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Beowulf System at JPL (Hyglac)

® 16 Pentium Pro PCs, each with 2.5 Gbyte disk,
128 Mbyte memory, Fast Ethernet card.

@ Connected using 1OOBase T network through a

® Theoretical peak:
3.2 GFLOP/s

® Sustained:
1.26 GFLOP/s

Six applications analyzed in paper by Katz, et. al,
Advances in Engineering Software, v.26, August 1998
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Hyglac Cost

@ Hardware cost:  $54,200 (as built, 9/96)
$22,000 (estimate, 4/98)

» 16 (CPU, disk, memory, cables)
» 1 (16-way switch, monitor, keyboard, mouse)

@ Software cost: $600 ( + maintainance)
» Absoft Fortran compilers (should be $900)
» NAG F90 compiler ($600)
» public domain OS, compilers, tools, libraries
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Beowulf System at Caltech
(Naegling)

® ~120 Pentium Pro PCs, each with 3 Gbyte disk,
128 Mbyte memory, Fast Ethernet card.

® Connected using 100Base-T network, through two
80-way switches, -
connected by a
4 Ghit/s link.

® Theoretical peak:
~24 GFLOP/s

® Sustained:
10.9 GFLOP/s
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Naegling Cost

® Hardware cost:  $190,000 (as built, 9/97)
$154,000 (estimate, 4/98)

» 120 (CPU, disk, memory, cables)

» 1 (switch, front-end CPU, monitor, keyboard,
mouse)

@ Software cost: $0 ( + maintainance)
» Absoft Fortran compilers (should be $900)
» public domain OS, compilers, tools, libraries
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Pertormance Comparisons

Hyglac | Naegling : T3D | T3E600
CPU Speed (MHz) 200 : 200 150 300
“Beak Rate (MELOP/S) 366" S 300600
Viermory (Mbyte)™ 1 N L T
T T O TR g
______ LAteNCyY (MS)
Communication 66 78 225 1200
Throughput (Mbit/s)
(Communication results are for MP1 code)
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Message-Passing
Methodology

® Issue (non-blocking) receive calls:

CALL MP

_IRECV(...)

® Issue (synchronous) send calls:

CALL MP

_SSEND(...)

® Issue (blocking) wait calls (walit for
receives to complete):

CALL MPI_WAIT(...)

| = R
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Finite-Difference
Time-Domain Application
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Images produced at
U of Colorado’s
Comp. EM Lab. by
Matt Larson using
SGI's LC FDTD code

Time steps of a gaussian pulse, travelling on a |
microstrip, showing coupling to a neighboring strip, and
crosstalk to a crossing strip. Colors showing currents are
relative to the peak current on that strip.

Pulse: rise time = 70 ps, freq. = 0to 30 GHz.

Grid dimensions =282 x 362 x 102 cells. Cell size =1 mm3,
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FDTD Algorithm

@ Classic time marching PDE solver

e Parallelized using 2-dimensional domain
decomposition method with ghost cells.

Standard Domain
Decomposition

Required Ghost Cells

Interior Cells

Ghost Cells
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FDTD Results

Number of Naegling 13D . T3E-600

Processors

............. 1 [244-00 1 271-00 | 0851-00 _

e 2.46-0.097 2.79-0.026""0.859-0.019"

e 246021 "2.79-0.024""0.859-0.051
64 2.46-0.32 2.74-0.076 0.859-0.052

Time (wall clock seconds / time step),
scaled problem size (69 x 69 x 76 cells / processor),

times are: computation - communication

@ Initial tests indicate 20% computational
speed-up with 300 MHz Pentium Il
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FDTD Conclusions

® On all numbers of processors, Beowulf-
class computers perform similarly to
T3D, and worse than T3E, as expected.

® A few large messages each time step
take significantly longer on the Beowulf,
but do not make an overall difference.
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PHOEBUS Application
(D. Katz, T. Cwik)

i i Choke Rin

e

Integral Equation
Boundary Integral Equation

Finite Element
Region

Radiation Pattern from JPL Circular Waveguide °"Y =
(from C. Zuffada, et. al., IEEE AP-S paper 1/97) Einite Element

Region \

Typical Applications:

Radar Cross Section of

| =

a dielectric cylinder
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PHOEBUS Coupled Equations

K C OUHOo U0 O
U] b g O O
Cc' 0 Z,uMC=00 0
0 b g O 0
HO ZM ZJ%‘JE incH

® This matrix problem is filled and solved by
PHOEBUS
» The K submatrix is a sparse finite element matrix
» The Z submatrices are integral equation matrices.

» The C submatrices are coupling matrices between
the FE and IE matrices.
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PHOEBUS Solution Process

UK C  O04Ho oo . -1 i
c o ZO%V'%EO@ e Find -C'K*C using OMR
0z, z,98 & on each row of C,
. .
. building X ro_vvs of_ K'C,
and multiplying with -C'.
Lc'k™c z

0 00
c 7z zuuE e @ Solve reduced system
as a dense matrix.
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PHOEBUS Algorithm

® Assemble complete matrix
® Reorder to minimize and equalize row

nandwidth of K

@ Partition matrices in slabs
® Distribute slabs among processors

® SO

® SO

® Ca
JPL

ve sparse matrix equation (step 1)
ve dense matrix equation (step 2)

culate observables
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PHOEBUS Matrix Reordering

Original System System after Reordering
for Minimum Bandwidth

Non-zero structure of matrices,
using SPARSPAK’s GENRCM Reordering Routine
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PHOEBUS
Matrix-Vector Multiply

Communication from
processor to left

m Vi I <— Local processor’s rows

Columns
55555555 processor’s rows
Local processor’s rows
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processor to right

T TN
T

T TR
Bt R

I,

L
.

-.-
%
++

e

!

o
e

iyt

o

-

—r—r—
e
ot
e
o

o+
o

o
o

o
S

iyt
i

e

Rows

-.-
T
i
3
i

=
et
o+
L

-2

e
BT
.'.'."I-+

-Ipl- High Performance Computing Group Daniel S. Katz



PHOEBUS Solver Timing

Model: dielectric cylinder with 43,791 edges, radius = 1 cm,
height = 10 cm, permittivity = 4.0, at 5.0 GHz

Number of T3D  T3D | Naegling
Processors (shmem) : (MPI) : (MPI)
Matrix-Vector
Multiply 1290 | 1290 ¢ 1502
...... Computation | .
Matrix-Vector
Multiply 114 272 . 1720
Communication | .
Other Work 407 = 415 @ 1211
Total 1800 . 1980 : 4433

Time of Convergence (CPU seconds), solving using 16 processors,
pseudo-block QMR algorithm for 116 right hand sides.
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PHOEBUS Solver Timing

Model: dielectric cylinder with 100,694 edges, radius = 1 cm,
height = 10 cm, permittivity = 4.0, at 5.0 GHz

Number of T3D  T3D | Naegling
Processors (shmem) : (MPI) : (MPI)
Matrix-Vector
Multiply 868 | 919 @ 1034
...... Computation | .
Matrix-Vector
Multiply 157 254 = 2059
Communication | . .
Other Work 323 1 323 923
Total 1348 = 1496 : 4016

Time of Convergence (CPU seconds), solving using 64 processors,
pseudo-block QMR algorithm for 116 right hand sides.
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PHOEBUS Conclusions

® Beowulf Is 2.4 times slower than T3D on
16 nodes, 3.0 times slower on 64 nodes

® Slowdown will continue to increase for
larger numbers of nodes

® 13D is about 3 times slower than T3E

@ Cost ratio between Beowulf and other
machines determines balance points
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Physical Optics Application
(D. Katz, T. Cwik)

MIRO antenna - 30 cm main
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Physical Optics Algorithm

Main reflector
(faceted into
M triangles)

Feed Horn

Sub-reflector
(faceted into
N triangles)

Create mesh with N triangles on
sub-reflector.

Compute N currents on sub-reflector
due to feed horn (or read currents
from file)

Create mesh with M triangles on
main reflector

Compute M currents on main
reflector due to currents on sub-
reflector

Compute antenna pattern due to
currents on main reflector (or write
currents to file)
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Parallelization of PO Algorithm

Distribute (M) main reflector currents over all (P) processors
Store all (N) sub-reflector currents redundantly on all (P) processors

Creation of triangles is sequential, but computation of geometry information on
triangles is parallel, so 1 and 3 are partially parallel

Computation of currents (2, 4, and 5) is parallel, though communication is
required in 2 (MPI_Allgatherv) and 5 (MPI_Reduce).

Timing:

» Part I Read input files, perform step 3

» Part ll: Perform steps 1, 2, and 4

» Part lll: Perform step 5 and write output files
Algorithm:

1 Create mesh with N triangles on sub-reflector.

2 Compute N currents on sub-reflector due to feed horn (or read currents from file)

3 Create mesh with M triangles on main reflector

4 Compute M currents on main reflector due to currents on sub-reflector

5 Compute antenna pattern due to currents on main reflector (or write currents to file)
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Physical Optics Results
(Two Beowulf Compilers)

Number of Part| | Partll | Part Il | Total
Processors
1 0.0850 | 64.3 1.64 66.0
4 0.0515 | 16.2 0.431 | 16.7
16 0.0437 | 4.18 0.110 | 4.33
Time (minutes) on Hyglac, using gnu (g77 -O2 -fno-automatic )
Number of Part| | Partll | Part Il | Total
Processors
1 0.0482 | 46.4 0932 | 474
4 0.0303 | 11.6 0.237 | 11.9
16 0.0308 | 2.93 | 0.0652 | 3.03

Time (minutes) on Hyglac, using Absoft (f77-O -s )
M = 40,000 N =4,900
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Physical Optics Results

Number of | Naegling T3D T3E-600
Processors
4 95.5 102 35.1
16 24.8 26.4 8.84
64 7.02 7.57 2.30

Time (minutes), N=160,000, M=10,000

@ Initial tests indicate 40% computational
speed-up with 300 MHz Pentium Il
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PO Conclusions

@ Performance of codes with very small
amounts of communication iIs determined
by CPU speed.

® Naegling results are between T3D and
T3E.

® This Is close to the best that can be
attained with Beowulf-class computers.
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Incompressible Fluid Flow
Solver (John Lou)

Image: Vorticity projections in
streamwise-vertical planes

Flow Problem: 3-D driven cavity flow, Re=2,500

Grid Size: 256 x 256 x 256

Algorithm: Second order projection method with
a multigrid full V-cycle kernel

Computer: Cray T3D with 256 processors
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Incompressible Fluid Flow
Solver (John Lou)

Grid Size | Number of | Beowulf Time = T3D Time T3E Time
. Processors |
_____ 128x128 . 1 64-64-00  138-138-00 | 58-58-00
256256 . . 4o ..222-70-152  191-14.7-44 | 78-59-19
512 x 512 ! 16 . 36.6-73-293  227-154-7.3 9.6-6.0-3.6
Times are run times in seconds (total - computation - communication)
Grid Size | Number of | Beowulf | T3D Time T3E Time
~ Processors Time 5
18x128 64 212 | 50 | 21
. D12x512 . 64 i 021 i 115 o, 52 .
2048 x 2048 64 230 75.0 31.0

Times are total run times in seconds

@ Initial tests indicate 40% computational
speed-up with 300 MHz Pentium Il
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Incompressible Fluid Flow
Solver (John Lou)

® As the number of processors increases,
Beowulf performance drops, compared with
T3D and T3E.

@ For a fixed number of processors, Beowulf
performance increases with local problem
size

@ Beowulf memory would need to grow as

the number of processors increases to get
scalable performance, relative to T3D/E.
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General Conclusions

@ Key factor in predicting code
performance: amount of communication

® Beowulf has a place at JPL/Caltech

» Each machine should have:
— Small numbers of processors
— Limited number of codes/users
@ Not a replacement for institutional
supercomputers
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