet has been the most widely used technology for local area networking. Standard
Ethernet transmits at 10Mbps and has been successfully used in high-performance cluster
computing [20]. However, this bandwidth is no longer sufficient for use in cluster computing
since its bandwidth is not balanced compared to the computational power of the computers



now available. Fast Ethernet provides 100Mbps bandwidth for very low cost, and Gigabit
Ethernet [21] provides higher bandwidth for somewhat higher cost.

Both standard and many Fast Ethernet products are based on the concept of a collision
domain. Within a collision domain, the communication channel is shared so that only one
node can send at a time. If another node tries to send at the same time then a collision
occurs, both messages are garbled, and both nodes retry their communication after a random
waiting period. With a shared Ethernet or shared Fast Ethernet hub, all nodes share the
same collision domain and only one node on the network can send at a time. With a switched
hub, each node may be on a different collision domain, depending on the manufacturer’s
specifications. In this case, then two nodes can send at the same time as long as they are not
both sending to the same receiver. In general, all switched networks, not just Ethernet
networks, have this capability. For cluster computing, switches are preferred since the
ability for more than one node to send at the same time can greatly improve overall
performance.

All Gigabit Ethernet products, except for the lowest end hubs, are based on high-speed point-
to-point switches in which each node is in its own separate collision domain. Gigabit
Ethernet transmits signals at 1Gbps (hence the name Gigabit Ethernet) but because of the
encoding required at high speeds it has a theoretical user data rate of 800Mbps, or about
100Mbytes/s. Because of the protocol overhead when using MPI, the measured user data
rate of Gigabit Ethernet is approximately 50Mbytes/s with current generation computers.
This rate will increase as CPU speeds continue to increase. Because of the physical nature of
sending high-speed signals, Gigabit Ethernet products may have more restrictive distance
and wiring requirements than Fast Ethernet products, but this is not generally a problem in
a cluster environment.

Fast Ethernet products are affordable and provide adequate capacity and latency for many
cluster-computing applications. Most new computers come with a built-in Fast Ethernet
adapter, and small switches can be purchased for less than $30 [22]. Gigabit Ethernet
products are more expensive than Fast Ethernet, but generally less expensive than other
gigabit networking products.

One disadvantage of Gigabit Ethernet and Fast Ethernet products is that they are not
capable of native support of the Virtual Interface Architecture (VIA) standard. However,
Gigabit Ethernet and Fast Ethernet do have emulated VIA implementations that operate
with lower latencies than TCP/IP [11].

2.3.2 Giganet (cLAN)

Giganet cLAN [23] was developed with the goal of supporting VIA in hardware, and was the
first industry provider of a native hardware implementation of the VIA standard. Giganet
began shipping the cLAN product suite for Windows NT in fall 1998 and for Linux in fall
1999. In 1999, Giganet products included PCI adapters that support 1.25Gbps high-speed
cluster interconnection and 1024 virtual interfaces, switches with up to 30 ports, and a
software tool for managing and testing of the cluster network. Measured bandwidth for
Giganet is approximately 105Mbytes/s.

2.3.3 Myrinet

Myrinet [19] is a 1.28Gbps full duplex network supplied by Myricom. It was used in the
Berkeley Network of Workstations (NOW) [3] cluster and many other academic clusters.
Myrinet has a programmable on-board processor that allows for experimentation with



communication protocols. Many protocols have been implemented and tested on Myrinet,
including Active Messages, Generic Active Messages, Fast Messages, U-net, and BIP.

Myrinet uses switches that can be configured to provide redundant paths between nodes.
The switches support cut-through routing, which allows messages to pass from end to end
with minimal latency in the switches. Myrinet switches simplify network set up by
automatically mapping the network configuration. Myrinet also provides “heartbeat”
continuity monitoring on every link, for fault tolerance.

Flow control in done on each link in Myrinet using the concept of a slack buffer. As data is
sent from one node to another, if the amount of data that is buffered in the receiving node
exceeds a certain threshold, then a “stop” bit is sent to the sender to stall the transmission of
more bits. As the amount of data in the buffer falls below another threshold, then a “go” bit
is sent to the sender to start of the flow of bits again.

A low-latency protocol called GM is the preferred software for Myrinet, and MPI is supported
over GM [8]. Efficient versions of TCP/IP and VIA are also available as a layer over GM.
There are Myrinet drivers for every major processor and every major operating system,
including Linux, Solaris, and Microsoft Windows. A version of the MPICH version of MPI
running over BIP, called MPI-BIP [24], offers 7.6µs latency and 107Mbytes/s bandwidth
across the Myrinet network, with 3.3µs latency and 150Mbytes/s bandwidth intra-node
across shared memory. A version of MPI running over GM sustained a throughput of
140Mbytes/s. Sustained Myrinet bandwidth for TCP/IP and UDP has been measured at over
220Mbytes/s.

Myrinet prices are competitive with other high-performance cluster network products. In
addition, by 2001, Myrinet switches with up to 32 ports are expected to be available, allowing
Myrinet clusters to scale to 10,000’s of nodes. In addition, its low latency, high bandwidth,
and programmability make it competitive for cluster computing.

2.3.4 QsNet

QsNet [25] from Quadrics Supercomputers World Ltd. is a high bandwidth, low latency
interconnection for commodity symmetric multiprocessing computers. QsNet is constructed
from two QSW designed sub-systems:

• A network interface comprising one or more network adapters in each node;
• A high performance multi-rail data network that connects the nodes together.

The network interface is based on QSW's “Elan” ASIC. The Elan III integrates a dedicated
I/O processor to offload messaging tasks from the main CPU, a 66Mhz 64-bit PCI interface, a
QSW data link (a 400Mhz byte-wide, full duplex link), MMU, cache and local memory
interface. The Elan performs three basic types of operation:

• Remote read and write;
• The direct transfer of data from a user virtual address space on one processor to

another processor without requiring synchronization;
• Protocol handling.

The Elan has a programmable “Thread” processor that can generate network operations and
execute code fragments to perform protocol handling without interrupting the main
processor.



The data network is constructed from an 8-way cross-point switch component – the Elite III
ASIC. Switches are connected in a fat tree. Two network products are available, a standalone
16-way network and a scalable switch chassis providing up to 128 ports.

QsNet provides parallel programming support via MPI, process shared memory, and TCP/IP.
QsNet supports a true zero-copy (virtual-to-virtual memory) protocol, and has excellent
performance. Although the current price for Qsnet is somewhat higher than for other high-
performance cluster networks, it will likely drop as the product matures, making QsNet a
very competitive cluster interconnection product.

2.3.5 ServerNet

ServerNet [26] has been a product from Tandem (now a part of Compaq) since 1995.
ServerNet II offers direct support for VIA in hardware, 12-port non-blocking switches, and
fat links between switches. Up to four physical links can be mapped into one logical link.
Software support includes VIA drivers for NT and Linux. Although ServerNet II is a well-
established project, it is only available from Compaq as packaged cluster solution, not as
single components, which may limit its use in general-purpose clusters.

2.3.6 Scalable Coherent Interface (SCI)

SCI [17][18] was the first interconnection technology to be developed as a standard
specifically for the purposes of cluster computing. To surpass the performance of bus-based
systems, SCI is a point-to-point architecture with small packet sizes and split transactions
while maintaining the impression of a bus-functionality from the upper layers. The IEEE
1596 standard for SCI was published in 1992 and specifies the physical layers of the network
as well as higher layers for cache-coherent distributed shared memory across a network,
which can optionally be cache-coherent. The standard allows serial fiber-optic links and
parallel copper links on the physical layer. The bandwidth of current implementation of SCI
links is located between 400 and 1000 Mbytes/s, and typical remote access latencies are little
more than 2µs.

Since the lower SCI protocol layers are already meaningful for themselves, it has been
possible for many commercial products to be developed using only these lower layers.
Dolphin Interconnect Solutions, Inc. currently produces SCI adapter cards for IO-buses like
the Sun SPARC SBus and PCI. This solution provides non-cache-coherent shared memory
and is thus well suited for message passing [27][28] or efficient software-supported
distributed shared memory [29][30].

At higher layers, SCI defines a distributed, pointer-based cache coherence scheme. This
allows for caching of remote SCI memory: whenever data located in remote memory is
modified, all cache lines on all nodes that, store this data are invalidated. Caching of remote
SCI memory increases performance and allows for true, transparent shared memory
programming. Examples for the implementation of cache-coherent SCI variants are the HP
Convex, Sequent NUMA-Q (now IBM) and Data General AViiON NUMA systems. The IO-
bus based solutions cannot implement the cache-coherence protocol since they have no access
to the CPU bus to monitor memory accesses.

Next to multi-processor coupling, SCI is also used to implement I/O networks or
transparently extend I/O buses like PCI: I/O address space from one bus is mapped into
another one providing an arbitrary number of devices. Examples for this usage are the
SGI/Cray GigaRing and Siemens' external I/O expansion for the RM600 enterprise servers
[27].



Although SCI features a point-to-point architecture that makes the ring topology most
natural, other (logical) topologies are possible as well using switches. Switches can be
separate devices providing star – or switched-ringlet-topologies, or they can be integrated
into the nodes allowing 2D- or even 3D-Torus topologies [27]. The cost of SCI components is
in the range of other Gigabit-interconnects (less than $1000 per node). Switches are not
needed for small clusters, but they improve performance and reliability if more than four
nodes are to be used.

The Dolphin PCI-SCI adapters have support for most major operating systems (Windows,
Solaris, Linux, Lynx and more), CPU architecture (x86, PPC, Alpha) and offer a unified user-
level programming interface. The usual parallel programming models are available, either
commercially [28], or as free software [29][30][32][33]. A native VIA interface is currently
under development at [34].

SCI is an appealing cluster interconnection technology. Its performance is comparable or
better than other Gigabit interconnects, in addition it enjoys an efficient user-level shared
memory programming paradigm. Further information about SCI can be found in the IEEE
standard and a recently published book [35].

2.3.7 ATM

ATM [36], or Asynchronous Transmission Mode, is an international network standard that
grew out of the needs of the telecommunications industry. ATM is designed around the
concept of cells, or small, fixed-sized packets. ATM is a switch-based technology that uses the
idea of virtual circuits to deliver a connection-oriented service. ATM offers several classes of
data delivery. Some classes are designed for voice and video communication, which require
real-time guarantees on data delivery rates. Due to the recent consolidation of many
telecommunications industry and Internet services, ATM is being increasingly used as a
backbone technology in many organizations. While ATM products offer high bandwidth, in
comparison to other similar technologies, it is relatively expensive.

2.3.8 Fibre Channel

Fibre Channel [37] is a set of standards that defines a high performance data transport
connection technology that can transport many kinds of data at speeds up to 1Gbps, through
copper wire or fiber optic cables. The Fibre Channel standard is defined in layers, beginning
at the physical layer. Like the SCI standard, the standards layers are independent, enabling
many companies to produce networking and cluster products based on the lower layers only.
Fibre Channel is flexible, and mapping protocols have been defined which enable higher-level
protocols, such as SCSI, IP, ATM, and HIPPI, to be used over Fibre Channel connections.
Currently, the most frequent usage of Fibre Channel in clusters is for data storage devices.
The high performance network capacity of Fibre Channel can be combined with SCSI and
other I/O bridges to create a network of storage devices, separate from the primary cluster
interconnect. A network of this type is sometimes called a Storage Area Network (also, SAN)
and is an important subsystem of many commercial clusters. As Fibre Channel matures it
may become more widely used as a general-purpose cluster interconnection technology.

2.3.9 HIPPI

HIPPI [38], or HIgh Performance Parallel Interface, is a gigabit network that was first
designed for interconnecting high-performance parallel computers with network attached
storage devices. When the first 800Mbps HIPPI standard was developed in the late 1980’s, it



was considered revolutionary. The standard has gone through several versions and now
bears the name Gigabit System Network (GSN). GSN is the highest bandwidth and lowest
latency interconnect standard, providing full duplex transmission rates of 6400Mbps (800
Mbytes/s) in each direction. GSN and HIPPI products are competitively priced when
considering their high throughput. However, their cost prohibits their widespread usage,
except in applications that require the highest performance.

2.3.10 Reflective Memory

Reflective memory [39][40] uses memory-mapped I/O to provide the illusion of a memory-
attached interconnection. With reflective memory, nodes write to a local memory location on
the network interface card, and the data is broadcast on the network so that it is available to
all other nodes in the network. The broadcast of the data happens automatically, so that all
nodes in the network have a shared view of the reflective memory. Reflective memory
products have been available since the early 1990’s and are available from several vendors
[16][41][42]. Reflective memory is often used in a real-time fault-tolerant environment. In
these environments, the replication of the data in the reflective memory gives a higher level
of fault tolerance. Because each memory location has to be physically replicated on each
node in the system, reflective memory products tend to be more expensive than other types of
networks, and their cost grows as the size of the shared memory and the number of nodes in
the system grows.

2.3.11 ATOLL

The Atoll [43], or Atomic Low Latency network, is one of the newest networks for cluster
computing. Atoll has four independent network interfaces, an 8x8 crossbar switch and four
link interfaces in a single chip. Message latency is as low as 4µs, and bandwidth between two
nodes approaches 200 Mbytes/s. Atoll is available for Linux and Solaris operating systems
and supports MPI over its own low-latency protocol. The price per node is expected to be
around $700, with product release sometime in 2001.

2.4 Conclusions.

It is clear that all aspects of networks and their associated technologies are rapidly changing
to meet the needs of current, new and emerging applications. Much progress has been made
in the development of low-latency protocols and new standards that efficiently and effectively
use network hardware components. Additionally, several types of network hardware that
are specifically designed for cluster computing have been developed and made commercially
available. Developers of network products are beginning to implement features such as the
support of heartbeat monitoring for fault tolerance and specific protocols to deal with
streaming, groups and object technologies, to fulfill the needs of specific applications.

The wide selection of available network hardware and software support makes the decision
of selecting a cluster interconnection technology a difficult task. Indeed, the number of
product choices appears to be increasing rather than decreasing, as some products such as
ATOLL and QsNet have come onto the market in just the last couple of years. However, the
competition among vendors will probably be good news for consumers who want a good
product at a low cost. Network products for clusters are falling in price with respect to the
price of host nodes. At the same time emerging products will increase in performance,
compatibility with host nodes and operating systems, as well as having the ability to support
a range of additional features. The increased competition will also be likely to force network
vendors to provide more end-user support and better customer service for the products that
they sell.



Multi-gigabit networks are used now with the highest-performance clusters, and will be in
common usage for all types of clusters in the near future. There will be a standardisation on
a small number of low-level and high-performance network protocols. These protocols will
support the full range of services that are required of these new networks, including group,
object, bulk, and streaming data transfer. In addition there will be more emphasis on the
quality of service and reliability that a cluster network can provide.
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3. Operating Systems

Steve Chapin, Syracuse University, USA and Joachim Worringen, RWTH Aachen,
University of Technology, Germany

3.1. Introduction
Just as in a conventional desktop system, the operating system for a cluster lies at the heart
of every node. Whether the user is opening files, sending messages, or starting additional
processes, the operating system is omnipresent. While users may choose to use differing
programming paradigms or middleware layers, the operating system is almost always the
same for all users.

A generic design sketch of an operating system is given in Figure 3.1. It shows the major
building blocks of a typical cluster node with the hardware resources located at the bottom, a
monolithic kernel as the core of the OS, and system and user processes as well as some
middleware extensions running on top of the kernel in the user space.
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Figure 3.1. Generic OS design sketch for a typical cluster node

Some OS feature a distinct layer to abstract the hardware for the kernel. Porting such an OS
to a different hardware requires only the need to adapt this abstraction layer. On top of this,
the core functionalities of the kernel execute: memory manager, process and thread
scheduler and device drivers to name the most important. Their services in turn are offered
to the user processes by file systems, communication interfaces and a general programmatic
interface to access kernel functionality in a secure and protected manner.

User (application) processes run in user space, along with system processes called daemons.
Especially in clusters, the user processes often not only use the kernel functions, but also
utilize additional functionality that is offered by middleware. This functionality is usually
located in user libraries, often supported by additional system services (daemons). Some
middleware extensions require extended kernel functionality, which is usually achieved by
loading special drivers or modules into the kernel.

What then, is the role of the operating system in a cluster? The primary role is the same
twofold task as in a desktop system: multiplex multiple user processes onto a single set of



hardware components (resource management), and provide useful abstractions for high-level
software (beautification). Some of these abstractions include protection boundaries,
process/thread coordination and communication as well as device handling. Therefore, in the
remainder of this section, we will examine the abstractions provided by current cluster
operating systems, and explore current research issues for clusters.

3.2. Background and Overview

The ideal operating system would always help, and never hinder, the user. That is, it would
help the user (which in this case is an application or middleware-designer) to configure the
system for optimal program execution by supplying a consistent and well-targeted set of
functions offering as many system resources as possible. After setting up the environment, it
is desired to stay out of the user's way avoiding any time-consuming context switches or
excessive set up of data structures for performance-sensitive applications. The most common
example of this is in high-speed message passing, in which the operating system pins
message buffers in DMA-able memory, and then allows the network interface card, possibly
guided by user-level message calls, to transfer messages directly to RAM without operating
system intervention. On the other hand, it might be desired that the operating system offer a
rich functionality for security, fault-tolerance and communication facilities – which of course
contrasts with the need for performance that is omnipresent.

Exactly what attributes a cluster operating system should possess is still an open question.
Here is a small list of desirable features:

• Manageability: An absolute necessity is remote and intuitive system administration;
this is often associated with a Single System Image (SSI) which can be realized on
different levels, ranging from a high-level set of special scripts, perhaps controlled via
Java-enabled graphical front-end, down to real state-sharing on the OS level.

• Stability: The most important characteristics are robustness against crashing
processes, failure recovery by dynamic reconfiguration, and usability under heavy
load.

• Performance: The performance critical parts of the OS, such as memory management,
process and thread scheduler, file I/O and communication protocols should work in as
efficiently as possible. The user and programmer should be able to transparently
modify the relevant parameters to fine-tune the OS for his specific demands.

• Extensibility: The OS should allow the easy integration of cluster-specific extensions,
which will most likely be related to the inter-node cooperation. This implies, at a
minimum, user-loadable device drivers and profound documentation of interfaces in
kernel- as well as in user-space to allow for the development of specific extensions.
The best way to provide extensibility is probably the provision of the source code
because it reveals all interfaces and allows for modification of existing functionality
(instead of having to design replacement parts from scratch). A good example for this
is the MOSIX system that is based on Linux (see chapter 4).

• Scalability: The scalability of a cluster is mainly influenced by the provision of the
contained nodes, which is dominated by the performance characteristics of the
interconnect. This includes the support of the OS to be able to use the potential
performance of the interconnect by enabling low-overhead calls to access the
interconnect (inter-node scalability). However, clusters are usually built with SMP
nodes with an increasing number of CPUs contained in each node. The ability of the
OS to benefit from these is determined by its intra-node scalability. The intra-node
scalibility is dominated by the process and thread schedulers and by the degree of
parallelism in the kernel that the OS allows. It also includes the resource limits that
an OS inhibits, foremost the maximum size of usable address space.



• Support: Many intelligent and technically superior approaches in computing failed
due to the lack of support in its various aspects: which tools, hardware drivers and
middleware environments are available. This support depends mainly on the number
of users of a certain system, which in the context of clusters is mainly influenced by
the hardware costs (because usually dozens of nodes are to be installed).
Additionally, support for interconnect hardware; availability of open interfaces or
even open source; support or at least demand by the industry to fund and motivate
research and development are important. All this leads to a user community that
employs required middleware, environments and tools to, at least, enable cluster
applications.

• Heterogeneity: Clusters provide a dynamic and evolving environment in that they can
be extended or updated with standard hardware just as the user needs to or can
afford. Therefore, a cluster environment does not necessarily consist of homogenous
hardware. This requires that the same OS should run across multiple architectures.
If such an OS dose not exist for the given hardware setup, different OS need to be
used. To ensure the portability of applications, a set of standardized APIs (like [1])
should be supported by the different operating systems. The same is true for the
required middleware layers, which are frequently used to enable a cluster for
heterogeneous use.

It should be noted that experience shows that these goals may be mutually exclusive. For
example, supplying a SSI at the operating system level, while a definite boon in terms of
manageability, drastically inhibits scalability. Another example is the availability of the
source code in conjunction with the possibility to extend (and thus modify) the operating
system on this base. This property has a negative influence on the stability and
manageability of the system: over time, many variants of the operating system will develop,
and the different extensions may conflict when there is no single supplier.

3.3. Technological Scope

In this sub-section, we will touch on some of the aspects of operating systems for clusters
that frequently lead to discussions among the developers and users in this area. Some of
these aspects are covered in more detail in other sections of this paper.

3.3.1 Functionality: OS versus Middleware

There has been little work on operating systems specifically for clusters. Much of the work
one might consider as affecting the operating system, e.g. the GLUnix [2] work at U.C.
Berkeley, is actually middleware. There are good reasons for this. First, operating systems
are complex, and it is not always clear how a proposed change will affect the rest of the
system. Isolating these changes in middleware can make good sense. Second, the
applicability of the new functionality added by such a middleware layer is usually not limited
to a single operating system, but can be ported to other operating systems as well.

For example, support for Distributed Shared Memory (DSM) arises from shared address
spaces, which in a conventional kernel would be inside the operating system. However, in
distributed computing, DSM software such as SVMlib [3] is most often implemented in
middleware, running on diverse operating systems such as Windows NT and Solaris. The
advantage here is that a single middleware layer can provide services to multiple operating
systems, without requiring access or changes to OS source code.



3.3.2 Single System Image (SSI)

Regarding the frequently desired feature of SSI, at least two variants of it should be
distinguished: SSI for system administration or job scheduling purposes and SSI on a
system-call level. The first is usually achieved by middleware, running daemons or services
on each node delivering the required information to the administration tool or job scheduler.
The latter would have to offer features like transparent use of devices located on remote
nodes or using distributed storage facilities as one single standard file system. These
features require extensions to current single-node operating systems.

The goal of these extensions is the cluster-wide transparent sharing of resources. Next to the
sharing of I/O space via traditional network file systems or other, more sophisticated means
of real parallel I/O, the sharing of RAM (Distributed Shared Memory, DSM) is an area in
which a lot of research has been done. However, the usual approach to DSM is meant as a
parallel programming paradigm to use shared memory between the processes of a parallel
application distributed across a number of nodes. Therefore, it is mostly realized via user-
level libraries [3] and not as a service offered by the OS. Integration of DSM into the OS has
rarely been done [4], [6]. The reason for this is that the performance for general-purpose use
(requiring strict sequential consistency) is often to low. Using relaxed consistency models
improves performance, but requires that special care is taken by the user of the DSM system
that prohibits offering it as a standard service by the OS. Next to using memory situated on
remote nodes for DSM, some experiments [7] have been done to use it as OS-managed remote
memory: current interconnect technologies such as SCI or Myrinet offer lower latencies and
higher bandwidth of inter-node communication than what can be achieved between the
primary storage level (RAM) and the secondary storage level (hard disk) in intra-node
communication. This leads to the idea to use the memory of remote nodes instead of the local
hard disk for purposes like swapping or paging. This is a promising approach, which is,
however, limited by the fact that it requires permanent memory related load-imbalances
inside the cluster that is not desired in environments of dedicated compute clusters.

An operating-system-level SSI implies detailed state sharing across all nodes of the cluster,
and to this point, OS researchers and practitioners have been unable to scale this to clusters
of significant size (more than a hundred nodes) using commodity interconnects. That does
not mean that an OS-level SSI is a bad thing; for the vast majority of clusters, which have
less than 32 nodes, an operating-system-level single-system image may be quite workable.

One can view Intel's Paragon OS as a cluster operating system, although the Paragon is not
a cluster in the sense of this paper because it is not made of commodity components.
Nevertheless, its design has much in common with todays clusters: independent nodes,
stripped down to basic hardware functionality, running their own instances of an OS and
communicating via a high-speed interconnect. The integration of the OS on the nodes into
one SSI is something many administrators of today’s clusters would like to see.

Sun's Solaris MC, on the other hand, is specifically intended for use in clusters as this paper
addresses them. It provides some shared state between kernels (although much of the Solaris
MC functionality is implemented at the user level). However, a weakness of current
distributed operating systems is that state sharing is binary: they use all-or-nothing sharing,
which inhibits scalability. The Tornado operating system [8] is designed for 2-level
hierarchical clusters of workstations, although it is not yet clear how well this approach will
work for more generalized clusters.



3.3.3 Heterogeneity

It is arguable whether one should attempt to accommodate heterogeneous hardware at the
operating system level within a single cluster. There are definite efficiencies to be gained
from homogeneous clusters, and it may well make economic sense to replace an existing
cluster rather than doing incremental heterogeneous expansion. Even if one accepts
heterogeneity as inevitable, the operating system may not be the best place to address it.
What we really want is that, at some layer, we provide a homogeneous set of abstractions to
higher layers.

The lowest level on which heterogeneity causes problems is the data representation – big-
endian vs. little-endian. If such systems are to be connected, the adaptation of the different
representations could also be done on the lowest level possible to gain suitable performance.
However, approaches to do endian conversion in hardware have not yet been done (the
closest thing we are aware of is the ability of the old MIPS processors to run in either endian-
ness, although there was no dynamic conversion).

On the other hand, this can just as easily be at the middleware layer instead of at the
operating system layer (the “end-to-end” argument in networking would argue for pushing
this to the highest layer possible). Middleware systems have done an excellent job of
providing the illusion of homogeneity in heterogeneous systems – consider the success of
Java and the Java Virtual Machine. However, creating illusions does cost in terms of
performance. Therefore, we consider an operating system that runs on heterogeneous
hardware as more of a serendipitous benefit rather than a requirement.

3.3.4 User-level communication facilities

A key characteristic of high-performance clusters is the interconnect between the nodes
normally not being an Ethernet-based network, but more sophisticated technologies like SCI
[8], Myrinet [10], GigaNet [11], or other, mostly proprietary solutions. This kind of hardware
offers communication bandwidth in the range of several Gbps, however, to make best use of
this performance, it is required that the access to the interconnect adapter involves as little
overhead as possible. Therefore, the involvement of the operating system in this kind of
communication is not desired; everything is to be done in the user space, preferably by
techniques like protected user-level DMA. However, it is expected that the multiplexing of an
arbitrary number of processes to a single interconnect adapter is still possible in a secure
manner. This imposes a difficult task to the developers of the interconnect adapter and its
driver, and also to the designers of the operating system into which the driver is to be
embedded. The VIA industry standard [12], as discussed in the communications section of
this document, appears to be the future for low-latency, high-bandwidth cluster
communication.

Approaches like VIA (and U-Net [13], an earlier design on which many parts of VIA are
based) try to minimize the involvement of the OS into inter-process communication by
moving as much functionality as possible from the kernel space into user space. This means
the buffer and queue management for send and receive operations is done by the user
process in user-space. The OS is only involved into the setup of communication channels, but
no longer in the communication (depending on the network adapters capabilities). This
increases performance by reducing the number of context switches and local buffer copy
operations. The most radical form of this low-overhead communication is SCI, which maps
memory of remote processes into the address space of the local process, reducing the inter-
process, inter-node communication to simple load and store operations.



3.3.5 Optimized parallel I/O

Less work has been done on high-speed file input/output concepts than for high-speed inter-
process communication. However, file I/O is crucial for the performance of many types of
applications, scientific codes as well as databases. The usual way is to employ a number (one
or more) of dedicated I/O nodes in the cluster. However, every shared resource represents a
potential bottleneck in a system that has to be scalable. A good example for the problems
involved in this is, once again, the Intel Paragon. Its I/O concept was used for traditional file
input/output as well as for swapping, is organized in a complex, tree-oriented parallel
manner and nevertheless did not deliver optimal performance. Clusters should follow other
concepts by doing as much node-local I/O as possible to reduce inter-node communication and
I/O contention, while maintaining a consistent global view of the I/O space.

Examples of this approach are PVFS [14] and PPFS [15] in which a flexible number of
servers in a cluster provide general I/O services in a distributed manner. For specific I/O
needs of scientific applications, specialized middleware libraries like PANDA [16], which
supports efficient parallel I/O for huge multidimensional arrays, have been developed.

3.4. Current State-of-the-art

State-of-the-art can be interpreted to mean the most common solution as well as the best
solution using today's technology. By far the most common solution current clusters is
running a conventional operating system, with little or no special modification. This
operating system is usually a Unix derivative, although NT clusters are becoming more
common. We do not intend "cluster" to be synonymous with "cluster of PCs," although this is,
again, the most common case, for reasons of economics.

The single most popular cluster operating system is Linux [26]. This is primarily for three
reasons:

1. It is free,
2. It is an open source operating system, meaning that one is free to customize the

kernel to ones liking. To date, this has usually meant specialized drivers for
underlying high-speed networks, and other I/O optimizations.

3. For historic reasons: Don Becker selected Linux for the original Beowulf cluster (this
was for both technical and social reasons, as the Linux kernel was free of any
possible licensing problems, unlike the BSD derivatives at the time), and thus
Beowulf-derived systems have also used Linux.

Beowulf [17] is not a single ready-to-run package for Linux clustering, but merely a collection
of tools, middleware libraries, network drivers and kernel extensions to enable a cluster for
specific HPC purposes. This projects includes valuable components and is another example of
how an (open source) OS can be extended and adapted to specific needs.

Sun Microsystems has developed a multi-computer version of Solaris; aptly named Solaris
MC [18] Solaris MC consists of a small set of kernel extensions and a middleware library.
Solaris MC incorporates some of the research advances from Sun’s Spring operating system,
including an object-oriented methodology and the use of CORBA IDL in the kernel. Solaris
MC provides a SSI to the level of the device, i.e. processes running on one node can access
remote devices as if they were local. The SSI also extends to a global file system and a global
process space.



The Puma operating system [19], from Sandia National Labs and the University of New
Mexico, represents the ideological opposite of Solaris MC. Puma takes a true minimalist
approach: there is no sharing between nodes, and there is not even a file system or demand-
paged virtual memory. This is because Puma runs on the “compute partition” of the Intel
Paragon and Tflops/s machines, while a full-featured OS (e.g. Intel’s TflopsOS or Linux) runs
on the Service and I/O partitions. The compute partition is focused on high-speed
computation, and Puma supplies low-latency, high-bandwidth communication through its
Portals mechanism.

MOSIX [20],[21] is a set of kernel extensions for Linux that provides support for seamless
process migration. Under MOSIX, a user can launch jobs on their home node, and the system
will automatically load balance the cluster and migrate the jobs to lightly-loaded nodes.
MOSIX maintains a single process space, so the user can still track the status of their
migrated jobs. MOSIX offers a number of different modes in which available nodes form a
cluster, submit and migrate jobs, ranging from a closed batch controlled system to a open
network-of-workstation like configuration. MOSIX is a mature system, growing out of the
MOS project and having been implemented for seven different operating
systems/architectures. MOSIX is free and is distributed under the GNU Public License.

Next to the cluster operating systems mainly used in research and for running
computationally intensive applications (which do not require a high degree of OS-support),
clustering is also in use in the commercial arena. The main commercial applications in this
area are data-intensive and often involve database management systems (DBMS). AIX from
IBM has a strong position here, running the SP family of cluster-based servers, featuring
proven stability, good manageability and a number of clustered databases. From the other
commercial Unix variants, Sun’s Solaris has a strong focus on clustering, high availability
(HA) and is also widely used in research. IRIX from SGI relies a sophisticated NUMA-SMP
technology that provides a very specific kind of clustering. Other operating systems with an
emphasis on HA (Tandem Non-Stop Unix and Unixware 7) are covered in the related section
of this paper.

In the area of high-performance I/O, only a very limited number of proven and usable
solutions exist. One of these is GPFS (General Parallel File System) [22] by IBM, specifically
designed for the SP server running AIX. It is based on storage arrays (disks) being connected
to one or more servers that exchange data with the clients via multithreaded daemons. It
fulfils the criterion “usable” in that it features a kernel extension that can be accessed like
any standard UNIX file system. This avoids the necessity of recompiling or even modifying
applications that are to use GPFS. However, it performs best for large sequential reads and
writes due to its technique of striping the data across the disks. Many technically more
sophisticated but less general (and thus mostly less usable in a general cluster environment)
research projects exist [23],[24] which often deal with the special, but frequently occurring
scenario of collective I/O in large scientific applications.

We present a comparison of the most relevant operating systems used for clustering in
Appendix A. We are aware that already the selection criteria “most relevant”, and also the
comparison of the selected systems will lead to discussions. However, covering every aspect
of each system is surely beyond the scope of this paper, and a stimulation of the discussion is
a desired effect. Apart from our own experiences, we consider the studies that have been
performed by D.H. Brown Associates [25],[26].



3.5. Future work

As SMP become more common in clusters, we will see a natural hierarchy arise. SMP have
tight coupling, and will be joined into clusters via low-latency high-bandwidth
interconnection networks. Indeed, we fully expect that heterogeneous clusters of SMP will
arise, having single, dual, quad, and octo-processor boxes in the same cluster. These clusters
will, in turn, be joined by gigabit-speed wide-area networks, which will differ from SAN
primarily in their latency characteristics. This environment will naturally have a three-level
hierarchy, with each level having an order of magnitude difference in latency relative to the
next layer.

This structure will have its greatest impact on scheduling, both in terms of task placement
and in terms of selecting a process to run from a ready queue. Scheduling is traditionally
considered an operating system activity, yet it is quite likely that at least some of this work
will be carried out in middleware.

For example, as one of our research projects we are investigating thread management for
mixed-mode (multi-threaded and message passing) computing using OpenMP and MPI,
which we believe is a natural by product of clusters of SMP. Most cluster applications,
particularly scientific computations traditionally solved via spatial decomposition, consist of
multiple cooperating tasks. During the course of the computation, hot spots will arise, and a
self-adapting program might wish to manage the number of active threads it has in each
process. Depending on the relationship of new threads to existing threads (and their
communication pattern) and the system state, a decision might be made to do one of the
following:

• Add a new thread on an idle processor of the SMP where the process is already
running.

• Expand the address space via distributed shared memory to include an additional
node, and add a thread there.

• Add a thread to a non-idle processor already assigned to the process.
• Migrate the process to a larger SMP (e.g. from 2 nodes to 4 nodes) with an idle

processor, and add a new thread there.

The described technique of thread placing and process migration is also related to the high-
availability issue that is critical for commercial applications. Automatic and fast migration of
running processes, taking benefit from advanced interconnect technology offering e.g.
transparent remote memory access, will lift the definition of fail-over times into new
dimensions.

We might also examine the issue of configurability. Users might want to alter the personality
of the local operating system, e.g. "strip down" to a Puma-like minimalist kernel to maximize
the available physical memory and remove undesired functionality. Possible mechanisms to
achieve this range from a reload of a new kernel and a reboot to dynamically
linking/unlinking code into/out of the kernel. This leads to the question: “How much (and
which) functionality does a cluster operating-system need?” The more functionality a system
has, the more complicated it gets to maintain and the greater the chance for malfunctions
due to bad configurations or errors in the interaction of different parts of the system. Again,
Linux is the easiest way for the majority of researchers to study this area.



Another important aspect of cluster computing in which the operating system is strongly
involved is distributed file I/O. Current solutions of I/O systems are mostly static, do not
adapt very well to the actual workload and thus tend to have bottlenecks, mostly by the
limited number of dedicated I/O nodes to which all data has to be routed. The transparent
filesystem-level support of distributed and adaptive I/O is an open issue for cluster operating
systems. As an example for an attempt, we are currently implementing an MPI-IO
implementation that operates on the basis of an existing DSM library on top of an SCI
interconnect. This technique may result in a dedicated filesystem for high-bandwidth, low-
latency requirements that is totally distributed among the participating clients.

3.6. Conclusions

Cluster operating systems are similar in many ways to conventional workstation operating
systems. How different one chooses to make the operating system depends on ones view of
clustering. On the one hand, we have those who argue that each node of a cluster must
contain a full-featured operating system such as Unix, with all the positives and negatives
that implies. At the other extreme, we see researchers asking the question, "Just how much
can I remove from the OS and have it still be useful?" These systems are typified by the
work going on in the Computational Plant project at Sandia National Laboratories. Still
others are examining the possibility of on-the-fly adaptation of the OS layer, reconfiguring
the available services through dynamic loading of code into the cluster operating system.

It is worth noting that every notable attempt to provide SSI at the OS layer has been
regarded as a failure on some level. Sun’s Solaris MC has never been offered as a product,
and recently sun has approached academic computer scientists to evaluate Linux on Sparc
stations as the basis of a cluster product. Intel’s Paragon OS is well known for its tendency
to lock up the entire machine because of minor problems on one node, as well as its wretched
performance on large systems. We are not saying it is impossible to build a scalable SSI at
the OS level, we are just saying that no one has done it, and we think there is a good reason.
The forthcoming SIO standard will blur the edges between remote and local devices, and
perhaps this will lead to more highly scalable SSI.

A final note is that, through a combination of OS improvements and acquisition of relevant
technology, Microsoft has become a viable option in the realm of clustering. The HPVM [27]
effort has demonstrated that it is possible to build a reasonable cluster from Windows NT
boxes, and with the recent installation of clusters such as the one at Cornell University, NT
or Windows 2000 is going to be a factor in the cluster OS picture for the foreseeable future.

To sum it up, clusters for technical and scientific computing based on Linux and other
standalone Unix platforms like AIX are here, and they work. In the area of commercial
cluster computing, Linux still lacks essential functionalities which “conventional” Unix
systems and in parts even Windows NT do offer. It is to be observed if the free and
distributed development model of Linux will be able to offer proven solutions in this area,
too, since these topics are rarely addressed in the Linux developer community. Nevertheless,
more exotic OS technology is and will be the current focus of many research efforts, both
academic and commercial. There will probably never be “THE” cluster OS, as Linux will
adopt research results much more quickly than commercial vendors, particularly Microsoft, if
history is a reliable guide.
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4. Single System Image (SSI)

Rajkumar Buyya, Monash University, Australia, Toni Cortes, Universitat Politecnica de
Catalunya, Spain and Hai Jin, University of Southern California, USA

4.1 Introduction

A Single System Image (SSI) is the property of a system that hides the heterogeneous and
distributed nature of the available resources and presents them to users and applications as
a single unified computing resource. SSI can be enabled in numerous ways, these range from
those provided by extended hardware through to various software mechanisms. SSI means
that users have a globalised view of the resources available to them irrespective of the node
to which they are physically associated. Furthermore, SSI can ensure that a system
continues to operate after some failure (high availability) as well as ensuring that the system
is evenly loaded and providing communal multiprocessing (resource management and
scheduling).

SSI design goals for cluster-based systems are mainly focused on complete transparency of
resource management, scalable performance, and system availability in supporting user
applications [1][2][3][5][7]. A SSI can be defined as the illusion [1][2], created by hardware or
software, that presents a collection of resources as one, more powerful unified resource.

4.2 Services and Benefits

The key services of a single-system image cluster include the following [1][3][4]:
o Single entry point: A user can connect to the cluster as a virtual host (like telnet

beowulf.myinstitute.edu), although the cluster may have multiple physical host nodes to
serve the login session. The system transparently distributes user’s connection requests
to different physical hosts to balance load.

o Single user interface: The user should be able to use the cluster through a single GUI.
The interface must have the same look and feel than the one available for workstations
(e.g., Solaris OpenWin or Windows NT GUI).

o Single process space: All user processes, no matter on which nodes they reside, have a
unique cluster-wide process id. A process on any node can create child processes on the
same or different node (through a UNIX fork). A process should also be able to
communicate with any other process (through signals and pipes) on a remote node.
Clusters should support globalised process management and allow the management and
control of processes as if they are running on local machines.

o Single memory space: Users have an illusion of a big, centralised main memory, which in
reality may be a set of distributed local memories. Software DSM approach has already
been used to achieve single memory space on clusters. Another approach is to let the
compiler distribute the data structure of an application across multiple nodes. It is still a
challenging task to develop a single memory scheme that is efficient, platform-
independent, and able to support sequential binary codes.

o Single I/O space (SIOS): This allows any node to perform I/O operations on local or
remotely located peripheral or disk device. In this SIOS design, disks associated to
cluster nodes, network-attached RAIDs, and peripheral devices form a single address
space.

o Single file hierarchy: On entering into the system, the user sees a single, huge file-system
image as a single hierarchy of files and directories under the same root directory that
transparently integrates local and global disks and other file devices. Examples of single
file hierarchy include NFS, AFS, xFS, and Solaris MC Proxy.



o Single virtual networking: This means that any node can access any network connection
throughout the cluster domain even if the network is not physically connect to all nodes
in the cluster. Multiple networks support a single virtual network operation.

o Single job-management system: Under a global job scheduler, a user job can be submitted
from any node to request any number of host nodes to execute it. Jobs can be scheduled
to run in either batch, interactive, or parallel modes. Examples of job management
systems for clusters include GLUnix, LSF, and CODINE.

o Single control point and management: The entire cluster and each individual node can be
configured, monitored, tested and controlled from a single window using single GUI tools,
much like an NT workstation managed by the Task Manger tool.

o Checkpointing and Process Migration: Checkpointing is a software mechanism to
periodically save the process state and intermediate computing results in memory or
disks. This allows the roll back recovery after a failure. Process migration is needed in
dynamic load balancing among the cluster nodes and in supporting checkpointing.

Figure 4.1 shows the functional relationships among various key middleware packages.
These middleware packages are used as interfaces between user applications and cluster
hardware and OS platforms. They support each other at the management, programming, and
implementation levels.

Figure 4.1. The relationship between middleware modules [3].

The most important benefits of SSI include the following [1]:
o It provides a simple, straightforward view of all system resources and activities, from

any node in the cluster.
o It frees the end-user from having to know where in the cluster an application will run.
o It allows the use of resources in a transparent way irrespective of their physical location.
o It lets the user work with familiar interface and commands and allows the administrator

to manage the entire cluster as a single entity.
o It offers the same command syntax as in other systems and thus reduces the risk of

operator errors, with the result that end-users see an improved performance, reliability
and higher availability of the system.

o It allows to centralise/decentralise system management and control to avoid the need of
skilled administrators for system administration.

o It greatly simplifies system management and thus reduced cost of ownership.
o It provides location-independent message communication.



o It benefits the system programmers to reduce the time, effort and knowledge required to
perform task, and allows current staff to handle larger or more complex systems.

o It promotes the development of standard tools and utilities.

4.3 SSI Layers/Levels

The two important characteristics of SSI [1][2] are:
1. Every SSI has a boundary,
2. SSI support can exist at different levels within a system — one able to be built on

another.

SSI can be implemented in one or more of the following levels:
o Hardware,
o Operating System (so called underware [5]),
o Middleware (runtime subsystems),
o Application.

A good SSI is usually obtained by a co-operation between all these levels as a lower level can
simplify the implementation of a higher one.

4.3.1 Hardware Level

Systems such as Digital/Compaq Memory Channel [8] and hardware Distributed Shared
Memory (DSM) [8] offer SSI at hardware level and allow the user to view a cluster as a
shared-memory system. Digital's Memory Channel is designed to provide a reliable, powerful
and efficient clustering interconnect. It provides a portion of global virtual shared memory by
mapping portions of remote physical memory as local virtual memory (called reflective
memory).

Memory Channel consists of two components: a PCI adapter and a hub. Adapters can also be
connected directly to another adapter without using a hub. The host interfaces exchange
heartbeat signals and implement flow control timeouts to detect node failure or blocked data
transfers. The link layer provides error detection through a 32 bit CRC generated and
checked in hardware. Memory Channel uses point-to-point, full-duplex switched 8x8 crossbar
implementation.

To enable communication over the Memory Channel network, applications map pages as
read- or write-only into their virtual address space. Each host interface contains two page
control tables (PCT), one for write and one for read mappings. For read-only pages, a page is
pinned down in local physical memory. Several page attributes can be specified: receive
enable, interrupt on receive, remote read etc. If a page is mapped as write-only, a page table
entry is created for an appropriate page in the interface 128 Mbytes of PCI address space.
Page attributes can be used to store a local copy of each packet, request acknowledgement
message from receiver side for each packet, define the packets as broadcast or point-to-point
packets.

Broadcasts are forwarded to each node attached to the network. If a broadcast packet enters
a crossbar hub, the arbitration logic waits until all output ports are available. Nodes, which
have mapped the addressed page as a readable area, store the data in their local pinned
down memory region. All other nodes simply ignore the data. Therefore once the data regions
are mapped and set up, simple store instructions transfer data to remote nodes, without OS
intervention.



Besides this basic data transfer mechanism, Memory Channel supports a simple remote read
primitive, a hardware-based barrier acknowledge, and a fast lock primitive. To ensure
correct behaviour, Memory Channel implements a strict in-order delivery of written data. A
write invalidates cache entries on the reader side, thus providing cluster-wide cache
coherence.

Digital provides two software layers for Memory Channel: the Memory Channel Services and
Universal Message Passing (UMP). The first is responsible for allocating and mapping
individual memory page. UMP implements a user-level library of basic message passing
mechanisms. It is mainly used as a target for higher software layers, such as MPI, PVM or
HPF. Both layers have been implemented for the Digital UNIX and the Windows NT
operating systems.

Memory Channel reduces communication to the minimum, just simple store operations.
Therefore, latencies for single data transfers are very low. This also enables the Memory
Channel to reach the maximal sustained data rate of 88 Mbytes/s with relative small data
packets of 32 bytes. The largest possible configuration consists out of 8 12-CPU Alpha server
nodes, resulting in a 96-CPU cluster.

4.3.2 Operating System Level

Cluster operating systems support an efficient execution of parallel applications in an
environment shared with sequential applications. A goal is to pool resources in a cluster to
provide better performance for both sequential and parallel applications. To realise this goal,
the operating system must support gang scheduling of parallel programs, identify idle
resources in the system (such as processors, memory, and networks), and offer globalised
access to them. It should optimally support process migration to provide dynamic load
balancing as well as fast inter-process communication for both the system and user-level
applications. The OS must make sure these features are available to the user without the
need for additional system calls or commands. OS kernel supporting SSI include SCO
UnixWare NonStop Clusters [5][6], Sun Solaris-MC [9], GLUnix [11], and MOSIX [12].

SCO UnixWare

UnixWare NonStop Clusters is SCO's high availability software. It significantly broadens
hardware support making it easier and less expensive to deploy the most advanced
clustering software for Intel systems. It is an extension to the UnixWare operating system
where all applications run better and more reliably inside a Single System Image (SSI)
environment that removes the management burden. It features standard IP as the
interconnect, removing the need for any proprietary hardware.

The UnixWare kernel has been modified via a series of modular extensions and hooks to
provide: single cluster-wide file-system view; transparent cluster-wide device access;
transparent swap-space sharing; transparent cluster-wide IPC; high performance inter-node
communications; transparent cluster-wide process migration; node down cleanup and
resource failover; transparent cluster-wide parallel TCP/IP networking; application
availability; cluster-wide membership and cluster time-sync; cluster system administration;
and load leveling.

UnixWare NonStop Clusters architecture offers built-in support for application failover using
an "n + 1" approach. With this approach, the backup copy of the application may be restarted
on any of several nodes in the cluster. This allows one node to act as a backup node for all
other cluster nodes.



UnixWare NonStop Clusters also supports active process migration, which allows any
application process to be moved to another node between instruction steps. This allows
continuation without disruption to the application. Active process migration allows dynamic
removal and addition of nodes within the cluster.

With the Single System Image (SSI) capability of UnixWare NonStop Clusters, both
applications and users view multiple nodes as a single, logical system. SSI also provides
automatic process migration and dynamic load balancing. Depending on the workload and
available resources in the cluster, the system automatically reassigns processes among
available nodes, delivering optimal overall performance. The cluster offers a single UNIX
system name space and appears to the application as a very large n-way SMP server. The
cluster services maintain the standard service call interface, so upper levels of the operating
system do not need to be changed. Applications access clustered services through standard
UNIX system libraries, which in turn access clustered services through the service-call
interface. Applications do not need to be cluster aware and may run unmodified in the
cluster.

The cluster service determines whether a request can be handled locally or must be
forwarded to another node. If the request is passed to another node, it uses an internode
communication system over ServerNet to communicate to the service peer on another node.
The request is then handled by the standard UNIX system service on the targeted node.

Sun Solaris MC

Solaris MC is a prototype extension of the single node Solaris Kernel. It provides single
system image and high availability at the kernel level. Solaris MC is implemented through
object-oriented techniques. It extensively uses the object-oriented programming language
C++, the standard COBRA object model and its Interface Definition Language.

Solaris MC uses a global file system called Proxy File System (PXFS). The main features
include single system image, coherent semantics, and high performance. The PXFS makes
file accesses transparent to process and file locations. PXFS achieves this single system
image by intercepting file-access operations at the vnode/VFS interface. When a client node
performs a VFS/vnode operation, Solaris MC proxy layer first converts the VFS/vnode
operation into an object invocation, which is forwarded to the node where the file resides (the
server node). The invoked object then performs a local VFS/vnode operation on the Solaris
file system of the server node. This implementation approach needs no modification of the
Solaris kernel or the file system.

PXFS uses extensive caching on the clients to reduce remote object invocations. PXFS uses a
token-based coherency protocol to allow a page to be cached read-only by multiple nodes or
read-write by a single node.

Solaris MC provides a single process space by adding a global process layer on top of Solaris
kernel layer. There is a node manager for each node and a virtual process (vproc) object for
each local process. The vproc maintains information of the parent and children of each
process. The node manager keeps two lists: the available node list and local process list,
including migrated ones. When a process migrates to another node, a shadow vproc is still
kept on the home node. Operations received by the shadow vproc are forwarded to the
current node where the process resides.



Solaris MC provides a single I/O subsystem image with uniform device naming. A device
number consists of the node number of the device, as well as the device type and the unit
number. A process can access any device by using this uniform name as if it were attached to
the local node, even if it is attached to a remote node.

Solaris MC ensures that existing networking applications do not need to be modified and see
the same network connectivity, regardless of which node the application runs on. Network
services are accessed through a service access point (SAP) server. All processes go to the SAP
server to locate in which node a SAP is on. The SAP server also ensures that the same SAP is
not simultaneously allocated to different nodes. Solaris MC allows multiple nodes to act as
replicated SAP server for network services.

GLUnix

Another way for the operating system to support a SSI is to build a layer on top of the
existing operating system and to perform global resource allocations. This is the approach
followed by GLUnix from Berkeley [11]. This strategy makes the system easily portable and
reduces development time.

GLUnix is an OS layer designed to provide support for transparent remote execution,
interactive parallel and sequential jobs, load balancing, and backward compatibility for
existing application binaries. GLUnix is a multi-user system implementation at the user
level so that it can be easily ported to a number of different platforms. It is built as a
protected, user-level library using the native system services as a building block. GLUnix
aims to provide cluster-wide namespace and uses Network PIDs (NPIDs) and Virtual Node
Numbers (VNNs). NPIDs are globally unique process identifiers for both sequential and
parallel programs throughout the system. VNNs are used to facilitate communications
among processes of a parallel program. A suite of user tools for interacting and manipulating
NPIDs and VNNs are supported.

GLUnix is implemented completely in the user level and does not need any kernel
modification, therefore it is easy to implement. GLUnix relies on a minimal set of standard
features from the underlying system, which are present in most commercial operating
systems. So it is portable to any operating system that supports inter-process
communication, process signalling, and access to load information. The new features needed
for clusters are invoked by procedure calls within the application's address space. There is no
need to cross hardware protection boundary, no need for kernel trap or context switching.
The overhead for making system calls is eliminated in GLUnix. Using shared-memory
segments or interprocess communication primitives can do the co-ordination of the multiple
copies of GLUnix, which are running on multiple nodes.

The main features provided by GLUnix include: co-scheduling of parallel programs; idle
resource detection, process migration, and load balancing; fast user-level communication;
remote paging; and availability support.

MOSIX

MOSIX [12] is another software package specifically designed to enhance the Linux kernel
with cluster computing capabilities. The core of MOSIX are adaptive (on-line) load-balancing,
memory ushering and file I/O optimisation algorithms that respond to variations in the use
of the cluster resources, e.g., uneven load distribution or excessive disk swapping due to lack
of free memory in one of the nodes. In such cases, MOSIX initiates process migration from



one node to another, to balance the load, or to move a process to a node that has sufficient
free memory or to reduce the number of remote file I/O operations.

MOSIX operates silently and its operations are transparent to the applications. This means
that you can execute sequential and parallel applications just like you would do in an SMP.
You need not care about where your process is running, nor be concerned what the other
users are doing. Shortly after the creation of a new process, MOSIX attempts to assign it to
the best available node at that time. MOSIX then continues to monitor the new process, as
well as all the other processes, and will move it among the nodes to maximise the overall
performance. All this is done without changing the Linux interface. This means that you
continue to see (and control) all your processes as if they run on your node.

The algorithms of MOSIX are decentralised – each node is both a master for processes that
were created locally, and a server for (remote) processes, that migrated from other nodes.
This means that nodes can be added or removed from the cluster at any time, with minimal
disturbances to the running processes. Another useful property of MOSIX is its monitoring
algorithms, which detect the speed of each node, its load and free memory, as well as IPC
and I/O rates of each process. This information is used to make near optimal decisions where
to place the processes.

The system image model of MOSIX is based on the home-node model, in which all the user's
processes seem to run at the user's login-node. Each new process is created at the same
site(s) as its parent process. Processes that have migrated interact with the user's
environment through the user's home-node, but where possible, use local resources. As long
as the load of the user's login-node remains below a threshold value, all the user's processes
are confined to that node. However, when this load rises above a threshold value, then some
processes may be migrated (transparently) to other nodes.

The Direct File System Access (DFSA) provision extends the capability of a migrated process
to perform some I/O operations locally, in the current node. This provision reduces the need
of I/O-bound processes to communicate with their home node, thus allowing such processes
(as well as mixed I/O and CPU processes) to migrate more freely among the cluster's node,
e.g., for load balancing and parallel file and I/O operations.

Currently, the MOSIX File System (MFS) meets the DFSA standards. MFS makes all
directories and regular files throughout a MOSIX cluster available from all nodes, while
providing absolute consistency as files are viewed from different nodes, i.e., the consistency is
as if all file accesses were done on the same node.

4.3.3 Middleware Level

Middleware, a layer that resides between OS and applications, is one of the common
mechanisms used to implement SSI in clusters. They include cluster file system,
programming environments such as PVM [13], job-management and scheduling systems
such as CODINE [14] and Condor [15], cluster-enabled Java Virtual Machine (JVM) such as
JESSICA [18]. SSI offered by cluster file systems makes disks attached to cluster nodes
appear as a single large storage system, and ensure that every node in the cluster has the
same view of the data. Global job scheduling systems manage resources, and enable the
scheduling of system activities and execution of applications while offering high availability
services transparently. Cluster enabled JVM allows execution of Java threads-based
applications on clusters without any modifications.



CODINE is a resource-management system targeted to optimise utilisation of all software
and hardware resources in a heterogeneous networked environment [14]. It is evolved from
the Distributed Queuing System (DQS) created at Florida State University. The easy-to-use
graphical user interface provides a single-system image of all enterprise-wide resources for
the user and also simplifies administration and configuration tasks.

The CODINE system encompasses four types of daemons. They are the CODINE master
daemon, the scheduler daemon, the communication daemons and the execution daemons.
The CODINE master daemon acts as a clearinghouse for jobs and maintains the CODINE
database. Periodically the master receives information about the host load values in the
CODINE cluster by the CODINE execution daemons running on each machine. Jobs,
submitted to the CODINE system, are forwarded to the CODINE master daemon and then
spooled to disk. The scheduler daemon is responsible for the matching of pending jobs to the
available resources. It receives all necessary information from the CODINE master daemon
and returns the matching list to the CODINE master daemon which in turn dispatches jobs
to the CODINE execution daemons.

CODINE master daemon runs on the main server and manages the entire CODINE cluster.
It collects all necessary information, maintains and administers the CODINE database. The
database contains information about queues, running and pending jobs and the available
resources in the CODINE cluster. Information to this database is periodically updated by the
CODINE execution daemons.

The CODINE master daemon has a critical function, as the system will not operate without
this daemon running. To eliminate this potential point of failure, CODINE provides a
shadow master functionality. Should the CODINE master daemon fail to provide service, a
new CODINE master host will be selected and another CODINE master daemon will
automatically be started on that new host. All CODINE ancillary programs providing the
user or administrator interface to CODINE directly contacts the CODINE master daemon
via a standard TCP port to forward their requests and to receive an acknowledgement or the
required information.

The CODINE scheduler daemon is responsible for the mapping of jobs to the most suitable
queues. Jobs are submitted to the CODINE master daemon together with a list of requested
resources. A job that cannot be dispatched immediately waits in a pending queue until the
CODINE scheduler daemon decides the requested resources for this job are available. The
result of the mapping is communicated back to the CODINE master daemon to update the
database. The CODINE master daemon notifies the CODINE execution daemon on the
corresponding machine to start the job.

The CODINE execution daemon runs on every machine in the CODINE cluster where jobs
can be executed. It reports periodically the status of the resources on the workstation to the
CODINE master daemon. The CODINE execution daemon is also responsible for starting
and stopping the jobs. For each job, the CODINE execution daemon starts a subordinate
shepherd process, which is responsible for running and monitoring its job.

One or more CODINE communication daemons have to run in every CODINE cluster These
daemons are responsible for the communication between the other CODINE daemons. This
allows asynchronous communication between the various CODINE daemons, speeding up
the system and increasing efficiency. The communication daemons control the whole
communication via a standard TCP port.



4.3.4 Application Level

Finally, applications can also support SSI. The application-level SSI is the highest and, in a
sense, most important because this is what the end-user sees. At this level, multiple co-
operative components of an application are presented to the user as a single application. For
instance, a GUI based tool such as PARMON [15] offers a single window representing all the
resources or services available. The Linux Virtual Server [17] is a scalable and high
availability server built on a cluster of real servers. The architecture of the cluster is
transparent to end-users as all they see a single virtual server. All other cluster-aware
scientific and commercial applications (developed using APIs such as MPI) hide the existence
of multiple interconnected computers and co-operative software components, and present
themselves as if running on a single system.

The Linux Virtual Server (LVS) [17] directs network connections to the different servers
according to scheduling algorithms and makes parallel services of the cluster to appear as a
virtual service on a single IP address. Linux Virtual Server extends the TCP/IP stack of
Linux kernel to supports three IP load balancing techniques: NAT, IP tunneling, and direct
routing. It also provides four scheduling algorithms for selecting servers from cluster for new
connections: round-robin, weighted round-robin, least-connection and weighted Least-
Connection. Client applications interact with the cluster as if it were a single server. The
clients are not affected by interaction with the cluster and do not need modification.
Scalability is achieved by transparently adding or removing a node in the cluster. High
availability is provided by detecting node or daemon failures and reconfiguring the system
appropriately.

Linux Virtual Server is a three-tier architecture.
• Load Balancer is the front end to the service as seen by the outside world. The load

balancer directs network connections from clients who know a single IP address for
services, to a set of servers that actually perform the work.

• Server Pool consists of a cluster of servers that implement the actual services, such
as Web, Ftp, mail, DNS, and so on.

• Backend Storage provides the shared storage for the servers, so that it is easy for
servers to keep the same content and provide the same services.

The load balancer handles incoming connections using IP load balancing techniques. Load
balancer selects servers from the server pool, maintains the state of concurrent connections
and forwards packets, and all the work is performed inside the kernel, so that the handling
overhead of the load balancer is low. The load balancer can handle much larger number of
connections than a general server, therefore a load balancer can schedule a large number of
servers and it will not be a bottleneck of the whole system.

Cluster monitor daemons run on the load balancer to monitor the health of server nodes. If a
server node cannot be reached by ICMP ping or there is no response of the service in the
specified period, the monitor will remove or disable the server in the scheduling table of the
load balancer. The load balancer will not schedule new connections to the failed one and the
failure of server nodes can be masked.

In order to prevent the load balancer from becoming a single-point-of-failure, a backup of the
load balancer is set-up. Two heartbeat daemons run on the primary and the backup, they
heartbeat the health message through heartbeat channels such as serial line and UDP
periodically. When the heartbeat daemon on the backup cannot hear the health message
from the primary in the specified time, it will use ARP spoofing to take over the virtual IP
address to provide the load balancing service. When the primary recovers from its failure,



then the primary becomes the backup of the functioning load balancer, or the daemon
receives the health message from the primary and releases the virtual IP address, and the
primary will take over the virtual IP address. The failover or the take-over of the primary
will cause the established connection in the state table lost, which will require the clients to
send their requests again.

4.3.5 Pros and Cons of Each Level

Each level of SSI has its own pros and cons. The hardware-level SSI can offer the highest
level of transparency, but due to its rigid architecture, it does not offer the flexibility
required during the extension and enhancement of the system. The kernel-level approach
offers full SSI to all users (application developers and end-users). However, kernel-level
cluster technology is expensive to develop and maintain, as its market-share is/will be
probably limited and it is difficult to keep pace with technological innovations emerging into
mass-market operating systems.

An application-level approach helps realise SSI partially and requires that each application
be developed as SSI-aware separately. A key advantage of application-level SSI compared to
the kernel-level is that it can be realised in stages and the user can benefit from it
immediately. Whereas, in the kernel-level approach, unless all components are specifically
developed to support SSI, cannot be used or released to the market. Due to this, kernel-level
approach appears as a risky and economically non-viable approach. The middleware
approach is a compromise between the other two mechanisms used to provide SSI. In some
cases, like in PVM, each application needs to be implemented using special APIs on a case-
by-case basis. This means, there is a higher cost of implementation and maintenance,
otherwise the user cannot get any benefit from the cluster. The arguments on the, so-called,
“underware” versus middleware level of SSI are presented in [5].

4.4 Conclusions

SSI can greatly enhance the acceptability and usability of clusters by hiding the physical
existence of multiple independent computers by presenting them as a single, unified
resource. SSI can be realised either using hardware or software techniques, each of them
have their own advantages and disadvantages. The middleware approach appears to offer an
economy of scale compared to other approaches although it cannot offer full SSI like the OS
approach. In any case, the designers of software (system or application) for clusters must
always consider SSI (transparency) as one of their important design goals in addition to
scalable performance and enhanced availability.
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5. Middleware

Mark Baker, University of Portsmouth, UK, and Amy Apon, University of Arkansas, USA.

5.1 Introduction

Middleware is generally considered the layer of software sandwiched between the operating
system and applications. Middleware provides various services required by an application to
function correctly. Middleware has been around since the 1960’s. More recently, it has re-
emerged as a means of integrating software applications running in a heterogeneous
environment. There is large overlap between the infrastructure that it provides a cluster
with high-level Single System Image (SSI) services and those provided by the traditional
view of middleware. A definition of SSI can be found in Section 4., whereas in this section of
the paper we are concerned with middleware, and it can be described as the software that
resides above the kernel and the network and provides services to applications.

5.2. Background and Overview

Heterogeneity can arise in at least two ways in a cluster environment. First, as clusters are
typically built from commodity workstations, the hardware platform can become
heterogeneous. As the cluster is incrementally expanded using newer generations of the
same computer product line, or even using hardware components that have a very different
architecture, problems related to these differences are introduced. For example, a typical
problem that must be resolved in heterogeneous hardware environments is the conversion of
numeric values to the correct byte ordering. A second way that clusters become
heterogeneous is the requirement to support very different applications. Examples of this
include applications that integrate software from different sources, or require access to data
or software outside the cluster. In addition, a requirement to develop applications rapidly
can exacerbate the problems inherent with heterogeneity. Middleware has the ability to help
the application developer overcome these problems. In addition, middleware also provides
services for the management and administration of a heterogeneous system.

5.3. Technological Scope

In this section, we briefly describe a range of technologies that are being used as middleware.

5.3.1 Message-based Middleware

Message-based middleware is a technology that uses a common communications protocol to
exchange data between applications. The communications protocol hides many of the low-
level message passing primitives from the application developer. Message-based middleware
software can pass messages directly between applications, send messages via software that
queues waiting messages, or use some combination of the two.

Examples of message-based middleware include the three upper layers of the OSI model [1]
(i.e., the session, presentation and applications layers), DECmessageQ [2] from Digital,
MQSeries [3] from IBM, TopEnd [4] from NCR, and middleware for parallel scientific
programming.

Several languages were developed for parallel scientific programming during the late 1980’s
and early 1990’s. Among these, Parallel Virtual Machine (PVM) is a continuing collaborative



research effort between Oak Ridge National Laboratory and the University of Tennessee [5].
Due to the efforts of a consortium of about 60 people from universities, government
laboratories, and industry, the Message Passing Interface standard [8] interface for message-
passing parallel applications was published in May 1994. MPI is the de facto standard for
cluster parallel programming. Several implementations of MPI are described in Appendix B.

5.3.2 RPC-based Middleware

Although message passing provides a convenient way to structure a distributed application,
many developers believe that applications are difficult to develop using message passing
alone. Remote Procedure Call (RPC) allows a requesting process to directly execute a
procedure on another computer in the cluster and receive a response in the form of a return
value. RPC inter-process communication mechanisms serve four important functions [7]:

o They allow communications between separate processes over a computer network,
o They offer mechanisms against failure, and provides the means to cross administrative

boundaries,
o They enforce clean and simple interfaces, thus providing a natural aid for the modular

structure of large distributed applications
o They hide the distinction between local and remote communication, thus allowing static

or dynamic reconfiguration

The overwhelming numbers of interactions between processes in a distributed system are
remote operations. An important characteristic of the implementation of the client-server
model in terms of RPC is that the code of the application remains the same if its procedures
are distributed or not. This property is because the whole communication system is external
to the application.

Client and server do not execute in the same address space, so there are no global variables
and pointers cannot be used across the interface. Marshalling is the term used for
transferring data structures used in RPC [8] from one address space to another. Marshalling
is required, as two goals need to be achieved. The data must be serialized for transport in
messages, and the data structures must be converted from the data representation on the
sending end and reconstructed on the receiving end.

Middleware tools built over RPC include Network Information Services [9] (NIS) and
Network File Services [10] (NFS). Both NIS and NFS were originally developed by Sun
Microsystems, but versions of each of them have been released into the public domain. NIS
is a network naming and administrative tool for smaller networks that allows users to access
files or applications on the network with a single login name and password. NFS allows files
and directories to be exported from the server computer to client computers on the network.
With NFS, users can have the same view of the file system from any computer in the
network. With NFS and NIS, users can login with an ID and password that is the same for
any computer in the network, access an application that resides on the file server, and save
files into a home directory on the file server from any computer on the network.

5.3.3 CORBA

CORBA describes an architectural framework that specifies the mechanisms for processing
distributed objects. The middleware that supports the remote execution of objects is called
the Object Request Broker (ORB). CORBA is an international standard supported by more
than 700 groups and managed by the Object Management Group [11] (OMG). The OMG is a



non profit-making organization whose objective is to define and promote standards for object
orientation in order to integrate applications based on existing technologies.

The Object Management Architecture (OMA) is characterized by the following:
o The Object Request Broker (ORB). The broker forms the controlling element of the

architecture because it supports the portability of objects and their interoperability in a
network of heterogeneous systems;

o Object services. These are specific system services for the manipulation of objects. Their
goal is to simplify the process of constructing applications;

o Application services. These offer a set of facilities for allowing applications access
databases, to printing services, to synchronize with other application, and so on;

o Application objects. These allow the rapid development of applications. A new application
can be formed from objects in a combined library of application services. Adding objects
belonging to the application can extend the library itself.

CORBA Projects

PARDIS [12][13] is based on CORBA in that it allows the programmer to construct meta-
applications without concern for component location, heterogeneity of resources, or data
translation and marshalling in communication between them. PARDIS supports SPMD
objects representing data-parallel computations. These objects are implemented as a
collaboration of computing threads capable of directly interacting with the PARDIS ORB –
the entity responsible for brokering requests between clients and servers. The PARDIS ORB
interacts with parallel applications through a run-time system interface implemented by the
underlying the application software package. PARDIS can be used to interface directly
parallel packages, based on different run-time system approaches, such as the POOMA
library and High Performance C++.

5.3.4 OLE/COM

The term COM has two meanings. It stands for Component Object Model [14], which form
the object model underpinning Object Linking and Embedding (OLE) version 2.0. It also
stands for the Common Object Model after an agreement between Microsoft and Digital. The
first version of OLE was designed to allow composite documents (text and images) to be
handled. The second version of OLE introduced a highly generic object model whose use can
be extended well beyond the handling of composite documents. OLE2 offers a set of
interfaces (Object Oriented) that allows applications to intercommunicate. The first version
of OLE2 required applications to run on the same machine. OLE2 was later extended to run
in a distributed fashion on Windows NT and DEC UNIX platforms.

The COM model defines mechanisms for the creation of objects as well as for the
communication between clients and objects that are distributed across a distributed
environment. These mechanisms are independent of the programming languages used to
implement objects. COM defines an inter-operability standard at the binary level in order to
make it independent of the operating system and machine.

COM Projects

NCSA Symera [15][16] (Symbiotic Extensible Resource Architecture) is a distributed-object
system based on Microsoft's Distributed Component Object Model (DCOM). Symera is
designed to support both sequential and parallel applications. The Symera management
system consists of an NT service that is installed on each platform in a cluster. The
management system hosts objects that allocate resources, schedules jobs, implements fault



tolerance as well as object activation and migration. Symera is written in C++ that conforms
to the Win32 standard.

5.3.5 Internet Middleware

The TCP/IP suite of network protocols is the enabling technology for the Internet. However,
a number of middleware-like technologies are built over TCP/IP. HyperText Transport
Protocol (HTTP) allows text, graphics, audio, and video files to be mixed together and
accessed through a web browser. The Common Gateway Interface (CGI) standard enables
retrieved files to be executed as a program, which allows web pages to be created
dynamically. For example, a CGI program can be used to incorporate user information into a
database query, and then display the query results on a web page. CGI programs can be
written in any programming language.

Since users access some web pages and applications frequently, some web servers will send a
small amount of information back to the web client to be saved between sessions. This
information is stored as a “cookie”, and saved on the local disk of the client machine. The
next time that the web page is accessed, the client will send the cookie back to the server.
Cookies allow users to avoid retyping identification information for repeated sessions to the
same server, and allow sessions to be restarted from a saved state.

Web-based Projects

There are a large number of Web-based software systems that can be considered as
middleware for cluster computing. Typically such software consists of a Web-based portal to
another middleware system such as CORBA or COM that is used to provide the actual
applications services. The Web portal can then be used to, for example, build, submit and
visualise the application that is using the backend CORBA or COM services.

5.3.6 Java Technologies

Java Remote Method Invocation [17] (RMI) allows communications between two or more
Java entities located in distinct Java Virtual Machines (JVM). Java RMI allows a Java
applet or application access another remote object and invokes one of its methods, and so in
that sense is similar to RPC, except that it operates on objects. In order to access the remote
object the calling application must obtain its address. This is obtained by access to a Registry
where the object’s name was registered. The Registry acts as a name server for all objects
using RMI. The Registry contains a table where each object is associated with a reference,
which is the object’s interface and unique address of the object.

Jini [28][29] from Sun Microsystems, is an attempt to resolve the inter-operability of
different types of computer-based devices, given the rising importance of the network. These
devices, which come from many different vendors, may need to interact over a network. The
network itself is dynamic - devices and services will need to be added and removed regularly.
Jini provides mechanisms to enable the addition, removal, and discovery of devices and
services attached to network. Jini also provides a programming model that is meant to make
it easier for programmers to enable devices to interact.

Jini objects to move around the network from virtual machine to virtual machine. Built on
top of Java, object serialization, and RMI, Jini is a set of APIs and network protocols that can
be used to create and deploy distributed systems that are organized as federations of
services. A Jini service can be anything that is connected to the network and is ready to
perform some useful task. The services can consists of hardware devices, software,



communications channels, and even interactive users. A federation of services, then, is a set
of services, currently available on the network that a client (meaning some program, service,
or user) can bring together to help it accomplish some task.

Other Java Technologies

Sun Microsystems has produced a plethora of Java-based technologies that can be considered
as middleware [30]. These technologies range from the Java Development Kit (JDK) product
family that consists of the essential tools and APIs for all developers writing in the Java
programming language to APIs for telephony (JTAPI), database connectivity (JDBC), 2D and
3D graphics, security, and electronic commerce. These technologies enable Java to
interoperate with many other devices, technologies, and software standards.

Some Java Projects

BAYANIHAN [18],[19] is a software framework that uses Java and HORB [20] – a
distributed object library. The framework allows users to co-operate in solving computational
problems by using their Web browser to volunteer their computers' processing power. HORB
uses something akin to RMI to pass data between objects. BAYANIHAN also provides a PVM
interface for parallel computing.

The Heterogeneous Adaptable Reconfigurable Networked SystemS [21][22] (HARNESS) is
an experimental metacomputing framework built around the services of a customisable and
reconfigurable Distributed Virtual Machine (DVM). HARNESS defines a flexible kernel and
views a DVM as a set of components connected by the use of a shared registry, which can be
implemented in a distributed fault tolerant manner. Any particular kernel component thus
derives its identity from this distributed registry. The flexibility of service components comes
from the way the kernel supplies DVM services by allowing components, which implement
services, to be created and installed dynamically. HARNESS uses the micro-kernel approach,
where services are added as needed to provide the functionality that the users require.

The Java Network of Workstations [23] framework (JavaNOW) provides a mechanism where
large, complex computational tasks can be broken down and executed in a parallel fashion
across a network. The concept of JavaNOW is similar to PVM. However, the JavaNOW
interface is based on logical distributed associative shared memory instead of message
passing. The interface for JavaNOW allows users to store complete objects in shared
memory.

JavaParty [24][25] is a system for distributed parallel programming in heterogeneous
workstation clusters. JavaParty extends Java by adding the concept of remote objects. The
JavaParty consists of a pre-processor and a runtime-system to support the system.

The central idea in the Javelin [26][27] architecture is a computing broker, which collects
and monitors resources, and services requests for these resources. A user interacts with the
broker in two ways, by registering or requesting resources. The broker matches clients with
host machines for running computations. A key design feature of this architecture is that the
host software runs completely at the user level, and only requires that registered machines
have a Web browser that can run untrusted code, such as Java applets.

5.3.7 Cluster Management Software

Cluster Management Software (CMS) is primarily designed to administer and manage
application jobs submitted to workstation clusters. More recently CMS has also be extended



to manage other underlying resources as well as software licenses (e.g., CODINE/GRD [31]).
The job can be a parallel or sequential application that needs to run interactively or in the
background. This software encompasses the traditional batch and queuing systems. CMS can
be used to help manage clusters in a variety of ways:
o Optimise the use of the available resources for parallel and sequential jobs;
o Prioritise the usage of the available resources;
o Manage mechanisms to “steal” CPU cycles from cluster machines;
o Enable check-pointing and task migration;
o Provide mechanisms to ensure that tasks complete successfully.

CMS software is widely available in both commercial and public domain offerings. There are
several comprehensive reviews of their functionality and usefulness [32][33][34].

5.5. Conclusions

The purpose of middleware is to provide services to applications running in distributed
heterogeneous environments. The choice of which middleware may best meet an
organization’s needs is difficult as the technology is still being developed and may be some
time before it reaches maturity. The risk of choosing one solution over another can be
reduced if [35]:
• The approach is based on the concept of a high-level interface;
• The concept of a service is associated with each interface;
• The product conforms to a standard and supports its evolution.

Object-oriented middleware such as CORBA/COM and Java are widely accepted. The
popularity of CORBA was limited until the appearance of Java in the mid-1990’s. Current
CORBA and COM products are being developed to be inter-operable with Java. Jini, Sun
Microsystems’ latest distributed environment, has wide possibilities to subsume all the other
systems. The key question about what system a particular organization should adopt is no
longer as it was a few years ago. Today the key question is, “is the middleware that I chose to
adopt interoperable with the other current and emerging standards in middleware?”
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6.1 Introduction

As industry standard computing platforms such as workstations and small-scale symmetric
multiprocessor servers continue to show better and better price performance, more and more
significant clustering projects are developing internationally. What separates these systems
is how usable they are in terms of actually producing computations of value to their users,
and at what “comfort level” for their users. Manageability of a system can be the single most
important factor in its practical usability. This is complicated by the current fact that many
clusters are in all or in part themselves experimental computing systems for computer
science studies of architecture, and/or software, while simultaneously attempting to offer
research and/or production platforms for their user base. Even for a single system, the
emphasis can vary over time in order to satisfy sponsor requirements and evolving research
ideas, whereas a production-oriented user base typically is most interested in application
results, system availability, and stability.

The goals of various clustering projects are quite diverse, with extremes evident. First, there
is the dedicated cluster for computer science research. The goal of this type of system is
typically to undertake performance testing, benchmarking, and software tuning. This work
is often done at the networking, application, and operating systems levels. These clusters
are not typically used for computational science and quite often are in a state of flux. The
opposite extreme is the production-computing environment. The tacit goal of these systems
is to provide reliable computing cycles with dependable networking, application software,
and operating systems. As noted above, systems may attempt both extremes, either by
spatial division of the resources among emphases, or by reallocation policies over time.
Realistically, the entire range of work being done on clusters and the quality of the results
generated on them are driven strongly by the tools available to the systems administrators.
In this section we describe some of the critical issues that arise when planning a cluster
computing installation and its ongoing support and maintenance.

No matter what the goals of a particular cluster-computing project may be, good systems
manageability will directly equate to better results. Systems like the IBM SP have been
successful in providing these types of utilities in the past. However, similar and in many
cases superior tools are being developed for clusters out of necessity. Even if the users are
just experimenting with a small test cluster, the ability to verify and ensure consistency in
hardware, application software, and system settings across the cluster’s resources from a
single console will improve the efficiency and reproducibility of results. It is equally
important for a systems administrator to be able to install system images and layered
software in a parallel fashion. All of these issues reduce the cost of ownership, which is an
important aspect of the overall value of cluster computing to users, not just their initially
low-cost nature.



6.2 System Planning

There are several considerations that must be made when planning a cluster installation.
Generally they are the types of computers to purchase, the type of networking interconnect,
and the system software to use. All of these must be taken into consideration and typically
the driving factor for any particular configuration is the requirements of the applications
that will be run on it. In this section we describe some of the more popular options and try to
focus on the application requirements that warrant their use.

6.2.1 Hardware Considerations

The idea of clustering has been around for well over ten years. It originated as a way to
leverage the investment of workstations in an organization. Because workstation technology
was and continues to progress rapidly, it was found that linking workstations together with
Ethernet networks was a good way to get near to traditional supercomputer performance.
The performance could be delivered at a low entry price, and furthermore expanded interest
in applications that could run in parallel without the huge network performance of
traditional parallel supercomputers. Further, it meant the machines, which were commonly
left idle, such as desktops at night and weekends, could putatively begin to be used in a
productive manner during those periods.

With the ever-increasing performance of the Intel architecture and its broad market base,
the cost-performance ratio of clusters of workstations continues to improve almost daily.
Because of its origins many people prefer to purchase “beige boxes” or inexpensive generic
Intel-based workstations. This provides a low cost/compute cycle ratio. What has changed is
how people are using clusters. Today organizations are starting to use clusters as their
primary source of computational platform. In doing so the demands for reliability,
manageability, and supportability have dramatically increased. Once again, applications
dictate what works and what does not. If the purpose of a cluster is hard-core computer
science research where drivers and software are being continually evolved, workstations may
work just fine. As clusters are placed in production computing environments, where the
research that is being undertaken is chemistry, physics, finance, computational fluid
dynamics, or other quantitative application areas, and not necessarily only computer science,
the issue of uptime becomes critical. In order to meet these needs, computing centers are
looking toward high-end industry standard-based servers. The cost-benefit remains but the
additional up-front cost typically affords excellent hardware redundancy and maintenance
programs that used to only be associated with traditional supercomputers and mainframes.
Further, as the size of the cluster begins to increase, many server vendors are providing
space efficient rack mountable solutions. These not only provide a smaller footprint but also
organized cable, power and cooling management. Figure 6.1 shows a common cluster cable
plant. Figure 6.2 illustrates what is possible with a rack-mounted solution.



Figure 6.1. A do-it-yourself cluster look and feel.

Figure 6.2. A professionally integrated cluster.

6.2.2. Performance Specifications

Information about the type of workload intended to be incorporate in a cluster will help tailor
the cluster's hardware to these needs. When building a cluster, it is important to choose
hardware that is well suited to the prospective workload. Low-level details such as memory
bus speed and PCI bus interfaces are just as important as processor speed or cache sizes. We
outline several of these issues in the following sub-sections.

6.2.3 Memory speed and interleave

While faster memory is in general “always better,” higher memory density is not always
desirable. For example, consider a cluster that requires 256 MBytes per node, and each node
has four available slots. While getting two 128 MBytes modules allows for later upgrades,
using four 64 MBytes modules may provide increased memory bandwidth if the motherboard
chipset supports memory interleaving. Upgradability is a competitive concern, if one



preplans to do a mid-life memory upgrade to a system, based on funding or expanding user
requirements for in-core problem size support.

6.2.4 Processor core speed vs. bus speed

Modern processor cores typically run at a multiple of the speed at which they interface with
the rest of the system. For example, while a processor might run at 500MHz, its bus
interface might only be 100MHz. On a code, which is memory-intensive, for example, the
cluster designer may wish to opt for a system with a lower core frequency but higher bus
speed.

6.2.5 PCI bus speed and width

PCI interfaces currently come in two widths (32 or 64 bits) and two speeds (33 or 66MHz),
with expansions be developed. While most low-end cards will have a 32-bit/33MHz interface,
cards such as high-performance network adapters will have wider or faster interfaces. If the
motherboard does not support the wider or faster bus, maximum performance will not be
obtained. The quality of PCI bus implementations is a hot topic among people considering
network card performance, because actual performance varies considerably from chipset to
chipset. Investing time to be sure that the chipset works well with the cluster’s planned
interconnect (described in Section 2) is essential, as is any issues of multiple buses and the
planned utilization of local I/O as well as networking. Newer systems do not immediately
equate to better PCI performance, though this is the general trend.

6.2.6 Multiprocessor issues

Depending on the cluster’s workload, one may wish to choose single- or multiprocessor
building blocks. For applications whose working set is smaller than the processor cache size,
using multiprocessor machines can increase a cluster's aggregate performance significantly.
For memory-intensive applications, however, there are tradeoffs. Simple bus-based
multiprocessor machines work well in 2-processor configurations, but do not scale well for
higher numbers of processors. Crossbar-based or hybrid bus/crossbar systems deliver higher
memory bandwidth and better scalability but are usually priced higher, and memory
consistency management heightens the context switch times of such systems. Context switch
time impacts performance of thread-oriented applications, and may somewhat impact
applications that do a lot of I/O.

6.2.7 Cluster Interconnect Considerations

Network interconnects are essential components of high-performance computational clusters.
Four major factors determine the importance of cluster interconnects:

1. Communication-intensive parallel applications require efficient data transfers even
at low processor scales. Applications that spend a large portion of their execution
time in communication benefit most from improvements in network speeds. Fine-
grain algorithms that are sensitive to short message latency and coarse grain
algorithms that are sensitive to peak bandwidth of bulk transfers require balanced
and efficient communication systems.

2. Efficiency of the network system includes the effective drain on processor cycles
associated with transfers resulting both from hardware and associated software
stack. Furthermore, as technical applications often possess the ability to overlap
communication and computation, network architectures with software stacks that
support user-to-user overlap of communication and computation can reduce



application runtimes significantly, even for large-scale systems (since problems are
often scaled as cluster processor counts as scaled).

3. Large-scale clusters with number of processors exceeding 1,000 are currently being
deployed. Maintaining sufficient parallel efficiency at these scales requires highly
optimized network interconnects.

4. The rapid growth of microprocessor speed and memory throughput allows for a cost-
efficient increase of parallel performance. However, the effective benefit of this
increase may be significantly diminished if the cluster is interconnected with an
inadequate network that may become a performance bottleneck, in latency,
bandwidth, and/or consumption of CPU cycles to deliver needed performance.

These issues, and others, are discussed thoroughly in Section 2.

6.3 Software Considerations

Hardware is not the only set of concerns that play a major role in the decision process when
building a commodity cluster. The choice of the operating system and the other necessary
software also affect the usability and manageability of the cluster. In most cases it is the
proposed use of the cluster that influences the decision for the software that goes into the
system, including the operating system. Clusters present a logical extension and/or an equal
environment to traditional multiprocessor and multi-computer (massively parallel) systems.
Typically, clusters are chosen with price-performance in mind, and the problems that are
solved on clusters are those that are ported from multi-computer environments, though
applications targeted especially for clustered architectures are slowly taking off. This issues
surrounding the choice, features and functionality of Cluster operating systems are discussed
in Section 3.

6.3.1 Remote Access

How users and administrators access cluster resources remotely is an important
consideration. Both UNIX and Windows offer a variety of options. Windows 2000 has made
great strides to provide the same types of tools that UNIX provides.

Windows Capabilities

Windows 2000 has a built in Telnet server. Under Server and Advanced Server it limits the
number of telnet connections to two. Under the services for UNIX tool kit from Microsoft
there is an alternative Telnet Service that does not limit the number of connections. One
important factor that is currently lacking in the Windows Telnet environment is a secure
shell capability. However, one can use SSH to encrypt terminal server sessions. Terminal
Server from Microsoft only allows Windows based clients to connect, while Citrix [1] has an
add on product, which provides Terminal Server clients for many UNIX flavors as well as
Macintosh and a web client that permits connections from a standard web browser.

Microsoft Internet Information Services (IIS) provides FTP, Web, News and Email services
for Windows 2000. IIS can be configured with various levels of security for each of the
services it provides. One features of IIS is its integration with the Windows security model.
This makes the development of secure web sites easier.

Finally, Microsoft allows users to run new and existing X Windows applications. Products
such as Hummingbird Exceed [2] and Cygnus [3] are designed for Windows platforms.



UNIX Capabilities

Since UNIX has been used in cluster environments longer than Windows most of the access
tools have been available for a while. Most UNIX versions provide SSH, Telnet, X Windows
and FTP. Integrating secure UNIX Web sites can be accomplished, using for example the
Apache Web server [4].

6.3.2. System Installation

When managing a cluster of any size it is extremely important to be able to ensure a
consistent system image across all cluster nodes. This helps eliminate variables when trying
to debug system configuration problems and user program errors. System tools like DHCP
go along way toward making it possible to generate a system image and propagate it across
all cluster nodes by minimizing the number of node specific customizations, like IP
addresses.

Windows Capabilities

Windows 2000 includes the capability to remotely install all cluster nodes and to distribute
layered software. Remote Installation Service (RIS) [5] allows an administrator to generate a
system installation image and then push it to new cluster nodes. There are third party tools
also, such as Norton’s Ghost [6] and Imagecast [7] that perform the same function.

Windows 2000 also has a built in capability to “package” a software installation and then
distribute it to all cluster nodes. The way it is implemented is particularly convenient.
Windows keeps track of where in the installation of a particular package is on a node. If the
network fails or the node crashes Windows will resume the installation where it left off.

A real strength of the Windows system and software distribution is the way it has been
integrated into the Windows 2000 operating system making it easy for anyone to take
advantage of.

UNIX Capabilities

The Linux installation basically consists of – describe the hardware; configure the software,
and load – load – load… It can be tedious for one machine, yet completely unbearable and
unnecessary for the multiple, mostly identical, cluster nodes. There are presently three
approaches to solving this problem:

1. The machine vendor supplied disk duplication;
2. The use of a network disk installation or image replication package;
3. The use one of a self-install pre-packaged Beowulf2 cluster-in-a-box solution.

While having a vendor duplicate a cluster node image sounds rather simple, there are still
some problems to avoid. The first hurdle to clear is to obtain a machine identical to those to
be used in the cluster. The best way to do this is to convince a vendor that an initial loan
machine is part of the purchase pre-qualification process. When the machine arrives, install
the operating system and the entire necessary programming environment that will reside on
a cluster node. Then, backup that disk and either give the disk or the entire system to the
vendor so that they may use their disk duplication system to copy the disk contents to all
purchased cluster nodes. Another advantage of doing this, in addition to the apparent time
saved, is that a vendor may keep the base disk image and provide all future machines, of the
same hardware configuration, with the same software installation. There will be nothing



further to do when the machines arrive if the cluster is setup to do dynamic IP via an DHCP
server. However, if using statically allocated IPs, each machine will require its network
configuration to be reset after initial boot (and then be rebooted before use).

Another mechanism is to require the vendor to write the MAC address on the outside of each
system box. This makes setting up static IP with a specific node numbering scheme much
simpler. The alternative is to find it written on the NIC or to boot each machine one at a time
and capture the MAC address as the machine starts.

A final note here that cannot be over emphasized – find a knowledgeable Linux vendor.
Although, it may save money going to the lowest bidder, it may not be such a good deal if the
vendor simply hits the power switch on a Linux box after the burn-in period without going
through the proper shutdown procedure. You may find out if they did this during the initial
cluster power-on as a number of nodes will fail to boot without direct user interaction.

The second method and one of the options if the cluster is not a new purchase is to use one of
the tools to either do a replicated network installation or network disk image duplication.
Linux Utility for cluster Install (LUI) [8] is an open source tool developed by IBM to perform
a replicated network install across cluster nodes. VA SystemImager [9] is a network disk
image duplication tool available as open source from VA Linux.

LUI installation consists of unpacking a tar file, soon to be available via RPM, onto the
machine that is to become the LUI Server. The LUI Server will be the machine from which
cluster builds’ will be orchestrated and will maintain a database of cluster configurations and
resources. To use LUI the server, the cluster (client) nodes, and finally the resources to load
onto the client cluster nodes must be configured. LUI provides a GUI for this purpose. The
server information required is:

• Machine name,
• IP address,
• Net mask.

The cluster node information required is:
• Machine name,
• IP address,
• net mask,
• MAC address,
• Fully qualified hostname.

The optional node information includes:
• The default route,
• Installation gateway,
• Number of processors,
• PBS string.

The last two data fields are included as a result of collaboration with the Open Source
Cluster Application Resources (OSCAR) [11] project, (see sub-section 6.4), and are used for
the automated OSCAR install of OpenPBS [9]. Various resources may be specified, including:

• Disk partition table,
• User specified exit code,
• File system,
• Kernel, and kernel map,
• Ramdisk,
• RPM,



• Source (copied as a file.)

The final GUI setup step requires that resources be associated with each cluster node. A
future release of LUI will include a grouping feature so that nodes may be grouped together
and then the group associated with a set of resources. To effect node installation, one need to
only network boot the cluster client nodes LUI automatically installs the specified resources.
This of course requires a PXE [12] enabled network card and BIOS capable of its use. LUI
has a number of significant advantages over disk image solutions – one is that it stores the
configuration, very small in comparison to a disk image, and rebuilds each time for
installation. Since the LUI Server need only be online during the installation process, a
computer outside of the normal cluster resources may be used to “service” the installation of
the actual cluster nodes. This machine could be the cluster administrator’s desktop or
notebook machine. One negative aspect of LUI is that although it has the ability to move any
software package across the cluster during installation, it does not have the ability to
automatically install that package on each cluster node. This is a major drawback with
respect to passing an entire computing environment across the cluster.

VA Systemimager is a network disk image duplication tool developed by VA Linux.
Systemimager must be installed on the image server and the Systemimager-client must be
installed on the master client. The image server will be the machine to initiate the image
duplication process as well as holding the storage of all disk images. The master client is the
cluster node that is configured and maintained as the example node to be distributed to all
other cluster nodes. In addition to the installation of the appropriate Systemimager packages
on the image server and master client – all the final software needed on the cluster must be
installed on the master node before it is loaded across the cluster – this process is similar to
that used with the vendor disk duplication discussed earlier. Once the master client is fully
configured, its image may be pulled from the master client to the image server. All cluster
nodes may now be booted via a diskette, CD, or the network, each will pull the specified
image from the image server. As with LUI, a PXE enabled network card and BIOS is
required for the network boot option.

While neither LUI nor Systemimager provide all the desired capabilities, they complement
one another in numerous ways and when combined with other tools provide the ability to
extract the best of each. This is the approach taken with the OSCAR project.

The third method of building a complete cluster-computing environment is that of using one
of the self-install pre-packaged Beowulf cluster-in-a-box solutions. A number of companies
including Scyld [13], and Turbolinux [15] have started to market commercial cluster
solutions that include some type of auto-install feature. However, these options tend to
contain proprietary solutions for building a Beowulf cluster and are rather expensive (as
compared to a no-cost solution). OSCAR is an open source consortium solution that provides
an auto-install cluster-on-a-CD that contains the current “best of practice” for clusters
consisting of less than 64-nodes. OSCAR consists of a LUI initiated install and subsequent
configuration of cluster nodes with the following cluster computing environment, M3C [14],
C3 [16], OpenPBS, SSH/SSL, DHCP, NFS, TFTP, RSYNC [76], Systemimager, PVM, and
MPICH. The configuration consists of providing LUIs’ required and optional information via
the LUI GUI. Installation and configuration then takes place in a similar fashion to a
standard LUI installation. The difference from the LUI only installation is that when
finished the entire cluster computing environment is configured.



6.3.3. System Monitoring & Remote Control of Nodes

System performance monitoring is the act of collecting cluster’s system performance
parameters such as node’s CPU utilization, memory usage, I/O and interrupts rate and
present them in a from that can be easily retrieved or displayed by the system administrator.
This feature is important for the stable operation of large cluster since it allows the system
administrator to spot potential problems earlier. Also, other parts of the systems software,
such as task scheduling, can benefit from the information provided, e.g. using it to perform
better load balancing.

Structure of Monitoring Systems

The basic system-monitoring tool consists of the components shown in Figure 6.3.

Figure 6.3. The Organization of Typical System Performance Monitoring Tools

• The Performance Probing Module (PPM): This is part of the monitoring system that
interfaces with local operating system to obtain the performance information. The
information obtained is later sent or collected by other monitoring sub-systems. In
many implementations [17], PPM also performs certain checking on node condition
and generates event notification to indicate the occurrence of certain condition.

• The Performance Collection Module (PCM): This part of the monitoring system acts
as information collectors that collect information from every node and store it for
later retrieval. One of its main is to cache performance information that reduces the
overall impact of monitoring on the system being monitored.

• A Performance API Library Module (PAM): This is a library that allows a
programmer to write a applications to access the performance information.

• The Control and Visualization Module (CVM): This is an application that presents
the performance information to user in a meaningful graphical or text format.
Another function that the CVM performs allows a user to control the set of nodes and
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information that user wants to see. One example of this module from software called
SCMS [21] is illustrated in Figure 6.4.

Figure 6.4. The CVM part of SCMS [21](showing CPU load on 31 of 256 nodes on Chiba City
Linux Cluster, Argonne National Laboratory)

Obtaining the Performance Information

There are many techniques being used by the developer to obtained performance information
from the systems. These techniques can be summarized as follows:

Figure 6.5. An example of how to read system information

Probing by direct access to kernel memory

In this approach, the data is obtained by reading it directly from a known address (using an
interface such as /dev/kmem). This approach makes probing depend on the kernel version.
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Even a slight change in the kernel can cause a failure of probing the system. To avoid this
problem, most modern kernels usually provide a system performance interface API. The
advantage of this approach is the speed of information collection.

Some recent tools [22] try to make fast access to kernel information by utilizing a custom
device driver that directly accesses kernel information but keeps the application interface
API fixed. The benefit of this is fast access and kernel independence. The device driver,
however, must be kept updated with kernel changes. This is rather difficult considering the
fast pace of kernel development in Linux environment.

Probing by File System Interface

Most UNIX systems, including Linux, currently have a interface through a virtual file
system named /proc. Information from inside kernel such as CPU, process, file, networking
statistics will appear in /proc for users to access. The advantages of this approach are
better portability and kernel independence. The location of information found in /proc tends
to be the same for all kernel versions. Moreover, the speed of access is comparable to direct
kernel access since /proc is a virtual interface through the Virtual File System (VFS) that
goes directly into kernel memory. Some projects such as SMILE [17] also developed a library
layer (Hardware Abstraction Layer – HAL) on top of /proc that allows better portability and
ease of programming.

Probing by System APIs

Certain operating systems, such as Microsoft Windows, provide APIs like the Windows
Management and Instrumentation (WMI) [23] to gather system information. The advantage
to using such an API is the ease of programming and kernel independence. WMI is
implemented as a distributed COM object that can easily called from almost any
programming and scripting language under Windows. There are similar APIs available in
the UNIX environment but none quite as comprehensive or consistently implemented as
WMI.

Probing by System Command

Some UNIX based tools use the result generated from the execution of standard UNIX
command such as uptime or ps to probe system performance. This can provides portability
between families of UNIX systems. However, this is an inefficient approach since its place a
heavily load on the system every time the commands are executed. This approach is by and
large used in primitive tools or used in early development prototypes before more efficient
methods are implemented.

Collecting the Performance Information

Once the system information has been read on each node, this information must be delivered
to the application that request it.

A choice as to whether to have the application perform the collection of information itself or
having some sub-system collect and maintain the information for the application needs to be
made. Most monitoring systems opt for the later case, since there are many benefits to be
gained, such as reducing the network traffic, ease of management for multiple sessions. But
its choice may limit scalability as will be discussed later.



The act of collecting the information itself is a collective operation (like gather/scatter). So
far, most monitoring systems rely on point-to point communication from nodes to information
collector. High-level communication systems, such as MPI have well defines and efficient
collective operations. The use MPI might not be possible yet since MPI is not dynamics
enough to cope with some situations. For instance, if the monitoring system used MPI, when
one of the nodes dies, every MPI processes must be terminated and the monitoring system
must be restarted. Currently MPI has no clear interface for the interaction with processes
outside the MPI scope. So, it is not possible at this time to write a hybrid and flexible MPI-
based system management tool.

Scalability

Many works on monitoring systems [22][21][24] are based on a centralized performance
collection paradigm. This simple implementation works efficiently for a small to medium size
cluster (16-64 nodes). However, the trend is to build ever-larger clusters. Currently, 64 to 256
nodes systems are not uncommon. Some clusters have more than 1000 nodes [25][26]. With
these large clusters, the centralized approach will be inadequate. One technique suggested
in [27] is to use the cascading hierarchy of monitoring domains. In this approach, the
monitoring is divided into domains. Each domain consists of a set of nodes and a monitor
proxy that receives monitoring requests from higher domains, merges and sends information
upward, and handles fault events and forwards them to the upper level proxy.

Optimizing the Network Traffic

There are many techniques being used by various performance monitoring systems to
optimize network traffic. Examples of these techniques are:

• Adjusting the monitoring frequency: The function of the monitoring system is to
presents the current system state of the cluster. This tends to be a non-trivial task
since the state of the cluster consists of hundreds of continuously changing variables.
Hence, the precision of monitoring depends on the frequency that the monitoring
system collects the information. However, more up-to-date information usually
means a higher frequency of information collection. This will generate a high traffic
load for the system. Some system such as use a PCM to separate the frequency of
requesting the information by the application program from the real collection
frequency of information cluster nodes. This approach allows the tuning of the level
of accuracy required against the network traffic.

• Data set selection: In a practical system, a system administrator usually wants to
observe only a certain number performance parameters. Therefore, allowing the user
select only information they are interested can reduce the amount of data movement.
This support is typically built into the API and user interface to permit users to
mask/filter the information they need. This mask or filter must be then send to each
node to notify PBM so it sends back only information needed. Certain Boolean
operations such as AND or OR might be needed to combine the masks from multiple
applications running concurrently and requesting the information from the
monitoring system at the same time. This feature appears in [19].

• Data merging: In [27], a hierarchical structure of monitoring has been used. A benefit
of this, apart from higher scalability, is the ability to merge redundant information
collected in each level of hierarchy. By merging this information, the traffic is
reduced.



Reducing The Intrusiveness

Performance monitoring must be minimally intrusive to the system it is monitoring. The
sources of intrusiveness are reading of the system information and the execution of event
notification. When reading the system information using /proc usually causes a low impact
on the system since this requires only the memory access. However, in [22] the level of
intrusiveness has been reduced further by using a custom driver that collects system
information and sends all of it directly to probing module. The trade off between low
intrusiveness and portability is an issue here. For the execution of event notification, the
intrusiveness usually depends on the complexity of rule, number of events, frequency of
checking, and efficiency of implementation. The only optimization possible is to select an
appropriate number of events and best interval of checking. In general, one possible
technique is to distribute the execution of certain parts of the monitoring system to dedicated
hosts. For example, assigning one node to be a management node, then executing PCM,
PAM, and CVM on that node.

Web Technology and Cluster Management/Monitoring Systems

Web-based technologies provide many benefits to users such as:
• Internet access to system management and monitoring capabilities.
• Browser-based user interface,
• The capability to interact with the monitoring system through low speed

communication channel.

A typical web based monitoring system is illustrated in Figure 6.6. (This design is used by
KCAP [28].

Figure 6.6. The structure of a Web-based management and monitoring system

In this configuration, a dedicated node called management node runs the PCM and Web
server. The Java applet is the interface to connect to the real-time monitoring system. As the
user accesses a certain Web page, the Java applet is loaded. This applet makes the
connection back to the PCM, gets the system information, and presents it to the user
graphically. For some other services, such as checking the number of users, number of
running processes, CGI-bin can be used instead. Nevertheless, the system administrator
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must set up security to allow the remote execution on the cluster nodes. This may not be
ideal where high security is required of the system.

Figure 6.7. An example of a Web-based system monitoring and management [28]

Emerging Web standards such as VRML97 [29] can be used to increase the information
delivered to user by allowing a user to navigate around the system be monitored. By
interfacing Java using the External Authoring Interface (EAI) [30], dynamics behavior of the
cluster can be displayed in real time. This method has been used in the KCAP3D [31]
package to visualize a cluster. In this system the cluster configuration is converted into
navigable VRML using a Perl based parser. This approach allows users to select and view
components that they want to interact with in 3D.

(a) 3-D Icon showing global function (b) A Cluster farm



(c) Inside a node

Figure 6.8. Walk-in visualization of Chiba City generated by KCAP3D

6.4 Remote Management: Tools and Technology

On a UNIX based system any software that resided on each node can be easily accessed
using X windows. However, the situation is somewhat different for UNIX commands. In the
past remote execution have generally been done using traditional commands such as rcp
and rsh. The system administrator, however, needs to relax security to allow cluster wide
execution of these commands. This is fine for clusters that are behind firewalls but it might
present a security risk for open clusters. It should be noted that the speed of rsh execution
depends on how users are validated. In the systems that use a centralized server, such as
NIS, executing hundreds of rsh sessions on remote nodes will slow due to the interaction
with NIS. So, many systems solve this problem by replicating control files, such as
/etc/passwd, /etc/group, /etc/shows instead. The advantage of this is two fold. First,
since authorization is done locally, remote access for short-lived tasks is speeded up
substantially. Second, by removing the centralized NIS bottleneck, a user can login to any
node the need to interact with the central NIS service.

Traditional UNIX commands do not support the model of parallel computing. There is an
effort to extends and standardize UNIX command over parallel computing platforms Parallel
Tools Consortium project called Scalable UNIX Tool [32]. The current implementation of this
tool is based mostly on shell scripts, which are slow and do not scale well. There are two
major requirements for fast implementation of scalable UNIX tools:

• Fast process startup;
• Efficient collective communication.

For the fast process startup, this seems to be the duty of cluster middleware and operating
system. Collective operations seem to be at the heart of cluster tools. There is a need for tools
to start tasks on multiple nodes and collect the results back quickly to a central point.
Therefore, fast collective communications are extremely important. MPI [33][34] and PVM
implementations seems to be a good choice for tools to implement fast and scalable UNIX
commands.

Naming is also another important issue. In order to operate efficiently in cluster
environment, the tools must have:

• The ability to name one object e.g. node, file;
• The ability to name set of related object e.g. ps to a set of nodes.



Traditional UNIX commands rely on regular expression to address single and multiple
objects. The Scalable UNIX Tools project also proposes the use of enhanced regular
expression to handle the selection of nodes for command execution. However, this is not
enough for large clusters, which might not use uniform naming. In this case, packages such
as SCMS handles this by using GUI instead. The advantage of this is that users can freely
select unrelated nodes for command execution. This tool indicates growing importance of
GUI component to system administration tool.

6.4.1 Cluster Command & Control (C3)

The Cluster Command & Control (C3) tool suite from Oak Ridge National Lab (ORNL) [16]
provides capabilities that may be used to perform various system administration and user
tasks across single and multiple clusters for tasks such as:

• Remote monitoring and control of nodes,
• Copy/move/remove files,
• Remote shutdown/reboot of nodes,
• Security maintenance, and
• Parallel execution and invocation of any cluster wide task.

The true value of the C3 tools was shown recently when applying a security patch across the
64-node ORNL cluster HighTorc [35]. The patch was applied in parallel via the cl_exect
command in under one minute.

Eight command line general user tools have been developed toward this effort with both a
serial and parallel version of each tool. The serial version aids in debugging user tasks as it
executes in a deterministic fashion while the parallel version provides better performance.
Briefly, these tools are as follows:

• cl_pushimage is the single machine push in contrast to the Systemimager pull
image solution.

• cl_shutdown will shutdown or reboot nodes specified in command arguments.
• The cl_pushimage and cl_shutdown are both root user system administrator

tools.

The other six tools, cl_push, cl_rm, cl_get, cl_ps, cl_kill, and cl_exec are tools that
may be employed by any cluster user both at the system and application level.

• cl_push enables a user to push individual files or directories across the cluster.
• cl_rm will permit the deletion of files or directories on the cluster.
• cl_get copies cluster based files to a user specified location.
• cl_ps returns the aggregate result of the ps command run on each cluster node.
• cl_kill is used to terminate a given task across the cluster.
• cl_exec is the C3 general utility in that it enables the execution of any command

across the cluster.

The parallel version of each tool is invoked by appending a “t” to the end of the command.
For example the parallel version of the cl_push command is cl_pusht. From the command
line each C3 tool may specify cluster nodes to operate on as individual cluster nodes, a file
node list, or use the C3 default file /etc/c3.conf node list.

cl_pushimage enables a system administrator logged in as root to push a cluster node
image across a specified set of cluster nodes and optionally reboot those systems. This tool is
built upon and leverages the capabilities of Systemimager. While Systemimager provides



much of the functionality in this area it fell short in that it did not enable a single point push
for image transfer. cl_pushimage essentially pushes a request to each participating cluster
node to pull an image from the image server. Each node then invokes the pull of the image
from the outside cluster image server.

The cl_shutdown avoids the problem of manually talking to each of the cluster nodes
during a shutdown process. As an added benefit, many motherboards now support an
automatic power down after a halt – resulting in an “issue one command and walk away”
administration for cluster shutdown. cl_shutdown may also be used to reboot the cluster
after pushing a new operating system across with cl_pushimage.

cl_push provides the ability for any user to push files and entire directories across cluster
nodes. cl_push uses rsync to push files from server to cluster node.

The converse of cl_push is the cl_get command. This command will retrieve the given files
from each node and deposits them in a specified directory location. Since all files will
originally have the same name, only from different nodes, each file name has an underscore
and IP or domain name appended to its tail. IP or domain name depends on which is
specified in the cluster specification file. Note that cl_get operates only on files and ignores
subdirectories and links.

cl_rm is the cluster version of the rm delete file/directory command. This command will go
out across the cluster and attempt to delete the file(s) or directory target in a given location
across all specified cluster nodes. By default, no error is returned in the case of not finding
the target. The interactive mode of rm is not supplied in cl_rm due to the potential problems
associated with numerous nodes asking for delete confirmation.

The cl_ps utility executes the ps command on each node of the cluster with the options
specified by the user. For each node the output is stored in /$HOME/ps_output. A cl_get is
then issued for the ps_output file returning each of these to the caller with the node ID
appended per the cl_get command. The cl_rm is then issued to purge the ps_output files
from each of the cluster nodes.

The cl_kill utility runs the kill command on each of the cluster nodes for a specified
process name. Unlike the kill command, the cl_kill must use the process name as the
process ID (PID) will most likely be different on the various cluster nodes. Root user has the
ability to further indicate a specific user in addition to process name. This enables root to kill
a user’s process by name and not affect other processes with the same name but run by other
users. The root user may also use signals to effectively do a broad based kill command.

The cl_exec is the general utility tool of the C3 suite in that it enables the execution of any
command on each cluster node. As such, cl_exec may be considered the cluster version of
rsh. A string passed to cl_exec is executed “as is” on each node. This provides flexibility in
both the format of command output and arguments passed in to each instruction. The
cl_exect provides a parallel execution of the command provided.

6.5 Scheduling Systems

It is not an unusual practice that users manually reserve the nodes they need for running
their application in the absence of any specialized tools, by announcing their intent to use
these nodes through e-mail or a message board to users, prior to starting their job. Such
practice is acceptable as long as everyone abides by the protocol and resolves any usage



conflicts in a friendly manner. However, as organizations grow larger and the complexities
in hardware, software and user base increase, these kinds of arrangements may not be too
efficient or effective at all. What is needed is an automated tool that will accept user requests
to reserve cluster resources and execute their jobs automatically, without much human
intervention. This collection of tools is part of any well-designed scheduling system.

Apart from scheduling user jobs, a scheduler is also expected to arbitrate access to the
cluster to optimize the resource usage, provide security, and to perform accounting. Based on
the particular job’s resource requirements, the scheduler allocates an optimized set of
resources dynamically, from the available set of resources. This optimization is deemed to be
important especially when the cluster consists of a large set of heterogeneous resources, and
administration wants to impose a certain group policy on the resource usage that the
scheduler should take into consideration before allocating the resources to the job.

More often, the scheduling software is integrated into the cluster management [36]
middleware itself, so that the scheduler can make its resource allocation decisions based on
feedback received from the management modules – mainly about resource availability and
their load characteristics. The feedback may be used by the scheduler to statically load
balance the cluster nodes, apart from deciding the feasibility of running the job on them. In
this respect, the cluster scheduler undergoes the same decision process the typical operating
system scheduler undergoes:
• Which job it should execute next from the ready queue(s)?
• Are there enough resources to meet the job requirements?
• How to allocate the most optimal resources to the job?
• Does the owner of the job have enough privileges to use the resources?
• Does the job meet its accounting restrictions?
• If preemption is permitted, which running job to preempt?

Note that some or all of these decisions are strongly influenced by one or more of the
following factors:
• The underlying cluster architecture;
• Operating system support;
• Administrative policy on resource usage;
• Support for multiple queues and/or multiple jobs per node;
• The degree of heterogeneity in the cluster;
• Support for priorities on jobs;

A variety of scheduling technologies are available, ranging from basic batch job schedulers to
dynamic load balancers. The majority of the schedulers are designed to work in a clustered
as well as in a multiprocessor environment.

• CODINE [37], for instance, can operate in a heterogeneous environment to schedule
the nodes in a clustered SMP as well as the processors on a Vector supercomputer. It
also provides tools for managing the cluster policy, and dynamically load-balancing
the jobs.

• CONDOR [38], on the other hand, works to improve the throughput of the resources
by scheduling jobs on idle workstations. It can also checkpoint and dynamically
migrate jobs across workstations.

• The Portable Batch System (PBS) [39] has a flexible Scheduler module that can be
replaced by the site-specific Scheduler to incorporate the sites own scheduling policy.
The Basic Scheduling Language (BaSL) is a scripting language provided in PBS to be
used to write the custom Scheduler, apart from using other more familiar languages
like C and Tcl. PBS also supports the creation of multiple job queues, so that access



control lists can be used on these queues to control which users have access to submit
jobs to these queues. The scheduler can be redesigned to process the queues in a
prioritized fashion.

Figure 6.9. The conceptual architecture of a cluster scheduler and its managed resources

6.6 Conclusions

Many interesting and complex issues are involved in the creation and utilization of
commodity clusters and system administration drives much of these issues. Clusters of small
scale (e.g., under 32 interconnected nodes) are widespread, and larger systems (e.g., up to
1,000 or more interconnected node) are becoming prevalent today. All the major building
blocks needed for successful clustering exist somewhere or another:

• Cost-effective workstations and small-scale SMP servers,
• High speed networks with low-latency, high-bandwidth and acceptable CPU

overhead,
• Operating systems (with choice of Linux, other UNIX variants or Windows),
• Middleware for message passing based on the MPI standard,
• Cluster scheduler batch and interactive systems,
• Software and system understanding tools,
• System maintenance tools for clusters, and appropriate device drivers.

Successful projects are evidently those that take a balance of cost, component-oriented risk,
capability per system, and scale in order to deliver their users the best production
environment possible for the investment made, or which clearly emphasize the “research”
nature of clusters for computer-science-centric work. System administration’s role in
selecting, operating, and presenting the cluster resource to users cannot be underestimated
to the success of a given system.

The state-of-the-art today involves a lot of picking and choosing in each area of concern,
whether one does a “do it yourself cluster,” or one works with an integrator/cluster OEM.
The ability to break out the capital and maintenance cost of each item (some of which are
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free under the Linux strategy), allows users to control their investments according to their
expected uses. However, the self-integration approach can also lead to problems and higher
cost of ownership, and perhaps more expenses in terms of human resources for
administration. The quality of the underlying software and hardware components, and the
quality of their integrated behavior, all drive the percentage of available cycles that will
actually be available to be used by the audience of a specific cluster installation. Quick
upgrade, recovery, and other factors enabled by diagnostic and support tools help this area.
Well-understood procedures for debugging and repairing clusters, enabled by maintenance
tools, are clearly essential to system administration.

Typical cluster sites dedicated as production platforms definitely receive benefit from
packaged solutions and support, while many academic and research clusters thrive on the
mix-and-match combination of freeware, low-cost networks, and inexpensive workstation
components (“beige boxes”). Software tools, middleware, and maintenance tools, both
freeware and commercial software, are emerging to address both the Linux, other UNIX, and
Windows markets. Significant expansion of options and of packages among software tools,
systems, and networks are likely to emerge in future, offering packaged cluster solutions
that include system maintenance tools. It is possible to offer the familiar “UNIX command
line” and tool chain both in Linux, and under Windows; Windows offers other possibilities
that may prove attractive as cluster users move into enterprises and need to integrate with
desktop systems, or utilize desktop systems as so-called “supercomputers at night.”

At present, the freeware world still relies heavily on software ported from earlier generations
of multi-computers and multiprocessors; there are not enough new freeware items being
created, nor do existing freeware products necessarily track hardware technology changes
fast enough for cluster users. This causes a benefit-gap that is evidently only going to be
filled by software created based on demand and a market willing to pay for support. Training
and general knowledge of system administrators is likely to increase over time, driven
strongly by the growing user base and popularity of clusters. Interest among integrators and
other OEMs to provide complete solutions are obviously growing. The willingness of users to
run their applications on clusters will only widen if the system maintenance tools,
middleware, and runtime environments grow in their user friendliness, allowing users with
less and less cluster-specific knowledge reap significant benefits, while remaining relatively
novice about the cluster’s complexity. Clearly, many more killer applications and avid users
will emerge as clusters become easier to use and well integrated computational environments
with common features, capabilities, and well-defined maintainability. The options, choices,
and state-of-the-art described in this section point system administration in directions that
hopefully will lead to such easier-to-use cluster environments in the not-too-distant future.
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7. Parallel I/O

Erich Schikuta, University of Vienna, Austria and Helmut Wanek, University of Vienna,
Austria

7.1 Introduction

In the last few years many applications in high performance computing shifted from being
CPU-bound to be I/O bound, as in the area of high energy physics, multimedia, geophysics
and so on. Thus the performance cannot be simply scaled up by increasing the number of
CPUs, but it is often necessary to increase the bandwidth of the I/O subsystem. This
situation is commonly known as the I/O bottleneck in high performance computing. The
result was a strong research stimulus on parallel I/O topics. However, the focus was on
massive parallel processor (MPP) systems, mainly neglecting clusters of processing units, as
workstations or personal computers. Besides the cumulative processing power, a cluster
system provides a large data storage capacity. Usually each unit has at least one attached
disk, which is accessible from the system. Using the network interconnect of the cluster,
these disks can build a huge common storage medium.

I/O in parallel computing traditionally uses a small number of I/O nodes, which are
connected to some storage media (for the sake of brevity these media will be referred to as
“disks” in the following though other types of media like tapes or CD’s may be used too). I/O
nodes can either be dedicated or non-dedicated. Dedicated nodes process I/O operations only,
while none-dedicated nodes perform some parts of the computation as well. For a disk read
the I/O nodes read the requested data from disk and scatter it to the computing nodes, which
issued the request. Similarly data is gathered from the computing nodes and written to disk
for write operations. Typically an I/O node uses several disks in parallel (e.g. a RAID system)
to increase I/O bandwidth and to ensure data integrity.

In order to improve I/O throughput for these systems some classical strategies (like two
phase I/O [1], data sieving [2] and collective I/O [3]) have been worked out. But the fact that
many processors have to share a relatively small number of disks still leads to a severe I/O
bottleneck.

The advent of cluster computing, which is rapidly becoming more and more popular amongst
scientists (as can be easily seen in the ever increasing number of cluster systems among the
top 500 computers [4]), has induced some interesting possibilities to reduce the I/O
bottleneck. Since each processing unit2 normally has a local disk, only the data that really
has to be shared by different processing units needs to be sent across the network
interconnect. Moreover increasing the capacity of overall storage can be done in a cost
efficient manner without hurting overall I/O throughput too much by just adding more disk
space on an arbitrary number of processing units or by adding additional processing units to
the cluster.

However to find the “correct” distribution of data among the available disks (i.e. to achieve
maximum I/O throughput) turns out to be an extremely complex task. Many parameters that
are highly interdependent have to be taken into consideration. The most important of these
parameters are: data transfer rates and sizes of disks, network bandwidth, disk contention,
network contention, capacity and speed of memory and cache modules.

2 In the following we differentiate between nodes (on a classical supercomputer) and units (of
a cluster).



So there is a need for sophisticated software, which can automatically determine an optimal
distribution of data among the available disks. Though there exist a number of publications
and solutions for different sub-aspects of this optimization problem (e.g. [5], [6]) no general
resolution is available yet.

7.2 Parallel I/O on Clusters

Compared to classical supercomputers cluster systems typically have a slower interconnect
between processors though this difference is currently diminishing because of new and easy
to use networking techniques such as 1Gbps Ethernet, Myrinet and Beowulf. The processors
of a cluster system tend to be more state-of-the-art due to the long design phase needed for
classical supercomputers. So on the one hand we have a somewhat less elaborate
interconnect between units, on the other hand it is rewarded with cheaper and more
powerful system components. Most important for I/O on a cluster system is the fact that each
processor has access to one or more local disks and that the system scales better and cheaper.

As an example the Intel ASCI Red TOPS Supercomputer consists of 4640 computing nodes
and 74 I/O nodes with an 800 Mbytes/s interconnect. The maximum I/O throughput available
is bounded by the interconnect bandwidth (since each node has to get the data somehow from
the I/O nodes) and thus is 59,2 Gbytes/s. To raise this limit the interconnect bandwidth has
to be increased, which is very expensive or in most cases impossible.

For a cluster with 4640 units a 100Mbps network and disk transfer rates of 20MBytes/s
(typical average priced disk), the theoretical maximum I/O throughput (if each unit only
accesses data on its local disk) is 92.8 Gbytes/s. This is also highly scalable because each
additional processing unit will increase this value, which is not dependent on network
bandwidth.

For most real world applications however local disk accesses alone will not be sufficient.
Some data has to be shared by different processors and data also has to be read/written
from/to external sources. If a processor needs some remote data (data, which is not stored on
its local disk) this data has to be transferred via the network, which is relatively slow. The
key factor to high I/O performance thus is to reduce these remote data accesses to a
minimum by using a distribution of data among the computing units appropriate to the
problem at hand. The distribution also has to reflect the remote accesses in order to
minimize the total I/O time. Suppose that a program running on the cluster described above
needs 1MByte of data to be accessible by all the processors concurrently. Several strategies
can be considered like:
o Put a copy of that data on each disk (replication);
o Read the data from a single disk, broadcast it to all the units and keep it in the memory

of each processor (caching);
o Distribute the data among the available disks. Whenever a part of the data is needed

during program run the processor “owning” the data reads that part and broadcasts it to
the other units (distribution);

o Various combinations of the above.

It is by no way easy to determine which solution is the best. Everything depends on what the
program actually is doing. Are there some other disk accesses too, is there much
communication over the network? To calculate the optimal I/O throughput for a particular
I/O strategy a cost model is required. The following parameters are most crucial for such a
model:



o Distribution of data on disks: Which parts of which specific file are stored on which disk.
For each processor data can be stored on local disk(s) or on any disk accessible via the
cluster's communication network;

o Data layout on disks: Which blocks are stored contiguously; are blocks stored on outer
tracks (faster) or on inner tracks (slower);

o Latencies and transfer rates of disks: The average disk-seek time and the speed of
physical read/write operations;

o Communication network latency and transfer rate: Has to be considered for remote
accesses;

o Sizes of disk blocks, memory and communication buffers: Larger buffers can help to avoid
overhead incurred by repetitive calls to system functions (e. g. one call to send/receive
1MBytes instead of 10 calls sending/receiving 100KBytes each). Buffers that are too large
though can also decrease performance (if the message size is only 1KBytes on average,
sending a 1MBytes buffer for each message will clearly degrade network throughput);

o Size of memory and cache: Determines how extensively caching and pre-fetching
techniques may be used;

o Transfer rates for memory to memory copy: Unfortunately it is not generally possible to
avoid all copying of buffers from the application's memory space to the I/O runtime
system and finally to the network card using techniques like zero copy protocols and
DMA, especially for a system which should be applicable universally;

o I/O scheduling: The order in which blocks are read/written. Affects not only if and how
much contention occurs, but also has a big impact on disk seek times;

o Caching, prefetching and write behind policies: Clever techniques can greatly enhance
performance by essentially overlapping disk accesses, network communication and the
actual calculation routines;

o Contention: May occur on different levels (disk contention, network contention, memory
contention) and it can have different causes (intra-application versus inter-application).

One of the biggest advantages of cluster systems over conventional supercomputers is the
fact that clusters can be extended in a cheap and easy way. Just add some additional
processing units to the network to increase the computing power of the cluster. In many
cases this solution will scale well, but with respect to I/O some new problems arise. Often it’s
not possible to use exactly the same type of processing unit that has been used in the original
cluster (new and faster processors are available and maybe the older type can not be bought
any more). Therefore quite a number of clusters will become heterogeneous over time.

Heterogeneity can be found at different levels:

o Hardware can contain different;
o Processors,
o Memories (capacity and speed),
o Disks (capacity and speed),
o Network interfaces,
o Network types (1Gbps, 100Mbps, 10Mbps)

o Software can be different;
o Operating system,
o File system,
o Messaging system.

With respect to I/O optimization heterogeneity basically means that there is not one set of
parameters as declared above, but that each processor has its own set of parameters and that
these parameters also may differ greatly from one processor to another.



For multi-user systems at least a basic functionality for user authentication, access control,
priority handling and data security is needed too. In these systems the various programs
running concurrently will influence each other’s I/O operations to a big extent. So the I/O
system has to be able to dynamically adapt its I/O strategies to a changing environment. If
for instance a program is started that uses the same files as another program already
running but uses a completely different data distribution, it may be advantageous to change
the data layout on disk. Such a redistribution of data among the disks however has to be
done transparent to all the active programs.

A recent trend in supercomputing is also to connect different clusters via Internet
connections and thus sharing the resources of multiple clusters for scientific calculations.
From a standpoint of parallel I/O this so-called “meta computing” or “Grid computing” [21]
techniques require some additional effort. The level of heterogeneity is once again increased
(especially in network connections, which consist of a mixture of relatively fast local
interconnects and very slow internet connections). Data may no more be distributed freely
over all the computing units since data distribution over the internet connections is very slow
and also the data may belong to a specific person or institution and thus is not allowed to be
moved from a specific cluster. Furthermore Internet connections are far less reliable than
local networks, so the I/O system has to be more fault tolerant. Finally since data is sent over
the Internet certain security issues (like for instance data encryption) also have to be
considered.

7.3 Techniques

All developed parallel I/O techniques try to achieve one or a number of the following goals:
o Maximization of the I/O bandwidth by the usage of disk devices in parallel;
o Minimization of the number of disk accesses to avoid multiple latency costs of

physical disk read or write operations;
o Minimization of total application run time by overlapping computation, network

communication and I/O operations;
o Minimization of re-organization and administration costs.

Generally the I/O techniques can be grouped into three different classes:
o Application level;
o Device level,
o Access anticipation methods.

Application level methods organize the mapping of the application's main memory objects
(e.g., buffers) to respective disk objects to make disk accesses more efficient by exploiting the
data locality (i.e. access data where it is stored). Examples for these methods, which are also
known as buffering algorithms, are the Two-Phase method [1], where in the first phase the
data is collectively accessed where locally stored and in the second phase it is transferred to
the requesting nodes over the network (see PASSION [14]), and the Extended Two-Phase
method [15].

A further commonly used application level technique is data sieving, which reads large
sequential blocks of the disk at once into main memory and then extracts the smaller
requested data blocks to avoid disk latency [2].

Device level methods reorganize the disk access operations according to the application's
request to optimize the performance. Independent I/O node servers, located at the physical
I/O devices, collect the requests, reorganize them and perform the accesses accordingly,



distinguishing between the application's logical requests and the physical disk accesses.
Representatives of this approach are disk-directed I/O [16] or server-directed I/O [17].

Access anticipation methods try to foresee the I/O access characteristics of the application
based on programmer's hints (can be placed by the programmer directly into the application's
code or delivered automatically by appropriate tools (e.g. a compiler)), anticipated knowledge
(e.g. data distribution learned from previous runs or from persistent data layout) or reaction
to identified behavior (e.g. runtime data flow analysis).
Examples for this group are informed pre-fetching [18] or Two-Phase Data Administration
[12].

7.4 Systems

Three different parallel I/O software architectures can be distinguished:
o Application libraries;
o Parallel file systems;
o (Intelligent) I/O systems/parallel databases.

Application libraries aim for the application programmer and consist basically of a set of
highly specialized I/O functions. These functions allow an expert with specific knowledge of
the problem to model his solution approach. However this situation shows both advantages
and disadvantages. On the one hand it provides a powerful development environment and
leads to high-performance solutions, but on the other hand it often lacks generality and
dynamic adaptability by creating only tailor-made, static software for specific problems.
Another problem of these libraries is the fact that they are mostly too difficult to be used by
non-expert users resulting in a limited distribution and acceptance of the community.
Typical representatives are MPI-IO [7], an I/O extension of the standardized message
passing interface library or ADIO [8], a standard API yielding an abstract device interface
for portable I/O.

Every major supercomputer manufacturer supports high performance disk accesses via a
proprietary parallel file system (PFS). These file systems operate independently from the
application thus allowing a certain degree of flexibility. However due to their proprietary
design they often lack generality allowing only access techniques specifically supported by
the hardware in focus. This situation limits the possibilities of an experienced application
developer, but provides even to the casual user an environment to reach at least a certain
performance of the disk accesses. Well-known proprietary file systems are Intel's CFS and
PFS or IBM's PIOFS (Vesta). In the last few years also some non-proprietary systems got
attention, as Galley [9] or PVFS [10], which also focused cluster architectures.

Intelligent I/O systems hide, similar to database systems, the physical disk accesses from the
application developer by providing a transparent logical I/O environment. The typical
approach followed is that the user describes what she wants and the systems tries to
optimize the I/O requests and accesses invisibly by applying powerful optimization
techniques. These systems try to reach maximum generality and flexibility as well as the
highest possible overall performance of client applications. This approach is followed in
Armada [11], Panda [17], ViPIOS [12] and PPFS [13].

7.5 Case Study: The Data-intensive Computational Grid at CERN

In the past disk I/O intensive problems were very often omitted, bypassed or neglected in
practical high performance computing due to their obvious complexity. However, with the



rise of cluster systems and the usage of high performance methods and techniques for
conventional problems parallel I/O techniques and methods yield an immense importance.
An overview of parallel I/O applications can be found in [22]. To show the importance of
cluster I/O techniques we will present the Data-intensive Computational Grid, which is also
an eminent example for the use of clusters to cope with enormous data volumes.

In 2005 a new particle accelerator and detector, the Large Hadron Collider (LHC), will be
constructed at CERN, the European Organization for Nuclear Research, which will generate
information on particle collision in huge amounts of data. During a lifespan of about 15 to 20
years a single detector like the Compact Muon Solenoid (CMS) will produce about 1 PetaByte
(1015 Bytes) of data per year. This gigantic cumulated information will be analyzed, queried
and processed simultaneously by thousands of High Energy Physics (HEP) researchers in a
mostly on-line mode. The computing capacity necessary to fulfill this task will be several
magnitudes greater than that actually used by the current experiments at CERN. Thus it
will be necessary to access and integrate additional computational facilities at several HEP
sites distributed across Europe, America and Asia. This situation led to the Computational
Grid Project, which focuses on three issues: management of very large amounts of distributed
data, high throughput computing (giving preference to capacity over performance) and
automatic management of computing resources. In the course of this project tools and
facilities will be developed to support an efficient, distributed access to the stored
information. In 2006 the estimated computing resources to reach the defined goals are 10500
computing nodes, 2.1 PetaBytes disk capacity and an aggregate disk I/O rate of 340
GBytes/s; even the development test bed in use at the end of 2000 will comprise 400
computing nodes, 20 Terabyte disk capacity and an disk I/O rate of 5 GBytes/s.

Two aspects of this project are of specific interest for parallel I/O, the data administration
environment and data replication. The data of the experiment will be distributed at CERN
among huge cluster farms where each node stores its information in an object oriented
database system. The administration on top of the database systems is done via multi-
dimensional index structures. Research is on the way to analyze and develop appropriate
index structures, as bit map indices, to allow highly parallel access to the data [19].

The experiment’s computing model is not only restricted to the central computing facilities at
CERN but also consists of a network of world-wide distributed regional centers, where the
data is replicated in order to allow distributed and fast user analysis for some 2000
researchers. Thus it is necessary to develop appropriate replication methods and cost models
[20].

It is planned to develop the necessary tools and techniques on the foundation of the Globus
environment [21], which is a meta-computing infrastructure toolkit, providing basic
capabilities and interfaces in areas such as communication, information, resource location,
resource scheduling, authentication, and data access.

7.6 Future trends

The main goal of future research has to be to make massively parallel I/O as simple and
usable as conventional I/O today. Besides many promising directions of research in parallel
I/O, we think that two areas will have eminent importance in the near future, optimization
techniques and meta information.

7.6.1 Optimization



As pointed out already the tuning of parallel applications to achieve maximum I/O
performance is a very demanding undertaking even for a specialist in parallel I/O. In order to
provide the average application programmer, who normally is oblivious to all the underlying
details, with a reasonable I/O throughput software tools are strongly needed that can
automatically optimize parallel I/O operations. Current systems just optimize certain details
(like for example checkpoint operations) and often consider subsets of the parameters only.
They rely to a great deal on various cost models used to estimate the performance of I/O
operations. Based on these estimations different I/O strategies are evaluated and the best
strategy is chosen and finally executed. AI algorithms (like simulated annealing and genetic
algorithms) and neural networks have proven valuable to search the vast space of possible
strategies for a near optimum solution. However these solutions do not only lack generality
but also are of a static nature to a big extent. The series of I/O operations has to be known in
advance and once optimized no changes can be made without having to rerun the
optimization process. This is a serious restriction especially for multi-user systems where the
sequence of I/O operations cannot possibly be predicted. In the future we hope to see more
general parallel I/O systems that can easily adapt to changing system environments too.

7.6.2 Meta Information

Reading and writing raw data may be sufficient for scratch files and input and output of
number crunching applications. But as soon as data is stored persistently a need for
additional information arises. The date and time of file creation and the latest update or
maybe even a list of updates are of importance in almost all cases. Furthermore it often is of
interest what kind of data (field names, data types) is stored in a specific file. Storing this
semantic information along with the file allows different and independently developed
applications to easily share data by operating on common files, provided the semantic
information can be interpreted correctly by all of the participating programs. XML obviously
is a promising standard for storing semantic information, which can be shared by various
applications. OLAP and data warehousing applications can also use the semantic
information to integrate the data stored distributed across the cluster into some sort of a
cluster wide distributed and parallel database.

7.7 Conclusions

The need for the storage of huge data sets is apparent, which is shown by the doubling in
sales of storage systems each year. The need for support of fast and efficient access of this
data is even more urgent, due to the ascendance of totally new application domains, as in the
area of multimedia, knowledge engineering, and large-scale scientific computing.

Cluster systems can provide a viable platform for these I/O intensive tasks. However the
lessons learned from parallel I/O on MPPs are helpful but too specific and not comprehensive
enough to be mapped directly to clusters. Thus cluster I/O will need new approaches and
models to cope with the special characteristics of cluster systems.

Further new application domains arise heavily stimulated from the database community,
which forces the research to focus new directions (e. g. OLAP and data warehousing). Thus
we believe that the cluster I/O topic will be a promising area for research in the coming
years.
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8. High Availability

Ira Pramanick, Sun Microsystems, USA

8.1 Introduction

System availability has traditionally been a requirement for mission critical applications.
Nowadays, it is also becoming increasingly important in most commercial and many
academic arenas where the goal of providing minimal downtime to users is receiving
significant attention. System downtimes can be either for scheduled maintenance, or due to
the occurrence of a failure of the components in the system.

Broadly speaking, there are three flavors of system availability: continuous availability, fault
tolerance, and high availability. Continuous availability implies non-stop service,
representing an ideal state. To achieve continuous availability, the system would need to be
made up of perfect components that could never fail, either in hardware or in software.
Hence, by definition, there are no actual systems that can provide this type of availability.

Fault tolerance [1] masks the presence of faults in a system by employing redundancy in
hardware, software and/or time. Hardware redundancy consists of adding replicated custom
hardware components to the system to mask hardware faults. Software redundancy includes
the management of redundant hardware components and ensuring their correct use in the
event of failures in the system. Time redundancy refers to the repetition of the execution of a
set of instructions to ensure correct behavior even if a failure occurs.

High availability (HA) [2][3] provides a cheaper alternative to fault tolerance. Here, the
system uses off-the-shelf hardware components in a redundant fashion, together with
software solutions that mask system failures to provide uninterrupted services to a user.
Typically, highly available solutions guarantee survival from single points of failure in the
system. An HA system is usually a cluster [4] of machines or computer nodes.

This section of the white paper focuses on high availability in cluster computing [5][6]. It
starts with an overview of the main features of a typical HA solution. This is followed by a
brief description of the salient features of several HA research projects and then by a listing
of several current commercial HA solutions. The next subsection discusses the main issues
that come up when designing and using an HA system. The section ends with some
concluding remarks.

8.2 Background and Overview

A typical HA solution consists of software modules which run on a cluster consisting of two or
more off-the-shelf computer nodes, that together form the HA system. Cluster applications or
services run on a subset of the cluster nodes, where configuration parameters of the
application as well as that of the cluster determine the nodes in this subset. At one end of the
spectrum are active-standby configurations where the applications run on some of the nodes
(the active nodes) with the remaining nodes acting as redundant backups for those services.
At the other end of the spectrum are active-active configurations where each node acts as an
active server for one or more applications and potentially serves as a backup for applications
that are running on the other nodes. When a node fails in the system, applications running
on that node are migrated to one of their configured backup nodes. Under such
circumstances, these backup nodes may get overloaded with applications leading to sub-



optimal performance. This is generally acceptable since degradation in performance is
preferable to the total unavailability of the service in question.

An HA system can also be a single-node system. HA in a single-node scenario refers to
providing uninterrupted services in the wake of intra-node component failures. Just as in the
general cluster HA case; software techniques are used in conjunction with hardware
redundancy of intra-node components, to mask these component failures. Masking the
failure of a network adapter is an instance of providing intra-node HA.

Thus, HA and clustering are closely related. Except for intra-node availability that applies to
a single computer node as well as to nodes of a cluster, high availability of services directly
implies a clustering solution. The basic feature of an HA system is that the failure of a node
results in all HA applications that were running on that node being migrated or failed over to
another node in the system. Similarly, failure of other components in the system results in
appropriate failovers for that resource, provided the system is configured to have redundancy
in that resource and there is support in the HA software for masking the failure of that
resource. In addition to this automatic failover in the event of a component failure, HA
systems also typically provide the user with commands to manually migrate services to
another component. This is commonly referred to as a switchover.

Current HA solutions range from clusters consisting of two to eight nodes, although there are
a few commercial products that are advertised to work on much larger clusters. Since the
target market for most HA applications involves nodes that are servers, the need for much
larger than 32 node clusters for HA is not deemed very important currently. This has an
implicit impact on the choice of underlying algorithms used in an HA solution where
scalability is not the main driving force. This is in contrast to algorithms used in high
performance computing (HPC), which assumes that a cluster will consist of a large number of
nodes. Recent market trends indicate that even for the high availability arena, there is now a
demand for application availability on large clusters consisting of small nodes. This is
leading to a greater emphasis on scalability during the design of HA solutions.

Broadly speaking, an HA solution consists of two parts, an HA infrastructure and HA
services. The HA infrastructure consists of software components that cooperate with each
other and enable the cluster to appear as a single system to a user. Their functions include
monitoring cluster nodes, monitoring cluster-related processes on the cluster nodes,
controlling access to shared cluster resources, and enforcing resource constraints both to
ensure data integrity and to satisfy user requirements. The infrastructure needs to provide
these functions when the cluster is in a steady state and more importantly, while nodes in
the cluster are going up and down.

The HA services are clients of the HA infrastructure, and use the facilities exported by the
latter to provide semi-seamless service availability to users. There is usually a performance
degradation when a system resource such as a cluster node fails and a service is failed over
to another resource in the system, but there is no service interruption per se. There is a
plethora of HA applications available on various HA products in the marketplace. Common
examples include the various databases, file systems, mail servers and web servers. Many of
these applications are prepackaged with the HA product itself, while the others are supplied
by various application vendors.

An application that executes on a single node needs to be made cluster-aware so that it can
be run as an HA service. This typically involves adding wrapper scripts around the
application in question such that it fits the basic HA framework; i.e., it can be started and
stopped on any cluster node and can be monitored for liveness on any cluster node. This



conversion of an application into an HA version is done via the HA Application Programming
Interfaces (HA APIs). Currently, there is no industry-wide standard for HA APIs, and each
HA product comes with its own version. All the APIs contain methods that will enable an
application to switchover or failover as the case may be, and these include methods to start
an application, stop an application, to monitor an application-specific resource set, to
mention a few.

8.3 Research Projects

There have been several notable research projects on fault tolerance and availability. This
sub-section discusses a representative sample of these research efforts. These are:
1. The ISIS Project [7];
2. The Horus Project [8];
3. (The Solaris MC Project [9];
4. The High Availability Linux Project [10];
5. The Linux Virtual Server Project [11].

ISIS and its successor, Horus, were a result of research work done at Cornell University on
fault tolerance in distributed systems. Both systems implemented a collection of techniques
for building software for distributed systems that performed well, was robust despite both
hardware and software crashes, and exploited parallelism. Both systems provided a toolkit
mechanism for distributed programming, whereby a distributed system was built by
interconnecting fairly conventional non-distributed programs, using tools drawn from the kit.
They included tools for managing replicated data, synchronizing distributed computations,
automating recovery, and dynamically reconfiguring a system to accommodate changing
workloads.

ISIS became very successful with several companies and Universities employing the toolkit
in settings ranging from financial trading floors to telecommunications switching systems. It
was moved from Cornell University to Isis Distributed Systems, a subsidiary of Stratus
Computer, Inc. in 1993 where it was sold as a product for five years.

The Horus project was originally launched as an effort to redesign the Isis group
communication system. It, however, evolved into a general purpose communication
architecture with advanced support for the development of robust distributed systems in
settings for which Isis was unsuitable, such as applications that have special security or real-
time requirements. Besides the practical uses of this software, the project contributed
towards the theory of virtual synchrony, a runtime model used for some implementations of
data replication and fault-tolerance. Horus was also much faster and lighter weight than the
Isis system.

Solaris MC was a prototype distributed operating system designed for a cluster of computer
nodes that provided a single-system image such that users and applications could treat the
cluster as a single computer running the Solaris operating system. It was implemented as a
set of extensions to the base Solaris UNIX system and provided the same ABI/API as Solaris,
thereby running unmodified applications. The components of Solaris MC were implemented
in C++ through a CORBA-compliant object-oriented system with all new services defined by
the Interface Definition Language (IDL). Objects communicated through a runtime system
that borrowed from Solaris doors and Spring sub-contracts. Solaris MC was designed for high
availability: if a node failed, the remaining nodes remained operational. It had a distributed
caching file system with UNIX consistency semantics, based on the Spring virtual memory
and file system architecture. Process operations were extended across the cluster, including
remote process execution and a global /proc file system. The external network was



transparently accessible from any node in the cluster. The Solaris MC project has been the
basis of Sun Microsystems’ next generation Sun Cluster product line.

The High Availability Linux Project and Linux Virtual Server are both HA solutions for the
Linux operating system, built via a community development effort. Both these groups are
beginning to collaborate their efforts and although these HA solutions are currently not at
par with the commercial products as far as features go, they are rapidly moving towards that
goal. The HA Linux Project also includes efforts to port some commercial HA products to
Linux, a notable example of this being SGI’s FailSafe product. The Linux Virtual Server is a
highly scalable and a highly available server built on a cluster of real servers. The
architecture of the cluster is transparent to end users, and the users see only a single virtual
server. It uses various forms of IP-level load balancing, and is advertised to work for up to
100 servers. It is released under a GNU license.

8.4 Commercial Products

There are several commercial HA solutions available in the marketplace today. Each HA
product comes with its set of features, details of which can be found at the corresponding
vendor’s website. These points of reference will also have the latest publicly available
information regarding the products. The reader is encouraged to visit these websites for most
up to date information on these products. The following is a list of some of these products.
This is not a comprehensive list.

(i) Compaq’s TruClusters [12].
(ii) Data General’s DG UX Clusters [13].
(iii) HP’s MC/ServiceGuard [14].
(iv) IBM’s HA Products [15].
(v) Microsoft Cluster Services [16].
(vi) NCR’s LifeKeeper [17].
(vii) Novell’s HA solutions [18].
(viii) RSi’s Resident Server Facility [19].
(ix) Sequent’s ptx/CLUSTERS [20].
(x) SGI’s IRIS FailSafe [21].
(xi) Siemens Reliant Monitor Software [22].
(xii) Stratus’s CA Solution [23].
(xiii) Sun Clusters [24].
(xiv) TurboCluster Server [25].
(xv) VERITAS Cluster Server [26].

8.5 Technological Scope

The design of an HA solution presents many technical challenges, both from the perspectives
of infrastructure design as well as of its use by an application. This sub-section will touch
upon some of these issues.

An HA infrastructure can be part of the base operating system (OS) or it can be a separate
layer that sits on top of the OS. There are examples of both kinds of design in the commercial
products available to the cluster community today. Integrating an HA solution into the
underlying OS has several advantages including better performance and greater ease of use.
The main advantages of an HA solution that sits on top of an OS include independence of the
solution with respect to the underlying OS leading to portability across various hardware
platforms, and often a smaller development cycle. Both from a user’s perspective and that of



HA applications that sit on top of an HA framework, the single system image (SSI) capability
of an HA solution is critical to its ease of use. SSI is necessary for providing a single-entity
view of the cluster and for easing the task of administering a cluster. This is a rapidly
growing area of research for cluster computing in general. For an HA solution, the most
important elements of SSI include global file systems, global devices and global networking
in the cluster.

As with any multi-resource system, load balancing becomes important in a clustering
solution and assumes additional dimensions of complexity when its integration with HA is
taken into account. The main facet of load balancing in an HA product includes decisions
about the node to which services should be failed over if the node on which these were
running goes down. The decision for this can be either resource-driven, where only a subset
of the cluster nodes have the appropriate resources, or it can be user-driven, where the user
defines the failover order a priori. The issue of load balancing on a quiescent cluster (where
the nodes are in steady state, some up and others down) is similar to that on a non-HA
cluster with resource constraints.

Scalability of HA solutions has not received its due attention since typical HA cluster nodes
tend to be fat server nodes. Hence, there does not seem to be a compelling reason to support
very large (greater than 32 nodes) HA clusters. That is, algorithms used in the design and
implementation of the HA infrastructure do not necessarily scale. As HA becomes
increasingly popular and begins to be used by many different kinds of applications, a need for
supporting larger clusters will become important. This has already started happening in the
marketplace, where customers are demanding highly available applications on nodes that
are thin nodes, which are clustered together with other thin or fat nodes. This may also
happen if highly scalable HPC solutions need to be integrated with HA solutions.

As HA becomes increasingly important, there is a significant growth in the number of
applications that will need to be made highly available. The traditional “how difficult is it to
program” issue that has been a great source of extensive research in parallel and distributed
computing and clustering in the HPC arena, begins to loom up in the HA world as well.
There is ongoing work in the HA area to establish easier ways for users to write custom HA
applications.

Ease of cluster management is extremely important in general and for HA in particular. HA
products are often difficult to understand from a user’s perspective, who often prefer to treat
their HA cluster as a “system” that acts as a server or a server group, and provides seamless
access to services in the wake of different types of failures. Cluster administrators do not
want to be burdened with details of how the HA software works. The success of an HA
solution is largely dependent on how easy it is to administer and maintain. A graphical user
interface (GUI) for cluster administration, management and monitoring (and sometimes
even controlling) is a good starting point. However, the real enabler here is SSI, which allows
administration tools, graphical or not, to present a unified picture of the cluster to an
administrator. All this becomes particularly critical in an HA environment, where incorrect
cluster management and/or user error should minimally affect system downtime.

One of the advantages of cluster computing and a reason for its growing success is the fact
that a cluster can consist of heterogeneous nodes. This is in contrast to multi-computers
where the nodes are usually homogeneous nodes. Support for heterogeneous nodes in a
cluster is, in fact, almost always a necessity for a user. Users often test out applications on
small test/development nodes, before deploying these on bigger nodes in the cluster.
Heterogeneity support and ways to effectively utilize a heterogeneous cluster have been
actively researched in the HPC area for the past ten years, and these topics are now



receiving attention in the HA area as well. For an HA system, these issues are further
complicated by considerations such as the degree of integration with the underlying
operating system, vendor support in terms of the APIs used by HA applications, portability of
the APIs, and support for rolling upgrades.

8.6 Conclusions

High availability is becoming increasingly important since there is an increasing demand for
minimal downtime of systems. Clustering provides the basic infrastructure, both in
hardware and software, to support high availability. Typical HA solutions span clusters of
sizes ranging from two to eight server nodes today.

There are many different HA products available to the cluster community, each with several
HA applications enabled for them in a pre-packaged form, and others being supported by
various vendors. HA is in its infancy stage currently, and presents exciting opportunities for
research and development. This is especially true with respect to its seamless integration
with other facets of cluster computing such as high performance computing, scalability, and
standardization of application programming interfaces.
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9. Numerical Libraries and Tools for Scalable Parallel Cluster
Computing

Jack Dongarra, University of Tennessee and ORNL, USA, Shirley Moore (formerly Shirley
Browne), University of Tennessee, USA, and Anne Trefethen, Numerical Algorithms Group
Ltd, UK

9.1 Introduction

For cluster computing to be effective within the scientific community it is essential that there
are numerical libraries and programming tools available to application developers. Cluster
computing may mean a cluster of heterogeneous components or hybrid architecture with
some SMP nodes. This is clear at the high end, for example the latest IBM SP architecture,
as well as in clusters of PC-based workstations. However, these systems may present very
different software environments on which to build libraries and applications, and indeed
require a new level of flexibility in the algorithms if they are to achieve an adequate level of
performance. We will consider here the libraries and software tools that are already
available and offer directions that might be taken in the light of cluster computing.

9.2 Background and overview

There have been many advances and developments in the creation of parallel code and tools
for distributed memory machines and likewise for SMP-based parallelism. In most cases the
parallel, MPI-based libraries and tools will operate on cluster systems, but they may not
achieve an acceptable level of efficiency or effectiveness on clusters that comprise SMP
nodes. Little software exists that offers the mixed-mode parallelism of distributed SMPs. It
is worth considering the wealth of software available for distributed memory machines; as
for many cases this may be entirely suitable. Beyond that we need to consider how to create
more effective libraries and tools for the hybrid clusters.

The underlying technology on which the distributed memory machines are programmed is
that of MPI [1]. MPI provides the communication layer of the library or package, which may,
or may not be revealed, to the user. The large number of implementations of MPI ensures
portability of codes across platforms and in general, the use of MPI-based software on
clusters. The emerging standard of OpenMP [2] is providing a portable base for the
development of libraries for shared memory machines. Although most cluster environments
do not support this paradigm globally across the cluster, it is still an essential tool for
clusters that may have SMP nodes.

9.3 Numerical Libraries

The last few years have seen continued architectural change in high performance computing.
The upside of this development is the continued steep growth in peak performance, but the
downside is the difficulty in producing software that is easy to use, efficient, or even correct.
We will review a list of these challenges.

A major recent architectural innovation is clusters of shared-memory multiprocessors
referred to as a Constellation. This is to avoid confusion with the term Cluster, which usually
is used in the context of a group of PCs connected through a switched network. A cluster can
include as its nodes small multiprocessor SMPs. A constellation integrates nodes of large



SMPs. The distinction is where the majority of parallelism exists. If it is at the top clustering
level (the message passing domain), then the system is a cluster. If it is at the bottom SMP
level (the shared memory domain), then the system is a constellation. A constellation
incorporates more processors per SMP node than the number of nodes integrated at the
system level. Constellations are the architectures of the ASCI machines, and promise to be
the fastest general-purpose machines available for the next few years, in accordance with the
industrial trend to invest most heavily in large market sectors and use the same building
blocks to service the smaller high-end market.

It is the depth of the memory hierarchy with its different access primitives and costs at each
level that makes Constellations more challenging to design and use effectively than their
SMP and MPP predecessors. Ideally, a programmer should be able to produce high
performance parallel code on a Constellation using an abstract programming model that is
not dependent on implementation details of the underlying machine. Since users may have
different notions of what is acceptable high performance, we expect the layered programming
model to allow the underlying machine to be exposed at varying levels of detail. This
requires good communication libraries, data structure libraries, and numerical algorithms,
which we propose to build.

Although Constellations will be the dominant architecture for high end computing, most
programs will be from either SMP or MPP versions, and even new code developments will
likely be done on smaller machines. Therefore, users need a uniform programming
environment that can be used across uniprocessors, SMPs, MPPs, and Constellations.
Currently, each type of machine has a completely different programming model: SMPs have
dynamic thread libraries with communication through shared memory; MPPs have Single
Program Multiple Data (SPMD) parallelism with message passing communication (e.g.,
MPI); Constellations typically have the union of these two models, requiring that the user
write two different parallel programs for a single application, or else treat the machine as
“flat”, with a corresponding performance loss. Well-designed libraries can hide some of these
details, easing the user's transition from desktop to SMP to Constellations.

In addition to Constellations, architectures that are likely to be important are distributed
networks and IRAM. IRAM stand for Intelligent-RAM, and is an example of PIM, or
Processor-in-Memory. IRAM consists of a chip containing both processors and a substantial
memory, and is a foreseeable architectural change, as devices get smaller and more
integrated. Distributed Networks, which can be and are used now, have very slow and even
unreliable access to remote memories, whereas IRAM promises to significantly flatten the
memory hierarchy, with the on-chip memory effectively acting like an enormous cache. This
profusion of architectural targets makes software development for scientific computing
challenging.

One common feature is to build libraries that are parameterized for the architectural
features most influencing performance. We are used to dealing with cache sizes, latency and
bandwidth in our use of performance modelling in previous work, but the complexity of
Constellations and other architectures presents new challenges in this regard.

Another architecturally driven algorithmic opportunity arises on the Pentium family of
processors, which are not only widely used on desktops, but comprise the ASCI Red machine,
and will be widely used in smaller clusters as inexpensive computing platforms. This
ubiquity of Intel platforms leads us to ask how to exploit special features of the Intel
architecture to do better high performance computing. In addition to excellent support for
IEEE standard 754 floating arithmetic, the basic arithmetic is done to 80-bit precision rather
than 64-bit. There are a variety of algorithms that perform more quickly and/or more



accurately by using these features. These algorithms can be encapsulated within standard
libraries, and so do not require user sophistication or even awareness for their use.

Another challenge from the proliferation of computing platforms is how to get high
performance from computational kernels like matrix-matrix multiplication, matrix-vector
multiplication, FFTs, etc. There are systems such as ATLAS, PhiPac, and FFTW that use a
sophisticated search algorithm to automatically find very good matrix-multiply kernels for
RISC workstations with C compilers that do good register allocation and basic instruction
scheduling; using this approach one can produced matrix multiply and FFT routines that are
usually faster than the hand tuned codes from IBM, SGI and some other manufacturers3.

9.4 Current State-of-the-art

Of the hundred or more parallel numerical packages available some provide a conventional
library interface to routines written in C, Fortran or C++. Others provide more of a parallel
environment for the application developer. At the moment few, if any, mix distributed and
shared-memory parallelism.

Recent surveys on parallel numerical analysis software [3][19][20] include approximately 50
different libraries and packages for parallel architectures. All of these would be suitable for
cluster computing although they may not be fully efficient for particular configurations. The
software discussed in the report forms a subset of all parallel packages that are available
either commercially or distributed on Netlib4 or on the National HPCC Software Exchange,
NHSE5.

3 See: http://www.netlib.org/atlas/ and http://www.fftw.org/
4 Netlib – http://www.netlib.org
5 NHSE – http://www.nhse.org
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Figure 8.1. Performance of ScaLAPACK LU Solver on Alpha Clusters

As one might expect, the majority of available packages in this area are in linear algebra.
Both direct solvers and iterative are well represented. Direct solver packages include
ScaLAPACK [4] and PLAPACK [5] both of which are based on the parallelization of LAPACK
[5] but by different approaches. The graphs above show good scalability of the ScaLAPACK
LU solver on Alpha clusters with fast interconnection networks.

Iterative solver packages include Aztec [7], Blocksolve [8] and also PSPARSLIB [9]. Each of
these provides a selection of iterative solvers and preconditioners with MPI providing the
underlying communications layer. Similarly there are packages and libraries for eigenvalue
problems including PARPACK [10] and PeIGS [11]; the first based on Arnoldi iterations and
the second on Cholesky decomposition; both using MPI.

Other areas covered by existing parallel libraries include optimization and PDE solvers. All
of the libraries mentioned above are available from Netlib. Commercial products are
provided by many of the machine vendors and NAG provides a commercial, supported,
general Parallel Library [12] based on MPI and also an SMP library [13][14] based on
OpenMP.

The libraries that have been mentioned so far all have a traditional library interface. One of
the packages that offer parallel functionality in the setting of an environment is PETSc [16].
PETSc provides an object-based interface to C-coded algorithms. In this case the application
developer does not need to be aware of the message-passing or underlying mechanisms.
PETSc provides a set of tools for solving PDE problems including iterative methods and other
underlying functionality. This requires that the users develop their application in the PETSc
style rather than calling a particular routine from PETSc. This provides an object-oriented
interface that of course is also the natural interface for C++ -based packages such as ISIS++
and ELLPACK [17].



It is clear that there is a wealth of software available for clusters; however, as noted above
this is in general either developed for heterogeneous distributed memory architectures or
SMP machines. We still have some distance to travel before we can provide effective and
efficient numerical software for the general cluster.

9.5 Future work

To achieve transparent cluster computing requires algorithms that can adapt to the
appropriate configuration to match the cluster requirements. Recent studies show that there
are benefits to be gained by rethinking the parallelization issues combining distributed and
shared-memory models [18]. It is unlikely that libraries that provide this effective mixed-
mode parallelism will be available for some time. It is more likely that libraries that are
inherently designed for distributed memory but will be adapted have appropriate SMP-based
kernels. This is likely to provide the natural progression to general numerical libraries for
clustered computing.

9.6 Program Development and Analysis Tools

Rapid improvements in processor performance and multiprocessing capabilities of PC-based
systems have led to widespread interest in the use of PC clusters for parallel computing. The
two major operating systems that support multiprocessing on such systems are Linux and
Windows NT. Scalable parallel computing on PC clusters requires the use of a message
passing system such as MPI, although OpenMP and other forms of thread-based parallelism
may also be used on SMP nodes. Programming languages of interest for scientific computing
on PC clusters include Fortran, C, and C++. Appendix B presents a survey of available
program development and analysis tools for PC cluster environments. These tools include
compilers and pre-processors, MPI implementations, and debugging and performance
analysis tools, as well as integrated development environments (IDEs) that combine these
tools. Some IDEs are developed entirely by one vendor or research group, while others are
designed to work together with third party tools, for example with different compilers and
MPI implementations.

9.6 Conclusions

A good base of software is available to developers now, both publicly available packages and
commercially supported packages. These may not in general provide the most effective
software, however they do provide a solid base from which to work. It will be some time in
the future before truly transparent, complete efficient numerical software is available for
cluster computing. Likewise, effective programming development and analysis tools for
cluster computing are becoming available but are still in early stages of development.
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10. Applications

David A. Bader, New Mexico, USA and Robert Pennington, NCSA, USA

10.1 Introduction

Cluster computing for applications scientists is changing dramatically with the advent of
commodity high performance processors, low-latency/high bandwidth networks and software
infrastructure and development tools to facilitate the use of the cluster. The performance of
an individual processor used in a high-end personal workstation rivals that of a processor in
a high-end supercomputer, such as an SGI Origin and the performance of the commodity
processors is improving rapidly. For example, MIMD Lattice Computation (MILC) [1]
executes at:

• 55 Mflop/s on an Intel 300 MHz Pentium II,
• 105 Mflop/s on an Intel 550 MHz Pentium III Xeon,
• 165 Mflop/s on a single 250 MHz R10000 processor in an SGI O2000.

In the aggregate, the performance is even more impressive. The excellent performance of the
interconnect network and related software is shown by comparing the same application
running on a large cluster and a large SGI Origin. On 128 processors using MPI, MILC
executes at:

• 4.1 Gflop/s on 128 Intel 300 MHz Pentium Iis,
• 8.4 Gflop/s on 128 Intel 550 MHz Pentium III Xeons,
• 9.6 Gflop/s on a 128 processor SGI O2000 with 250 MHz R10000 processors.

The successful standardization of system-level interfaces and supporting libraries has
removed many of the issues associated with moving to a new computational platform. High-
performance clusters are one of the new platforms that are coming to the forefront in the
computational arena. There are still a number of outstanding problems to be resolved for
these systems to be as highly effective on applications as a supercomputer. For the current
generation of clusters, the most significant areas for the applications scientists are
performance of the I/O systems on a cluster system and compilation, debugging and
performance monitoring tools for parallel applications.

10.2 Application Development Environment

It is essential that the applications scientist be able to move the code to new systems with a
minimum amount of effort, and have the same or similar tools and environment available to
use on different systems. As recently as a few years ago, the lack of a canonical high-
performance architectural paradigm meant that migrating to a new computer system, even
from the same vendor, typically required redesigning applications to efficiently use the high-
performance system. As a result, the application had to be redesigned with parallel
algorithms and libraries that were optimized for each high-performance system. This process
of porting, redesigning, optimizing, debugging, and analyzing, the application is generally
prohibitively expensive, and certainly frustrating when the process is completed just in time
to greet the next generation system.

The importance of supporting portable code that uses accepted standards, such as MPI [[2]],
on clusters cannot be overstressed. The current generation of clusters are becoming useful to
researchers and engineers precisely because of their direct support of these standards and



libraries. Research software messaging systems and interfaces from vendors such as the
Virtual Interface Architecture [3] may provide the underlying protocol for a higher level
message passing interface such as MPI but are not directly useful to the vast majority of
applications scientists.

The development environment for clusters must be able to provide the tools that are
currently available on supercomputing systems. The current sets of applications running on
supercomputing clusters are generally developed, debugged and tested on supercomputing
systems. For first generation applications that may be developed for large scale clusters,
tools such as debuggers, profilers and trace utilities that work identically or very similarly to
those available on supercomputers need to be available to the applications developers.
Common tools such as shell, make, tar, and scripting languages also need to be included in
the development environment.

10.3 Application Performance

To illustrate the competitive performance of clusters, we show an application, MILC, which
has been run on a large-scale cluster in the Alliance, the NT Supercluster [4] at the NCSA.
This application is also being used on the Roadrunner Supercluster [5] at the University of
New Mexico. In addition, one of the major performance issues confronting clusters is
exemplified in the data for the ARPI-3D weather mode code, which shows timings for
computations, message passing, initialization I/O and I/O at the completion of the
application.

10.3.1 MILC

Kostas Orginos and Doug Toussaint from the University of Arizona undertook these
benchmarks. They are for the conjugate gradient calculation of quark propagators in
quantum chromodynamics with Kogut-Susskind quarks. The conjugate gradient typically
takes 90% of the time in full QCD calculations, so it is the reasonable thing to measure.
These are with the simplest version of the action, which is fairly standard. In each case, they
have chosen the lattice size so that there are 4096 lattice sites per processor. This is in the
range typically used in production runs. For the simplest variants of the code, this works out
to about 4Mbytes of data per process.

MILC QCD Performance

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140

Processors

G
F

L
O

P
s

250 MHz SGI O2K
T3E 900
IA-32/NT 550MHz Xeon
IA-32/Linux 450MHz



10.3.2 ARPI 3D

These graphs show the performance of the ARPI 3D weather research model on two large-
scale clusters, the NCSA NT Supercluster and the UNM Roadrunner Linux Supercluster.
These particular tests use a 3D numerical weather prediction model to simulate the rise of a
moist warm bubble in a standard atmosphere. The simulations were run to 50 seconds with a
35x35x39 grid, in which time each processor wrote three 2.107 Mbytes/s files to a centralized
file system. The data was provided by Dan Weber at the University of Oklahoma from his
runs on the two systems.

The NT Supercluster data was taken in two different modes. In the first mode, only one
processor in the dual processor systems was being used by the application and the second
processor was idle. In the second mode, both processors in the dual processor systems were
being used by the application. The dual processor runs show approximately a 20%
performance degradation compared to runs using the same number of processors in separate
systems. The Roadrunner data is available for only the one processor per dual processor
system case.

This is a very well instrumented code and it shows where the time is spent on the system to
determine where the performance bottlenecks are located in the systems. The
instrumentation provides times for the:

o Overall runtime of the application,
o Amount of time spent performing initialization with an input data read from a common

file system,
o Amount of time spent doing the computations
o Amount of time spent performing message passing
o Amount of time spent writing out the resultant data files to a common file system.

The first graph shows the overall performance of the application on the two systems. The
amount of time necessary for the runs increases roughly linearly as the number of processors
increases.
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The size of the computational task per processor remains the same and the time taken for
the computations is clearly shown to be nearly constant as a function of number of processors
in the second graph, roughly 40 to 50 seconds, depending on the processor speed. Also shown
in the second graph is the time spent by the application performing MPI calls and this is
insensitive to the number of processors at 5 to 10 seconds for all of the runs, illustrating
excellent scalability.

The third and fourth graphs respectively show the time spent reading in an initialization file
and writing out an output file. The input data file that is read by all of the processors from
the common file system is approximately 8 Kbytes and each processor writes three output
data files of 2.107 Mbytes/s. The total volume of data moved is proportional to the number of
processors in use, up to 800 Mbytes/s of output for the 128 processor NT run. Both
Superclusters have a similar type of configuration with a common filesystem available from a
fileserver to the compute nodes across the commodity Ethernet, differing primarily in the
speed of the link from the file server to the switch and the file sharing software.

The IA-32/NT Supercluster file serving configuration:

o Fast Ethernet from the file server to the switch
o Compute nodes are all on individual Fast Ethernet nodes on the switch.
o SMB to all nodes

The IA-32/Linux Roadrunner file-serving configuration:

o Gigabit Ethernet from the fileserver to the switch compute nodes are all on individual
Fast Ethernet ports on the switch

o NFS to all nodes.

At smaller numbers of processors, the increased bandwidth of the server to the switch for the
Roadrunner Linux system is apparent. At larger numbers of processors, the performance of
the NT file server is clearly better. The NT Supercluster I/O times for input and output both

ARPI3D Output I/O Timings

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140
N Processors

S
ec

o
n

d
s

IA-32/NT 550MHz
IA-32/NT Dual 550MHz
IA-32/Linux 450MHz



increase linearly with the number of processors. In neither case is the I/O performance of the
system sufficient for what is actually needed by the application. The overall increase in
execution time as a function of number of processors is due almost entirely to the increased
time necessary for file I/O as the number of machines increases.

10.4 Conclusions

Applications can perform very well on current generation clusters with the hardware and
software that is now available. There are a number of areas where major improvements can
be made such as the programming tools to generate new applications on these systems and
the I/O systems that are available for clustered systems.
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11. Embedded/Real-Time Systems

Daniel S. Katz, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA,
USA and Jeremy Kepner, MIT Lincoln Laboratory, Lexington, MA, USA

11.1 Introduction

Embedded and real-time systems, like other computing systems, seek to maximize
computing power for a given price, and thus can significantly benefit from the advancing
capabilities of cluster computing. In addition to $/Mflops/s, embedded and real-time systems
often have severe constraints on size, weight and power as well as latency and reliability.
Satisfying these constraints are usually achieved by reducing components such as disk
drives, memory and access ports. These additional constraints have traditionally led too
more customized solutions within a limited marketplace. More recently, embedded computer
vendors have adopted the practice of using clusters of mainstream RISC processors
configured in rack-mounted cabinets. In addition, many cluster vendors are adopting their
rack-mounted systems to more compact environments. Reliability constraints in these
markets have traditionally been handled by traditional fault avoidance (e.g. applying higher
quality and more expensive fabrication procedures on older designs) and fault tolerance (e.g.
replication) techniques. While effective, these techniques tend to work against the goals
(cost, power, size and weight) of embedded real time systems.

This section of the paper seeks to provide an overview of the cluster computing technology
found in the embedded computing world. We begin with a brief description of some of the
major applications that use embedded computers. The next two sections present hardware
issues (processors, interconnects and form factors) and software issues (operating systems
and middleware). Finally, we conclude with a discussion of the current trend towards
embedded systems looking more like clusters and clusters looking more like embedded
systems.

11.2 Applications

In this section, we briefly discuss three application areas that are driving the development of
embedded clusters.

11.2.1 Space Applications

One area where embedded clusters are being examined is in space. Space-borne instruments
are providing data at ever increasing rates, far faster than is feasible to send the data to
Earth, and the rate of growth of the data from the instruments is faster than the rate of
growth of bandwidth to Earth, so this problem will only get worse in the future. One obvious
answer to this is to process the data where it is collected, and to only return the results of the
analysis to Earth, rather than the raw data. (A similar argument can be made regarding the
signal delay between Earth and space when considering autonomous missions, leading to the
same answer: placing the computing where the decisions must be made.)

Traditionally, very little data analysis has been done in space, and what has been done has
relied on radiation-hardened processors. These processors are quite old by the time they
complete the radiation-hardening process, and do not solve the problem of bandwidth
limitation. A proposed solution is an embedded cluster of COTS (Commercial-Off-The-Shelf)
processors, where the processors can be selected and placed in the system shortly before
mission launch. In as much as COTS processors are not radiation hardened, this requires



software that can detect and correct errors caused by the cosmic ray environment found in
space. Such a system (intended to deliver 99% reliability through using multiple layers of
fault detection and mitigation, starting with application-based fault-tolerance for parallel
applications [[1]]) is being developed by the Jet Propulsion Laboratory under the Remote
Exploration and Experimentation Project [2]. Initial tests appear to demonstrate that many
common linear routines such as fast Fourier Transforms (FFTs) and linear algebra, which
consume a large fraction of CPU time in many data processing applications, can be wrapped
to enable detection of greater than 99% of errors of significant size at a cost on the order of
10% overhead in fault-free conditions [3]. The Project’s current models predict that common
hardware such as a PowerPC 750 would see about 2.5 single event upsets (SEUs; random
transient bit flips) per hour, and off-chip cache would see about 1 SEU per Mbyte per hour
in either low-Earth orbit or Deep Space [4]. These are low enough numbers to make
software-implemented fault tolerance (SIFT) appear viable, although this cannot be proven
without significant testing.

The constraints of the space environment (mass, power, size, resistance to vibration, shock,
thermal cycling and natural space radiation) demand work in packaging that is very
different than for most ground-based clusters. Additionally, replacement of faulty
components is either impossible or extremely expensive, and uploading new or changing
existing software is very difficult from a system design as well as operational perspective.
Finally, reliability of the software as well as the hardware/system is a significant concern
due to the difficulty in validating computational results, and the potential impact of
erroneous behavior with respect to decision-making and scientific data analysis. Thus, a
different set of requirements exists for space-borne computers.

11.2.2 Signal Processing Applications

The signal processing applications that embedded systems serve are often highly data
parallel and naturally lend themselves to the kind of coarse-grained parallelism ideal to
clusters. However, the Quality of Service (QoS) and latency requirements of real-time
systems usually dictate a need for interconnects with both deterministic performance and
higher performance than are typically found in clusters [5]. Thus the solutions developed to
serve these needs are similar to conventional rack mounted clusters with high performance
interconnects, denser packaging and lighter operating systems.

11.2.3 Telecommunications Applications

In telecommunications, reliability and real-time response have always been critical factors.
Early electronic switching systems used specially designed fault-tolerant computers such as
the AT&T 3b2. With the current explosion in network servers, in order to achieve acceptable
cost it is necessary to use the types of standard commercial machines and operating systems
discussed in this section. This industry is currently experimenting with commodity cluster
systems to solve the problem of meeting their ultra-high reliability and real-time response
constraints while reducing costs.

11.3 Hardware

Form factor is a critical factor in embedded computing. Thus compute density (Gflops/s per
cubic foot and Gflops/s per watt) is often as, or more important, than aggregate processing
power. Typically, embedded system vendors are able to achieve roughly a factor of 10
increase in compute density over conventional systems. These gains are achieved by
constructing boards containing multiple nodes (typically 2 or 4). Each node consists of a low
power processor (e.g., Motorola PowerPC) with a limited amount of memory (e.g. 128



MBytes). In addition, there are no local disks and access to the node is limited to the
interconnect, which may be custom or commodity (e.g. Myrinet), and will have been packaged
to minimize size and power consumption. These various design tradeoffs allow embedded
vendors to fit nearly 100 processing nodes in a volume that can fit underneath a typical office
desk.

As mentioned previously, many embedded systems need to withstand much more severe
conditions than standard clusters. These systems may be used in the aerospace or military
industries, leading to requirements on tolerance to shock, vibration, radiation, thermal
conditions, etc. While many of today's commercial components can handle these conditions,
they are not packaged to do so, as this increases cost and is not needed by most ordinary
users. Thus, for this niche market, different vendors have sprung up to package standard
commercial parts with more consideration of these concerns.

There are a variety of vendors that manufacture systems along the above lines. Mercury,
CSPI, and Sky are three of the more popular systems. Some of the general capabilities are
shown in Table 11.1. For a comparison, a cluster vendor (AltaTech) is also shown.

Vendor CPU Interconnect OS CPU/ft3

Mercury PowerPC Raceway MCOS ~10
CSPI PowerPC Myrinet VxWorks ~10
Sky PowerPC Sky Channel SKYmpx ~10
Alta Intel/Alpha Ethernet/Myrinet Linux ~1

Table 11.1 – General Capabilities

In addition to the vendors that specialize in embedded systems, a number of other companies
build embedded systems, both parallel and distributed for their customers. These vendors
may take systems from the standard vendors listed above and ruggedize and/or repackage
them, and they include many US defense contractors (Lockheed, Honeywell, General
Dynamics, etc.)

Many embedded systems are also targeted for real-time applications with extremely low
latency requirements (e.g., radar signal processing). To achieve these requirements it is often
necessary to adopt a pipeline architecture with different processing occurring at each stage of
the pipeline. Typically, each stage exploits coarse grain parallelism but the 'direction' of this
parallelism is along different dimensions of the data at different steps. To fully exploit a
parallel computer in such circumstances requires transposing (or “corner turning”) the data
between steps. Thus, the interconnects provided by embedded systems often have higher
bandwidth and lower latencies than those of shared memory supercomputers, let alone
clusters of workstations.

11.4 Software

The real-time requirements of embedded systems necessitate special operating systems and
middleware to reduce latency and to fully exploit the interconnects and processors. This has
resulted in a wide variety of Unix flavored operating systems: VxWorks, Lynx, MCOS,
SKYmpx, LinuxRT, IrixRT. Typically, these operating systems trade off memory protection,
multi-user and multi-threaded capabilities to get higher performance. Traditionally,
VxWorks has been one of the most common in many industries. However, the need for
portable software has led many to examine alternative operating systems for embedded
clusters. These include LinuxRT and IrixRT. The advantage of these choices is that software
can be developed (at least to some point) on common desktop machines, and easily



transferred to the embedded clusters. Lynx and other POSIX-compliant systems are used
similarly, under the assumption that software developed on one POSIX-compliant operating
system can be easily ported to another. The primary distinction between these operating
systems and VxWorks is that VxWorks does not provide process-based memory protection,
which may be important in prevention of fault propagation from one process to another.

One of the most significant positive trends in embedded computing has been the adoption of
common middleware libraries to ease portability between systems. The two major areas
where this has occurred are in communications and math libraries. In the past, special
vendor libraries were required to fully exploit their custom networks. Recently vendors have
adopted MPI. With careful optimization, they are able to achieve performance similar to that
of their proprietary libraries. MPI has been a large step forward for the embedded
community, but it does not address all of the communication needs of these systems. This
has led to the development of a message passing standard that provide such critical features
as Quality of Service (QoS), MPI/RT [6]. In addition to MPI/RT, the Data Reorganization
Interface (DRI [7]) has been another standardization effort to provide a common interface to
large data movements.

The mathematics libraries developed by embedded vendors are similar to other optimized
math libraries in that they provide a variety of standard mathematical operations that have
been tuned to a particular processor. The functional focus of the embedded libraries has
primarily been on basic signal processing operations (e.g. FFT, FIR filters, linear algebra) for
complex floating-point data. Because Fortran compilers for these systems are hard to find,
these libraries usually only have a C implementation. One additional feature of these
libraries has been the ability to pre-allocate memory. For most operations, this eliminates
potential latency. Optimized math libraries are critical to achieving real-time performance
and thus these libraries are heavily used in embedded real-time software. This heavy
reliance can lead to a significant portability bottleneck. Fortunately, one of the most
successful efforts of this community has been the adoption of a standardized Vector, Signal,
and Image Processing Library (VSIPL [8]). In addition to being valuable to embedded
systems, this library has a significant potential benefit to the general high performance
computing community.

Creating an optimized implementation of a standard can be a significant undertaking for
embedded systems vendors. Increasingly, these libraries are being implemented by third
party software developers (e.g. MPI Software Technologies, Inc). However, as the embedded
community is a niche market, software vendors generally do not have enough demand to
optimize their products for the variety of embedded systems, and thus products that can
optimize themselves, such as ATLAS and FFTW (as mentioned in section 7 of this white
paper) become increasingly important.

11.5 Conclusions

While there are certainly a number of differences between embedded clusters and standard
clusters that have been brought out in this section, there are also a number of similarities,
and in many ways, the two types of clusters are converging. Mass-market forces and the need
for software portability are driving embedded clusters to use similar operating systems,
tools, and interconnects as standard clusters. As traditional clusters grow in size and
complexity, there is a growing need to use denser packaging techniques and higher
bandwidth, lower latency interconnects. Real-time capability is also becoming more common
in traditional clusters in industrial applications, particularly as clusters become more
interactive, both with people and with other hardware. Additionally, fault-tolerance is
becoming more important for standard clusters: first, as they are increasingly accepted into



machine rooms and subject to reliability and up-time requirements; and second, as feature
sizes and operating voltages are reduced, cosmic-ray upsets will occur more frequently. The
only area that promise to continue to separate the two cluster worlds is the general need for
ruggedized packaging for many embedded clusters.
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12. Education

Daniel C. Hyde, Bucknell University, USA and Barry Wilkinson, University of North
Carolina at Charlotte, USA

12.1 Introduction

Clusters offer an exciting opportunity for all institutions of higher education to teach and use
high performance computing for the first time without access to expensive equipment. The
Task Force on Cluster Computing6 (TFCC) can help in many ways.

Educators need help in answering such practical questions as: Is a cluster the best
computing platform for undergraduate parallel programming courses? How can a cluster be
set-up? What is the best software to use and where can it be obtained? How do I to manage
a cluster? TFCC can facilitate the sharing of the experiences of others.

Teaching about clusters is new. Educators in both university and industrial settings
(industrial seminars and short courses) need direction in selecting course contents and the
fundamental principles to be taught. The TFCC can help by providing a forum and
leadership in developing and sharing curricular materials.

Academics at universities can provide industry with conceptual frameworks for clusters,
explore the fundamental characteristics of clusters and devise models on how to model
cluster behaviour and performance. The TFCC can facilitate positive interactions between
the cluster computing industrial research and the academic research communities.

12.2 Background

A cluster is a type of parallel or distributed system that consists of a collection of
interconnected whole computers used as a single, unified computing resource. Clusters come
in at least the following major flavours depending on their purpose, briefly:

1. High Performance Computing Flavour. An example is a Beowulf [1]. The purpose is to
aggregate computing power across nodes to solve a problem faster. For example, high
performance scientific computing typically spreads portions of the computation across the
nodes of the cluster and uses message passing to communicate between the portions.

2. High Throughput Computing Flavour. These clusters harness the ever-growing power of
desktop computing resources while protecting the rights and needs of their interactive
users. These systems are a logical extension of the batch job environments on old
mainframes. Condor is a good example [2].

3. High Availability Computing Flavour. These clusters are designed to provide high
availability of service. Many vendors (e., g., IBM, DEC, SUN) provide high availability
(HA) systems for the commercial world. Most of these systems use redundancy of
hardware and software components to eliminate single points of failure. A typical system
consists of two nodes, with mirrored disks, duplicate switches, duplicate I/O devices and
multiple network paths. See Pfister’s book [3].

4. High Performance Service Flavour. A cluster of nodes is used to handle a high demand on
a web service, mail service, data mining service or other service. Typically, a request
spawns a thread or process on another node.

6 TFCC – http://www.ieeetfcc.org



12.3 What is Now Happening in Universities?

12.3.1 Graduate Level

At the graduate level, universities often offer a variety of parallel computing courses on
architectures, algorithms, and programming. These courses have much in common with
flavour 1 above, but ignore characteristics of the other three. These offerings are aimed at a
small (less than 1%) and shrinking scientific computing market. Courses are also offered in
distributed something, e.g., distributed operating systems, distributed computing, distributed
systems, and distributed databases. Historically, graduate-level courses have used
supercomputers available remotely, or local multiprocessors systems provided for research
activities. Nowadays, high performance clusters are replacing such systems, for both
research and teaching.

12.3.2 Undergraduate Level

There has been parallel computing and distributed computing courses at the undergraduate
level for a few years, although distributed computing was barely mentioned in the ACM
Curriculum '91 document. The newly formed IEEE/ACM Curriculum 2001 Committee has a
Netcentric Task Force as part of their effort [4]. Members of TFCC should provide valuable
input to the dialog that will surround the creation of this new curriculum.

Undergraduate parallel computing courses have typically used inexpensive transputer
systems or multiprocessor simulators. A computing cluster offers a particularly attractive
solution, and courses are appearing based upon clusters [5].

In addition to specific courses, the concepts to cover all four of the above flavours of clusters
are scattered in bits and pieces in many courses. For example, topics needed for cluster
computing such as scheduling, performance measurement, communication protocols, client-
server paradigm, reliability theory, security, monitoring, and concurrency control are either
not taught or scattered throughout a university's curriculum.

12.4 What is Needed to Improve the Situation?

The following need to be addressed:

1. A consensus should be established on the concepts to be taught and on the fundamental
principles pertaining to clusters that will serve our students.

2. Examples of high quality courses are needed, including teaching strategies, lecture notes
and laboratory exercises.

3. Material is needed to prepare our students to be able to design, analyze, implement, test
and evaluate clusters effectively. A model of the behaviour of clusters is needed that can
be used to model performance and availability.

4. More good textbooks are needed, especially for undergraduates. A recent textbook
specifically for undergraduate teaching parallel programming on clusters is by Wilkinson
and Allen [6].

5. More good reference books are needed for practitioners in the field and for advanced
graduate students to acquire background. A recent excellent example is the two-volume
set edited by Buyya [7][8].

12.5 How can the TFCC help?



The TFCC will play a leadership role in education of clusters. To support educators, the
TFCC will:

1. Collect educational materials and freely disseminate them
2. Serve as a forum for discussion.
3. Sponsor workshops and educational sessions at conferences.
4. Encourage the creation of resources such as books, bibliographies and web pages.
5. Encourage the writing of reviews of books, especially textbooks on cluster computing.
6. Be an active participant of the research culture on clusters.
7. Facilitate positive interactions between the industrial research community and the

academic research community on cluster computing.

12.6 Conclusions

In months of its existence, the IEEE Computer Society’s Task Force on Cluster Computing
(TFCC) has made significant contributions to supporting cluster computing. It has brought
together a large number of researchers and educators who would not otherwise had the
opportunity to interact (including the two authors of this section). The work of the task force
encompasses all aspects of cluster computing research as well as education.

To support educators, a web site has been created [9] which contains links to educational
sites, related books and journals, freely available software, projects from academia and
industry, white papers, and descriptions of hardware components. A book donation program
has been established with the generous cooperation of major publishers for the donation of
some current books on clusters. Also, the TFCC has established an electronic list server and
an on-line web-based newsletter for all its members.

The TFCC is committed to its efforts within the education arena of cluster computing. The
success of these efforts requires active participation by the TFCC members from the
education community. We strongly encourage you to become involved.
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Appendix A

Linux

In the public research community, Linux is the most frequently used operating system
simply for two reasons: it is released as true open source (in differentiation on the conditions
under which the source code for Sun Solaris and Microsoft Windows NT is available), and it
is cheap in terms of both software and required hardware platforms. It offers all the
functionality that is expected from standard Unix, and it is developing fast as missing
functionality can be implement by anyone who needs it. However, these solutions are usually
not as thoroughly tested as releases for commercial Unix variants. This requires frequent
updates, which do not ease the job of the administrators to create a stable system, as it is
required in commercial environments. The large-scale commercial use as a cluster OS is also
severely limited by the missing HA functionality and unverified SMP scalability on CPU
numbers greater than 2 or 4.

For scientific and research applications, these functional gaps are not really problematic, and
the Linux concept is a great success, as can be seen from the well-known Beowulf project.
This leads to a big and growing user community developing a great number of tools and
environments to control and manage clusters, which are mostly available for free. However,
it’s often hard to configure and integrate these solutions to suit ones own, special set up as
not all Linuxes are created equal: the different distributions are getting more and more
different in the way the complete system is designed. Even the common base, the kernel, is
in danger, as solution providers like TurboLinux [1] start to integrate advanced features into
the Kernel.

In general, in has to be noted that the support for Linux by commercial hardware and
software vendors is continuously improving, so it can no longer be ignored as a relevant
computing platform.

Windows NT

Although NT contains consistent solutions for local system administration in a workstation
or small-server configuration (consistent API, intuitive GUI-based management, registry
database), it lacks several characteristics that are required for efficient use in large or
clustered servers. The most prominent are standardized remote access and administration,
SMP scaling in terms of resource limits and performance, dynamic reconfiguration, high-
availability and clustering with more than a few nodes.

Through Microsoft’s omnipresence and market power, the support for NT by the vendors of
interconnect hardware and tools developers is good, and therefore a number of research
projects in clustering for scientific computing is based on Windows NT (HPVM [2] and MPI
[3][4][5]. Microsoft itself is working hard to extend the required functionality and will surely
improve. The so-called “Datacenter Edition” of its forthcoming Windows2000 (which was
delayed and postponed several times) has to prove how far NT has caught up with the
established UNIX solutions.

AIX

IBM’s AIX operating system, running on the SP series of clusters, is surely one of the most
advanced solutions for commercial and scientific cluster computing. It has proven scalability



and stability for several years and a broad number of applications in both areas. However, it
is a closed system, and as such the development is nearly totally in the hand of IBM, which
however has enough resources to create solutions in hardware and software that commercial
customers demand, such as HA and DFS. Research from outside the IBM laboratories is very
limited, though.

Solaris

In a way, Solaris can be seen as a compromise or merge of the three systems described above:
it is not an open system, which ensures stability on a commercial level and a truly identical
interface to administrators and programmers on every installation of the supported
platforms. Of course, easy kernel extensions or modifications such as with Linux are not
possible, making it less interesting for research in this area. It should be noted that the
source code for Solaris and also Windows NT is available upon request, but not for free
extension and publication of modifications.

It offers a lot of functionality required for commercial, enterprise-scale cluster-based
computing like excellent dynamic reconfiguration and fail-over and also offers leading inter-
and intra-nodes scalability for both, scientific and commercial clustering. Its support by
commercial vendors is better for high-end equipment, and the available software solutions
are also directed towards a commercial clientele. However, Solaris can be run on the same
low-cost off-the-shelf hardware as Linux as well as on the original Sun Sparc-based
equipment, and the support for relevant clustering hardware like inter-connects is given
(Myrinet, SCI). Software solutions generated by the Linux community are generally portable
to the Solaris platform with little or no effort.

The advantage of this situation is that solutions developed on simple, low-cost systems can
easily be adapted for use in a computing environment of commercial-quality level. Of course,
such an approach requires support and engagement of the manufacturer, Sun in this case.

References

[1] TurboLinux TurboCluster Server 4.0, TurboLinux, Inc.,
http://www.turbolinux.com/products/tltcs.html

[2] HPVM, http://www-csag.ucsd.edu/projects/hpvm.html
[3] PATENT, PaTENT MPI 4.0, Genias Software, http://www.genias.de
[4] Multi-Platform MPICH, Lehrstuhl für Betriebssysteme, RWTH Aachen,

http://www.lfbs.rwth-aachen.de/~joachim/MP-MPICH.html
[5] MPICH for Windows NT, Argonne National Laboratories,

http://www.mcs.anl.gov/mpi/mpich/mpich-nt)



Appendix B

Compilers and Preprocessors

The Absoft Pro Fortran toolset [1] for Windows 95/98/NT/2000 includes globally optimizing
Fortran 77, Fortran 90, and C/C++ compilers integrated with a development environment
designed for Fortran users. Pro Fortran 6.2 is a Fortran toolset optimized for single processor
Windows95/98 and Windows NT/2000 systems. Pro FortranMP 6.2 includes in addition a
thread-safe runtime library and the VAST-F/Parallel preprocessor for automatically
restructuring Fortran code for execution on dual processor systems. The Fx source-level
debugger supporting Fortran and C/C++ is included with both toolsets, as is a performance
profiler. All compilers and tools can be accessed via an integrated development environment
(IDE) that automatically builds make files and generates header dependencies. The Absoft
compilers are also available for Linux.

Compaq Visual Fortran [2] (formerly Digital Visual Fortran) is available for Windows 95/98
and Windows NT along with a development environment.

Visual KAP [3] is a preprocessor that automatically parallelizes Fortran 77/90/95 and ANSI
C source code. Visual KAP runs on PentiumII/Pentium Pro/Pentium based machines under
Windows NT 4.0 or Windows 95, and targets the Compaq Visual Fortran compiler. Since
Windows 95 does not support parallelism, parallelism optimizations are available under
Windows NT. Visual KAP works with optimizing compilers to provide additional speedups
beyond what the compiler’s built-in optimizer provides. Visual KAP has both command-line
and graphical user interfaces.

Microsoft Visual C++ [4] is part of the Microsoft integrated development environment (IDE)
called Visual Studio 6.0. The Visual C++ compiler can process both C source code and C++
source code. The compiler is compliant with all ANSI standards and has additional Microsoft
extensions. The C++ Standard Template Library (STL) is included. The Visual C++ debugger
has a graphical user interface for setting breakpoints, viewing classes and variables, etc.
The debugger has an edit and continue feature that allows the user to change an application
and continue debugging without manually exiting the debugger and recompiling.

VAST/Parallel [5] from Pacific-Sierra Research Corporation includes the VAST-F/Parallel
and VAST-C/Parallel automatic parallelizing preprocessors for Fortran and C, respectively.
VAST/Parallel transforms and restructures the input source to use parallel threads so that
the program can automatically make use of parallel processors. They also support the
OpenMP standard for user-directed parallelization. VAST/Parallel can optionally produce a
diagnostic listing that indicates areas for potential improvement to assist the developer in
tuning performance further. VAST/Parallel works with the DEEP development environment
by gathering compile-time data for DEEP and inserting instrumentation code for run-time
data gathering. DEEP uses this information to display compile-time optimization notes (e.g.,
which loop nests have been parallelized, which data dependencies are preventing
parallelization) and run-time performance data (e.g., which loop nests use the most wallclock
time, which procedures are called the most.

MPI Implementations

MPICH [6] is a freely available reference implementation of MPI developed by Argonne
National Laboratory and Mississippi State University. Version 1.1.2 of MPICH is available
for Linux on PCs and is in use on the Linux RoadRunner Supercluster at the University of



New Mexico. Problems with MPICH programs on LINUX suddenly failing with lost TCP
connections are on the list of things to fix in future MPICH releases. The MPICH
development team at Argonne is involved in a research effort with LBNL to develop MPICH
on top of VIA, the Virtual Interface Architecture, a specification of an industry-standard
architecture for scalable communication within clusters. MPICH for Windows NT is now a
beta released.

MPI-FM [7], developed by the Concurrent Systems Architecture Group at the University of
Illinois at Urbana-Champaign and the University of California, San Diego, is a version of
MPICH built on top of Fast Messages. MPI-FM requires the High Performance Virtual
Machine (HPVM) runtime environment that is available for both Linux and Windows NT.
MPI-FM is in use on the NCSA NT Supercluster [8].

MPI/Pro [9] is a commercial MPI implementation from MPI Software Technology, Inc. The
current release of MPI/Pro is for Windows NT on Intel and Alpha processors, but MPI/Pro for
Linux will be released soon. MPI/Pro is based on a version of MPICH for Win32 platforms
that was developed at Mississippi State. MPI Software Technology is working on a new
version of MPI/Pro that does not include any MPICH code and that supports VIA.

WMPI (Windows Message Passing Interface) [10] was the one of the first implementations
for Win32 systems. WMPI is an ongoing effort by The University of Coimbra, Portugal. The
first version was released in 1996 and was a port of the MPICH/P4 to Win32 systems. More
recently a new internal architecture has been developed that provides greater functionality
to the runtime library and enables WMPI to move towards a dynamic environment based on
the MPI-2 standard. The latest released version, with the new internal design, is able to use
multiple devices simultaneously and is also thread-safe.

PaTENT MPI 4.0 [11] is a commercial MPI implementation for Windows NT available from
Genias GmbH. PaTENT stands for Parallel Tools Environment for NT. Genias plans to
release a suite of development tools for MPI programs on NT, including debugging and
performance analysis support.

FT-MPI [12] developed as part of the HARNESS [13] project at the University of Tennessee,
Knoxville is a subset of the MPI 1.2 and MPI 2 standards that provides additional fault
tolerance to allow applications to handle process failures, and subsequent communicator
corruption. Failure recovery consists of rebuilding communicators, by either shrinking,
padding, re-spawning or user run-time, communicator specific methods. FT-MPI uses the
SNIPE_Lite [14] multi-protocol communications library and supports, TCP/UDP sockets,
shared memory, BIP [15], GM and ELWMCP.

Development Environments

Some vendors of Linux and Windows products are coming out with integrated development
environments (IDEs) that integrate tools such as compilers, preprocessors, source code
editors, debuggers, and performance analysis tools. Some IDEs are a complete product from
a single vendor. Others provide a framework and some tools but integrate other tools, such
as compilers, from other vendors.

DEEP [16] from Pacific-Sierra Research stands for Development Environment for Parallel
Programs. DEEP provides an integrated interactive GUI interface that binds performance,
analysis, and debugging tools back to the original parallel source code. DEEP supports
Fortran 77/90/95, C, and mixed Fortran and C in Unix and Windows 95/98/NT environments.
DEEP supports both shared memory (automatic parallelization, OpenMP) and distributed



memory (MPI, HPF, Data Parallel C) parallel program development. A special version of
DEEP called DEEP/MPI [17] is aimed at support of MPI programs.

Debuggers

DEEP/MPI [17] from Pacific Sierra Research [18] is a development environment for MPI
parallel programs. DEEP/MPI debugging support is available for Linux on PCs. DEEP/MPI
provides a graphical interface for parallel debugging of Fortran or C MPI programs.
Capabilities include setting breakpoints, watching variables, array visualization, and
monitoring process status. DEEP/MPI for Linux has been tested with MPICH and LAM MPI
6.1.

The PGDBG Debugger is part of the Portland Group, Inc. (PGI) PGI Workstation 3.0
development environment for Intel processor-based Linux, NT, and Solaris86 clusters.
PGDBG supports threaded shared-memory parallelism for auto-parallelized and OpenMP
programs, but does not provide explicit support for MPI parallel programming.

GDB, the GNU Debugger, is available for both Linux and Windows NT on PCs from Cygnus
[19]. GDB supports debugging of multithreaded code but does not provide explicit support for
MPI parallel programming.

Performance Analyzers

DEEP/MPI [17] from Pacific Sierra Research is a development environment for MPI parallel
programs. DEEP/MPI performance analysis support is available for both Windows NT and
Linux on PCs. DEEP/MPI provides a graphical user interface for program structure
browsing, profiling analysis, and relating profiling results and MPI events to source code.
DEEP/MPI for Linux has been tested with and supplies MPI profiling libraries for MPICH
and LAM MPI 6.1. A driver called mpiprof is used to instrument, compile, and build MPI
programs. Running mpiprof results in the creation of a subdirectory called deep in which the
static information files created for each file you instrument are saved. When you execute
your MPI program as you normally do, runtime information files are also stored in this
subdirectory. To analyze following execution, start DEEP/MPI by executing the command
deep which will bring up a File Dialog box asking you the location of your program.
Currently DEEP requires that all source files be located in the same directory and that all
static and runtime created files be located in the deep subdirectory, but this restriction is
expected to be removed in future releases.

VAMPIR [20] is a performance analysis tool for MPI parallel programs. The VAMPIRtrace
MPI profiling library is available for Linux on PCs. VAMPIR provides a graphical user
interface for analyzing tracefiles generated by VAMPIRtrace.

The Jumpshot graphical performance analysis tool is provided with the MPICH [6]
distribution. Jumpshot analyzes tracefiles produced by the MPE logging library, which is an
MPI profiling library also provided with MPICH for Linux. Jumpshot is written in Java and
interprets tracefiles in the binary clog format by displaying them onto a canvas object.
Jumpshot itself is available for Windows (a JVM for Windows is provided with the Jumpshot
distribution), and MPICH for Windows NT is supposed to be available soon. By default,
Jumpshot shows a timeline view of the state changes and message passing behaviour of the
MPI processes. Clicking any mouse button on a specific state instance will display more
information about that state instance. Clicking any mouse button on the circle at the origin
of a message will display m ore information about that message. That Jumpshot’s



performance decreases as the size of the logfile increases is a known bug, and can ultimately
result in Jumpshot hanging while it is reading in the logfile. There is a research effort
underway to make Jumpshot significantly more scalable. Jumpshot can be run as an
application or as an applet using a web browser or applet viewer.

PGPROF [21] is part of the Portland Group, Inc. (PGI) PGI Workstation 3.0 development
environment for Intel processor-based Linux, NT, and Solaris86 clusters. PGPROF supports
threaded shared-memory parallelism for auto-parallelized and OpenMP programs, but does
not provide explicit support for MPI parallel programming. The PGPROF profiler supports
function-level and line-level profiling of C, C++, Fortran 77, Fortran 90, and HPF programs.
A graphical user interface displays and supports analysis of profiling results.

Paradyn [22] is a tool for measuring and analyzing performance of large-scale long-running
parallel and distributed programs. Paradyn operates on executable images by dynamically
inserting instrumentation code while the program is running. Paradyn can instrument serial
programs running on WindowsNT/x86 but does not yet support any MPI implementation on
that platform.

VTune [23] is a commercial performance analyzer for high-performance software developers
on Intel processors, including Pentium III, under Windows NT. VTune collects, analyzes, and
provides architecture-specific performance data from a system-wide view down to a specific
module, function, or instruction in your code. VTune periodically interrupts the processor
and collects samples of instruction addresses and matches these with application or
operating system routines, and graphically displays the percentage of CPU time spent in
each active module, process, and processor. VTune provides access to the Pentium hardware
performance counters under Windows NT.

PAPI [24] is a platform-independent interface to hardware performance counters. A PAPI
implementation is available for Linux/x86.
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