
Scali Library User’s Guide



 

Copyright © 1999-2002 Scali AS. All rights reserved.

Acknowledgement
The development of ScaMPI has benefited greatly from the work of people not
connected to Scali. We wish especially to thank the developers of MPICH for their work
which served as a reference when implementing the first version of ScaMPI.
The list of persons contributing to algorithmic ScaMPI improvements is impossible to
compile here. We apologise to those who remain unnamed and mention only those who
certainly are responsible for a step forward.

Scali is thankful to Rolf Rabenseifner for the improved reduce algorithm used in
ScaMPI.



Scali Library User’s Guide Version 3.0 3

Table of contents

Chapter 1 Introduction .............................................................................................. 7
1.1 Scali Library Suite .................................................................................................... 7

1.1.1 ScaMPI ........................................................................................................ 7
1.1.2 ScaShmem................................................................................................... 7
1.1.3 ScaIP ........................................................................................................... 7
1.1.4 ScaMAC....................................................................................................... 7

Chapter 2 Using ScaMPI............................................................................................ 9
2.1 Setting up a ScaMPI environment........................................................................... 9

2.1.1 ScaMPI environment variables ................................................................. 9
2.2 Compiling and linking .............................................................................................. 9

2.2.1 Compiler support ...................................................................................... 10
2.2.2 Compiler flags........................................................................................... 10
2.2.3 Linker flags ............................................................................................... 10

2.3 Running ScaMPI programs .................................................................................... 10
2.3.1 Naming convention................................................................................... 10
2.3.2 mpimon - monitor program ...................................................................... 11
2.3.3 mpirun - wrapper script ........................................................................... 16

2.4 Useful tools.............................................................................................................. 19
2.4.1 Debugging with a sequential debugger ................................................... 19
2.4.2 Usefull builtin-tools for debugging .......................................................... 19
2.4.3 Profiling ScaMPI applications ................................................................. 20
2.4.4 Profiling with ScaMPE............................................................................. 26

2.5 An example program............................................................................................... 28
2.5.1 Hello-world.c - source in C ....................................................................... 28
2.5.2 Hello-world.f - source in Fortran ............................................................. 28
2.5.3 Compiling .................................................................................................. 29
2.5.4 Linking ...................................................................................................... 29
2.5.5 Running..................................................................................................... 29

2.6 MPI test programs .................................................................................................. 29
2.6.1 Producer - a producer-consumer MPI test program ............................... 29
2.6.2 Bandwidth - a bandwidth MPI test program.......................................... 30
2.6.3 Bidirect - a bidirectional MPI test program. ........................................... 30

Chapter 3 Description of ScaMPI.......................................................................... 31
3.1 General description................................................................................................. 31

3.1.1 ScaMPI libraries ....................................................................................... 31
3.1.2 ScaMPI executables.................................................................................. 31



  

4 Scali Library User’s Guide Version 3.0

3.2 Starting ScaMPI application programs .................................................................32
3.2.1 Application start-up - phase 1 ..................................................................32
3.2.2 Application start-up - phase 2 ..................................................................32
3.2.3 Application start-up - phase 3 ..................................................................33

3.3 Stopping ScaMPI application programs ................................................................34
3.4 Communication protocols........................................................................................35

3.4.1 Inlining protocol ........................................................................................36
3.4.2 Eagerbuffering protocol ............................................................................37
3.4.3 Transporter protocol .................................................................................38

3.5 Communication resources.......................................................................................39
3.5.1 Channel buffer ..........................................................................................40
3.5.2 Eagerbuffer buffer.....................................................................................41
3.5.3 Transporter buffer ....................................................................................42

Chapter 4  Tips & Tricks for ScaMPI ....................................................................43
4.1 Application program notes......................................................................................43

4.1.1 MPI_Probe() and MPI_Recv() ...................................................................43
4.1.2 Unsafe MPI programs...............................................................................44

4.2 Namespace pollution...............................................................................................44
4.3 Error and warning messages..................................................................................45

4.3.1 User interface errors and warnings .........................................................45
4.3.2 Fatal errors ...............................................................................................45

4.4 When things don’t work - troubleshooting.............................................................45
4.4.1 Standard input and ScaMPI ....................................................................45
4.4.2 Why doesn’t my program start to run? ....................................................45
4.4.3 Why doesn’t mpid start.............................................................................46
4.4.4 Interconnect problems ..............................................................................46
4.4.5 Why does my program terminate abnormally? .......................................47
4.4.6 How do I control SCI and local shared memory usage?..........................48

4.5 How to optimize MPI performance.........................................................................49
4.5.1 Performance analysis................................................................................49
4.5.2 Using MPI_Isend(), MPI_Irecv(). .............................................................49
4.5.3 Using MPI_Bsend(). ..................................................................................49
4.5.4 Avoid starving mpi-processes - fairness. .................................................49
4.5.5 Using processor-power to poll. .................................................................50
4.5.6 Communication buffer adaption ..............................................................50
4.5.7 Reorder network traffic to avoid conflicts................................................50

4.6 Benchmarking .........................................................................................................51
4.6.1 How to get expected performance ............................................................51
4.6.2 Memory consumption increase after warm-up........................................51



 

Scali Library User’s Guide Version 3.0 5

Chapter 5 ScaShmem................................................................................................ 53
5.1 Description .............................................................................................................. 53
5.2 Application porting to ScaShmem.......................................................................... 53
5.3 Features and limitations ........................................................................................ 54

5.3.1 Communication initialization and termination ...................................... 54
5.3.2 Runtime requirements ............................................................................. 54
5.3.3 Datatypes / porting ................................................................................... 54
5.3.4 Dynamic memory allocation..................................................................... 54
5.3.5 ScaShmem environment variables .......................................................... 55

5.4 Compiling and linking ............................................................................................ 55
5.5 Running your application ....................................................................................... 56

Chapter 6 ScaIP - IP for SCI ................................................................................... 57
6.1 Introduction............................................................................................................. 57
6.2 Simplified network model....................................................................................... 57
6.3 Configuration .......................................................................................................... 58
6.4 ScaIP package installation ..................................................................................... 59

Chapter 7 ScaMAC .................................................................................................... 61
7.1 Introduction............................................................................................................. 61
7.2 The scimac driver.................................................................................................... 61
7.3 Setting up the scimac driver .................................................................................. 62
7.4 The ScaMAC utilities.............................................................................................. 63

7.4.1 macstat - display scimac driver status .................................................... 63
7.4.2 macping - check reachability of remote scimac drivers .......................... 64
7.4.3 macctl - set the debug level of the scimac driver .................................... 65

7.5 ScaMAC package installation ................................................................................ 66

Chapter 8 Support..................................................................................................... 67
8.1 Feedback.................................................................................................................. 67
8.2 Scali mailing lists.................................................................................................... 67
8.3 ScaMPI FAQ............................................................................................................ 67
8.4 ScaMPI release documents..................................................................................... 67
8.5 Problem reports....................................................................................................... 68
8.6 Platforms supported ............................................................................................... 68
8.7 Licensing ................................................................................................................. 68

Chapter 9 Related documentation ........................................................................ 69
9.1 References ............................................................................................................... 69



  

6 Scali Library User’s Guide Version 3.0



Scali Library User’s Guide Version 3.0 7

Chapter 1 Introduction

A Scali System is a set of SCI interconnected nodes, where each node is a multi-
processor workstation running Linux. To help you use the full potential power of such 
a system we have developed a suite of libraries.

1.1 Scali Library Suite

1.1.1 ScaMPI

ScaMPI is a high performance MPI implementation. The programming environment 
for ScaMPI provides a variety of options and tools for tuning and debugging. ScaMPI 
utilises shared memory on intranode communication, and the fast SCI interconnect on 
internode communication. Any parallel MPI-conforming application can be run with 
ScaMPI and benefit from the SCI performance.

The chapters conserning ScaMPI is written for users which have a basic 
understanding of MPI [1, 2, 3], and some basic knowledge of the C and/or Fortran 
programming language.
gcc and bash are used for all examples.

1.1.2 ScaShmem

ScaShMem is an implementation of the Cray/SGI Shmem abstraction. It is built on top 
of ScaMPI

1.1.3 ScaIP

ScaIP is a version of IP based on SCI.

1.1.4 ScaMAC

ScaMAC, Scali Media Access Control driver for SCI, includes a kernel mode driver and 
some utilities to allow fast transfer of data on SCI.



Chapter 1 Introduction 

8 Scali Library User’s Guide Version 3.0



Scali Library User’s Guide Version 3.0 9

Chapter 2 Using ScaMPI

This chapter describes the setup, compile, link and run of a program using ScaMPI. 
Furthermore some useful tools for debugging and profiling are briefly discussed. 

Please note that the “ScaMPI release notes” are available in the 
/opt/scali/doc/ScaMPI directory.

2.1 Setting up a ScaMPI environment

2.1.1 ScaMPI environment variables

The use of ScaMPI requires that some environment variables are defined. These are 
usually set in the standard startup scripts (e.g. .bashrc when using bash), but they 
can also be defined manually.

Normally, the ScaMPI library’s header files mpi.h and mpif.h reside in the 
$MPI_HOME/include directory.

2.2 Compiling and linking
MPI is an “Application Programming Interface”(API) and not an “Application Binary 
Interface”(ABI). This means that you as a main rule should recompile and relink your 
application when starting to use ScaMPI. But since the MPICH-implementation is 

Name Description

MPI_HOME Installation directory. For a standard installation, the variable should be 
set as:
export MPI_HOME=/opt/scali

LD_LIBRARY_PATH Path to dynamic link libraries. Must be set to include the path to the direc-
tory where these libraries can be found:
export 
LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:$MPI_HOME/lib

PATH Path variable. Must be updated to include the path to the directory where 
the MPI binaries can be found:
export PATH=${PATH}:$MPI_HOME/bin

Table 2-1: Environment variables



Chapter 2 Using ScaMPI 

10 Scali Library User’s Guide Version 3.0

widely used we have made ScaMPI ABI compatible depending on versions of MPICH 
and ScaMPI. Please check “ScaMPI release notes” for details. Having an application 
linked with mpich you should be able to just change library-path if it is dynamically 
linked or you have to relink it if you have linked it statically.

2.2.1 Compiler support

ScaMPI is a C++ library built using the GNU compiler.This implies that you have to 
link with the GNU runtime library. Depending on the compiler used, the way to link 
with the ScaMPI libraries varies. Check the ”ScaMPI release notes” for information on 
supported compilers and how linking is done. Please note that the GNU compiler, or a 
similar version of the C++ compiler, must be installed on your system. The GNU 
compilers are included in the ScaFegcs package, available for download at 
http://www.scali.com/download.

2.2.2 Compiler flags

The following string must be included as compile flags (bash syntax):

“-D_REENTRANT -I$MPI_HOME/include”

2.2.3 Linker flags

The following string outlines the setup for the necessary link flags (bash syntax):

“-L/opt/scali/lib $CRT_BEGIN -lmpi $CRT_END”

The runtime setup CRT_BEGIN and CRT_END libraries are defined for some 
compilers. Please note that when linking a Fortran main program, the Fortran 
interface library libfmpi must be included before CRT_BEGIN.

2.3 Running ScaMPI programs
Note that executables issuing ScaMPI calls cannot be started directly from a shell 
prompt. ScaMPI programs can either be started using the MPI monitor program 
mpimon, the wrapper script mpirun, or from the Scali Universe GUI [4]. 

2.3.1 Naming convention

When an application program is started, ScaMPI is modifying argv[0]. The following 
convention is used for the executable, reported on the command line using the Unix 
utility ps: 

<userprogram>-<rank number>(mpi:<pid>@<nodename>)
where:



2.3 Running ScaMPI programs

Scali Library User’s Guide Version 3.0 11

<userprogram> is the name of the application program.
<rank number> is the application’s mpi-process rank number.
<pid> is the Unix process identifier of the monitor program mpimon.
<nodename> is the name of the node where mpimon is running.

Note that ScaMPI requires a homogenous file system image, i.e., a file system 
providing the same path and program names on all nodes of the Scali System.

2.3.2 mpimon - monitor program

The control and start-up of an ScaMPI application is monitored by mpimon. The 
program mpimon has several options which can be used for optimising ScaMPI 
performance. Normally it should not be necessary to use any of these options. 
However, unsafe MPI programs [3] might need buffer adjustments to solve deadlocks. 
Trading performance by changing communication space is best avoided if there is no 
compelling reason to do so.

2.3.2.1 Basic usage

Normally the program is invoked as:

mpimon <userprogram> <programoptions> -- <nodename> [<count>] [<nodename> [<count>]]...

2.3.2.2 Advanced usage

The complete syntax for the program:

mpimon [<mpimon-option>]... <program & node-spec> [-- <program & node-spec>]...

Parameter Description

<userprogram> Name of application program.

<programoptions> Program options for the application program.

-- Separator, marks end of user program options.

[<nodename> 
[<count>]]

Name of node and the number of mpi-processes to run on that node. The 
option can occur several times in the list. Mpi-processes will be given ranks 
sequentially according to the list of node-number pairs.

Table 2-2: Basic options to mpimon



Chapter 2 Using ScaMPI 

12 Scali Library User’s Guide Version 3.0

Numeric values can be given as mpimon options in the following way:

Parameter Description

<program & node-spec> <program spec> -- <node spec> [<node spec>]...

<program spec> <userprogram>[<programoptions>]...

<userprogram> Name of application program.

<programoptions> Program options for the application program.

-- Separator, signals end of user program options.

<node spec> <nodename> [<count>]

<nodename> Name of node. Given either as a node name or as an Internet address 
expressed in the Internet standard dot notation.

<count> Number of mpi-processes to run on node. If <count> is omitted, one mpi-
process is started on each node specified.

Table 2-3: mpimon parameters

Option Description

<numeric value> <decimal value> | <decimal value><postfix>

<postfix> <K>: <numeric value> = <decimal value> * 1024
<M>: <numeric value> = <decimal value> * 1024 * 1024

Table 2-4: Numeric input



2.3 Running ScaMPI programs

Scali Library User’s Guide Version 3.0 13

A complete lists of available mpimon options:

mpimon option Description

-- Separator, marks end of user program options.

-automatic <selection> Set automatic-mode for process(es).
Default: none
Legal: ‘n,m,o..’ = (list)  or ‘n-m’ = (range) or ‘all’

-barrier_fanin <count> Set number of barrier fanin reads.
Default: 8

-barrier_fanout <count> Set number of barrier fanout reads.
Default: 8

-debug <selection> Set debug-mode for process(es).
Default: none
Legal: ‘n,m,o..’ = (list)  or ‘n-m’ = (range) or ‘all’

-debugger <debugger> Set debugger to start in debug-mode.

-disable-timeout Disable process timeout.

-display <display> Set display to use in debug-/manual-mode.

-dryrun <mode> Set dryrun-mode.
Default: none
Legal: ‘none’ or ‘totalview’

-environment <value> Define how to export environment.
Default: export
Legal: ‘export’ = all or ‘mpi’ = MPI_?? or ‘none’

-exact_match Set exact-match-mode.

-execpath <execpath> Set path to internal executables.

-help Display available options.

-home <directory> Set installation-directory.

-immediate_handling <selection> Handling of  immediates.
Default: lazy
Legal: lazy, threaded, automatic

-inherit_limits Inherit userdefinable limits to processes.

-init_comm_world Initialise MPI_COMM_WORLD at startup (all channels are 
created).

Table 2-5: Complete list of mpimon options



Chapter 2 Using ScaMPI 

14 Scali Library User’s Guide Version 3.0

-inter_adapters <adapters> Set list of sci adapters for inter-communication.
Default: all
Legal: ‘n,m,o..’ = (list)  or ‘n-m’ = (range) or ‘all’

-inter_channel_inline_threshold 
<size>

Set threshold for inlining (in bytes) per inter-channel.
Default: 1030

-inter_channel_size <size> Set buffer size (in bytes) per inter-channel.
Default: 4K
Legal: Powers of 2

-inter_chunk_size <size> Set chunk-size for inter-communication.
Default: 512k
Legal: Multiplum of pages

-inter_eager_count <count> Set number of buffers for eager inter-protocol.
Default: 2

-inter_eager_size <size> Set buffer size (in bytes) for eager inter-protocol.
Default: 256K
Legal: Powers of 2

-inter_eager_threshold <size> Set threshold (in bytes) for eager inter-protocol.
Default: 32K
Legal: Powers of 2

-inter_pool_size <size> Set buffer-pool-size for inter-communication.
Default: 32M
Legal: Multiplum of pages

-inter_transporter_count <count> Set number of buffers for transporter inter-protocol.
Default: 4
Legal: Powers of 2

-inter_transporter_size <size> Set buffer size (in bytes) for transporter inter-protocol.
Default: 256K

-intra_channel_inline_threshold 
<size>

Set threshold for inlining (in bytes) per intra-channel.
Default: 560

-intra_channel_size <size> Set buffer size (in bytes) per intra-channel.
Default: 4K
Legal: Powers of 2

-intra_chunk_size <size> Set chunk-size for intra-communication.
Default: 1M
Legal: Multiplum of pages

-intra_eager_count <count> Set number of buffers for eager intra-protocol.
Default: 2

mpimon option Description

Table 2-5: Complete list of mpimon options



2.3 Running ScaMPI programs

Scali Library User’s Guide Version 3.0 15

-intra_eager_size <size> Set buffer size (in bytes) for eager intra-protocol.
Default: 128K
Legal: Powers of 2

-intra_eager_threshold <size> Set threshold (in bytes) for eager intra-protocol.
Default: 1M
Legal: Powers of 2

-intra_pool_size <size> Set buffer-pool-size for intra-communication.
Default: 4M
Legal: Multiplum of pages

-intra_transporter_count <count> Set number of buffers for transporter intra-protocol.
Default: 4
Legal: Powers of 2

-intra_transporter_size <size> Set buffer size (in bytes) for transporter intra-protocol.
Default: 64K

-manual <selection> Set manual-mode for process(es).
Default: none
Legal: ‘n,m,o..’ = (list)  or ‘n-m’ = (range) or ‘all’

-read <file> Read parameters from the named file.
Default: none

-separate_output <selection> Enable separate output for process(es). Filename: 
ScaMPIoutput_host_pid_rank
Default: none
Legal: ‘n,m,o..’ = (list)  or ‘n-m’ = (range) or ‘all’

-shmem Application use Cray ShMem library.

-sm_debug <selection> Set debug-mode for submonitor(s).
Default: none
Legal: ‘n,m,o..’ = (list)  or ‘n-m’ = (range) or ‘all’

-sm_manual <selection> Set manual-mode for submonitor(s).
Default: none
Legal: ‘n,m,o..’ = (list)  or ‘n-m’ = (range) or ‘all’

-sm_trace <selection> Enable trace for submonitor(s).
Default: none
Legal: ‘n,m,o..’ = (list)  or ‘n-m’ = (range) or ‘all’

-statistics Enable statistics.

-stdin <selection> Distribute standard in to process(es).
Default: none
Legal: ‘n,m,o..’ = (list)  or ‘n-m’ = (range) or ‘all’

mpimon option Description

Table 2-5: Complete list of mpimon options



Chapter 2 Using ScaMPI 

16 Scali Library User’s Guide Version 3.0

2.3.3 mpirun - wrapper script

mpirun is a wrapper script for mpimon, giving MPICH [10] style startup for ScaMPI 
applications. Instead of the mpimon syntax, where a list of pairs of node name and 
number of mpi-processes is used as startup specification, mpirun uses only the total 
number of mpi-processes.

Using scaconftool (see [4]), mpirun attempts to generate a list of operational nodes. 
Note that only operational nodes are selected. If no operational node is available, an 
error message is printed and mpirun terminates. If scaconftool is not available, 
mpirun attempts to use the file /opt/scali/etc/ScaConf.nodeidmap for selecting the 
list of operational notes. In the generated list of nodes, mpirun evenly divides the mpi-
processes among the nodes.

-timeout <timeout> Set timeout (elapsed time in seconds) for run.
Legal: Positive number

-trace <selection> Enable trace for process(es).
Default: none
Legal: ‘n,m,o..’ = (list)  or ‘n-m’ = (range) or ‘all’

-verbose Display values for user-options.

-Version Display version of monitor.

-working_directory <directory> Set working directory.

-xterm <xterm> Set xterm to use in debug-/manual-mode.

mpimon option Description

Table 2-5: Complete list of mpimon options



2.3 Running ScaMPI programs

Scali Library User’s Guide Version 3.0 17

2.3.3.1 mpirun usage
mpirun <mpirunoptions> <mpimonoptions> <userprogram> [<programoptions>]

Parameter Description

<mpirunoptions> mpirun options

<mpimonoptions> Options passed on to mpimon

<userprogram> Name of application program to run.

<programoptions> Program options passed on to the application program.

Table 2-6: mpirun format

mpirun option Description

-np <count> Total number of mpi-processes to be started, default 2.

-npn <count> Maximum number of mpi-processes pr. node, default np <count>/nodes.

-pbs Submit job to PBS queue system

-pbsparams <“params”> Specify PBS scasub parameters

-p4pg <pgfile> Use mpich compatible pgfile for program, mpi-process and node specifica-
tion. pgfile entry: <nodename> <#procs> <progname> Program name given 
at command line is additionally started with one mpi-process at first node

-v Verbose.

-gdb Debug all mpi-processes using the GNU debugger gdb.

-maxtime|-cpu <time> Limit runtime to <time> minutes.

-machinefile <filename> Take the list of possible nodes from <filename>

-noconftool Do not use scaconftool for generating nodelist.

-noarchfile Ignore the /opt/scali/etc/ScaConf.nodearchmap file (which describes 
each node).

-H <frontend> Specify nodename of front-end running the scaconf server.

-mstdin <proc> Distribute stdin to mpi-process(es).
<proc>: all (default), none, or mpi-process number(s).

-part <part> Use nodes from partition <part>



Chapter 2 Using ScaMPI 

18 Scali Library User’s Guide Version 3.0

Table 2-7: mpirun options

-q Keep quiet, no mpimon printout.

-t test mode, no mpi program is started

<params> Parameters not recognized are passed on to mpimon.

mpirun option Description



2.4 Useful tools

Scali Library User’s Guide Version 3.0 19

2.4 Useful tools
Debugging with a separate debugging session for each mpi-process requires no parallel 
debugger. However, debugging several mpi-processes in separate debugging sessions, 
may become a time consuming and tedious task.

2.4.1 Debugging with a sequential debugger

ScaMPI applications can be debugged using a sequential debugger. By default, the 
GNU debugger gdb is invoked by mpimon. If another debugger is to be used, specify 
the debugger using the mpimon option -debugger <debugger>.

To set debug-mode for one or more mpi-processes, specify the mpi-process(es) to debug 
using the mpimon option -debug <select>. In addition, note that the mpimon option 
-display <display> should be used to set the display for the xterm terminal 
emulator. An xterm terminal emulator, and one debugger, is started for each of the 
mpi-processes being debugged.

For example, to debug two mpi-processes with rank 0 and 1 using the default gdb 
debugger:

mpimon -display my_pc:0.0 -debug 0,1 <program & node spec>

Initially, for both mpi-process 0 and mpi-process 1, an xterm window is opened. Next, 
in the upper left hand corner of each xterm window, a message containing the 
application program’s run parameter(s) is displayed. Typically, the first line reads 
Run parameters: run <programoptions>. The information following the colon, i.e., 
run <programoptions> is needed by both the debugger and the ScaMPI application 
being debugged. Finally, one debugger is started for each session. In each debugger’s 
xterm window, do whatever debugging action that is appropriate before the mpi-
process is started. Then, when ready to run the mpi-process, paste the run 
<programoptions> into the debugger to start running.

2.4.2 Useful built-in-tools for debugging

2.4.2.1 Using built-in segment protect violation handler

If you have an application that terminates with a SIGSEGV-signal it is often useful to 
be able to freeze the situation instead of exiting which is normal behaviour. The built-
in SIGSEGV-handler can be made to do this by defining the environment-variable 
SCAMPI_INSTALL_SIGSEGV_HANDLER. Legal option are:
1 The handler dump all registers and start looping. Attaching with a debugger will 

then give the possibility to examine the situation giving the segment protect 
violation. 



Chapter 2 Using ScaMPI 

20 Scali Library User’s Guide Version 3.0

2 the handler dump of registers but all processes will exit afterwards.
All other values will disable the installation of the handler.

2.4.2.2 Using built-in sanity-check of data.

If you are unsure of the quality of you SCI-network is nice to be able to run ScaMPI 
with extra sanity-checking of data. This is a slower mode where we make a checksum 
of all data both at the sender and the receiver and compare. This mode is controlled by 
the environment-variable SCAMPI_DATACHECK_ENABLE and has the following 
options:
1  when error is detected report and loop
2  when error is detected report and exit
All other value disables the sanity check.

2.4.3 Profiling ScaMPI applications

When developing MPI programs it is difficult to do performance analysis.
There are different tools available that can be useful in detecting / analysing 
performance bottlenecks:
• ScaMPI has built-in proprietary trace and profiling tools
• Freeware that uses the standard MPI profiling interface such as MPE which is 

developed by the MPICH-implementors. It is part of a MPICH-distribution and 
we have also made it available as a part of ScaMPI-distribution

• Commercial tools that collect information during a run and postprocesses and 
presents afterwards. One example of this is Vampir from Pallas GmbH.
See http://www.pallas.de for more information.

The main difference between these tools is that the ScaMPI tools can be used with an 
existing binary while the other tools require reloading with extra libraries.

2.4.3.1 Using ScaMPI built-in trace 

To use built-in trace-facility you need to set the environment-variable 
SCAMPI_TRACE specifying what options you want to apply. The following options can 
be specified: (<...-list> is a semicolon-separated list of Posix-regular-expressions.)

Name Description

-b Trace beginning and end of each MPI_call

-s <seconds> Start trace after <seconds> seconds

-S <seconds> End trace after <seconds> seconds

Table 2-8: Options for SCAMPI_TRACE



2.4 Useful tools

Scali Library User’s Guide Version 3.0 21

By default only one line is written per MPI-call. The "-b" option is useful when trying 
to pinpoint what MPI-call that are started but not completed (deadlocks). The "-s/-S/-
c/-C" -options are nice to have if you have an application that runs ok for a longer 
period and then stop or if you want to have a closer look at some part of the execution 
of the application.
From time to time it is feasible to trace only one or a few of the processes. Specifying 
the "-p" options allows you to pick the processes you want to trace. 
All MPI-calls are enabled for tracing by default. If you want to look only on a few calls 
you could do that by specifying a "-t <call-list>" option or if you want to exclude some 
call you add a "-x <call-list>" option. The "-t" will disable all tracing and then enable 
those calls that matches the <call-list>. The matching is done using "regular-posix-
expression"-syntax. "-x" will to the opposite; First enable all tracing and then disable 
those call matching <call-list>. 
Examples: 
"-t MPI_Irecv" : Trace only immediate recv (MPI_Irecv)  
"-t isend;irecv;wait" :Trace only MPI_Isend, MPI_Irecv and MPI_Wait  
"-t MPI_[b,r,s]*send" : Trace only send-calls (MPI_Send, MPI_Bsend, MPI_Rsend, 
MPI_Ssend)
"-t i[a-z]*" : Trace only calls beginning with MPI_I
As you can see calls can be specified with or without the "MPI_"-prefix. You can also 
use upper- or lower-case when specifying calls. The default format of the output has 
the following parts: 
<absRank>: <MPIcall><commName>_<rank><call-dependant-parameters> 
where 

-c <calls> Start trace after <calls>MPI_calls

-C <calls> End trace after <calls>MPI_calls

-p <selection> Enable for process(es): 'n,m,o..' = (list) or 'n-m' = (range) or 'all'

-t <call-list> Enable for MPI_calls in <call-list>. 
MPI_call = 'MPI_call' | 'call'

-x <call-list> Disable for MPI_calls in <call-list>. 
MPI_call = 'MPI_call' | 'call'

-f <format-list> Define format: 'timing', 'arguments', 'rate'

-v Verbose

-h Print this list of options

Name Description

Table 2-8: Options for SCAMPI_TRACE



Chapter 2 Using ScaMPI 

22 Scali Library User’s Guide Version 3.0

This format can be extended by using the "-f"-option. Adding "-f arguments" will give 
some more information concerning length of messages. If "-f timing" is given you get 
some timing-info between the <absRank>and <MPIcall>-fields. It has the following 
format: 
+<relSecs> S <eTime> 
where 
"-f rate" will add some rate-information. The rate is calculated by dividing the number-

of-bytes transferred by the elapsed time to execute the call. All parameters to -f can be 
abbreviated and can occur in any mix. 
The verbose-option(-v) will print information about which options you have selected. 

Normally you will not get any error-messages concerning the options you have given. 
But if you add -verbose as command-line option to mpimon, errors will be printed. 

Rate-measurements on Alpha-processors will be inaccurate due to low-resolution-
timers. 

Field Description

<absRank> is rank within MPI_COMM_WORLD

<MPIcall> is name of MPI-call

<commName> is name of communicator

<rank> is rank within communicator used

Table 2-9: Fields in output from built-in trace

Name Description

<relSecs> is elapsed time in seconds since returning to the application 
from MPI_Init

<eTime> is elapsed execution time for current call

Table 2-10: Timespec in output from built-in trace



2.4 Useful tools

Scali Library User’s Guide Version 3.0 23

2.4.3.2 Using ScaMPI built-in timing

To use the built-in timing you need to set the environment variable SCAMPI_TIMING 
specifying what options you want to apply. 
The following options can be specified: 
(<...-list> is a semicolon-separated list of Posix-regular-expressions.) 

Printing of timing-information can be either at a fixed time-interval if you specify "-s 
<seconds>" or for a fixed number-of-calls-interval if you use "-c <calls>". You can also 
get output after specific MPI-calls if using "-f <call-list>"; See above for details how to 
write <call-list>.
The output has two parts; First a timing-part followed by a buffer-statistics-part. The 
first part has the following layout: 
All lines starts with <rank>: where <rank>: is rank within MPI_COMM_WORLD. 
This part is included to facilitate separation of output (grep). 
The rest of the format has the following fields: 
<MPIcall><Dcalls><Dtime><Dfreq> <Tcalls><Ttime><Tfreq> 
where 

Name Description

-s <seconds> Print for intervals of <seconds>seconds

-c <calls> Print for intervals of <calls>MPI_calls

-p <selection> Enable for process(es) 'n,m,o..' = (list) or 'n-m' = (range) or 'all'

-f <call-list> Print after MPI_calls in <call-list>: MPI_call = 'MPI_call' | 
'call'

-v Verbose

-h Print this list of options

Table 2-11: Options for SCAMPI_TIMING

Name Description

<MPIcall> is name of MPI-call

<Dcalls> is number of calls to <MPIcall> since last printout 

<Dtime> is sum of execution-time for calls to <MPIcall> since last 
printout

Table 2-12: Fields in output from built-in timing



Chapter 2 Using ScaMPI 

24 Scali Library User’s Guide Version 3.0

After all detail-lines (one per MPI-call which has been called since last printout), there 
will be a line with the sum for all calls followed by a line giving the overhead 
introduced when obtaining the timing-measurements. 
The second part containing the buffer-statistics has two types of lines; one for receives 
and one for sends. 
"Receive-lines" has the following fields: 
<Comm><rank> recv from <from>(<worldFrom>):<commonFields>
where

<Dfreq> is average time-per-call for calls to <MPIcall> since last print-
out 

<Tcalls> is number of calls to <MPIcall>

<Ttime> is sum of execution-time for calls to <MPIcall>

<Tfreq> is average time-per-call for calls to <MPIcall>

Name Description

<Comm> is communicator being used

<rank> is rank within <Comm>

<from> is rank within <Comm>

<worldFrom> is rank within MPI_COMM_WORLD

Table 2-13: Fields in”recv”-lines from built-in timing

Name Description

Table 2-12: Fields in output from built-in timing



2.4 Useful tools

Scali Library User’s Guide Version 3.0 25

"Send-lines" has the following fields: 
<Comm><rank> send to <to>(<worldTo>):<commonFields> 
where 

The <commonFields> are as follows: 
!<count>!<avrLen>!<zroLen>!<inline>!<eager>!<transporter>! 
where 

For more details on the different mechanisms, see "ScaMPI Description". 

Timing-measurements on Alpha-processors will be inaccurate due to low-resolution-
timers. 

Name Description

<Comm> is communicator being used

<rank> is rank within <Comm>

<to> is rank within <Comm>

<worldTo> is rank within MPI_COMM_WORLD

Table 2-14: Fields in”send”-lines from built-in timing

Name Description

<count> is number of sends/receives

<avrLen> is average length of messages in bytes

<zroLen> is number of messages sent/received using zero-bytes-mecha-
nism

<inline> is number of messages sent/received using inline-mechanism

<eager> is number of messages sent/received using eagerbuffer-mecha-
nism

<transporter> is number of messages sent/received using transporter-mecha-
nism

Table 2-15: Common filelds in output from built-in timing



Chapter 2 Using ScaMPI 

26 Scali Library User’s Guide Version 3.0

2.4.3.3 Using ScaMPI built-in cpu-usage

To use built-in cpu-usage-timing you need to set the environment variable 
SCAMPI_CPU_USAGE. 
The information displayed is collected with the system-call "times"; see man-pages for 
more information. 
The output has two different blocks. The first block contains cpu-usage by the 
submonitors on the different nodes. One line is printed for each submonitor followed 
by a sum-line and an average-line. The second block consists of one line per process 
followed by a sum-line and an average-line. 

2.4.4 Profiling with ScaMPE

The ScaMPE libraries are adapted versions of the MPE libraries from MPICH [10]. An 
executable program linked with one of the ScaMPE libraries libtmpi, liblmpi or 
libampi collects performance data during runtime. Normally, the libraries are 
installed in the directory /opt/scali/contrib/lib, and the upshot tool, described 
below, is installed in /opt/scali/contrib/bin.

The main components of ScaMPE are:
• A set of routines for creating logfiles for examination by the visualization tool 

upshot.
• Trace or real time animation of MPI calls.
• A shared display parallel X graphics library.

2.4.4.1 Linking an ScaMPI application

Profiling using one of the ScaMPE libraries is achieved by linking with the appropriate 
ScaMPE library before the standard ScaMPI library libmpi.

• Trace MPI calls - library libtmpi
To trace all MPI calls, apply -ltmpi. Each MPI call is preceded by a line that 
contains the rank in MPI_COMM_WORLD of the calling process, and followed by 
another line indicating that the call has completed. Most send and receive 
routines also indicate the values of count, tag, and partner (destination for sends, 
source for receives). Output is to standard output stdout.

• Generate log file - library liblmpi
To generate an upshot style log file of all MPI calls, apply -llmpi. When the 
application is about to finish, an information message is printed to stdout, and 
the trace data is written to a log file for post-processing. The name of the log file, 
with suffix .alog, is created based on the argument provided in argv[0]. Note that 
when an application program is started, ScaMPI is modifying argv[0], as 
described in section 2.3. However, the log file name is always created as 
executablename-<ScaMPI postfix>.alog. For example, if the program being 



2.4 Useful tools

Scali Library User’s Guide Version 3.0 27

profiled is sendrecv, the generated log file is sendrecv-<ScaMPI 
postfix>.alog.

• Real time animation - library libampi
To produce a real-time animation of the program, apply -lampi -lmpe -lm -lX11. 
Note that this requires the MPE graphics in libmpe, and that X11 Window 
System operations are used. To link the X11 libraries (libX11), it may be 
necessary to provide a specific path for the libraries. In addition, note that to 
resolve some mathematics references used, the standard library libm must be 
included in the link command line. For a description of the MPE graphic 
routines, see the MPICH documentation [10].

Notes for Fortran users
For a Fortran program, it is necessary to include the Fortran wrapper library libfmpi 
ahead of the profiling libraries. This allows C routines to be used for implementing the 
profiling libraries for use by both C and Fortran programs. For example, to generate 
an upshot style log file in a Fortran program, the libraries are included in the order -
lfmpi -llmpi -lm.

2.4.4.2 Examine the generated log file - upshot

To examine a log file generated using liblmpi, the parallel program visualization tool 
upshot can be used to analyse the program performance. Note that upshot uses the 
environment variable $DISPLAY to select the display to use.

Start the visualization tool:

/opt/scali/contrib/bin/upshot

When started, browse and select the appropriate log file to be analysed. For more 
information, see the document named README_UPSHOT in the directory 
/opt/scali/contrib/doc/ScaMPE.

If upshot is not available, any other visualization tool, e.g., nupshot, that 
understands the log file format can be used instead. For more information, see the 
MPICH documentation [10].



Chapter 2 Using ScaMPI 

28 Scali Library User’s Guide Version 3.0

2.5 An example program
When the ScaMPItst package has been installed, the source code and the executable 
code, for both the hello-world example program and a number of test programs, are 
located under the /opt/scali/examples/src and the /opt/scali/examples/bin 
directories. A description of each program in the package can be found in the README 
file, located in the /opt/scali/doc/ScaMPItst directory.

As examples, the MPI program named hello-world is used. It exists as a C program 
in the file hello-world.c, and as a Fortran program in the file hello-world.f. They are 
compiled and linked using GNU compilers. Before compilation, it is assumed that the 
BASH shell environment variable has been properly defined. In addition, ScaMPI 
must have been installed and function correctly. 

2.5.1 Hello-world.c - source in C

#include <stdio.h>
#include “mpi.h”

void main(int argc, char** argv)
{

int rank;
int size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf(“Hello-world, I'm rank %d; Size is %d\n”, rank, size);
MPI_Finalize();

2.5.2 Hello-world.f - source in Fortran

program hello_world
     
implicit none
include 'mpif.h'
integer rank,size,ierr

call mpi_init(ierr);
call mpi_comm_rank(MPI_COMM_WORLD,rank,ierr);
call mpi_comm_size(MPI_COMM_WORLD,size,ierr);
write (*,'(A,I3,A,I3)') "Hello-world, I'm rank ",rank,
& “; Size is “,size
call mpi_finalize(ierr);
end



2.6 MPI test programs

Scali Library User’s Guide Version 3.0 29

2.5.3 Compiling

% gcc -c -D_REENTRANT -I$MPI_HOME/include hello-world.c
% g77 -c -D_REENTRANT -I$MPI_HOME/include hello-world.f

2.5.4 Linking
% gcc hello-world.o -L$MPI_HOME/lib -lmpi -o hello-world
% g77 hello-world.o -L$MPI_HOME/lib -lfmpi -lmpi -o hello-world

2.5.5 Running

Start the hello-world program on the 3 nodes named nodeA, nodeB and nodeC.

% mpimon hello-world -- nodeA 1 nodeB 1 nodeC 1

The hello-world program should produce the following output:

Hello-world, I'm rank 0; Size is 3
Hello-world, I'm rank 1; Size is 3
Hello-world, I'm rank 2; Size is 3

2.6 MPI test programs
The ScaMPItst package contains a collection of MPI test programs for ScaMPI. The 
following sections give a brief description of some of the test programs, which can be 
used to measure basic MPI performance. To re-compile any of the test programs, you 
may use the included Makefile found in the appropriate /opt/scali/examples/src 
directory. 

2.6.1 Producer - a producer-consumer MPI test program

Producer is a simple producer-consumer program. Mpi-processes with rank 0, 1, 2, 
..., n/2-1 send data while mpi-process n/2, n/2+1, ...,n-1 receive data. Mpi-process 0 will 
send to mpi-process n-1, mpi-process 1 will send to mpi-process n-2, and so on.

The producer program parameters are:
-l i    i is the loop count.
-n j j is the number of bytes to transfer for each send operation.

As a first test, run producer between any pair of two nodes, nodeX and nodeY:

% mpimon producer -l 1 -n 1024 -- nodeX nodeY



Chapter 2 Using ScaMPI 

30 Scali Library User’s Guide Version 3.0

A single mpi-process is started on each node, and a single message of size 1024 bytes 
are transferred from the mpi-process on nodeX to the mpi-process on nodeY. The 
program should return TEST COMPLETE.

Repeat the test for all pairs of nodes. N is the number of nodes (must be an even 
number for this test). 

% mpimon producer -l 1 -n 1024 -- <node1> <node2>...<nodeN>

The program should return TEST COMPLETE.

2.6.2 Bandwidth - a bandwidth MPI test program

Bandwidth is a program to measure bandwidth for various message sizes between 
two mpi-processes. First one-way bandwidth and the latency for a zero byte message 
are measured, then the ping-pong (two-way) bandwidth and latency are measured.

Measure the bandwidth between any pair of nodes, nodeX and nodeY, by running:

% mpimon bandwidth -- nodeX nodeY

2.6.3 Bidirect - a bidirectional MPI test program.

Bidirect tests uni- and bi-directional traffic between a given number of nodes. 

The program may be run between two nodes, nodeX and nodeY, using the 
run_bidirect script as:

% run_bidirect nodeX nodeY

or between a given set of nodes, nodeX nodeY... nodeZ, using another script as:

% run_permutated_bidirect nodeX nodeY... nodeZ

The run_permutated_bidirect script will test uni- and bi-directional traffic between 
all permutations of node combinations.



Scali Library User’s Guide Version 3.0 31

Chapter 3 Description of ScaMPI

3.1 General description
ScaMPI consists of libraries to be linked and loaded with the user application 
program(s) and a set of executables which control the start-up and execution of the 
user application program(s). 

3.1.1 ScaMPI libraries

3.1.2 ScaMPI executables

A number of executable programs are included in ScaMPI.

3.1.2.1 mpimon - monitor program

mpimon is a monitor program which is the user’s interface for running the application 
program.

3.1.2.2 mpisubmon - submonitor program

mpisubmon is a submonitor program which controls the execution of application 
programs. One submonitor program is started on each node per run.

3.1.2.3 mpiboot - bootstrap program

mpiboot is a bootstrap program used when running in manual-/debug-mode.

3.1.2.4 mpid - daemon program

mpid is a daemon program running on all nodes that can run ScaMPI. mpid is used 
for starting the mpisubmon programs (to avoid using Unix facilities like the remote 
shell rsh). mpid is started automatically when a node boots, and must run at all 
times.

Name Description

libmpi Standard library containing the C API.

libfmpi Library containing the Fortran API wrappers.

Table 3-1: Libraries



Chapter 3 Description of ScaMPI 

32 Scali Library User’s Guide Version 3.0

3.2 Starting ScaMPI application programs
ScaMPI uses socket communication for control purposes. Schematically, start-up of 
application programs in a Scali System is performed as described in the following 
sections.

3.2.1 Application start-up - phase 1

• Parameter control.
mpimon does as much control of the specified options and parameters as possible. 

The userprogram names are checked for validity, and the nodes are, using 
sockets, contacted to ensure they are responding and that mpid is running.

• Connecting to nodes.
mpimon establishes a connection to the mpid daemon on each node specified, and 

transfers basic information to enable the daemon to start the submonitor 
mpisubmon.

Figure 3-1: Application start-up - phase 1

3.2.2 Application start-up - phase 2

• Starting submonitors.
On each node, mpid starts the submonitor mpisubmon.
• Transferring control information.
Each submonitor establishes a connection to mpimon. Control information are 

exchanged between each mpisubmon and mpimon to enable mpisubmon to 
start the specified userprograms (mpi-processes).

• Creating shared memory
On each node, mpisubmon creates memory segments to be shared between the 

interconnected nodes.

mpimon

node

mpid

node

mpid

node

mpid



3.2 Starting ScaMPI application programs

Scali Library User’s Guide Version 3.0 33

Figure 3-2: Application start-up - phase 2

3.2.3 Application start-up - phase 3

• Starting mpi-processes. 
On each node, mpisubmon starts all the mpi-processes to be executed. Processes 

start and enter MPI_Init().
• Mpi-processes synchronize.
Upon receipt of all control information, the processes will via the local mpisubmon 

inform mpimon that they are ready to run. When all processes are ready, 
mpimon will return a ‘start running’ message to all the processes.

• MPI-processes return from MPI_Init() and start to run.
The user program(s) takes control.

mpimon

mpisubmon

node node node

mpid

mpisubmon

mpid

mpisubmon

mpid



Chapter 3 Description of ScaMPI 

34 Scali Library User’s Guide Version 3.0

Figure 3-3: Application start-up - phase 3

3.3 Stopping ScaMPI application programs
Termination of application programs in a Scali System are performed as outlined 
below. 
• Mpi-processes enters MPI_Finalize().
Each process signals, via its local mbisubmon, to mpimon that it has entered 

MPI_Finalize(), and it is now waiting.
• Mpi-processes synchronize
Processes wait for an “all stopped message” from mpimon. The message is 

transmitted via mpisubmon when all processes are waiting in MPI_Finalize().
• Mpi-processes leave MPI_Finalize().
Processes terminate, each mpisubmon releases shared memory segments and exits, 

and finally mpimon terminates.

mpimon

mpisubmon

process
process

process
process

process
mpi-process

node node node

mpisubmon

process
process

process
process

process
mpi-process

mpisubmon

process
process

process
process

process
mpi-process



3.4 Communication protocols

Scali Library User’s Guide Version 3.0 35

3.4 Communication protocols
In ScaMPI, the communication protocol (inlining, eagerbuffering, transporter) used to 
transfer data between a sender and a receiver depends on the size of the message to 
transmit, see figure below.

Figure 3-4: Thresholds for different communication protocols

The various communication protocols used, are briefly outlined in the following 
sections.

Transporter protocol

Eagerbuffering 
protocol

Inlining protocol

Increasing
message size



Chapter 3 Description of ScaMPI 

36 Scali Library User’s Guide Version 3.0

3.4.1 Inlining protocol

The inlining protocol is used when small messages are to be transferred.

Figure 3-5: Inlining protocol

When the inlining protocol is used, the application’s data is included in the message 
header. The inlining protocol utilizes one or more channel ringbuffer entries. The 
actual threshold for the inlining protocol can be set as described in section 3.5.1. 

The inlining protocol is selected when:
0 <= message size <= channel_inline_threshold.

ReceiverSender

Header ringbuffer (Channel)



3.4 Communication protocols

Scali Library User’s Guide Version 3.0 37

3.4.2 Eagerbuffering protocol

The eagerbuffering protocol is used when medium size messages are to be transferred. 

Figure 3-6: Eagerbuffering protocol

The protocol uses a scheme where the buffer resources, being allocated by the sender, 
are released by the receiver, without any explicit communication between the two 
communicating partners.

The eagerbuffering protocol utilizes one channel ringbuffer entry for the message 
header, and one eagerbuffer for the application data being sent. 

The eagerbuffering protocol is selected when:
channel_inline_threshold < message size <= eager_size.

ReceiverSender

Header ringbuffer (Channel)

EagerBuffer pool



Chapter 3 Description of ScaMPI 

38 Scali Library User’s Guide Version 3.0

3.4.3 Transporter protocol

The transporter protocol is used when large messages are to be transferred.

Figure 3-7: Transporter protocol

Initially (step 1), the protocol only transmits the message header. Once the receiver is 
ready to accept data (step 2), the sender is informed. Finally (step 3), the application’s 
data is transferred from the sender to the recipient in the transporter ringbuffer.

The transporter protocol utilizes one channel ringbuffer entry for the message header, 
and transporter buffers for the application data being sent. The transporter protocol 
provides for fragmentation and reassembly of large messages, if necessary, for 
messages whose size is larger than the size of the transporter ringbuffer-entry 
(transporter_size).

The transporter protocol is selected when:
message size > eager_size.

ReceiverSender

Transporter ringbuffer

ReceiverSender

Transporter selection field

ReceiverSender

Step 2:

Step 1:

Step 3:

Header ringbuffer (Channel)



3.5 Communication resources

Scali Library User’s Guide Version 3.0 39

3.5 Communication resources
All resources (buffers) used by ScaMPI reside in shared memory, and are allocated by 
mpisubmon on demand from the sender mpi-process. ScaMPI uses a on demand 
scheme for allocating resources. On demand means that buffers are not allocated until 
needed. To get a list of the resource settings, pass the -verbose option to mpimon.

mpisubmon operates on two separate buffer pools suitable for sharing - both pools in 
shared memory. One pool (local shared memory) provides resources for intra-node 
communication, and the other pool (SCI shared memory) provides resources for inter-
node communication. The size of each buffer pool, and the size of each chunk may be 
set using options to mpimon. The pool size limits the total amount of shared memory, 
and the chunk size limits the maximum block of memory that can be allocated as a 
single buffer. 
To set the pool size and the chunk size limits, use mpimon and specify:

-intra_pool_size <size> to set the buffer pool size for intra-node 
communication

-intra_chunk_size <size> to set the chunk size for intra-node 
communication

-inter_pool_size <size> to set the buffer pool size for inter-node 
communication

-inter_chunk_size <size> to set the chunk size for inter-node 
communication

Sections 3.5.1 - 3.5.3 outlines the various types of resources (channel, eagerbuffer, 
transporter) being used, and lists the mpimon options used to enforce specific 
buffering. However, it is normally not necessary to set the buffer parameters. 
Automatic buffer management is performed by ScaMPI, as described in the ‘automatic 
buffer management’ section.



Chapter 3 Description of ScaMPI 

40 Scali Library User’s Guide Version 3.0

3.5.1 Channel buffer

For a sender-receiver pair, one channel ringbuffer is used for each communicator.

Figure 3-8: Channel resource

The ringbuffer is divided into equally sized entries. The size varies differs for different 
architectures/SCI-hardware; see “ScaMPI release notes” for details. An entry in the 
ringbuffer, which is used to hold the information forming the message envelope, is 
reserved each time a message is being sent, and is utilized by both the inline protocol, 
the eagerbuffering protocol, and the transporter protocol. In addition, one ore more 
entries are utilized by the inline protocol for application data being transmitted.

To force the channel resource definitions, use mpimon and specify:
-intra_channel_size <size> to set the ringbuffer size (in bytes) per 

intra-channel
-inter_channel_size <size> to set the ringbuffer size (in bytes) per 

inter-channel

To set the channel threshold definitions, use mpimon and specify:
-intra_channel_inline_threshold <size> to set threshold for inlining per intra-

channel
-inter_channel_inline_threshold <size> to set threshold for inlining per inter-

channel

Receiver

Channel

Sender
Ringbuffer

Channel

Ringbuffer
Channel

Ringbuffer
Channel

Ringbuffer
Channel

(5 communicators)

Ringbuffer



3.5 Communication resources

Scali Library User’s Guide Version 3.0 41

3.5.2 Eagerbuffer buffer

For a sender-receiver pair, one, and only one, eagerbuffer buffer is used.

Figure 3-9: Eagerbuffer buffer

An eagerbuffer buffer is allocated when medium size messages are to be transferred, 
and is utilized by the eagerbuffering protocol.

To change the eagerbuffer resource definitions, use mpimon and specify:

-intra_eager_size <size> to set the buffer size (in bytes) for intra-node 
communication

-intra_eager_count <count> to set number of buffers for intra-node 
communication

-inter_eager_size <size> to set the buffer size (in bytes) for inter-node 
communication

-inter_eager_count <count> to set number of buffers for inter-node 
communication

ReceiverSender
Eagerbuffer

Usedflags



Chapter 3 Description of ScaMPI 

42 Scali Library User’s Guide Version 3.0

3.5.3 Transporter buffer

For a sender-receiver pair, one, and only one, transporter buffer set is used.

Figure 3-10: Transporter buffer

A transporter buffer is allocated when large messages are to be transferred, and is 
utilized by the transporter protocol. The buffer consists of equally sized entries 
arranged as a ringbuffer.

To change the transporter resource definitions, use mpimon and specify:

-intra_transporter_size <size> to set the bufferentry size (in bytes) for 
intra-node communication

-intra_transporter_count <count> to set number of entries in buffer for intra-
node communication

-inter_transporter_size <size> to set the bufferentry size (in bytes) for inter-
node communication

-inter_transporter_count <count> to set number of entries in buffer for inter-
node communication

Receiver

Transporter

Sender

Selection

Ringbuffer



Scali Library User’s Guide Version 3.0 43

Chapter 4  Tips & Tricks for ScaMPI

This chapter is the place to start when something seems to go wrong running your 
ScaMPI programs. If you have any problems with ScaMPI, first check the (not yet 
complete) list of common errors and their solutions. An updated list of ScaMPI 
Frequently Asked Questions are posted in the Support section at 
http://www.scali.com. If you cannot find a solution to the problem(s), please read 
this chapter before contacting support@scali.com.

Currently, the following sections are by no means complete. Problems reported to Scali 
will eventually be included in appropriate sections. Thus, please send your relevant 
remarks by e-mail to support@scali.com.

4.1 Application program notes

4.1.1 MPI_Probe() and MPI_Recv()

During development and test of ScaMPI, we have run into several application 
programs with the following code sequence:

while (...) {
MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, comm, sts);
if (sts->MPI_TAG == SOME_VALUE) {

MPI_Recv(buf, cnt, dtype, MPI_ANY_SOURCE,
MPI_ANY_TAG, comm, sts);

doStuff();
}
doOtherStuff();

}

For MPI implementations that have one, and only one, receive-queue for all senders, 
the program’s code sequence works ok. However, the code will not work as expected 
with ScaMPI. ScaMPI utilizes one receive-queue per sender (inside each mpi-process). 
Thus, a message from one sender can bypass the message from another sender. In the 
time-gap between the completion of MPI_Probe() and before MPI_Recv() matches a 
message, another new message from a different mpi-process could arrive, i.e., it is not 
certain that the message found by MPI_Probe() is identical to one that MPI_Recv() 
matches.



Chapter 4 Tips & Tricks for ScaMPI 

44 Scali Library User’s Guide Version 3.0

To make the program work as expected, the code sequence should be corrected to:

while (...) {
MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, comm, sts);
if (sts->MPI_TAG == SOME_VALUE) {

MPI_Recv(buf, cnt, dtype, sts->MPI_SOURCE,
sts->MPI_TAG, comm, sts);

doStuff();
}
doOtherStuff();

}

4.1.2 Unsafe MPI programs

Because of different buffering behaviour, some programs may run with MPICH, but 
not with ScaMPI. Unsafe MPI programs may require resources that are not always 
guaranteed by ScaMPI, and deadlock might occur (since ScaMPI use spinlocks, these 
might seem to be livelocks). If you want to know more about how to write portable MPI 
programs, see for example [2].

A typical example that will not work with ScaMPI (for long messages):

while (...) {
MPI_Send(buf, cnt, dtype, partner, tag, comm);
MPI_Recv(buf, cnt, dtype, MPI_ANY_SOURCE,

MPI_ANY_TAG, comm, sts);
doStuff();

}

To get this example to work with ScaMPI, the MPI_Send() must either be replaced by 
using MPI_Isend() and MPI_Wait(), or the whole construction should be replaced 
using MPI_Sendrecv() or MPI_Sendrecv_replace().

4.2 Namespace pollution
The ScaMPI library, being written in C++, have all its class names prefixed with 
MPI_. Depending on the compiler used, the user may run into problems if he/she has 
C++ code using the same prefix MPI_. In addition, there exist a few global variables 
that could cause problems. All these functions and variables are listed in the include 
files mpi.h and mpif.h. Normally, these files are installed in /opt/scali/include.



4.3 Error and warning messages

Scali Library User’s Guide Version 3.0 45

Due to the fact that ScaMPI doesn’t have fixed its OS routines to specific libraries, it 
will be good programming practise to avoid using OS functions as application function 
names. Naming routines or global variables as send, recv, open, close, yield, 
internal_error, failure, service or other OS reserved names may result in an 
unpredictable and undesirable behaviour.

4.3 Error and warning messages

4.3.1 User interface errors and warnings

User interface errors are problems with the environment setup causing difficulties for 
mpimon when starting a ScaMPI program. mpimon will not start before the 
environment is properly defined. These problems are usually easy to fix, by giving 
mpimon the correct location of some executable. The error message provides a 
straight forward indication of what to do. Thus, only particularly troublesome user 
interface errors will be listed here.

Using the -verbose option enables mpimon to print more warnings. 

4.3.2 Fatal errors

Upon a fatal error, ScaMPI prints an error message before calling MPI_Abort() to 
shut down all mpi-processes.

4.4 When things don’t work - troubleshooting
This section is meant as a starting point to help debugging. The main focus is on 
locating and repairing faulty hardware and software setup, but can also be helpful in 
getting started after installing a new system. For a description of the Scali Universe 
GUI, see the Scali System Guide [4]. 

4.4.1 Standard input and ScaMPI

The -stdin option specifies which mpi-process rank should receive the input. You can 
in fact send stdin to all the mpi-processes with the all argument, but this requires 
that all mpi-processes read the exact same amount of input. The most common way of 
doing it is to send all data on stdin to rank 0:
mpimon -stdin 0 myprogram -- node1 node2 ... < input_file
Note that default for -stdin is none.

4.4.2 Why doesn’t my program start to run?

� mpimon: command not found.
� Include /opt/scali/bin in the PATH environment variable.



Chapter 4 Tips & Tricks for ScaMPI 

46 Scali Library User’s Guide Version 3.0

� mpimon can’t find mpisubmon.
� Set MPI_HOME=/opt/scali or use the -execpath option.

� The application has problems loading libraries (libsca*).
� Update the LD_LIBRARY_PATH to include /opt/scali/lib.

� Incompatible mpi versions.
mpid, mpimon, mpisubmon and the libraries all have version variables that are 
checked at start-up. 
� Set the environment variable MPI_HOME correctly
� Restart mpid because a new version of ScaMPI is installed without restart of mpid
� Reinstall ScaMPI because a new version of ScaMPI was not cleanly installed on all 

nodes.

� Set workingdirectory failed
� ScaMPI assumes homogenous file-structure. If you start mpimon from a directory 

that is not available on all nodes you must set SCAMPI_WORKING_DIRECTORY 
to point to a directory that are available on all nodes.

� ScaMPI uses wrong interface for tcp-ip on frontend with more than one 
interface

� Set SCAMPI_NODENAME to hostname of correct interface.

� MPI_Wtime gives strange values
� ScaMPI uses a hardware-supported highprecision timer for MPI_Wtime. This 

timer can be disabled by SCAMPI_DISABLE_HPT=1

4.4.3 Why doesn’t mpid start

mpid opens a socket and assigns a predefined mpid port number, see /etc/services, to 
the end point. If mpid is terminated abnormally, the mpid port number cannot be re-
used until a system defined timer has expired.
� Use netstat -a | grep mpid to observe when the socket is released. When the 

socket is released, restart mpid again.

4.4.4 Interconnect problems

4.4.4.1 Routing

� The program terminates with an ICMS_NO_RESPONSE error message
This happens when one or more mpi-processes are unable to create a remote memory 
mapping to another node within a (long) period of time.
� Check if all relevant nodes are alive by issuing any command with scash, e.g., 

/opt/scali/bin/scash -p nodename. 



4.4 When things don’t work - troubleshooting

Scali Library User’s Guide Version 3.0 47

� Check if SCI network routing is properly set with /opt/scali/sbin/scaconftool 
(command: sciping OK), or use the Scali Universe GUI.

4.4.4.2 Bad clean up

� A previous ScaMPI run has not terminated properly.
� Check for mpi-processes on the nodes using /opt/scali/bin/scaps.
� Use /opt/scali/sbin/scidle 
� Use /opt/scali/bin/scash to check for leftover shared memory segments on all 

nodes (ipcs for Solaris and Linux).
Note that core dumping takes time...

4.4.4.3 Space overflow

� The application have required too much SCI or shared memory 
resources.

� Your mpimon pool-size specifications are too large.
� Number of communicators in the program is higher than expected when doing 

automatic buffer calculations. Since memory by default is allocated in large 
chunks, try to reduce the chunk-size parameter to mpimon
(use mpimon -verbose to get current buffer settings).

4.4.5 Why does my program terminate abnormally?

4.4.5.1 Core dump

� The application core dumps.
� Use a debugger to locate the point of violation. The application may need to be 

recompiled to include symbolic debug information (-g for most compilers).
� Define SCAMPI_INSTALL_SIGSEGV_HANDLER=1 and attach to the failing 

process with debugger.

4.4.5.2 SCI interconnect failures

� The program terminates with an ICMS_* message
� An SCI problem has occurred, find out more using the SCI diagnostics helper: 

/opt/scali/bin/sciemsg <error-code>. Reloading of SCI drivers and rerouting your 
system may be necessary. Contact your local System Administrator if assistance is 
needed. The interconnect diagnostic in the Scali Universe GUI and the SCI 
documentation in the Scali System Guide may help you locate the problem. 
Problems and fixes will be included in the FAQ on http://www.scali.com. If there 
is a SCI problem needing attention, please contact support@scali.com.

4.4.5.3 General problems

� Are you reasonable certain that your algorithms are MPI safe?
� Check if every send has a matching receive.



Chapter 4 Tips & Tricks for ScaMPI 

48 Scali Library User’s Guide Version 3.0

� The program just hangs
� Try starting the program with -init_comm_world specified; 

if it doesn’t start, there is a buffer allocation problem. Further information is 
available in the ‘How do I control SCI and local shared memory usage?’ section.

� If the application has a large degree of asynchronicity, try to increase the channel-
size. Further information is available in the ‘How do I control SCI and local shared 
memory usage?’ section. Are you really sure that your algorithms are MPI safe?

� The program terminates without an error message
� Investigate the core file, or rerun the program in a debugger.

4.4.6 How do I control SCI and local shared memory usage? 

� Adjusting ScaMPI buffer sizes
Note that forcing size parameters to mpimon is usually not necessary. This is only a 
means of optimising ScaMPI to a particular application, based on knowledge of 
communication patterns. For unsafe MPI programs it may be required to adjust 
buffering to allow the program to complete.

� How do I control SCI and local shared memory usage? 
The eager buffers are used for small messages, while the transporter buffers are 
used for handling large messages (larger than eager size).
The channel buffers is a send queue where each entry is 64 bytes, i.e.in a 8k buffer 
there is room for 128 outstanding requests. The function of the various buffers is 
outlined in section 3.5. All buffers are created when needed (i.e., when tried used for 
the first time), or at start up when -init_comm_world is specified.
The buffer space required by a communication channel is approximately: 
channel = (2 * channel-size * communicators)
       + (transporter-size * transporter-count) 
       + (eager-size       * eager-count)
       + 512 (give-or-take-a-few-bytes)

Note: Messages up to 560 bytes (the upper limit can be set using the option 
channel_inline_threshold <size> to mpimon) get inlined in the channel buffer. If 
you frequently use short messages, increasing the channel-size beyond 4k bytes might 
be a good idea.

4.4.6.1 Automatic buffer management 

The communicators parameter depends on the application (assumed to be two in the 
automatic approach). If more communicators than expected by the buffer size 
calculations are used, the application may run out of shared memory. To overcome 
this, reduce the chunk-size.
The pool-size is a limit for the total amount of shared memory. 



4.5 How to optimize MPI performance

Scali Library User’s Guide Version 3.0 49

The automatic buffer size computations is based on a full connectivity, i.e., all 
communicating with all others. If all mpi-process P in a program communicate with all 
the other mpi-processes, each mpi-process will communicate with P_intra mpi-
processes intra node (it-self inclusive) and (P - P_intra) mpi-processes inter node. 
Given a total pool of memory dedicated to communication, each communication 
channel will be restricted to use a partition of only:
inter_partition = inter_pool_size / (P_intra*(P-P_intra))
intra_partition = intra_pool_size / (P_intra * P_intra)
The automatic approach is to downsize all buffers associated with a communication 
channel until it fits in its part of the pool. The chunk size sets the size of each 
individual allocated memory segment. The automatic chunk size is calculated to wrap 
a complete communication channel.

4.5 How to optimize MPI performance
There is no universal recipe for getting good performance out of a message passing 
program. Here are some do’s and don’t’s for ScaMPI. 

4.5.1 Performance analysis.

Learn about the performance behaviour of your MPI application on a Scali System by 
using a performance analysis tool. 
The freely available ScaMPE profiling library may be used with ScaMPI. For more 
information, please see section 2.4.3.

4.5.2 Using MPI_Isend(), MPI_Irecv().

If communication and calculations does not overlap, using immediate calls, e.g., 
MPI_Isend() and MPI_Irecv(), are usually performance ineffective.

4.5.3 Using MPI_Bsend().

Using buffered send, e.g., MPI_Bsend(), usually degrade performance significantly 
compared to their unbuffered relatives.

4.5.4 Avoid starving mpi-processes - fairness.

MPI programs may, if not special care is taken, be unfair and may starve mpi-
processes, e.g., by using MPI_Waitany() as illustrated for a client-server application 
in example 3.15 & 3.16 in the MPI 1.1 standard [1]. Fairness can be enforced, e.g., by 
use of several tags or separate communicators.



Chapter 4 Tips & Tricks for ScaMPI 

50 Scali Library User’s Guide Version 3.0

4.5.5 Using processor-power to poll.

ScaMPI is implemented using poll when waiting for communication to terminate. This 
is efficient when this period is short or if you don’t have anything else to use the 
processorpower for. In threaded application with irregular communication patterns 
you probably have other threads that could make use of the processor. In this case 
performance may increase if you enable the backoff-polling-strategy built into ScaMPI. 
It functions like this: After waiting a short period (idle time) we start backing off using 
systemcall nanosleep to release processor. The nanosleep period starts at a minimum 
and it doubles for each call until it reaches a maximum. It is controlled by a set of 
environment-variables:

SCAMPI_BACKOFF_ENABLE turns the mechanism on
SCAMPI_BACKOFF_IDLE =n defines idle-period to n ms

Default 20 ms
SCAMPI_BACKOFF_MIN = n defines minimum backoff-time in ms

Default 10 ms
SCAMPI_BACKOFF_MAX = n defines maximum backoff-time in ms

Default 100 ms

4.5.6 Communication buffer adaption

If the communication behaviour of the application is known, explicitly giving 
buffersize settings to mpimon to match the requirement of the application, will in most 
cases improve performance.
Example: Application sending only 900 bytes messages.
� Set channel-inline-threshold 964 (64 added for alignment) and increase the 

channel-size significantly (32-128 k).
Note: the channel-inline-threshold can not be increased beyond 1023.
� Setting eager-size 1k and eager-count high (16 or more). 
Note: If all messages can be buffered, the transporter-{size, count} can be set to low 
values to reduce shared memory consumption.

4.5.7 Reorder network traffic to avoid conflicts

Many-to-one communication may introduce bottlenecks.
Zero byte messages are low-cost. In a many-to-one communication, performance may 
improve if the receiver sends ready-to-receive tokens (in the shape of a zero-byte 
message) to the mpi-process wanting to send data.



4.6 Benchmarking

Scali Library User’s Guide Version 3.0 51

4.6 Benchmarking
Benchmarking is that part of performance evaluation that deals with the 
measurement and analysis of computer performance using various kinds of test 
programs. Benchmark figures should always be handled with special care when 
compared to similar results.

4.6.1 How to get expected performance

• Improving performance for short runs.
By default, communication buffers are allocated when requested the first time. To 
eliminate this startup time from your measurement either run a warm-up phase 
before doing the actual measurement or use the parameter -init_comm_world to 
mpimon to allocate communication buffers between all pairs of mpi-processes. 

• Caching the application program on the nodes.
For benchmarks with short execution time, total execution time may be reduced 
when running it repetitive. For large configurations, copying the application to the 
local file system on each node will reduce startup latency and improve disc 
bandwidth.

• The first iteration is (very) slow.
The mpi-processes in an application are not started simultaneously. Inserting an 
MPI_Barrier() before the timing loop will eliminate this. To reduce setup time 
after MPI_Init(), specify the parameter -init_comm_world to mpimon.

4.6.2 Memory consumption increase after warm-up

Remember that group operations (MPI_Comm_{create, dup, split}) may involve 
creating new communication buffers. If this is a problem, decrease the chunk-size as 
described in section 4.4. 



Chapter 4 Tips & Tricks for ScaMPI 

52 Scali Library User’s Guide Version 3.0



Scali Library User’s Guide Version 3.0 53

Chapter 5 ScaShmem

Scali's compatibility library for Cray/SGI ShMem.

5.1 Description
The Scali’s compatibility library covers most of the Cray/SGI ShMem application 
programmers interface (exceptions are listed in release-notes). The library is made to 
enable running of applications previously limited to Cray/SGI machines in a 
workstation environment. With the favourable price and availability of memory for 
workstations, memory intensive applications may in particular benefit from this 
library.

This implementation of Scali´s Cray/SGI ShMem compatibility library is layered on 
top of ScaMPI imposing some restrictions on the usage. The ShMem communication 
layer uses ScaMPI's thread-hot and -safe feature and creates an additional server 
thread to handle remote requests, i.e. a client- server architecture. For new 
applications it is therefore recommended to use ScaMPI as your communication 
library to utilize the full performance potential of Scali products.

5.2 Application porting to ScaShmem 
Using of the Shmem compatibility library means running on another architecture 
than the Cray/SGI machine which your application initially was made for. The size of 
data types on your Cray/SGI system and your cluster may differ; e.g. processors 
employed in the T3E are true 64 bit processor while x86 PCs are 32 bit, and changes 
may have to be made to the source code before it can run on your new architecture. 
Make sure that your ShMem code is tolerant to these differences.

Some examples of do & don't:

• the T3E <int> is 64 bit, all such variables must be replaced with <long long> on 
a 32 bit machine to operate with the same precision

• make consistent use of header files (shmem.h vs. shmem.fh)
• use portable maths when comparing with T3E (i.e. -Kieee -pc 64)
• enable flags related to the T3E implementation as the source code may support 

other architectures as well.
• Fortran code with careful declaration of variables' size (kind=4 etc according to 

Cray compiler practice) and corresponding naming of the shmem procedure calls 
simplifies the porting process



Chapter 5 ScaShmem 

54 Scali Library User’s Guide Version 3.0

• Zero initialization is not supplied by all Fortran and C compilers for 
workstations.

5.3 Features and limitations
Please refer to the ScaShMem release notes 
(/opt/scali/doc/ScaShMem/RELEASE_NOTES) for further details which may not have 
made it into this manual.

5.3.1 Communication initialization and termination

Since Cray/SGI ShMem does not have explicit start and stop function calls, the MPI 
and the server thread is started when the first call to a shmem_* function is performed.

5.3.1.1 Communication initialization

If your application has processes that rely on remote data before the corresponding 
process have performed a communication call, and the corresponding process have 
performed a communication call, you will have to either call the nonstandard function 
shmem_start() or do a shmem_barrier_all().

5.3.1.2 Communication termination

All application processes are stopped when the first process terminates. It is therefore 
recommended to end your application with a shmem_barrier_all(). Your application 
will terminate with messages aka

-- mpimon --- Aborting run after process-<n> terminated abnormally 
Childprocess <m> exited with exitcode 216 ---

5.3.2 Runtime requirements

Since we impose a client/server architecture we recommend having two processors per 
shmem process, i.e. one process per dual processor workstation. Running on single 
processor workstations will have serious negative impact on performance.

5.3.3 Datatypes / porting

The default data types size for put and get are 64 bit. Beware that integers for all 
architectures, and long's for x86, are 32 bit, or even better, use the shmem calls with 
specified size of data type.

5.3.4 Dynamic memory allocation

Unlike on a machine from SGI Inc. or Cray Inc., using standard Unix memory 
allocation to memory used in ShMem communication will not work. Dynamic memory 
visible to ShMem communication have to be allocated with one of the following:



5.4 Compiling and linking

Scali Library User’s Guide Version 3.0 55

void *shmalloc(size_t size);
void *shrealloc(void *ptr, size_t size);
void *shmemalign(size_t alignment, size_t size);

POINTER (addr, A(1))
INTEGER (length, errcode, abort)
CALL shpalloc(addr, length, errcode, abort);

Freeing ShMem capable memory must be done with:

void shfree(void *ptr);

No stack manipulation issues are implemented.

5.3.5 ScaShmem environment variables

The processes are allocated statically at startup. Standard Cray/SGI ShMem 
environment variables to control the placement of the ShMem application on the 
system are not recognized.

5.4 Compiling and linking
Fortran (be careful with your data size and initialization):

g77 -D_REENTRANT -I/opt/scali/include -c <options> appl.f
g77 -o appl appl.o -L/opt/scali/lib -lshmem -lfmpi -lmpi -lpthreads

C:

gcc -D_REENTRANT -I/opt/scali/include -c <options> appl.c
gcc -o appl appl.o -L/opt/scali/lib -lshmem -lfmpi -lmpi -lpthreads

Note: Libraries shall always come after the object files on the linkage line.



Chapter 5 ScaShmem 

56 Scali Library User’s Guide Version 3.0

5.5 Running your application
To run your application you may use shmemrun like this

/opt/scali/bin/shmemrun -np <number of nodes> -coherence 
<lazy/eager/automatic> appl <options>

For details run shmemrun -h.

If you prefer to use mpirun or mpimon please use the -shmem mpimon option (ScaMPI 
1.11.9 or newer).



Scali Library User’s Guide Version 3.0 57

Chapter 6 ScaIP - IP for SCI

This chapter describes the Scali Internet Protocol driver ScaIP.

Please note that the ScaIP release notes and other readable information are available 
in the /opt/scali/doc/ScaIP directory.

6.1 Introduction
The ScaIP package contains the kernel mode driver scip, which when it is loaded, 
exists as a kernel-resident Internet Protocol network interface (supporting the 'inet' 
address family).

When properly configured, the scip driver provides support for the upper layered 
module Linux IP to transmit and receive Internet datagram packets over SCI.

6.2 Simplified network model
The network architecture spans both the user-level and the kernel-level, as shown in 
"Figure 6-1: Simplified network model". The application layer is executed at the user-
level, and is utilizing the network services provided at the transport layer in the 
kernel. The most common predefined interface between the transport layer and the 
application layer is the Berkely socket interface. The transport layer protocols (e.g. 
TCP and UDP) use services offered by the network layer (IP) to send messages to a 
destination node and to receive messages from other nodes. The network layer handles 
the transfer of data packets between the connected nodes using the services provided 
by the link layer software (e.g. the Ethernet driver or the ScaIP/ScaMAC/ScaSCI 
modules). The link layer includes the network interface hardware and the software 
device driver software that controls the network interface.



Chapter 6 ScaIP - IP for SCI 

58 Scali Library User’s Guide Version 3.0

Figure 6-1: Simplified network model

6.3 Configuration 
The ScaIP network interface driver scip is configured using the standard Linux 
maintenance command /sbin/ifconfig, or any other suitable Linux command or 
script. To display information about the ScaIP interface, the standard Linux command
/bin/netstat can be used. Thus, standard Linux utilities are to be used both to 
configure ScaIP and to retrieve network interface information from the scip driver.

The name of the ScaIP interface is the driver name (scip) followed by the unit number 
(0 for the first ScaIP interface), for example scip0.

Application layer

Transport layer

Network layerIP

Ethernet
driver

Link layer

TCP UDP

ScaMAC
I

 

SCI interconnect

Ethernet

Physical layer

Client User-level

Kernel-level

ScaIP
scip

ScaSCIscimac
ssci

Client



6.4 ScaIP package installation

Scali Library User’s Guide Version 3.0 59

The address being assigned to the ScaIP interface (inet family) is an IP address (e.g. 
in a class-C network, 192.168.4.1 where 192.168.4 is the network number and 1 is the 
node's unique host number). 

By default, the Address Resolution Protocol (ARP) is enabled to implement mapping 
between the IP address and the hardware address for the network interface. The use 
of the ARP protocol can be disabled. To manually create the address mapping, the 
Linux maintenance command /sbin/arp can be used. If, for one reason or another, 
there is a need to enforce a statically (and permanently) creation of address mapping 
entries for nodes accessible via the ScaIP interface, consult the text file 
'/opt/scali/kernel/scip/arptable.example' and follow the instructions contained therein.

The hardware address of the ScaIP interface is associated with the interface when the 
scip driver is loaded and attached to the ScaMAC module (i.e., the scimac driver). It is 
not permitted to change the hardware address of the interface.

The scip driver does not provide fragmentation of datagram packets. If transmission 
of a datagram larger than the Maximum Transmission Unit (MTU) is attempted, the 
datagram packet is dropped. The physical MTU size of the ScaIP interface cannot be 
set using '/sbin/ifconfig' (or any other utility program). The MTU setting is determined 
by a configuration property (scimac_max_ebuf_size) for the ScaMAC module;
the actual MTU of the ScaIP interface is 'scimac_max_ebuf_size + 86'.

The scip driver is initialized when the ScaIP module is loaded into Linux kernel space, 
and is de-initialized when the ScaIP module is unloaded from the Linux kernel.

Error messages from the driver are printed to the system's log
file (e.g. /var/log/messages).

6.4 ScaIP package installation
The scip driver cannot be used to transfer packets over SCI until the ScaIP package 
(distributed as a Linux RPM file) has been installed on each processing node.

To install the ScaIP package you should use the Scali Software Platform (SSP) 
installation program. The SSP installation program provides you with the option to 
install the ScaIP package on each of the selected processing nodes.

The scip driver depends on the scimac driver (the Scali Media Access Control driver 
for SCI) included in the ScaMAC package, which in turn depends on the scasci driver 
(the Scali PCI SCI driver) included in the ScaSCI package.



Chapter 6 ScaIP - IP for SCI 

60 Scali Library User’s Guide Version 3.0

The chapter Software Installation in the Scali System Guide offers detailed 
information on how to use the SSP installation program.

Another way to install (or update) the ScaIP package is interactively by hand using the 
Linux RPM package manager program rpm. Note that the operation should be
performed on each of the processing nodes.

For a description of how to update the ScaIP package using the rpm program, please 
consult the text file /opt/scali/doc/ScaIP/INSTALL.



Scali System Guide Version 3.0 61

Chapter 7 ScaMAC

This chapter describes the Scali Media Access Control package ScaMAC.

7.1 Introduction
The ScaMAC package has been developed to provide an efficient way to pass data 
packets between SCI interconnected nodes.

The package includes the kernel mode driver scimac and some utility programs. The 
scimac driver is written as a multi-threaded loadable driver module supporting 
unicast data transfer over the SCI interconnect.

In the current implementation neither broadcasting to all nodes nor multicasting to a 
group of nodes on the interconnect are supported.

Please note that the ScaMAC release notes and other readable information are 
available in the /opt/scali/doc/ScaMAC directory. 

For a brief description of the network model, see chapter 6.2 on page 57.

7.2 The scimac driver
The scimac driver provides Application Programming Interface services for other 
upper layered modules (e.g. ScaIP) to transmit and receive data packets over SCI. The 
API contains methods for other modules to attach/detach to scimac, and methods to 
exchange data packets with similar modules on other SCI interconnected nodes.

The scimac drivers provide a reliable connection oriented (node-to-node) transfer of 
data packets over SCI, and guarantees that the data is sent and received in order. 
Upon SCI interconnect problems, data packets are, by default, retransmitted until 
retransmission timeout. On timeout, the data packet is dropped by scimac.

Upon error, scimac error messages and warnings are printed to the system log file 
(e.g. /var/log/messages).



Chapter 7 ScaMAC 

62 Scali System Guide Version 3.0

7.3 Setting up the scimac driver
The scimac driver can be explicitly started, stopped and restarted by user root using 
the command:

# /sbin/service/scimac [start|stop|restart]

Note that the scimac driver depends on the ssci driver (Scali PCI SCI driver) to be 
running. If the Scali PCI SCI driver is not loaded and started, the scimac driver will 
fail to start.

The file /opt/scali/kernel/scimac/scimac.conf contains configuration variables for 
the scimac driver. If a variable is changed, the new value will override the default 
value when the scimac module is installed in the kernel. Note that a modification to 
scimac.conf will not be effective until the scimac driver module is reloaded.
Table 7-1 lists the configuration variables together with their default values.

Variable Default Description

scimac_max_no_hdrs 32 The maximal number of scimac packet head-
ers to be used by the driver

scimac_max_no_ebufs 8 The maximal number of eager buffers to be 
used by the scimac driver

scimac_max_ebuf_size 32768 The maximal size in bytes of each eager buffer 
used

scimac_use_ulevel_recv 1 Enable use of a kernel thread to defer recep-
tion of packets

scimac_use_sw_interrupts 0 Enable use of the immediate bottom half to 
defer reception of packets

scimac_max_send_queuelen 2000 The maximal number of packets queued for 
transfer per connection path at any one time

scimac_pkt_rexmit_time 200 The packet retransmit time in milliseconds

scimac_max_rexmit_time 5000 The packet‘s maximal retransmit time in milli-
seconds

Table 7-1: scimac configuration variables



Section: 7.4 The ScaMAC utilities

Scali System Guide Version 3.0 63

Normally, there should not be necessary to change any of the configuration 
parameters.However, the configuration is by default optimized for a Linux 2.4.x 
kernel. If unexpected performance problems occur when using a Linux 2.2.x kernel, 
you should change two of the default configuration values. For a Linux 2.2.x kernel, 
edit the file: /opt/scali/kernel/scimac/scimac.conf by setting:

scimac_max_ebuf_size    = 16384

7.4 The ScaMAC utilities
The following is a description of the ScaMac utility programs which can be used to 
retrieve and display various scimac driver interface information, and to check the 
reachability of remote scimac drivers. The utilities are located in the bin and the sbin 
directories of the Scali installation. Normally they are of limited interest to the 
ordinary user. Currently, no standard Linux utilities can be used to collect and display 
information about the scimac driver interface.

7.4.1 macstat - display scimac driver status

The program macstat displays information gathered from the driver's data 
structures. The information printed is controlled by the option you select.

Usage:
/opt/scali/bin/macstat -{a|c|i|s|R|p} [<ppa number>]

Options:
-a Display the state of all remote node connections, and connection 

configuration related information.

scimac_min_nodeid_number 0x100 The lowest valid node identifier in the Scali 
system

scimac_max_nodeid_number 0xff00 The largest valid node identifier in the Scali 
system

scimac_nodeid_increment 0x100 The incremental node identifier step in the 
Scali system

Variable Default Description

Table 7-1: scimac configuration variables



Chapter 7 ScaMAC 

64 Scali System Guide Version 3.0

-c Show the scimac driver's configuration variables (current 
values), as defined by the configuration properties listed in the 
text file /opt/scali/kernel/scimac/scimac.conf.

-i Display the state of all remote node connections, and connection 
traffic statistics.

-s Show a summary of accumulated driver traffic.
-R Reset the traffic statistics (privileged, for user root only).
-p Show the distribution of data packet sizes being transferred.
<ppa number> Access the specified scimac instance (physical point of 

attachment), instead of 0 (default).

7.4.2 macping - check reachability of remote scimac drivers

The program macping can be used to check the reachability and connectivity of 
scimac drivers on SCI interconnected nodes. When the program is activated, the 
scimac driver sends a short out-of-band request packet via the SCI interconnect to the 
scimac driver(s) on the nodes specified at the command line. If a node responds, 
macping computes the round-trip time and prints a summary of information. 
Otherwise, if a node does not respond, macping will print a timeout message.



Section: 7.4 The ScaMAC utilities

Scali System Guide Version 3.0 65

Usage: 
/opt/scali/bin/macping [-n <ppa number>] [[<nodeid0> <nodeid1>...] | 

 [<nodeid0>:<nodeidx> [<step>]]]

Options>
-n <ppa num> Access the specified scimac instance (physical point of 

attachment), instead of 0 (default).
<nodeid> The SCI node identifier of one or more nodes to probe.
<step> Node identifier increment.

If no node identifier <nodeid> is given, macping attempts to send a ping request to 
each of the SCI connected nodes currently known by the scimac driver (as displayed by 
'/opt/scali/bin/macstat -a').

7.4.3 macctl - set the debug level of the scimac driver

The program macctl will set or get the debug level of the scimac driver. By default, all 
printing of debug information is disabled. When scimac debug is enabled, scimac 
driver information is printed to the system log file (e.g. /var/log/messages). 

Note that if debug is enabled in the driver, it will automatically slow down the transfer 
of data packets, and may lead to network congestion or loss of packets.

Usage:
/opt/scali/bin/macctl -d [<debug level>]

Options:
-d <debug level> The debug level to be enabled (0 to disable debug code).

If no <debug level> option is specified, macctl prints a list of available debug level 
values and their meaning.

Debug level values (in any hexadecimal (0x) combination, or 0 to disable):

SCIMAC_WARN 0x1 /* Error conditions (WARNING style) */
SCIMAC_INFO 0x2 /* Useful information about events */
SCIMAC_EP 0x4 /* Device driver entry and exit points */
SCIMAC_PT 0x8 /* Management service requests/responses */
SCIMAC_QFULL 0x10 /* Full rcv/snd queue logging */
SCIMAC_INTR 0x20 /* Interrupt information */
SCIMAC_IPATH 0x40 /* Setup of paths and initial communication */
SCIMAC_RPATH 0x80 /* Tracking of path referencing */
SCIMAC_MSG 0x100 /* Handling of scimac messages */



Chapter 7 ScaMAC 

66 Scali System Guide Version 3.0

SCIMAC_PMS 0x200 /* Promiscuous mode logging */
SCIMAC_PPA 0x400 /* Allocation and (de)reference of ppa */
SCIMAC_FLOW 0x800 /* Flow control logging */
SCIMAC_XFER 0x1000 /* Packet transfer logging */
SCIMAC_EBUF 0x2000 /* Ebuf usage */
SCIMAC_THREAD 0x4000 /* Information on the thread operations */
SCIMAC_ALLOC 0x8000 /* Kernel memory alloc & free operations */
SCIMAC_MEM 0x10000 /* Memory copy operations */
SCIMAC_CH 0x20000 /* Channel setup */
SCIMAC_TIME 0x40000 /* Timing of different parts of the code */
SCIMAC_INEMPTY 0x80000 /* Tracking empty receive buffer */
SCIMAC_RCVHDRS 0x100000 /* Rcv ring buffer headers (if no new pkt 

found) */
SCIMAC_XMTHDRS 0x200000 /* Local copy of xmt headers (if remote rcv full) 

*/
SCIMAC_SCAMEM 0x400000 /* ScaMem operations */
SCIMAC_PING 0x800000 /* Probing reachability of a remote scimac 

driver */
SCIMAC_URG 0x1000000 /* Broadcasting URG request from ScaIP */

7.5 ScaMAC package installation
The scimac driver and the ScaMAC utilities cannot be used for data transfer over SCI 
until the ScaMAC package (distributed as a Linux RPM file) has been installed on each 
processing node.

To install the ScaMAC package you should use the Scali Software Platform (SSP) 
installation program. The SSP installation program will install the specified software 
packages on each of the processing nodes. The ScaMAC package is automatically 
installed when you decide to install the ScaIP package.

The scimac driver depends on the ssci driver (Scali PCI SCI driver) included in the 
ScaSCI package. The ScaSCI package is automatically installed during an SSP 
installation. The chapter Software Installation in the Scali System Guide offers 
detailed information on how to use the SSP installation program.

Another way to install (or update) the ScaMAC package is interactively by hand using 
the Linux RPM package manager program rpm. Note that the operation should be 
performed on each of the processing nodes.

For a description of how to update the ScaMAC package using the rpm program, 
please consult the text file /opt/scali/doc/ScaMAC/INSTALL.



Scali Library User’s Guide Version 3.0 67

Chapter 8 Support

8.1 Feedback
Scali appreciates any suggestions to improve both this Scali Library User’s Guide and 
the software described herein. Please send your comments by e-mail to 
support@scali.com.

The user of parallel tools software using ScaMPI on a Scali System, is encouraged to 
provide feedback to the National HPCC Software Exchange (NHSE) - Parallel Tools 
Library [9]. The Parallel Tools Library provides information about parallel system 
software and tools, and, in addition, it provides for communication between the 
software author and the user.

8.2 Scali mailing lists
We have developed mailing lists being available on the Internet. For instructions on 
how to subscribe to a mailing list (e.g., scali-announce or scali-user), please check 
out the Mailing Lists section at http://www.scali.com/support.

8.3 ScaMPI FAQ
The ScaMPI Frequently Asked Questions are posted on our Web site at 
http://www.scali.com. Please check out the ScaMPI FAQ section at 
http://www.scali.com/support. In addition, the FAQ is, when ScaMPI has been 
installed, available as a text file in /opt/scali/doc/ScaMPI/FAQ.

8.4 ScaMPI release documents
When ScaMPI has been installed, a number of small documents like FAQ, RELEASE 
NOTES, README, SUPPORT, LICENSE_TERMS, INSTALL are available as text 
files in the /opt/scali/doc/ScaMPI directory.



Chapter 8 Support 

68 Scali Library User’s Guide Version 3.0

8.5 Problem reports
Problem reports should, whenever possible, include both a description of the problem, 
the software versions, the computer architecture, an example, and a record of the 
sequence of events causing the problem. Any information that you can include about 
what triggered the error will be helpful. The report should be sent by e-mail to 
support@scali.com.

8.6 Platforms supported
ScaMPI is available for a number of platforms. For up-to-date information, please 
check out the ScaMPI section at http://www.scali.com/products. For additional 
information, please don’t hesitate to contact Scali at sales@scali.com.

8.7 Licensing
ScaMPI is licensed using the Scali license manager system. In order to run ScaMPI a 
valid demo or a permanent license must be obtained.

To obtain the appropriate license, please send an inquiry to sales@scali.com. Any 
technical issues should be addressed to support@scali.com.



Scali Library User’s Guide Version 3.0 69

Chapter 9 Related documentation

9.1 References
[1] MPI: A Message-Passing Interface Standard

The Message Passing Interface Forum, Version 1.1, June 12, 1995,
Message Passing Interface Forum, http://www.mpi-forum.org.

[2] MPI: The complete Reference: Volume 1, The MPI Core
Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, Jack Don-
garra. 2e, 1998,
The MIT Press, http://www.mitpress.com.

[3] MPI: The complete Reference: Volume 2, The MPI Extension
William Grop, Steven Huss-Lederman, Ewing Lusk, Bill Nitzberg, W. Saphir, 
Marc Snir, 1998,
The MIT Press, http://www.mitpress.com.

[4] Scali System Guide
Scali AS, http://www.scali.com/

[5] ScaMPI Data sheet
Scali AS, http://www.scali.com/

[6] Scali Free Tools
Scali AS, http://www.scali.com./

[7] Review of Performance Analysis Tools for MPI Parallel Programs
UTK Computer Science Department, http://www.cs.utk.edu/~browne/perftools-
review/.

[8] Debugging Tools and Standards
HPDF - High Performance Debugger Forum, http://www.ptools.org/hpdf/.

[9] Parallel Systems Software and Tools 
NHSE - National HPCC Software Exchange, http://www.nhse.org/ptlib.

[10] MPICH - A Portable Implementation of MPI
The MPICH home page, http://www.mcs.anl.gov/mpi/mpich/index.html.



Chapter 9 Related documentation 

70 Scali Library User’s Guide Version 3.0

[11] MPI Test Suites freely available
Argone National Laboratory, http://www-unix.mcs.anl.gov/mpi/mpi-test/
tsuite.html



Scali Library User’s Guide Version 3.0 71

List of figures

3-1 Application start-up - phase 1.......................................................................32
3-2 Application start-up - phase 2.......................................................................33
3-3 Application start-up - phase 3.......................................................................34
3-4 Thresholds for different communication protocols ......................................35
3-5 Inlining protocol.............................................................................................36
3-6 Eagerbuffering protocol.................................................................................37
3-7 Transporter protocol......................................................................................38
3-8 Channel resource ...........................................................................................40
3-9 Eagerbuffer buffer .........................................................................................41
3-10 Transporter buffer .........................................................................................42
6-1 Simplified network model .............................................................................58



  

72 Scali Library User’s Guide Version 3.0



Scali Library User’s Guide Version 3.0 73

List of tables

2-1  Environment variables....................................................................................... 9
2-2  Basic options to mpimon .................................................................................. 11
2-3  mpimon parameters ......................................................................................... 12
2-4  Numeric input................................................................................................... 12
2-5  Complete list of mpimon options ..................................................................... 13
2-6  mpirun format................................................................................................... 17
2-7  mpirun options.................................................................................................. 18
2-8  Options for SCAMPI_TRACE .......................................................................... 20
2-9  Fields in output from builtin trace .................................................................. 22
2-10  Timespec in output from builtin trace............................................................. 22
2-11  Options for SCAMPI_TIMING ........................................................................ 23
2-12  Fields in output from builtin timing................................................................ 23
2-13  Fields in”recv”-lines from builtin timing......................................................... 24
2-14  Fields in”send”-lines from builtin timing ........................................................ 25
2-15  Commonfields in output from builting timing ................................................ 25
3-1  Libraries............................................................................................................ 31
7-1  scimac configuration variables ........................................................................ 62



  

74 Scali Library User’s Guide Version 3.0



Scali Library User’s Guide Version 3.0 75

Index

B
Benchmarking ScaMPI................................................................................................. 51
C
Communication protocols in ScaMPI........................................................................... 35

Eagerbuffering protocol ......................................................................................... 37
Inlining protocol..................................................................................................... 36
Transporter protocol .............................................................................................. 38

Communication resources in ScaMPI.......................................................................... 39
Channel buffer ....................................................................................................... 40
Eagerbuffer buffer ................................................................................................. 41
Transporter buffer ................................................................................................. 42

Compiling
ScaMPI ..................................................................................................................... 9
ScaMPI example program ..................................................................................... 29
ScaShmem.............................................................................................................. 55

D
Debugging

ScaMPI ................................................................................................................... 19
E
Environment variables

ScaMPI ..................................................................................................................... 9
ScaShmem.............................................................................................................. 55

L
libfmpi............................................................................................................................ 31
libmpi............................................................................................................................. 31
Linking

ScaMPI ................................................................................................................... 10
ScaMPI example program ..................................................................................... 29
ScaShmem.............................................................................................................. 55

M
MPI ............................................................................................................................7, 69
mpi.h ..........................................................................................................................9, 44
mpiboot .......................................................................................................................... 31
MPICH........................................................................................................................... 69
mpid ............................................................................................................................... 31
mpif.h.........................................................................................................................9, 44
mpimon....................................................................................................................11, 31

Advanced usage ..................................................................................................... 11



  

76 Scali Library User’s Guide Version 3.0

Basic usage .............................................................................................................11
List of available options.........................................................................................13

mpirun ...........................................................................................................................16
mpisubmon ....................................................................................................................31
O
Optimize ScaMPI performance.....................................................................................49
P
Profiling

nupshot ...................................................................................................................27
ScaMPE libraries ...................................................................................................26
ScaMPI ...................................................................................................................20
upshot .....................................................................................................................27

R
Running

ScaMPI ...................................................................................................................10
ScaMPI example program .....................................................................................29
ScaShmem ..............................................................................................................56

S
ScaIP ................................................................................................................................7
Scali Universe GUI .......................................................................................................10
ScaMAC ...........................................................................................................................7
ScaMPE..........................................................................................................................26

libampi ....................................................................................................................26
liblmpi.....................................................................................................................26
libtmpi.....................................................................................................................26
upshot .....................................................................................................................26

ScaMPI............................................................................................................................. 7
Builtin-cpu-usage ...................................................................................................26
Builting-sanitycheck-of-data .................................................................................20
Builtin-segment-protect-violation-handler ...........................................................19
Builtin-timing.........................................................................................................23
Builtin-trace ...........................................................................................................20
Environment............................................................................................................. 9
Example program...................................................................................................28
Executables ............................................................................................................31
Libraries .................................................................................................................31
Test programs ........................................................................................................29

SCAMPI_BACKOFF_ENABLE, backoff-mechanism .................................................50
SCAMPI_BACKOFF_IDLE,backoff-mechanism.........................................................50
SCAMPI_BACKOFF_MAX, backoff-mechanism.........................................................50
SCAMPI_BACKOFF_MIN, backoff-mechanism .........................................................50
SCAMPI_CPU_USAGE, builtin cpu-usage facility .....................................................26



 

Scali Library User’s Guide Version 3.0 77

SCAMPI_DATACHECK_ENABLE, builtin sanity-check of data .............................. 20
SCAMPI_DISABLE_HPT, disable high precision timer ............................................ 46
SCAMPI_INSTALL_SIGSEGV_HANDLER, builtin SIGSEGV handler ............19, 47
SCAMPI_NODENAME, set hostname ........................................................................ 46
SCAMPI_TIMING, builtin timing-facility................................................................... 23
SCAMPI_TRACE, builtin trace-facility ....................................................................... 20
SCAMPI_WORKING_DIRECTORY, set working directory ...................................... 46
ScaShmem....................................................................................................................... 7

Compiling ............................................................................................................... 55
Environment variables .......................................................................................... 55
Features and Limitations...................................................................................... 54
Linking ................................................................................................................... 55
Porting.................................................................................................................... 53
Running.................................................................................................................. 56

T
Troubleshooting ScaMPI .............................................................................................. 45



  

78 Scali Library User’s Guide Version 3.0


