
Beowulf Applications
and User Experiences

Daniel S. Katz
Daniel.S.Katz@jpl.nasa.gov

J
High Performance Computing Group

Imaging and Spectrometry Systems Technology Section

J Daniel S. KatzHigh Performance Computing Group

Beowulf System at JPL (Hyglac)

l 16 Pentium Pro PCs, each with 2.5 Gbyte disk,
128 Mbyte memory, Fast Ethernet card.

l Connected using 100Base-T network, through a
16-way crossbar switch.

l Theoretical peak:
3.2 GFLOP/s

l Sustained:
1.26 GFLOP/s
Six applications analyzed in paper by Katz, et. al,
Advances in Engineering Software, v.26, August 1998

J Daniel S. KatzHigh Performance Computing Group

Hyglac Cost

l Hardware cost: $54,200 (as built, 9/96)
$22,000 (estimate, 4/98)

» 16 (CPU, disk, memory, cables)
» 1 (16-way switch, monitor, keyboard, mouse)

l Software cost: $600 (+ maintainance)
» Absoft Fortran compilers (should be $900)
» NAG F90 compiler ($600)
» public domain OS, compilers, tools, libraries

J Daniel S. KatzHigh Performance Computing Group

Beowulf System at Caltech
(Naegling)

l ~120 Pentium Pro PCs, each with 3 Gbyte disk,
128 Mbyte memory, Fast Ethernet card.

l Connected using 100Base-T network, through two
80-way switches,
connected by a
4 Gbit/s link.

l Theoretical peak:
~24 GFLOP/s

l Sustained:
10.9 GFLOP/s

J Daniel S. KatzHigh Performance Computing Group

Naegling Cost

l Hardware cost: $190,000 (as built, 9/97)
$154,000 (estimate, 4/98)

» 120 (CPU, disk, memory, cables)
» 1 (switch, front-end CPU, monitor, keyboard,

mouse)

l Software cost: $0 (+ maintainance)
» Absoft Fortran compilers (should be $900)
» public domain OS, compilers, tools, libraries

J Daniel S. KatzHigh Performance Computing Group

Performance Comparisons

(Communication results are for MPI code)

Hyglac Naegling T3D T3E600

CPU Speed (MHz) 200 200 150 300

Peak Rate (MFLOP/s) 200 200 300 600

Memory (Mbyte) 128 128 64 128

Communication
Latency (µs)

150 322 35 18

Communication
Throughput (Mbit/s)

66 78 225 1200

J Daniel S. KatzHigh Performance Computing Group

Message-Passing
Methodology

l Issue (non-blocking) receive calls:
 CALL MPI_IRECV(...)

l Issue (synchronous) send calls:
 CALL MPI_SSEND(...)

l Issue (blocking) wait calls (wait for
receives to complete):

 CALL MPI_WAIT(...)

J Daniel S. KatzHigh Performance Computing Group

Finite-Difference
Time-Domain Application

Time steps of a gaussian pulse, travelling on a
microstrip, showing coupling to a neighboring strip, and
crosstalk to a crossing strip. Colors showing currents are
relative to the peak current on that strip.
Pulse: rise time = 70 ps, freq. ≈ 0 to 30 GHz.
Grid dimensions = 282 × 362 × 102 cells. Cell size = 1 mm3.

Images produced at
U of Colorado’s
Comp. EM Lab. by
Matt Larson using
SGI’s LC FDTD code

J Daniel S. KatzHigh Performance Computing Group

FDTD Algorithm

l Classic time marching PDE solver
l Parallelized using 2-dimensional domain

decomposition method with ghost cells.

Standard Domain
Decomposition Required Ghost Cells

Interior Cells

Ghost Cells

J Daniel S. KatzHigh Performance Computing Group

FDTD Results

Number of
Processors

Naegling T3D T3E-600

1 2.44 - 0.00 2.71 - 0.000 0.851 - 0.000
4 2.46 - 0.097 2.79 - 0.026 0.859 - 0.019
16 2.46 - 0.21 2.79 - 0.024 0.859 - 0.051
64 2.46 - 0.32 2.74 - 0.076 0.859 - 0.052

Time (wall clock seconds / time step),
scaled problem size (69 × 69 × 76 cells / processor),

times are: computation - communication

l Initial tests indicate 20% computational
speed-up with 300 MHz Pentium II

J Daniel S. KatzHigh Performance Computing Group

FDTD Conclusions

l On all numbers of processors, Beowulf-
class computers perform similarly to
T3D, and worse than T3E, as expected.

l A few large messages each time step
take significantly longer on the Beowulf,
but do not make an overall difference.

J Daniel S. KatzHigh Performance Computing Group

PHOEBUS Application
(D. Katz, T. Cwik)

Choke Ring

Radiation Pattern from JPL Circular Waveguide
(from C. Zuffada, et. al., IEEE AP-S paper 1/97)

Radar Cross Section of
a dielectric cylinder

Finite Element
Region

Finite Element
Region

Integral Equation
Boundary Integral Equation

Boundary

Typical Applications:

J Daniel S. KatzHigh Performance Computing Group

PHOEBUS Coupled Equations

l This matrix problem is filled and solved by
PHOEBUS
» The K submatrix is a sparse finite element matrix
» The Z submatrices are integral equation matrices.
» The C submatrices are coupling matrices between

the FE and IE matrices.

K C

C Z

Z Z

H

M

J VM J inc

0

0

0

0

00
†























































=

J Daniel S. KatzHigh Performance Computing Group

PHOEBUS Solution Process

K C

C Z

Z Z

H

M

J V
M J

0

0

0

0

0
0

†























































=

−
=

−







































C K C Z

Z Z

M

J V
M J

† 1
0

0

H K CM= − −1

l Find -C†K-1C using QMR
on each row of C,
building x rows of K-1C,
and multiplying with -C†.

l Solve reduced system
as a dense matrix.

J Daniel S. KatzHigh Performance Computing Group

PHOEBUS Algorithm

l Assemble complete matrix
l Reorder to minimize and equalize row

bandwidth of K
l Partition matrices in slabs
l Distribute slabs among processors
l Solve sparse matrix equation (step 1)
l Solve dense matrix equation (step 2)
l Calculate observables

J Daniel S. KatzHigh Performance Computing Group

PHOEBUS Matrix Reordering

Original System System after Reordering
for Minimum Bandwidth

Non-zero structure of matrices,
using SPARSPAK’s GENRCM Reordering Routine

J Daniel S. KatzHigh Performance Computing Group

PHOEBUS
Matrix-Vector Multiply

R
ow
s

Columns

Communication from
processor to left

Communication from
processor to right

Local processor’s rows

Local processor’s rowsX

Local processor’s rows

J Daniel S. KatzHigh Performance Computing Group

PHOEBUS Solver Timing

Model: dielectric cylinder with 43,791 edges, radius = 1 cm,
height = 10 cm, permittivity = 4.0, at 5.0 GHz

Time of Convergence (CPU seconds), solving using 16 processors,
pseudo-block QMR algorithm for 116 right hand sides.

Number of
Processors

T3D
(shmem)

T3D
(MPI)

Naegling
(MPI)

Matrix-Vector
Multiply

Computation
1290 1290 1502

Matrix-Vector
Multiply

Communication
114 272 1720

Other Work 407 415 1211
Total 1800 1980 4433

J Daniel S. KatzHigh Performance Computing Group

PHOEBUS Solver Timing

Model: dielectric cylinder with 100,694 edges, radius = 1 cm,
height = 10 cm, permittivity = 4.0, at 5.0 GHz

Time of Convergence (CPU seconds), solving using 64 processors,
pseudo-block QMR algorithm for 116 right hand sides.

Number of
Processors

T3D
(shmem)

T3D
(MPI)

Naegling
(MPI)

Matrix-Vector
Multiply

Computation
868 919 1034

Matrix-Vector
Multiply

Communication
157 254 2059

Other Work 323 323 923
Total 1348 1496 4016

J Daniel S. KatzHigh Performance Computing Group

PHOEBUS Conclusions

l Beowulf is 2.4 times slower than T3D on
16 nodes, 3.0 times slower on 64 nodes

l Slowdown will continue to increase for
larger numbers of nodes

l T3D is about 3 times slower than T3E
l Cost ratio between Beowulf and other

machines determines balance points

J Daniel S. KatzHigh Performance Computing Group

Physical Optics Application
(D. Katz, T. Cwik)

DSN antenna - 34 meter main MIRO antenna - 30 cm main

J Daniel S. KatzHigh Performance Computing Group

Physical Optics Algorithm

1 Create mesh with N triangles on
sub-reflector.

2 Compute N currents on sub-reflector
due to feed horn (or read currents
from file)

3 Create mesh with M triangles on
main reflector

4 Compute M currents on main
reflector due to currents on sub-
reflector

5 Compute antenna pattern due to
currents on main reflector (or write
currents to file)

Feed Horn

Sub-reflector
(faceted into
N triangles)

Main reflector
(faceted into
M triangles)

J Daniel S. KatzHigh Performance Computing Group

l Distribute (M) main reflector currents over all (P) processors
l Store all (N) sub-reflector currents redundantly on all (P) processors

l Creation of triangles is sequential, but computation of geometry information on
triangles is parallel, so 1 and 3 are partially parallel

l Computation of currents (2, 4, and 5) is parallel, though communication is
required in 2 (MPI_Allgatherv) and 5 (MPI_Reduce).

l Timing:
» Part I: Read input files, perform step 3
» Part II: Perform steps 1, 2, and 4

» Part III: Perform step 5 and write output files
l Algorithm:

1 Create mesh with N triangles on sub-reflector.

2 Compute N currents on sub-reflector due to feed horn (or read currents from file)

3 Create mesh with M triangles on main reflector
4 Compute M currents on main reflector due to currents on sub-reflector

5 Compute antenna pattern due to currents on main reflector (or write currents to file)

Parallelization of PO Algorithm

J Daniel S. KatzHigh Performance Computing Group

Physical Optics Results
(Two Beowulf Compilers)

Number of
Processors

Part I Part II Part III Total

1 0.0850 64.3 1.64 66.0
4 0.0515 16.2 0.431 16.7

16 0.0437 4.18 0.110 4.33

Number of
Processors

Part I Part II Part III Total

1 0.0482 46.4 0.932 47.4
4 0.0303 11.6 0.237 11.9

16 0.0308 2.93 0.0652 3.03

Time (minutes) on Hyglac, using gnu (g77 -O2 -fno-automatic)

Time (minutes) on Hyglac, using Absoft (f77 -O -s)

M = 40,000 N = 4,900

J Daniel S. KatzHigh Performance Computing Group

Physical Optics Results

Number of
Processors

Naegling T3D T3E-600

4 95.5 102 35.1
16 24.8 26.4 8.84
64 7.02 7.57 2.30

Time (minutes), N=160,000, M=10,000

l Initial tests indicate 40% computational
speed-up with 300 MHz Pentium II

J Daniel S. KatzHigh Performance Computing Group

PO Conclusions

l Performance of codes with very small
amounts of communication is determined
by CPU speed.

l Naegling results are between T3D and
T3E.

l This is close to the best that can be
attained with Beowulf-class computers.

J Daniel S. KatzHigh Performance Computing Group

Incompressible Fluid Flow
Solver (John Lou)

Image: Vorticity projections in
 streamwise-vertical planes
Flow Problem: 3-D driven cavity flow, Re=2,500
Grid Size: 256 x 256 x 256
Algorithm: Second order projection method with
 a multigrid full V-cycle kernel
Computer: Cray T3D with 256 processors

J Daniel S. KatzHigh Performance Computing Group

Incompressible Fluid Flow
Solver (John Lou)

Grid Size Number of
Processors

Beowulf Time T3D Time T3E Time

128 × 128 1 6.4 - 6.4 - 0.0 13.8 - 13.8 - 0.0 5.8 - 5.8 - 0.0
256 × 256 4 22.2 - 7.0 - 15.2 19.1 - 14.7 - 4.4 7.8 – 5.9 – 1.9
512 × 512 16 36.6 - 7.3 - 29.3 22.7 - 15.4 - 7.3 9.6 – 6.0 – 3.6

Times are run times in seconds (total - computation - communication)

Grid Size Number of
Processors

Beowulf
Time

T3D Time T3E Time

128 × 128 64 21.2 5.0 2.1
512 × 512 64 52.7 11.5 5.2

2048 × 2048 64 230 75.0 31.0

Times are total run times in seconds

l Initial tests indicate 40% computational
speed-up with 300 MHz Pentium II

J Daniel S. KatzHigh Performance Computing Group

Incompressible Fluid Flow
Solver (John Lou)

l As the number of processors increases,
Beowulf performance drops, compared with
T3D and T3E.

l For a fixed number of processors, Beowulf
performance increases with local problem
size

l Beowulf memory would need to grow as
the number of processors increases to get
scalable performance, relative to T3D/E.

J Daniel S. KatzHigh Performance Computing Group

General Conclusions

l Key factor in predicting code
performance: amount of communication

l Beowulf has a place at JPL/Caltech
» Each machine should have:

– Small numbers of processors
– Limited number of codes/users

l Not a replacement for institutional
supercomputers

