

Intel(R) Itanium(R) Assembler
User's Guide
Order Number: 712173-005

World Wide Web: http://developer.intel.com

Page 1 of 73

Disclaimer and Legal Information

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

This Intel(R) Itanium(R) Assembler User's Guide as well as the software described in it, is furnished under license and
may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for
informational use only, is subject to change without notice, and should not be construed as a commitment by Intel
Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

The software described in this User’s Guide may contain software defects which may cause the product to deviate from
published specifications. Current characterized software defects are available on request.

Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel logo, Intel386, Intel486, Intel740,
IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel XScale,
Itanium, MMX, MMX logo, Pentium, Pentium II Xeon, Pentium III Xeon, Pentium M, and VTune are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 1996 - 2003.

Page 2 of 73

Overview
This document describes how to use the Intel(R) Itanium(R) Assembler (IAS) on Windows* or Linux* operating systems
listed in the compiler release notes.

To gain the most from this guide, you should be familiar with the Itanium architecture and assembly language. This User’s
Guide documents the features specific to the Intel Itanium assembly tool. See the Related Publications section for
references to relevant documents.

The IAS User's Guide provides the information you need to write an Itanium architecture assembly language program
assembling on IAS. It describes the IAS usage and features. In addition, this user's guide provides detailed information on
all IAS diagnostic messages.

IAS is a cross-platform assembler; it runs on 32-bit systems and Itanium-based systems, and produces Itanium
architecture object files. IAS does not assemble IA-32 assembly language programs.

About This Document
This document contains the following sections:

This section lists related publications and describes the notation conventions used in this manual.

Getting Started describes IAS and its place in application development, and provides the IAS command-line
syntax.

Command-line Options explains the command-line options.

Dependency Violations and Assembly Modes explains working with automatic and explicit code.

Features describes the IAS features that complement the features defined in the assembly language.

Diagnostic Messages lists the IAS error and warning messages.

Return Values explains the values that IAS returns upon termination.

Specifications lists IAS specifications.

Predicate Analysis describes how IAS performs predicate analysis.

System Environment
Hardware requirements: The recommended hardware is at least an Intel(R) Pentium(R) II processor with 256 MB
memory. For extremely large input files (more than one million lines of assembly code), a 1 GB swap area is
recommended.

Software requirements: Use IAS with a Windows* or Linux* operating system that is listed in the compiler release notes.

Page 3 of 73

Related Publications
The following documents provide additional information. Some of them are available at
http://developer.intel.com.

DVLoc for Scheduling Library, document number 748283

Intel(R) Itanium(R) Architecture Assembly Language Reference Guide, document number 248801.

Intel(R) Itanium(R) Architecture Software Developer’s Manual

 Volume 1: Application Architecture, order number 245317-001

 Volume 2: System Architecture, order number 245318-001

 Volume 3: Instruction Set Reference, order number 245319-001

 Volume 4: Itanium Processor Programmer’s Guide, order number 245320-001

Software Conventions and Runtime Architecture Guide, order number 245256-002

The following documents are available from Microsoft Corporation:

Microsoft* Developer Studio, Visual C++* User's Guide, LINK Reference, Version 4.2

Microsoft* Portable Executable and Common Object File Format Specification, Version 4.1

Notation Conventions
This guide uses the following conventions:

This type style Indicates an element of syntax, a reserved word, keyword, a filename, computer
output, or part of a program example. The text appears in lowercase, unless
uppercase is significant.

This type style Indicates the text you enter as input.
This type style Indicates a placeholder for an identifier, an expression, a string, a symbol or a value.

Substitute one of these items for the placeholder.
This type style Indicates a placeholder for an identifier in a diagnostic message.
[item] Indicates optional elements.
[item | item] Indicate the possible choices. A vertical bar (|) separates the items. Choose one of

the items enclosed within the brackets.
This type style Indicates a default or a usage example.

Page 4 of 73

Getting Started
The Intel(R) Itanium(R) Assembler (IAS) is an assembler for the Itanium architecture assembly language. It enables full
use of the architecture. It is possible to work on a Windows* host to create UNIX-compatible object files.

This section illustrates the place of IAS in your application development environment, and explains how to use IAS.The
subsections include:

Environment
Invoking IAS

Environment
Figure below shows how IAS fits into your application development environment. IAS assembles Itanium architecture
assembly language files, generated by an assembly language programmer, or a compiler. IAS generates an object file
and, possibly, a diagnostics listing. The diagnostics listing includes all the error and warning messages IAS generates
during assembly.

See the Software Conventions and Runtime Architecture Guide for information on combining C and assembly language
code in one executable file.

Invoking IAS
To invoke IAS, use the command line:

ias [options] filename [options]

where:

Application Development

options Represent the command-line options described in the following sections. You can place any
option both before and after the file name.

filename Specifies an assembly language input file.

Page 5 of 73

Command-line Options
This section describes the IAS command-line options. The options are categorized into these sections:

information

file handling

compilation model

error handling

UNIX ABI

advanced

 Note

You do not have to type a space between the first letter and the letters that follow. Spaces are included here for clarity.

Information
The information command-line options control the data displayed on the screen and written to the diagnostics file.

[-H | -h] IAS displays a short description of all the command-line options. IAS then terminates. All other
command-line options are ignored.
Default: Option descriptions are not displayed.
Example: ias -h

-N so IAS does not place the sign-on message with information about IAS in the generated
diagnostics file or display it on the screen.
Default: Sign-on appears in the diagnostics file or on the screen.
Example: ias -N so my_file.s

-Q y AS adds the sign-on message containing information about IAS to the .comment section of the
object file.
Default: In ELF format the message is written, and in COFF format it is not written.
Example: ias -Q y my_file.s

-S nops IAS displays several figures:

the number of nops it inserted into the code during assembly

the number of instructions before assembly

the percentage of nops of the total number of instructions

Default: Numbers are not displayed.
Example: ias my_file.s -S nops

-v IAS prints IAS version information. Lists all libraries.
Default: The version information is not printed.
Example: ias my_file.s -v

-V Prints the signon message, which is the default. Kept for backward compatibility.

Page 6 of 73

File Handling
The file handling command-line options define the input and output files.

Compilation Model
The compilation model options change the default compilation values.

-F OMF This option defines the Object Module Format (OMF) of the object file. Values for OMF are
COFF32 for Windows NT, and ELF32 or ELF64 when the targeted operating system is
UNIX.
Default for Windows NT: COFF32
Default for UNIX: ELF64
Example: ias -F COFF32 my_file.s

-I pathname AS adds pathname to an included input file search path list. This option may be repeated to
add more paths to the search list. The paths are searched in the order listed.
Default: Searches for the file in the current directory only.
Example: ias -I c:\temp\my_path my_file.s

-o fname IAS creates fname as the object file.
Default: input file name with an .obj extension.
Example: ias -o my_file.o my_file.s
By default IAS creates my_file.obj

-M ilp_model This option defines the address model that IAS uses. Values for ilp_model are:
ilp64 | lp64 | p64 – Default. Sets the address size to 64 bits. Integer and long sizes
have no effect.
ilp32 – Sets the address size to 32 bits, relevant for COFF32 file format.
Default for Windows: ilp64
Example: ias my_file.s -M ilp64

-M byte_order This option sets the global default of the byte order of data allocation statements. Values for
byte_order are: le (little-endian) and be (big-endian). Use the .lsb and .msb directives
to set little or big-endian byte order for a specific section, respectively.
Default: -M le
Example: ias -M be my_file.s

-N pi IAS rejects privileged instructions. Use this option to ensure that your code does not contain
privileged instructions.
Default: Privileged instructions are accepted.
Example: ias -N pi my_file.s

-N close_fcalls IAS does not resolve global function calls. Instead you may want to use another procedure
by the same name that is defined elsewhere.
Default: Function calls are not resolved.
Example: ias -N close_fcalls my_file.s

-p 32 IAS enables defining 32-bit elements as relocatable data elements. Kept for backward
compatibility.

Page 7 of 73

Error Handling
The error options define how IAS handles diagnostic messages.

UNIX ABI Section
The following section describes command-line options specific to UNIX ABI, for restricting the floating-point register range,
and defining the kernel mode calling convention. They must be used in conjuction with the -F ELF64 option.

-e fname IAS creates fname as the diagnostics file. Error and warning messages are sent to
this file.
Default: Errors appear on the screen (stderr).
Example: ias -e my_err.txt my_file.s

-E max_num IAS terminates when the number of errors IAS detects reaches max_num.
Default: -E 30
Example: ias -E 3 my_file.s

-W warning_level IAS displays different levels of warnings. Values for warning_level are:

0 do not display warnings

1 display severe warnings

2 display warnings

3 display moderate warnings

4 display all warnings

x treat all warnings as errors and do not create object file if any
 errors detected.

Default: 3
Example: ias -W 1 my_file.s

-M rfp AS restricts floating-point registers to the range F6 - F11. This results in less register
saves and restores when entering and exiting the kernel, thereby reducing system time.
Attempts to use other floating-point registers cause an error.
Default: All floating-point registers can be used.
Example: ias -F ELF64 -M rfp my_file.s

-M const_gp IAS sets the single global pointer (GP) model in the object file. The kernel is then
considered a single model, with one GP.
Default: No additional flags are set in the object file.
Example: ias -F ELF64 -M const_gp my_file.s

-M no_plabel IAS sets the model in the object file to single GP and no function descriptors (plabels).
As with the -M const_gp option, the kernel is then considered a single GP and
doesn’t use plabels.
Default: No additional flags are set in the object file.
Example: ias -F ELF64 -M no_plabel my_file.s

Page 8 of 73

Advanced Section
The following section describes some advanced options that change the assembly mode and permit virtual register
allocation.

-X explicit IAS changes the default initial assembly mode from automatic to explicit.
Default: IAS assembles in automatic mode.
Example: ias -X explicit my_file.s
For more information on dependency violations see Dependency Violations and
Assembly Modes.

-X vral IAS invokes the register allocation engine (virtual register allocation), which allows the
use of symbolic names instead of actual register names. IAS creates a file with the
suffix .vra that lists the results of all register allocations.
Default: Vral is not active, so the Vral syntax is not recognized.
Example: ias -X vral my_file.s

-X unwind IAS invokes the unwind generation utility. IAS builds unwind information for all
procedures in the file and ignores all unwind directives.
Default: Unwind information is not generated.
Example: ias -X unwind my_file.s

-d debug IAS creates Code View debug and line information for COFF32 objects. You can then
use the symbolic debugger to single-step on code lines and view symbols.
Default: No debug and line information is created.
Example: ias -F COFF32 -d debug my_file.s

-a indirect=br_target This command-line option indicates to IAS the default branch target for indirect
unannotated branches. It is relevant for virtual register allocation. Values for
br_target are:
exit exit is assumed to be the branch target
labels any label is assumed to be the branch target
Default: Exit is assumed.
Examples:
-ias -X explicit -a indirect=labels my_file.s
or -ias -a indirect=exit my_file.s

-N us This option enables an extended range of numbers, unifying both signed and unsigned
numbers. IAS accepts the numbers between -64 and +127, as 7 bits long.
Default: The range of a 7-bit number is either between -64 and +63, or between 0 and
+127.
Example: ias -N us my_file.s

Page 9 of 73

Dependency Violations and Assembly Modes
This section describes dependency violations and how the Intel(R) Itanium(R) Assembler (IAS) helps you avoid them in
your code.

A violation of data dependency results from two instructions within an instruction group accessing the same Itanium
architecture resource, including resources that appear as implicit operands. Dependency violations result in architecturally
undefined behavior. The assembler can detect and eliminate dependency violations that occur within instruction groups,
depending on its mode.

You can write code in explicit mode, thereby taking responsibility for bundling and stops (;;). You can also use automatic
mode where IAS automatically bundles your code ands add stops to solve dependency violations. IAS allows you to mix
modes in the one file. For an explanation of bundles and stops, see the Intel(R) Itanium(R) Architecture Assembly
Language Reference Guide or the Features section in this document.

When you choose to write code in explicit mode, IAS reports any dependency violations it encounters. The easiest way to
solve them is by inserting a stop. Some reports may not be accurate, in which case you have at your disposal a range of
annotations and commands, explained later in this section.

For a complete description of data dependencies, see the Intel(R) Itanium(R) Architecture Software Developer’s Manual
and the DVLoc for Scheduling Library.

This section includes:

Assembly Modes
Mode Exmples
Serialize and Memory Synchronization Instructions
Avoiding False Reports
Predicate Relation Analysis

Assembly Modes
IAS reads and processes assembly code in one of two modes: explicit or automatic. Use explicit mode if you are an
expert user with profound knowledge of Itanium architecture and performance is important. Use automatic mode if you are
a novice user or performance is not important.

Automatic Mode

Automatic mode is appropriate for implementation of non-performance-critical code.

In this mode, you can write linear code without specifying bundle boundaries and without worrying about architectural
dependencies. IAS bundles the code and inserts stops (;;) when needed. IAS ignores all your stops and dependency
violations-related annotations.

Automatic mode is the default initial mode. The initial mode can be changed to explicit mode with the command-line
option -X explicit.

IAS issues an error if it encounters a curly bracket after the mode directive .auto.

IAS strives to insert a minimal number of stops.

 Note

In automatic mode, the assembler ignores the .pred.rel annotation.

Page 10 of 73

Explicit Mode

Explicit mode is suitable when writing performance-critical code.

In this mode, you must avoid dependency violations by inserting stops and annotations in the code. IAS checks the
correctness of this code for dependency violations and returns an error if it detects potential or certain problems.

You can set explicit mode in the following ways:

insert curly brackets ({,}) signifying bundle boundaries, while in default automatic mode (Note that a curly bracket
following a .auto directive causes an error.)

insert the directive .explicit

use the command-line option -X explicit, which changes the default mode from automatic to explicit.

When you enter a new code section, IAS sets the mode back to the default.

If you write explicit code without bundle boundaries, IAS adds them. However, you are responsible for stops and
annotations. Annotations define relations between predicate registers and other run-time values. See Avoiding False
Reports.

Behavior of IAS

You can mix code from both modes in the one file. IAS provides you with several ways to switch between the modes:

use the command-line option -X explicit

use the mode directives: .auto, .explicit, and .default

when the initial default mode is automatic, allow IAS to switch according to code syntax

If there are no bundles, IAS bundles the code, adds nops for correct bundling, and add stops to avoid dependency
violations.

The directives .explicit and .auto override the initial default mode for the current code section.

The directive .default returns IAS to the initial default mode.

If IAS encounters a mode directive within an explicit bundle, IAS issues an error.

IAS automatically inserts a stop when it switches between modes.

For an explanation of how to write Itanium architecture code and avoid dependency violations, see Avoiding False
Reports.

Page 11 of 73

Mode Examples
Explicit Mode

When IAS encounters the following code in explicit mode, it registers a dependency violation error.

The directive .default causes the mode to switch to the default initial mode defined in the command line; which in this
case is automatic.

.explicit
(p1)mov r1 = r4
;;;
(p2)mov r6 = r2

ldfps f4,f5 = [r4]
fabs f4 = f7 ; WAW error on f4
 ; IAS inserts a stop when the mode switches
.default
add r5 = 0, r7

Automatic Mode

In automatic mode, using similar code to the previous example, IAS ignores existing stops and inserts stops between
dependent instructions, as in the following example:

.auto
(p1)mov r1 = r4
;;;
; IAS ignores this stop
(p2)mov r6 = r2
ldfps f4,f5 = [r4]
; IAS inserts a stop to avoid WAW error on f4
fabs f4 = f7

Initial Default is Automatic Mode

In the following example, the default mode is automatic:

(p1)mov r1 = r4
; IAS inserts a stop here
(p2)mov r1 = r2
{ ; IAS inserts a stop here
; IAS treats this code as explicit
ldfps f4,f5 = [r4]
fabs f4 = f7 // write-after-write error
}

Page 12 of 73

Serialize and Memory Syncronization Instructions
The serialize (srlz) and memory synchronization (sync) instructions have the following constraints regarding instruction
groups:

The serialize instruction (srlz.i or srlz.d) must be located in the instruction group following the operation to be
serialized.

Operations dependent on the serialization must be in an instruction group after the srlz.i.

Operations dependent on the serialization must follow the srlz.d, but they can be in the same instruction group
as the srlz.d.

The sync.i instruction and previous Flush Cash operation must be in separate instruction groups.

For safety’s sake, IAS in automatic mode inserts stops before srlz.d and sync.i instructions, and both before and
after the srlz.i instruction. In explicit mode IAS does not indicate errors when stops are missing.

Avoiding False Reports
In some cases, when in explicit mode IAS falsely reports a dependency violation. IAS cannot calculate all the properties of
the code when information is lacking.

The simplest way to avoid false register dependency errors is by using stops. Place a stop (;;) between the two
instructions causing the violation dependency. This approach is simple and always works, but might result in performance
degradation.

Use the following annotations to assist IAS in analysis of dependency violations to solve false reports, without sacrificing
performance:

.pred.rel

.reg.val

.mem.offset

 Note

Annotations supply additional information that assists IAS’ analysis of apparent dependency violations.

For a description of annotations’ syntax, see the Intel(R) Itanium(R) Architecture Assembly Language Reference Guide.

The examples that follow show some typical situations where adding annotations helps avoid false reports.

Page 13 of 73

Predicate Relation Analysis
IAS analyzes predicate relations to determine dependency violations between pairs of predicated instructions. The
following example displays a write-after-write dependency violation:

(p1) add r5 = 8, r6
(p2) add r5 = r7, r0

To understand how IAS performs predicate analysis, see Predicate Analysis.

The compare instructions define predicate register values and may result in definition of predicate relations.

To pass on information about predicate relations, use the predicate relation annotation .pred.rel.

The annotation .pred.rel takes the following forms:

An entry point is any of the following:

a label, whether local, global, or temporary

the address of the bundle following a br.call instruction

the target of a direct branch

Use the predicate relation annotation to define the relations between predicates and prevent dependency violation errors.

This section includes:

Compare Instructions
Mutex Form of the .pred.rel Annotation
Implication Form of the .pred.rel Annotation
Clear Formof the .pred.rel Annotation
Mutex Relation Not Created with a Single Compare
Instructions Separated by a Predicate Branch
Safe Across Calls
Indirect Access to Register File
st8.spill and ld8.fill in the Same Instruction Group

“mutex” The mutex form defines a mutually exclusive relation.
“imply” The imply form defines an implication relation.
“clear” The clear form removes mutex and imply relations, as described below.

When conflicting instructions follow an entry point, IAS ignores all existing predicate
relations defined before the entry point.

Page 14 of 73

Compare Instructions
The compare instructions (cmp, tbit, fclass, and fcmp) define predicate values. They precede the predicated
instructions. The compare instructions indicate to the assembler that the named predicate registers are mutually
exclusive. They override any other defined mutex relations between the destination predicate registers and other
predicate registers.

These examples all show the use of the cmp instruction for simplicity. Use the tbit, fclass, and fcmp instructions for
the same effect.

In the example below, the cmp instruction states that P1 and P2 cannot both be true at the same time, thereby avoiding a
violation dependency error.

mp.lt p1, p2 = r13, r0;;
(p1) dd r5 = 8, r6
(p2) dd r5 = r7, r0

The cmp instruction overrides the mutex relation between the destination predicate registers and all the other predicate
registers. For example:

mp.lt p1,p2 = r13,r0;;
; p1 and p2 are mutually exclusive
mp.lt p1,p3 = r12,r11;;
; the mutex relation between p1 and
; p2 is destroyed by cmp
(p1) dd r5 = 8, r6
(p2) add r5 = r7, r0 // WAW error

Mutex Form of the .pred.rel Annotation
Format: .pred.rel “mutex” p1, p2 [,&ldots;]

where

p1, p2 ... are predicate registers

.pred.rel “mutex” informs the assembler that only one of the specified predicate registers is true, or all are false. For
example:

.pred.rel “mutex”, p1, p2, p3
; p1, p2, and p3 are mutually exclusive or all zero
(p1)add r5 = 8, r6
(p2)add r5 = r7, r0
(p3)add r5 = r14, r0

The mutex form is unordered, meaning that the order in which the predicates appear is not important.

The mutex form does not override predefined mutex relations between the destination predicate registers and other
predicate registers. For example:

.pred.rel “mutex”,p1,p2

.pred.rel “mutex”,p1,p3

.pred.rel “mutex”,p2,p3
; p1,p2 and p3 are mutex
(p1)mov r4=r5
(p2)mov r4=r6
(p3)mov r4=r7 // no WAW error is reported

Page 15 of 73

Implication Form of the .pred.rel Annotation
Format:

.pred.rel “imply” p1, p2

where

p1, p2 are predicate registers

The .pred.rel annotation of the form “imply” informs the assembler that if the first predicate is true then the second
one is also. No assumptions are made when the first predicate is false; the second predicate’s value is undetermined. The
implication form is ordered, meaning that the order of the predicates is important.

In the next example, if P1 is true, then P2 is also true.

.pred.rel “imply”, p1, p2
(p1)mov r4=r5
(p2)br.cond.dpnt.few b0
mov r4=r5
; WAW on r4 is not reported as p1 implies p2

The implication form is a transitive relation. If P1 implies P2 and P2 implies P3, so P1 also implies P3.

Clear Form of the .pred.rel Annotation
The .pred.rel annotation of the form “clear” erases predicates relations. If you specify the predicate register P1, IAS
erases all the mutex relations containing P1, and all the implication relations in which P1 is the implicating predicate
register. If you do not specify any predicate registers, IAS takes this as a shortcut to naming all the predicate registers.

Format:

.pred.rel “clear” [p1[,p2[,&ldots;]]]

where

p1, p2 are predicate registers

For example:

.pred.rel “clear” p1 ; clears all the p1 relations

.pred.rel “clear” ; clears all predicate relations

Page 16 of 73

The following example uses both mutex and implication relations. The form “clear” has different effects depending on
the relations.

.pred.rel “mutex”,p1,p2

.pred.rel “mutex”,p3,p1

.pred.rel “imply”,p1,p4

.pred.rel “imply”,p5,p1

.pred.rel “clear”,p1
;

; clears the two mutex relations
; and the first implication form
;

(p1) mov r1=r2 ; => WAW on r1 is reported
(p2) mov r1=r2
;;
(p1) mov r2=r3
(p3) mov r2=r3 ; => WAW on r2 is reported
;;
(p1) mov r3=r4
(p4) br.cond.sptk.few b0
mov r3=r4 ; => WAW on r3 is reported
// WAW would not have been reported if p1 -> p4
;;
(p5) mov r4=r5
(p1) br.cond.sptk.few b0
mov r4=r5 ; WAW is not reported.
 ; p5 -> p1 is still valid

Mutex Relation Not Created with a Simple Compare
In the following code, P1, P2, and P3, are mutex since R10 can have only one value at a time. IAS fails to interpret the
inherently mutex relation and reports three WAW dependency violations.

cmp.eq p1=1,r10
cmp.eq p2=2,r10
cmp.eq p3=3,r10;;
(p1) mov r4=r1
(p2) mov r4=r2
(p3) mov r4=r3

To resolve this, use the .pred.rel annotation of the “mutex” form:

cmp.eq p1=1,r10
cmp.eq p2=2,r10
cmp.eq p3=3,r10;;
.pred.rel “mutex”,p1,p2,p3
(p1) mov r4=r1
(p2) mov r4=r2
(p3) mov r4=r3

Page 17 of 73

Instructions Separated by a Predicated Branch
In the following example, there are no dependency violations due to the unconditional compare. The instructions are
numbered #1 through #6 for clarity.

The apparent WAW on R1 can never happen since instruction #2 and instruction #5 never execute in parallel. That is,
instruction #2 executes (P2 true) implying that instruction #4 executes (P2 implies P1), and the code execution branches
to L without reaching instruction #5.

The apparent WAW on R2 can only happen if instruction #4 does not execute and instruction #6 does. Since execution of
instruction #6 (P3 true) implies execution of instruction #4 (P3 implies P1), the WAW never happens.

#1 (p1) cmp.eq.unc p2,p3=r1,r2;;
#2 (p2) mov r1=r10
#3 mov r2=r11
#4 (p1) br.cond.dpnt.few L
#5 mov r1=r12
#6 (p3) mov r2=r13

To avoid false reporting of WAW errors on R1 and R2, insert the “imply” form of the .pred.rel annotation:

(p1) cmp.eq.unc p2,p3=r1,r2;;
.pred.rel “imply”,p2,p1 ; if p2 is true, p1 is true
.pred.rel “imply”,p3,p1 ; same as above, with p3
(p2) mov r1=r10
mov r2=r11
(p1) br.cond.dpnt.few L
mov r1=r12
(p3) mov r2=r13

Safe Across Calls
The annotation .pred.safe_across_calls allows predicate relations to be retained, even after calls to other
procedures. Use this annotation to specify which predicates should have their relations preserved. The scope of the
annotation is within the current procedure or module.

You can specify several individual predicates and a range of predicates, all in the one statement.

Format:

.pred.safe_across_calls p1, p2, ...

where P1, P2, etc. can represent specific predicate registers or ranges of registers.

In the following example, if the .pred.safe_across_calls annotation is not included, IAS reports a dependency
violation between two last instructions, as procedure foo may change the predicate values.

.pred.safe_across_calls p2-p6, p10, p11

.pred.rel “mutex“, p3, p4
br.call b1=foo
(p3) mov r5=r32
(p4) add r5=8, r32

To clear the predicate relations defined by the annotation .pred.safe_across_calls, use as follows:

.pred.safe_across_calls ”clear”

Page 18 of 73

Indirect Access to Register File
The existence of dependency violations may depend on general register values; for example, when accessing register
files indirectly. In the following example, two different registers are accessed indirectly. IAS does not have information
about the values of the index registers, so it reports a WAW error on pmd.

mov r1=2
mov r2=4;;
mov pmd[r1]=r11
mov pmd[r2]=r12

To resolve this, use the .reg.val annotation to inform IAS that the two writes to pmd access different registers:

mov r1=2
mov r2=4;;
.reg.val r1,2
mov pmd[r1]=r11
.reg.val r2,4
mov pmd[r2]=r12

Page 19 of 73

st8.spill and ld8.fill in the Same Instruction Group
The instruction st8.spill writes to a specific bit in the UNAT application register, according to the accessed address in
memory. The instruction ld8.fill reads a specific bit of the UNAT application register, according to the accessed
address in memory. For more details see the Intel(R) Itanium(R) Architecture Software Developer’s Manual.

IAS cannot know the address of the accessed memory, so where no annotations are provided, it reports the following
dependency violations:

WAW for every pair of st8.spill instructions

RAW for every ld8.fill instruction that appears after st8.spill in the same instruction group

In the following code, one WAW and two RAW dependency violations are reported, although the code assures that the
accessed UNAT bits are different:

add r2=r1,8
add r3=r1,16;;
st8.spill [r1]=r11
st8.spill [r2]=r11
ld8.fill r12=[r3]

To avoid this false report, use a .mem.offset annotation before each st8.spill and ld8.fill instruction. The
annotation must state the memory address location relative to some local arbitrary memory region, such as the current
stack:

LOCAL_STACK_INDEX=0
add r2=8,r1
add r3=16,r1;;
.mem.offset 0,LOCAL_STACK_INDEX
.st8.spill [r1]=r11
.mem.offset 8,LOCAL_STACK_INDEX
.st8.spill [r2]=r11
.mem.offset 16,LOCAL_STACK_INDEX
.ld8.fill r12=[r3]

For further explanation of the .mem.offset annotation, see the Intel(R) Itanium(R) Architecture Assembly Language
Reference Guide.

To understand how IAS performs predicate analysis, see Predicate Analysis.

Page 20 of 73

Features
This section describes the following Intel(R) Itanium(R) Assembler (IAS) features:

Assembly Language Features in brief, which are fully defined in the Intel(R) Itanium(R) Architecture Assembly
Language Reference Guide

Complementary Features specific to the Intel© Itanium architecture assembly tool.

Assembly Language Features
IAS supports these Itanium architecture assembly language specification features:

 Instruction Set

 Bundling

 Instruction Groups

 Data Allocation

 Assembly Language Directives

 64-bit Address Space

 Alignment

 Assignment Statements

 Aliasing

 Arithmetic Expression Handling

The following sections provide a short description of these features. See the Intel(R) Itanium(R) Architecture Assembly
Language Reference Guide for the full explanation of these features.

Instruction Set
IAS supports the full Itanium architecture instruction set, defined in the Intel(R) Itanium(R) Architecture Software
Developer’s Manual.

Page 21 of 73

Bundling
Itanium processors execute instructions in bundles. A bundle contains up to three instructions, and an associated
template. The template defines which type of execution unit processes each instruction in the bundle.

IAS enables several levels of bundle definition:

Explicit bundling and template definition. You define the bundle boundaries and the bundle template.

Explicit bundling without template definition. You define the bundle boundaries; IAS chooses the best fitting bundle
template.

Implicit bundling. IAS chooses bundle boundaries and the bundle template by selecting the optimal code size
arrangements.

At all the bundle definition levels IAS inserts required NOPs.

The bundling feature is fully defined in the Intel(R) Itanium(R) Architecture Assembly Language Reference Guide.

Instruction Groups
Itanium processors execute several instructions in parallel. Instructions that are allowed to execute in parallel are
organized in instruction groups. An instruction group is a set of consecutive instructions that should have no
interdependencies. The instruction group is terminated by a stop (;;). IAS supports explicit stops as defined in the Intel
(R) Itanium(R) Architecture Assembly Language Reference Guide.

IAS checks for data dependencies in instruction groups. An example of a data dependency is a write instruction following
a read instruction to the same register. For more details on dependency violations, see Dependency Violations and
Assembly Modes.

Data Allocation
IAS enables allocating and initializing space in memory. IAS supports these data types:

Data allocation is fully defined in the Intel(R) Itanium(R) Architecture Assembly Language Reference Guide.

integers 1, 2, 4, or 8 bytes long
floating-point numbers 4, 8, 10 or 16 bytes long
strings up to 1024 bits long

Page 22 of 73

Assembly Language Directives
IAS supports all Itanium architecture assembly language directives except local label directives, which are described in
the Intel(R) Itanium(R) Architecture Assembly Language Reference Guide. The supported directives include the following
operations or information:

section control

symbol control

file inclusion

bundle template selection

debug information

unwind information

64-bit Address Space
IAS supports 64-bit address space.

When using the -ilp32 command-line option (this is the default for COFF32 output file format), symbolic addresses are
limited to 32-bit allocation (data4). IAS displays an error message when you attempt to use relocatable expressions at
64-bit allocations (data8).

This feature is fully defined in the Intel(R) Itanium(R) Architecture Assembly Language Reference Guide.

Alignment
By default, IAS aligns bundles on 16-byte boundaries, and data elements according to their size.

IAS aligns each section according to the largest alignment request in the section. Bundles, data elements, or an .align
directive create alignment requests.

The object file format limits section alignment. COFF32 object file format limits section alignment boundaries to 8 KB. The
actual limitation depends on the linker alignment policy. See the Microsoft* Developer Studio, Visual C++* User's Guide,
and LINK Reference for more information on the linker.

To disable automatic alignment in data allocation statements, add a .ua completer to the data allocation statement. For
example:

data8.ua 0x855

Alignment is fully defined in the Intel(R) Itanium(R) Architecture Assembly Language Reference Guide.

Page 23 of 73

Assignment Statements
Assignment statements enable the programmer to define a symbol by assigning it a value. This value may be a reference
to another symbol, register name, or expression. See the Intel(R) Itanium(R) Architecture Assembly Language Reference
Guide for more information.

Aliasing
IAS supports aliasing of symbol names and section names. Aliasing is implemented as follows:

 Aliasing is fully defined in the Intel(R) Itanium(R) Architecture Assembly Language Reference Guide.

Arithmentic Expression Handling
IAS supports the use of arithmetic expressions for constants and addresses, using standard arithmetic notation.
Arithmetic expressions can include symbols, numeric constants, and operators.

IAS supports expressions that access linker tables during run-time, through the use of several link-relocation operators.
See the Intel(R) Itanium(R) Architecture Assembly Language Reference Guide for more information on link-relocation
operators.

Input file constants are internally represented as signed 128-bit numbers. IAS makes all integer calculations with 128-bit
precision, and floating point calculations (real numbers) in extended precision (long double).

symbol names Aliased by an .alias directive. The alias name appears in the symbol table of the output
file.

section names Aliased by a .secalias directive. The alias name appears in the symbol table of the
output file. See the .secalias Directive section for more information.

Page 24 of 73

Complementary Features
IAS has several additional features not documented in the Intel(R) Itanium(R) Architecture Assembly Language Reference
Guide:

 IA-32 jmpe Instruction

 instenc Pseudo-instruction

 String Equation

 .secalias Directive

 Line Information for Debugging Tools

 # line Support

 Predefined Symbols

 Virtual Registers Allocation

 Unwind Information Generation

IA-32 jmpe Instruction
IAS supports IA-32 to Itanium architecture transition instructions (jmpe) from within Itanium architecture assembly
language files. When you assemble an Itanium architecture file with a jmpe instruction, IAS creates an IA-32 jmpe
instruction, enabling the transition from IA-32 code to Itanium architecture code.

The following directives are available:

jmpe.next Jumps to the next 16-byte aligned address.
jmpe.abs address Jumps to the specified address, as a number or as a

relocatable expression.
jmpe.IA-reg32 Takes an indirect jump to the address specified in the IA-

32 register. For example: jmpe.eax.

Page 25 of 73

instenc Pseudo-instruction
This pseudo-instruction enables you to enter a 41-bit immediate number to a slot in a bundle. This immediate number may
be recognized by the Itanium processor as an instruction. However, IAS does not check that the immediate number
corresponds to a valid Itanium instruction.

This pseudo-instruction is useful when you want to create executable code containing instructions that your current
assembler version may consider illegal.

Syntax

instenc.completer imm41

where:

Example

This example inserts a floating-point instruction into the bundle.

{
add r1 = r2, r3
instenc.f 0x1F423C02DA9
}

completer Defines the role of the instruction in the bundle. These are this
instruction's completers:

a ALU instruction

m memory instruction

i integer instruction

b branch instruction

f floating-point instruction
imm41 Is the immediate number corresponding to an Itanium instruction.

Page 26 of 73

String Equation
The equation statement (==) that equates a symbol to a value or a register, can also equate a symbol to a string. For
example:

save_file_name == @filename
or,
source_file == "my_file.s"

You cannot forward-reference a string equation statement.

.secalias Directive

The .secalias directive defines an alias for a section name. .secalias does for section names what .alias does for
symbol names. See Aliasing section for more information.

Within the input file you reference the section by the section name. In the output file the section is referenced with its alias.
Typical use of this directive is to identify a section with a name that is not a legal assembly identifier.

 Note

You must define the section before you use .secalias to alias it.

Syntax

.secalias section_name, "output-section_name"

where:

Example

This example shows the use of the .secalias directive to alias a section name.

section_name Is the name of the section in the input file.
output-section_name Is the name of the section in the output file.

.section

. . .
sec1, "ax", "progbits"

.secalias

. . .
sec1, "sec++"

.text
 .xdata
. . .

sec1, 5

Page 27 of 73

Line Information for Debugging Tools
Debug directives create line information used to create debug information in the object file. Each line information directive
creates a debug record. The debug record points to the position of the code generated by the instruction following it. Two
debug records cannot point to the same location. Therefore, make sure there are lines of code between two debug
directives.

The line information reference in the debug record refers to the exact instruction slot in the bundle.

If you use the -d debug command-line option, IAS ignores the .bf, .ln, and .ef directives.

Use this general template to produce line information:

.file "source-file-name"

...

.proc entry [,...]

...
entry:
...
.bf entry, source-line-no
;

; prologue code

;
.ln source-line-no
; assembly code
.ln source-line-no
;

; assembly code

;
...
...
.ln source-line-no
;

; assembly code

;
.ef entry, source-line-no, procedure-size
;

; epilogue code

;
.endp [entry]

Page 28 of 73

#line Support
The #line directives define the line number of the next code line, and can also replace the file name for the object file.
You can explicitly enter the #line directives, or they may be inserted by the preprocessor.

The #line definition impacts the diagnostic messages and assembly-level line information created when the -d line
option is specified in the command-line option. See Compilation Model for more information.

These are the #line directives IAS recognizes:

Predefined Symbols
IAS provides three predefined symbols. Use them in the assembly language file:

#line line-no IAS treats the next line as the line-no line in the current file, regardless
of the serial count.

#line line-no "file-name" IAS treats the next line as the line-no line in "file-name"; this file
name replaces the previous object file name.

This directive may also contain a comma between the operands.

@line is an integer specifying the current line number.
Usage example:
data8 @line

@filename is a string specifying the current file name.
Usage example:
stringz @filename

@filepath is a string specifying the current path and filename.
Usage example:
stringz @filepath

Page 29 of 73

Virtual Registers Allocation
Virtual registers allocation (Vral) allows use of symbolic names instead of register names. This feature replaces registers
or groups of registers with meaningful names, making code

simpler to write

faster to read

easier to maintain

When Vral is activated, the assembler analyzes control flow and data flow, builds life ranges for each register, and
replaces symbolic names with the user-allocated registers.

With one directive, Vral can assign one name to a group of registers, allowing the assembler to handle the use of
individual registers within the group. Vral is then responsible for ensuring safe reuse of registers.

To allocate symbolic names to registers, use these directives:

.vreg.allocatable

.vreg.safe_across_calls

To declare register variables, use these directives:

.vreg.var Family, Xcounter

.vreg.family LocalIntFamily, reg_range

To undefine or redefine variables, use these directives:

.vreg.undef Xcounter

.vreg.redef Xcounter

The following annotations are useful when using Vral:

.br.target annotation

.entry annotation

.bank switch annotation

This section includes:

Allocate Registers
Declare Variables
Undefine and Redefine Registers
Branch Target Annotation
Register Value Annotation
Bank Register Annotation

Page 30 of 73

Allocate Registers
The .vreg.allocatable directive assigns registers for allocation, thereby making them available for VRAL from this
point in this procedure. There can be more than one allocation directive in each procedure. Values of these registers are
not ensured preserved across calls. This directive has the following syntax:

.vreg.allocatable reg_range

where

reg_range can be a single register, a range of registers, or both.

In the following example, integer registers 14 through 26, and register 30 are assigned:

.vreg.allocatable r14-26, r305

Alternatively, the .vreg.safe_across_calls directive informs the assembler that the named registers are preserved
across calls. This directive assurs the assembler that branches to external procedures following this directive do not
access or corrupt the named registers. The directive has the following syntax:

.vreg.safe_across_calls reg_range

where

reg_range is not restricted to the registers allocated in the .vreg.allocatable directive.

Example:

.vreg.safe_across_calls f16, f18-f21

Page 31 of 73

Declare Variables
Use the following syntax to declare register variables:

.vreg.var Family, Xcounter

or

.vreg.var predef, Xcounter

where

Each variable belongs to a single register family. Use the following syntax to define families:

.vreg.family LocalIntFamily, reg_range

where

Examples:

.vreg.family MyLocalFamily, loc0-loc3

.vreg.family FpUsedRegisters, f17-f25

A register may belong to more than one family. Each family may contain registers of only one type (int, float, etc.).

There are four predefined families in the assembler syntax:

Family Is the user-defined family name of the new variable.
Xcounter Is a new register variable name.
predef Is one of four predefined families, below.

LocalIntFamily Is the user-defined family name.
reg_range Can be a single register, a range of registers, or both.

@int all registers from r1 to r127
@float all registers from f1 to f127
@branch all registers from b0 to b7
@pred all registers from p1 to p63

Page 32 of 73

Undefine and Redefine Registers
VRAL directives can be used only within the procedure, between the directives .proc and .endp. The variables declared
by the directives are valid from their declaration till the end of the procedure or until they are undefined or redefined.

Use the following syntax to undefine variables, so the variable names can be used again within the procedure:

.vreg.undef Xcounter

Use the following syntax to redefine variables, with no need for undefining. Notice there is no opportunity to specify a
different family:

.vreg.redef Xcounter

An example of the Virtual Registers Allocation (VRAL) directives usage is shown as follows.

Virtual Registers Allocation Example
.proc foo
.vreg.allocatable r19-r21, r27
.vreg.safe_across_calls r20, r21, p5-p6
.vreg.var @pred, HL1, L1H, HL2, L2H, HX, XH
.vreg.family MyGlobals, r19-r20
.vreg.var MyGlobals, High, Low1, Low2
foo::
alloc loc0 = 3,1,1,0
ld8 High = [in0]
ld8 Low1 = [in1];;
cmp.gt HL1, L1H = High, Low1
(L1H) br.cond.sptk.few LE
sub out0 = High, Low1
GT: add r22 = 32, r5;;
; ...
END:
cmp.eq HX, XH = High, r22
(HX) br.call.spnt.many rp = bar;;
(XH) st8 [r23] = High
br.ret.sptk.clr b2
LE: ld8 Low2 = [in2] ;;
cmp.gt HL2, L2H = High, Low2
(HL2) sub out0 = High, Low2
(HL2) br.cond.sptk.few GT ;;
mov out0 = 0
; ...
br.cond.sptk END
.endp foo

Page 33 of 73

Branch Target Annotation
The branch target annotation .br.target precedes an indirect branch and explicitly provides the assembler with the
branch target address for the branch instruction. This annotation applies only to the branch instruction that immediately
follows the annotation. The .br.target annotation has the following syntax:

.br.target			target1[=prob1] [,target2[=prob2]...]

where:

The following examples illustrates a branch target annotation.

where

Target002 Is the name of a label in the procedure.

target Specifies the targets of the next indirect branch instruction. May be
one of the following:

a label If the label is not defined in the object file
symbol table, or the next instruction is not an
indirect branch, the assembler ignores this
annotation.

@fallthrough The branch is not taken.
@external The branch jumps outside the current function.

prob A real number that indicates the probability that the associated branch
target is taken.

Using the Branch Target Annotation 1

.br.target a=0.6, b, @fallthrough=0.2, @external=0.1

Using the Branch Target Annotation 2

br.target Target002
(p4)br.cond.sptk.many.b1

Page 34 of 73

Register Value Annotation
The register value annotation .reg.val informs the assembler of the contents of a register. It is used for dependency
violations detection.

The annotation has the following syntax:

.reg.val reg, val

where:

 Example below illustrates a .reg.val annotation.

Bank Register Annotation
By default, the assembler assumes that the register bank at the entry point is bank 1. To overwrite this default use
the .bank directive. It is necessary only for procedures that contain a bsw instruction, for VRAL.

This annotation makes it clear to the assembler to which bank of registers the instructions refer.

 The .bank switch annotation has the following syntax:

.bank n

where:

n represents 0 or 1.

Example that follows illustrates a .bank annotation.

reg Represents any integer register from r0 to r127.
val Is any real number.

Using the Register Value Annotation

.reg.val r5,3

Using the Bank Switch Annotation

.proc A //entry annotation
A:
 .bank 0
 ...
 bsw.1
 ...
 bsw.0
 ...
.endp

Page 35 of 73

Unwind Information Generation
IAS applies static analysis to procedure code to automatically generate unwind records. Use this feature when a
procedure as an intermediate element must provide safe propagation of the stack unwinding process from the called
function to the unwind handler in the caller procedure.

The assembler builds unwind information for all procedures in the file, starting from the procedure’s first entry point and
continuing through to .endp.

When the static analysis is not complete; for example, an indirect branch is unaccompanied by branch target annotation,
IAS sends a warning message and then attempts to simplify the analysis by assuming that the procedure has one
prologue and multiple epilogues. This approach works in most cases. If this is not successful, IAS issues an error
message.

The unwind generator is based upon the Itanium architecture software conventions. See the Software Conventions and
Runtime Architecture Guide. Invoke unwind generation using the -X unwind command-line option. When you use this
flag, IAS ignores all unwind directives and issues a warning.

Page 36 of 73

Diagnostic Messages
When IAS encounters suspicious or incorrect input, or fails at some operation, it provides a diagnostic message. You can
receive the diagnostic messages either on the screen, or send them to a file. See Error Handling for more information.

This section describes the syntax of diagnostic messages, and describes the diagnostic messages in numeric order.

 Note

IAS displays diagnostic messages according to the order of their corresponding lines in the source code. This order is not
necessarily the order in which they were detected. Therefore, a diagnostic message of the derivative error may appear
before the diagnostic message from the original error.

This section includes:

Diagnostic Message Types
Diagnostic Message Syntax
Fatal Error Messages
Error Messages
Warning Messages

Diagnostic Message Types
IAS sends these types of diagnostic messages:

fatal error messages IAS detected incorrect input that causes termination. IAS does not produce an object
file. Fatal error message numbers have this format: A1xxx.

error messages IAS detected incorrect input. Execution continues. However, IAS does not produce an
object file. Error message numbers have this format: A2xxx.

warning messages IAS detected legal, but suspicious input. Execution continues and IAS produces an
object file. Warning message numbers have this format: A3xxx.

Page 37 of 73

Diagnostic Message Syntax
A diagnostic message specifies the location of the error, its type, and a short description of the error, as described below
and shown in Figure A-1:

Figure below shows an example of an error message, and specifies the message elements.

Diagnostic Message Format

This is the format of the diagnostic message descriptions:

Message Number Text of the message

Additional description of the message.

Location The file name and line number information helps to locate the exact part of the code that
needs correction. In some cases the location shows the detection of a derivative error.

Severity This information indicates the severity of the error.
Message number IAS message numbers are prefixed by an A. Use the message number to locate its

description.
Message text This text provides a one line explanation of the incorrect or suspicious input.

Diagnostic Message Syntax Example

Page 38 of 73

Fatal Error Messages
This section describes fatal error messages. A fatal error causes immediate IAS termination without creating an object file.
These are the fatal error messages IAS may display:

A1012 cannot open input file file

IAS could not open this file. This fatal error message is usually due to an incorrect file name or path.

A1013 cannot open input file file included from file (line)

IAS could not open this file. This fatal error message is usually due to an incorrect file name or path in the .include
directory.

A1014 cannot open registers allocation log file file

IAS could not open the file that lists the results of virtual registers allocations. Check that the file name with a suffix .vra
is not in use. Delete any read-only files with the suffix .vra.

A1015 creation of section section failed: reason

The assembler could not create the section, for the reason specified.

A1018 too many errors: number

The maximum permitted number of errors was exceeded, so execution terminated. You can configure the number of
permitted errors with the -E n command-line option.

A1020 section stack underflow

The .popsection directive operates on an empty stack. See the Intel(R) Itanium(R) Architecture Assembly Language
Reference Guide for more information on this directive.

A1021 unable to open file as an error file

IAS could not open the file designated in the command-line as the diagnostics file. A file with an identical name may be
locked by another procedure.

A1022 command-line option is missing an argument Usage message

Page 39 of 73

This command-line option is missing an argument. This fatal error message also provides the IAS command-line usage
message. See Command-line Options for more information on IAS command-line usage.

A1025 unknown command-line option option Usage message

IAS does not recognize this command-line option. This fatal error message also provides the IAS command-line usage
message. See Command-line Options for more information.

A1026 option command-line option is incompatible with sub-argument sub-argument usage
message

The specified sub-argument is not valid for this command-line option. This fatal error message also provides the IAS
command-line usage message. See Command-line Options for more information on the command-line options and their
sub-arguments.

A1027 .include directive has illegal placing/format

This .include directive is incorrect. This fatal error message may be caused by entering a file name operand that is not a
string. See the Intel(R) Itanium(R) Architecture Assembly Language Reference Guide for more information on this
directive.

An example of code that generates this message:

.include data.s

A1050 virtual register allocation failed: not enough allocatable
 registers from family family

IAS needs more registers than have been allocated by the virtual register allocation directives.

A1099 nesting level (number) of .include directive exceeded for
 included file file

This .include directive is nested beyond the IAS nesting limit. IAS allows up to 20 nested levels.

Page 40 of 73

Error Messages
This section describes the error messages. An error does not terminate IAS execution. However, it does prevent object
file production. These are the error messages IAS may display:

A2000 too long symbol name

The symbol name may not be longer than 4096 characters.

A2023 there should be a prologue region in the function

This directive requires a prologue code region in the function.

A2024 the personality routine is not defined for the language specific data

This directive requires defining a personality routine definition before the directive. Add a .personality directive before
the .handlerdata directive. See the Intel(R) Itanium(R) Architecture Assembly Language Reference Guide for more
information on these directives.

A2025 directive ".proc" is not allowed within section ".xdata."

You cannot put a .proc directive in an .xdata section.

A2026 section switch is not allowed within handlerdata region

You cannot switch sections in a handlerdata region.

A2027 debug directive points outside the function

An operand of the debug directive points outside the current function.

A2028 directive is allowed only within an explicit bundle

This directive is legal only when specified within an explicit bundle. Place this directive in between the two curly brackets
"{" and "}".

A2029 directive is not allowed within an explicit bundle

This directive is not legal when specified within an explicit bundle. Make sure this directive is not placed between the two

Page 41 of 73

curly brackets "{" and "}".

A2030 misplaced or missing '}'

There is a curly bracket mismatch. Check preceding bundle's curly bracket structure.

A2031 Unclosed parenthesis at start-of-statement

This statement starts with an open parenthesis token "(". However, the close parenthesis ")" is missing. This statement
may have an unclosed qualifying predicate.

A2032 Unexpected element instead of predicate register

Something other than a predicate register is specified in the location reserved for the predicate register.

An example of correct usage:

(p62) add r2 = r3, r6

In this example P62 is the predicate register.

An example of code that generates this error message:

(p64) add r2 = r3, r6

The predicate registers range is P0 - P63.

A2033 Unexpected element instead of tag

Something other than a tag is specified in the location reserved for tags.

An example of correct usage:

.save pr, r3, T
[T:] mov r3=pr

A2034 Unexpected token at end-of-statement: token

The statement ends with an unexpected token. Delete or change the token.

An example of code that generates this error message:

add r1=r2,r3,

Page 42 of 73

A2035 invalid token: token

This token is invalid.

An example of code that generates this error message:

add r1=r2,r3!

A2036 illegal usage of reserved register: register

This register is a reserved register. Use a different register.

An example of code that generates this error message:

mov r5=ar8

A2037 Unexpected token at start-of-statement: token

This token is not valid at the start of the statement. Delete or move the token.

An example of code that generates this error message:

)add r1=r2,r3

This error message may also be the result of a misspelled mnemonic. An example of a misspelled mnemonic that
generates this error message:

br.cal b5=L
L:

A2038 symbol/section already aliased as name

This symbol or section cannot be aliased at this stage, since it is already aliased as something else.

A2039 label already defined: label

This label cannot be defined at this stage, since it is already defined elsewhere. Use a new label for this definition.

A2040 Unexpected token token

The specified token is not expected in this location.

A2042 symbol symbol for definition type is already defined

Page 43 of 73

This symbol is already defined elsewhere. Use a new name for this definition.

An example of code that generates this error message:

L:
L=8

A2047 unexpected character character in string hexa-escape-sequence

The hexa-escape sequence contains an unexpected character. Hexa-escape sequences can contain digits 0-9 and/or
letters A-F.

Examples of correct hexa-escape sequences are: \xa, or \xD9.

A2048 illegal bundle brace in automatic mode

IAS encountered a curly bracket ({) or (}) while in automatic assembly mode. Automatic mode was specified with
the .auto directive.

A2049 relocatable expressions based on symbols symbol and symbol from different sections
cannot be subtracted

These relocatable expressions are from different sections. To subtract two relocatable expressions, they must originate in
the same section.

A2050 cannot subtract relocatable expressions based on an external or common symbol

To subtract two relocatable expressions, they must be based on symbols defined in the same section. One or both of
these relocatable expressions is probably based on an external or common symbol.

A2051 wrong operand parenthesis structure

The operand parenthesis structure is incorrect.

An example of code that generates this error message:

nop ((5+3)

A2052 wrong operand bracket ’[‘’]’ structure

The operand bracket structure is incorrect.

An example of code that generates this error message:

Page 44 of 73

ld8 r6 = [r4]]

A2055 illegal argument [argument-type] for unary-operator operator, or misplaced/missing
operator

This argument-type is not legal for the specified unary operator.

An example of code that generates this error message:

and r3=r2,+r5

A2056 missing arguments for binary-operator: operator

This binary-operator is missing arguments.

An example of code that generates this error message:

mov rr[] = r6

A2057 illegal argument-pair [left: argument right: argument] for binary-operator operator,
or misplaced/missing operator

These arguments cannot operate together. A typical mistake causing this error message is the use of a binary operator
with at least one operand that is not valid for this operator.

An example of code that generates this error message:

or r4 = dbr[f4], r6

A2061 a sequence of unary-operator operator and element is illegal

This unary-operator cannot follow the specified element.

An example of code that generates this error message:

add r1 = ~, r2

A2063 a sequence of binary-operator operator and operands operand1 and operand2 is illegal

This binary-operator cannot follow the specified elements.

There may be a misplaced operator, for example: or r3 = 4 5+, r6 instead of the intended: or r3 = 4+5, r6

A2065 wrong operand syntax

Page 45 of 73

The operand syntax of this code line is incorrect.

In some cases, you may receive this error message when the cause is illegal operand combination. See error messages
A2069 and A2070 for more information.

A2066 missing operator [possibly intended binary +/- taken as unary]

An operator is missing. There may be a misplaced operator, for example: 2*-3 5 instead of the intended: 2*3-5

Another possibility is a missing comma between operands, for example:

add r1 = r2 r3 instead of the intended code: add r1 = r2, r3.

A2067 incorrect tag usage: tag [might need to use label instead]

This tag is incorrect. Try replacing the tag with a label.

A2068 value of operand operand number for element is not available when needed

This operand value is not available at the stage when it is needed. IAS cannot make forward references of this kind.

An example of code that generates this error message:

.skip L1-L2
L1: data8 1
L2:

A2069 illegal operand combination for element

There is a mismatch between the mnemonic and the operands of this instruction. Several causes for this error message
are: a missing operand, an incorrect operand type, an invalid register name that is interpreted as a symbol, or an incorrect
choice of mnemonic.

A2070 illegal operand operand for element

This operand is not suitable for the specified element.

A2072 invalid section attribute: attribute

This section attribute is not valid. Section attributes depend on the Object Module Format (OMF). Several valid attributes
are: a, w, x and s.

Page 46 of 73

A2073 more than one comdat section flag defined: flag

A comdat section can have only one comdat-flag defined. These are some of the possible flag definitions: D, S, E or Y.
The flags are case-sensitive.

A2074 comdat flag is only applicable for comdat section

This comdat flag is defined for a non-comdat section.

A2075 comdat section flag not defined

A comdat section must have one comdat-flag defined. These are some of the possible flag definitions: D, S, E or Y. The
flags are case-sensitive.

A2076 comdat section section associative symbol is not defined

The comdat section must have at least one label.

A2077 invalid section type: type

This section type is not valid. These are the possible section types: progbits, nobits, comdat and note.

A2078 absolute sections section [address to address] and section [starting at address]
overlap

There is an overlap between the two specified absolute sections.

A2079 absolute section section [starting at address] exceeds the 64-bit limit by value

This absolute section exceeds the 64-bit address space limit. The specified value indicates how far the limit is exceeded.

A2080 relocatable expression for element requires -p32 or -M ilp32 command-line options

This relocatable expression conflicts with the current compilation model command-line option. See Compilation Model for
more information.

A2081 nobits section section cannot be written to

There is an attempt to write to this nobits section. You cannot write to nobits sections. To correct this, do one of the

Page 47 of 73

following: delete the data in the nobits section, change the section type to progbits, or replace the data with a .skip
directive.

A2082 nobits section section contains data

The nobits sections cannot contain data. To correct this, do one of the following: delete the data in the nobits section,
change the section type to progbits, or replace the data with a .skip directive.

A2083 integer constant token does not fit in number bits: token

This input number token contains more bits than permitted in an integer constant.

A2084 integer number does not fit in number bits: number

This number is too big for this instruction. This number may be the result of an internal calculation.

A2086 alignment request is too big: alignment

Alignment requests are limited to 232-1.

A2087 alignment request is not a power of 2: alignment

An alignment request must be a power of 2.

A2088 symbol symbol is undefined

This symbol does not appear in the object file symbol table. A global or weak symbol must be either defined or declared.
A local symbol must be defined.

A2089 illegal global declaration of assigned symbol: symbol

A declared symbol that appears in the object file symbol table cannot be assigned. You can use an equate (==) statement
instead.

An example of code that generates this error message:

B = 8
.global B

A2090 assigned/equated symbol symbol cannot be used in statement

Page 48 of 73

The use of this symbol in this statement conflicts with the symbol assignment or equation.

An example of code that generates this error message:

A == L
L:
.weak A = S
S:

A2091 symbol symbol is undefined

The symbol is not defined.

A2092 symbol size of symbol exceeds 32-bit word size

The size of the common symbol exceeds the 64-bit limit.

A2093 symbol symbol is already bound as binding

This symbol's binding is already declared. You cannot redefine a symbol's binding.

A2094 symbol size of symbol is already set to size

This symbol's size is already declared. You cannot redefine a symbol's size.

A2095 symbol type of symbol is already set to type

This symbol's type is already declared. You cannot redefine a symbol's type.

A2096 type is an illegal type for symbol symbol

This type is not one of the possible symbol types: @notype, @object and @function .

A2097 instruction cannot be predicated

This instruction cannot be predicated. See the Glossary for explanation.

A2098 there is no template for this combination of instructions in a bundle

Page 49 of 73

You must rearrange the instructions so that they fit in templates, or use implicit bundling.

A2100 one and only one operand must follow an assignment/equation sign

Make sure assignment or equation signs are followed by one operand.

A2101 invalid section name: section

A section name can be any valid identifier. You may use the .secalias directive to produce section names in the object file
section table.

This error message may be the result of missing attributes and/or flags when defining a new section.

A2103 symbol symbol is already defined as a section name

A section name conflicts with a symbol name. Do not choose identical names for a section and a symbol.

A2104 invalid operand immediate value: value

This immediate value is not valid for this instruction operand. See the Intel(R) Itanium(R) Architecture Software
Developer’s Manual for more information.

An example of code that generates this error message:

fetchadd4.acq r3 = [r4], 7

A2105 this relocatable expression does not fit in number bits

This relocatable expression is too long for this instruction. See the Intel(R) Itanium(R) Architecture Software Developer’s
Manual for more information.

A2107 requested register stack frame size size exceeds register stack limit limit

The requested register stack frame size is larger than 96. The register stack frame size is the sum of input, local and
output registers.

A2108 input stack register cannot exceed inxx

The requested input register is not within the current input register frame xx. The register frames are defined in a previous
alloc instruction or .register directive.

Page 50 of 73

A2109 local stack register cannot exceed locxx

The requested local register is not within the current local register frame xx. The register frames are defined in a previous
alloc instruction or .register directive.

A2110 output stack register cannot exceed outxx

The requested output register is not within the current output register frame xx. The register frames are defined in a
previous alloc instruction or .register directive.

A2111 The requested number of rotating-registers number is not a multiple of 8

The number of rotating registers must be a multiple of 8.

A2112 The requested number of rotating-registers number is larger than the register stack
frame size number

The number of rotating registers cannot exceed the total register stack frame. The register stack frame is the sum of input,
local and output registers.

A2113 Loop dependency is detected in equate expression for symbol symbol

The specified symbol’s equation expression has a loop dependency. Check for a backward or recursive reference.

An example of code that generates this error message as a result of a backward reference:

x==y
y==x

A2114 invalid operand type: symbol

This operand type is not valid for this statement.

A2115 stop (;;) for empty instruction group

This stop creates an instruction group without instructions. Delete the stop.

An example of code that generates this error message:

;;
add r1=r2,r3

Page 51 of 73

A2116 bundle content contradicts template request

The bundle contents require a different template. Choose a different template, or omit the template directive.

An example of code that generates this error message:

{
.mii
nop.m '0'
nop.f '2'
nop.i '1'
}

A2117 same register type register [register] cannot be used for both destinations

This instruction cannot write to the same two destinations.

A2118 cannot use the same registers for base and destination in the post-increment form
form of the load instruction

A post-increment load instruction requires different registers for the base and destination. An example of code that
generates this error message:

ld8 r9 = [r9], r4

A2121 alias name name[number] is not defined in .rotX directive

Define the rotating registers in a previous .rotr, .rotf, or .rotp instruction.

A2122 constant integer string does not conform to style/radix style

The format of this integer string does not conform to the current style, defined by a previous .radix directive.

A2124 previous procedure is not yet ended

A new procedure cannot start before the current procedure ends. Use the .endp directive to end the current procedure.

A2126 there is an open procedure in section: section

There is an open procedure in this section. Use the .endp directive to end the procedure.

A2128 line entry is valid only in type section

Page 52 of 73

The current section type does not accept debug information directives.

A2129 offset operand for element must be greater or equal to current location counter

This offset operand must specify an address higher than the current location.

An example of code that generates this error message:

L:
.skip 5
.org L

A2130 somewhere, symbol symbol is equated to an incompatible type

This symbol is equated to an incompatible symbol type. IAS cannot determine the exact location of the equation, only the
fact that the equation is invalid.

This error message may also be the result of an illegal cyclic definition. An example of code that generates this error
message:

B == r5
.global B

A2131 equation of symbol symbol is based on undefined symbol symbol

IAS cannot resolve this equation since one of the symbols on the right hand side is not declared.

A2132 illegal register value number

The register number is invalid. The valid register numbers depend on the register type.

A2133 reference symbol symbol is not defined in the current section

This symbol must be defined in the current section.

A2134 element is supported for COFF32 object file format only

This element is not supported in file formats other than COFF32.

A2135 there is no open debug function

The .ef and .ln directives require opening a debug function, using the .bf directive. See Intel(R) Itanium(R)

Page 53 of 73

Architecture Assembly Language Reference Guide for more information on this directive.

A2136 symbol symbol does not match the current debug function

A line entry must reference the current procedure symbol.

A2137 previous debug function is not yet ended

The current attempt to open a debug function with a .bf directive is unsuccessful because the previous .bf directive is
still active. Use the .ef directive to end the previous debug function.

A2138 two debug directives pointing to the same instruction

A .ln directive points to the nearest following instruction. An instruction cannot be preceded by more than one .ln
directive.

A2139 there is an open debug function in section section

This section contains an open .bf directive. Use the .ef directive to end the previous debug function.

A2140 source file is not defined

To use debug information directives, a source file must be defined. Use the .file directive to define a source file.

A2141 unwind directive cannot be placed in the location

This unwind directive cannot be placed in the specified location. See the Intel(R) Itanium(R) Architecture Assembly
Language Reference Guide for more information on this directive.

A2142 unwind directive directive is not within a function

This unwind directive is not within a procedure. Use the .proc directive to open a procedure.

A2143 tag operand tag in the unwind directive is not defined within the current region

This specified unwind directive operand tag refers to an instruction outside the current unwind region (prologue or body
regions).

Page 54 of 73

A2144 unwind directive points outside the current region

This unwind directive refers to an instruction outside the current unwind region (prologue or body regions).

A2145 the first unwind directive must point to the procedure procedure entry point

There is an instruction between the first unwind directive and the procedure entry point. Delete or move this instruction, so
that the first unwind directive points to this procedure's entry point address.

An example of code that generates this error message:

.proc foo

.prologue 0x1, r1
nop 0
foo::
.endp

To correct the code, write the .prologue directive immediately before the foo:: entry point.

A2146 unwind directive interrupts uncompleted set of spill instructions

A set of contiguous spill instructions, defined by the previous .save directive is cut off by another unwind directive.

A2148 directive directive with no spill is invalid

You cannot define zero as the number of spill arguments in an unwind directive.

A2149 duplicate spill of the same register type register is invalid

An unwind region may contain only one spill area for a specified register type.

A2150 unwind directive directive is already specified in the current procedure

This directive is allowed only once in a procedure.

A2152 explicit empty bundle is illegal

An explicit bundle must contain at least one instruction.

A2153 no type registers are allowed within current register stack frame

This register stack frame has zero registers of the specified type.

Page 55 of 73

A2154 vral directive dirname is not within a function

Virtual register allocation (Vral) directives are only meaningful when contained in a procedure.

A2173 both destination fp registers refer to the same register bank

The destination registers must specify one odd floating-point register and one even floating-point register.

A2180 register register dependency violation with line

The specified line contains a register dependency. Try to relocate one of the lines such that this dependency is avoided.
Place a stop (;;) between the two dependent elements.

A2181 instruction must be position in an instruction group

This error message originates with the IAS dependency violation feature. Place this instruction according to its
requirements; whether first or last in an instruction group.

A2186 statement element is not allowed after statement element statement

This combination of consecutive statement elements is not allowed.

An example of code that generates this error message:

foo: .radix C

A2187 alias for symbol type "symbol name" is already defined

The specified symbol name is already used as the alias for another symbol.

A2192 symbol name used in @fptr operator must be a function

An operator following an @fprt operand must be a function.

A2194 the directive: directive is not supported in this configuration

The specified directive is not supported when running IAS with the current command-line options. See Command-line
Options for more information.

Page 56 of 73

A2197 Radix stack underflow

The radix stack is empty. A pop operation on an empty stack is not possible.

A2198 operand no. number: relocation's addend doesn't fit in size bits

The specified relocation addend is too large. Make sure the addend is not larger than the specified size.

A2199 privileged instruction instruction rejected

The current IAS setting specifies that privileged instructions be rejected. This instruction is privileged, and therefore
rejected.

A2200 line group size value exceeds 32 bits word size or less than actual size

The third parameter of the .EF directive (the code size) is illegal.

A2201 Global label cannot begin with dot

A global label cannot begin with a dot "." character. You can correct this problem by ensuring a label is indicated,
changing the label, or replacing the global definition with a symbol name definition.

A2202 Division by zero

The denominator of an expression is zero. The result is undefined.

A2203 invalid register type for register range operand

Registers range operand can be constructed only by integer, float, branch, or predicate register pair.

A2205 virtual register has already been defined

Within a procedure, the directive .vreg.var has already been specified for this register, without an .vreg.undef
directive.

A2207 inconsistent request for allocation of even/odd floating point registers

Page 57 of 73

The floating-point virtual register received contradictory requirements for evenness on the same life range.

An example of code that generates this error message:

.vreg.var @float, vfp
fand vfp = f8,f9
(p2) ldfps vfp, f4 = [r3] // vfp should be odd
;;
(p2) ldfps vfp, f5 = [r4] // vfp should be even
for f12 = vfp, f12

A2208 an ambiguity in register bank setting

Two .bank annotations conflict for some instructions, usually because of a branch instruction.

A2209 temporary label can not be aliased

The directive .alias should not be written to a temporary label.

A2210 More than one template selection directive for current bundle

The current bundle has more than one template assigned. Choose the most suitable, and delete the rest.

A2211 Template selection directive allowed only as first statement in explicit bundle

Place the template selection directive right after the curly bracket that opens a bundle “{“.

A2212 Symbol symbol name was not defined location

The specified symbol was not defined in this procedure.

A2213 feature has different syntax in COFF32 object file format

The specified feature uses the syntax for an incorrect file format. See the Intel(R) Itanium(R) Architecture Assembly
Language Reference Guide for more information.

A2214 The right-hand expression of the assignment contains forward reference

The right-hand expression of the assignment cannot contain a forward reference.

Page 58 of 73

A2215 Somewhere, symbol assignment symbol is assigned to expression that contains forward
reference to symbol undefined symbol

An assignment symbol may not contain a forward reference to an undefined symbol.

A2216 Missing the right-hand operand of the assignment

The line of code is not complete. Add the right-hand operand of the assignment.

A2217 Symbol symbol name was not defined within procedure

The specified symbol name must be defined in the procedure. An example of code that generates this warning:

.proc A
mov r1=r2
.endp
A:

A2219 Invalid usage of an undefined symbol with addend

An undefined symbol with addend can not be used here. The relocation cannot be resolved.

A2221 somewhere, symbol symbol is equated to a value/offset offset out of positive size
bit range

A directive puts the specified symbol in a symbol table. This symbol is assigned a value larger than permitted. Make sure
that the assigned value is within the permitted range.

A2222 symbol sym_name is unknown, add alias is ambiguous in vral mode

Using the add alias with an unknown immediate as the second operand, and a virtual register as the third operand may
confuse the assembler and cause allocation failure.

To fix, equate an immediate before the add instruction, or explicitly write adds or addl instead of add.

In the following example of code that generates this warning, the assembler cannot determine if A is small enough to
choose adds. If so, there are no restrictions on Vr1 allocation. Otherwise, addl is chosen and Vr1 is restricted to the
range R0 - R3.

add r6 = A, Vr1
...
A == 5
To fix:
adds r6 = A, Vrl

or

Page 59 of 73

A == 5
add r6 = A, Vr1
...

A2223 invalid syntax of Register File operand

The syntax of the register file operand is incorrect.

An example of code that generates this warning:

mov dbr=r5

An example of correct syntax:

mov dbr[r6]=r5

A2225 illegal instruction

The indicated instruction is illegal in Itanium architecture syntax.

A2226 illegal usage of register in RFP model

When the command-line option -M rfp is invoked, the available set of floating-point registers is reduced to the range F6
- F11. Attempts to access other floating-point registers cause this error. (ELF64 only).

A2227 Associative comdat section sec_name must have an associated section

You must indicate an associated section for a comdat section of type A (associative).

A2228 symbol name sym name contains period, not allowed in the COFF32 format

The COFF32 format table does not allow symbols to contain a period.

Page 60 of 73

Warning Messages
Warning messages report legal but suspicious assembly language code. IAS execution and output file production is not
disrupted by warnings. These are the warnings IAS may display:

A3100 unexpected usage of tag tag in element

This tag is used in an unexpected way. This can often be corrected by replacing the tag with a label.

A3102 symbol is a symbol and also an alias name

This name is defined as both a symbol and an alias name. The output file contains two different symbols with the same
name.

A3103 register register dependency violation with line

The specified line contains a register dependency violation. Try to relocate one of the lines such that this dependency is
avoided. Place a stop (;;) between the two dependent elements.

A3105 symbol name defined in a TLS section can't be referenced this way

The specified symbol name must be referenced as an operand of a secrel operator of an addl instruction. See the Intel(R)
Itanium(R) Architecture Assembly Language Reference Guide for more information.

An example of code that generates this warning:

addl r3 = @gprel(sym), r3

An example of a correct symbol reference:

addl r3 = @secrel(sym), r3

A3106 symbol symbol is undefined

This symbol does not appear in the object file symbol table. A global or weak symbol must be either defined or declared.
A local symbol must be defined.

A3200 32-bit relocatable expression in element

The model address size assumption is 32 bits. This does not correspond to the specified element.

Page 61 of 73

A3201 alignment operand of symbol symbol is relation than the size operand

The COFF32 output file format has no symbol alignment field. At link-time, the linker assumes the alignment is equal to
the size operand, which is different from the requested alignment.

A3202 alignment is greater than 64, the section alignment is restricted to 64

In COFF32 output file format, the section alignment request cannot exceed 64 bytes. Some linkers might not align
sections on boundaries larger than 64 bytes. The actual alignment depends on the linker policy.

A3203 symbol symbol aliased to name does not appear in the object file symbol table

This symbol is not defined. Therefore the .alias directive will have no effect. You can correct this by defining the symbol
using a .global, .local or .weak directive.

A3204 integer number does not fit in number bits: number

This number is too big for this instruction. This number may be the result of an internal calculation.

A3205 invalid operand immediate value: value

This immediate value is not valid for this instruction operand. See the Intel(R) Itanium(R) Architecture Software
Developer’s Manual for more information.

An example of code that generates this error message:

fetchadd4.acq r3 = [r4], 7

A3300 .lcomm/.common directive for defined symbol symbol is ignored

When defining a symbol using an .lcomm or a .common directive, use a relative address definition. You can use a
specific location for definition of a local or global symbol. However, when you combine a .lcomm or .common directive
with a specific location definition, the specific location is ignored.

An example of specific location definition:

L:
.size L,16

An example of relative location definition:

.lcomm L,16,n

.lcomm L,4,n

In this example the linker chooses the largest size definition.

Page 62 of 73

A3301 .common directive for symbol symbol overrides the local common declaration

This symbol is defined both as local-common (.lcomm) and as common (.common). The .common directive is the
overriding definition.

A3302 size setting for undefined symbol: symbol

This symbol is not defined. Therefore, the .size directive will have no effect. You can correct this by defining the symbol
using a .global, .local or .weak directive.

A3303 dangerous use of a symbolic address [can exceed number bits]

This symbolic address may exceed this instruction's limit. There are safer options for loading symbolic addresses.

Use a movl instruction. For example,

movl r2 = <address>

Use an indirect load from a memory table. For example,

add r3 = @gprel(symbol), gp
ld8 r4 = [r3]

A3304 Reference to current location in assignment directive may be incorrectly resolved
when it appears within open bundle

When using implicit bundling, the specified assignment directive may provide an incorrect value when placed in an open
bundle.

An example of code that generates this warning:

nop 5
A = $ + 5

A3305 Bundle was closed to resolve current location reference

This warning is generated in implicit bundling mode when the “current-location” special symbol (“$” or “.”) is referenced in
a statement. IAS closes the bundle to resolve the ambiguity.

An example of code that generates this warning:

L::
nop.i 0
.size L, $ - L

To correct the code, put a label or temporary label immediately before the reference to the “current-location” special

Page 63 of 73

symbol.

A3306 label is undefined label_name

The label referred to in IAS annotation is undefined. IAS ignores the annotation.

A3307 label is not defined in the current section label_name

The label in IAS annotation is defined in another section. IAS ignores the annotation.

To correct the code, check for syntax errors, or move the annotation to the section with the label.

A3308 annotation is ignored

This type of directive or operands combination is not supported.

A3309 branch target is specified for non-branch instruction

.br.target must appear before a branch instruction.

A3310 branch target is not specified for branch instruction

.br.target does not precede an indirect branch instruction.

A3311 vral directive is ignored. Use -X vral flag

In order to use the virtual register allocation directives, you must specify –X vral in the command line.

A3312 explicit usage of allocatable register register

Explicit use of this register causes IAS to remove it from the set of allocatable registers.

A3313 This predicate relationship is currently ignored

The directive .pred.rel cannot be used with this operand combination.

A3315 Code is present in the non-executable section sec_name

Page 64 of 73

Code in non-executable sections does not execute.

A3316 Directive unwind directive is ignored in the unwind generation mode

Unwind directives are ignored when using the -X unwind command-line option.

A3401 .plabel directive is obsolete. This directive is ignored

You cannot use the .plabel directive any longer. An example of code that generates this warning:

.proc foo
foo::
.plabel foo
.endp

To correct the code, declare the function symbol as either

.proc foo
or
.type
foo, @function

A3403 virtual register has never been defined

You may wish to define the virtual register named in .vreq.undef.

A3410 Unwind generator message in procedure procedure

The static analysis is not complete; IAS may require additional annotations for an indirect branch. This warning may also
arise when the procedure code is incompatible with the Itanium(R) architecture software conventions.

Page 65 of 73

Return Values
When the Intel(R) Itanium(R) Assembler (IAS) stops executing, it returns a value that indicates the reason for termination.
These are the possible values:

Specifications
This section lists these IAS specifications:

0 IAS execution is complete.
2 IAS terminated due to a general error not covered by any of the other values.
5 IAS terminated due to an internal error.
10 IAS terminated due to a fatal error. The fatal errors are listed in the Fatal Error Messages section in

this appendix.
11 IAS was unable to open the main input file.
12 IAS was unable to open one of the files included in the program.
13 IAS was unable to open a requested file.
15 IAS reached the upper limit of errors permitted during execution.
20 IAS was unable to execute, due to incorrect command-line syntax.
25 IAS terminated due to memory failure.

String length up to 1024 bits
Symbol name length up to 4 KB
Alignment requests up to 4 GB
Integer calculation up to 128 bits, signed
Include file depth system dependent
Line length system dependent

Page 66 of 73

Predicate Analysis
This section describes how IAS performs predicate analysis.

See Dependency Violations and Assembly Modes for a description of dependency violations and assembly modes.

This section includes:

Mutex Relation
Imply Relation
Predicate Relation Scope
Predicate Relation Scope Exceptions
Analysis of Combinations

Mutex Relation
The mutually exclusive (mutex) relation indicates that not more than one predicate in a group of predicates can be true
simultaneously.

In the following example, if predicates p1, p2 and p3 are mutex, there is no write-after-write dependency violation
because only one of these instructions actually executes.

(p1) mov r4 = 2
(p2) mov r4 = 5
(p3) mov r4 = 7

IAS creates mutex relations in the following cases:

non-predicated regular compare instructions

 In the following code, the predicates p1 and p2 are mutex only when the qualifying
 predicate (qp) is p0.

 (qp) cmp.eq p1, p2 = r1, r2

 Regular compare instructions include all the instructions that write to a pair of predicates:
 cmp, fcmp, tbit, and tnat. Parallel compare and compare unconditional instructions do
 not belong in this category.

unconditional compare instructions

 In the following code, the predicates p1 and p2 are mutex (regardless of the qualifying
 predicate value).

 (p3) cmp.eq.unc p1, p2 = r1, r2

relation definition “mutex“

 In the following code, the user annotation pred.rel sets mutex relations between predicates
 p1, p2, and p3:

 .pred.rel “mutex“, p1, p2, p3

Page 67 of 73

Imply Relation
The imply relation is a relation defined between a pair of predicates. It means that the state of one predicate implies the
state of another register.

For example, predicate p1 implies another predicate p2. When p1 is true, p2 is always true. When p1 is false, p2 can be
either true or false. See the following code:

(p1) mov r4 = 2
(p2) br.cond L
 mov r4 = 7

If p1 implies p2 then there is no write-after-write dependency violation because if p1 is true then p2 is also true and the
branch is taken. If p1 is false then the first instruction is not executed and the third instruction executes safely.

In the following example, if p1 implies p2 then there is no write-after-write dependency violation.

mov r4 = 2

(p2) br.cond L

(p1) mov r4 = 7

IAS creates imply relations in following cases:

unconditional compare instructions

 In the following example, p1 implies p3 and p2 implies p3 because when p3 is false then
 both p1 and p2 are set to false. In other words, p1 or p2 can be true only when p3 is
 also true.

 (p3) cmp.eq.unc p1, p2 = r1, r2

relation definition “imply“

 In the following code, the user annotation pred.rel sets imply relations. The predicate p1
 implies predicate p2.

 .pred.rel “imply“, p1, p2

Page 68 of 73

Predicate Relation Scope
IAS enters predicate relations into a database that is used to identify false reports. IAS deletes predicate relations from
this database in the following situations:

write to predicate register

 Predicate relations are deleted from the database when one of the following instructions
 writes to the predicate related to these relations:

 - compare instruction

 - move to pr instruction if the mask designates the predicate

 - move to pr-rot instruction (write to the rotating predicates only). If bit i in the mask
 is zero, delete all the imply relations where Pi is the target of the implies. If bit i in the
 mask is one, delete all the imply relations where Pi is the source of the implies, and all
 the mutex relations related to Pi.

 - modulo-scheduling loop branch instructions such as br.ctop, br.cloop, br.wtop,
 and br.wtop write to all the rotating predicates

user annotation

 In the following example, the user annotation pred.rel deletes predicate relations. All
 predicate relations regarding predicates p1, p2, and p3 are deleted from the database.

 .pred.rel “clear“, p1, p2, p3

Page 69 of 73

Predicate Relation Scope Exceptions
There are some exceptions to the scope rules:

parallel compare instructions

 The parallel compare instruction preserves and strengthens predicate relations when there
 are several coexisting conditions.

 The instruction cmp.rel.or does not delete imply relations when the destination
 register is the target of the imply relation. In the following example, the imply relation is
 generated in the first compare instruction, such that p1 implies p3 and p2 implies p3.
 The instruction cmp.eq.or does not delete these relations; p3 is the destination register.

 (p3) cmp.eq p1,p2 = r1, r2 ; p1 implies p3
 cmp.eq.or p3,p4 = r5, r6
 (p1) mov r4 = 2
 (p3) br.cond.sptk L ; Imply still exists
 mov r4 = 7 ; No write-after-write on r4

 The instruction cmp.rel.and does not delete mutex relations and imply relations when
 the destination register is the source of the imply relation. The following example shows
 the instruction and parallel compare. The mutex relation is generated in the user
 annotation (p1 mutually excludes p2), and the instruction cmp.ne.and does not delete
 this relation:

 .pred.rel “mutex“,p1,p2
 cmp.ne.and p4,p1 = r5,r0 ; Mutex still exists
 (p1) mov r4 = 2
 (p2) mov r4 = 5 ; No write-after-write on r4

 The instruction cmp.rel.or.andcm p1, p2 = . . . recreates the mutex
 relations between the same predicates p1 and p2, and doesn’t erase the imply relations
 when p1 is the source of the imply relation, and doesn’t erase imply relations when p2
 is the target of the imply relation.

no control flow graph

 IAS does not build a control flow graph (CFG); therefore, all known relations are deleted
 from the database upon any entry point to a hyperblock, whether a label or a branch
 target. However, the path across conditional branches (fallthrough) is analyzed according
 to the scope of the first instruction. In the following example, IAS finds no dependency
 violation on register r4, yet it reports a dependency violation on register r5 because the
 execution path can branch to L, in which case IAS is unsure of the new relation between
 p3 and p4:

 cmp.eq p1, p2 = r1, r2
 cmp.eq p3, p4 = r3, r0
 (p1) mov r4 = 2
 L:
 (p2) mov r4 = 5
 (p3) mov r5 = r7
 (p4) mov r5 = r8

If you know that the predicate relation should hold even under these conditions, inform the assembler using annotation.

Page 70 of 73

Analysis of Combinations
In some cases, IAS can deduce relations based on combinations of known relations:

chain of imply relations

If p1 implies p2 and p2 implies p3, then p1 implies p3.

combination of imply and mutex relations

If p1 implies p2 and p2 is mutex with p3, then p1 is mutex with p3. However, in other cases, IAS’ analysis of
complex relations is limited:

predicated compare instructions

In the following example, IAS can not set p2 and p3 as mutex, because the last two compare instructions are predicated
and relations are created on non-predicated regular compare instructions:

 cmp.eq p1, p4 = r1, r2 ;;
 (p1) cmp.ge p2, p3 = r1, r3
 (p4) cmp.ge p2, p3 = r1, r4

condition analysis

IAS does not analyze the conditions of the compare instructions. In the following example, IAS does not set p1, p2, and
p3 as mutex:

 cmp.eq p1 = 0, r1
 cmp.eq p2 = 1, r1
 cmp.eq p3 = 2, r1

CFG analysis

IAS does not calculate CFG and does not look for relations generated by more than one path. This means is that at any
entry point, IAS starts from the initial point regarding the predicate relations, where the relation between all the predicates
are unknown.

In the following example IAS does not set p1 and p2 as mutex after the label.

 cmp.eq p1, p2 = r1, r2 ;;
 L:
 (p1) mov r4 = 2
 (p2) mov r4 = 5
 cmp.eq p1, p2 = r1, r2 ;;
 br.cond.sptk L ;;

An exception to this rule is the fallthrough case, as explained in “no control flow graph” and in the following example:

 cmp.eq p1,p2 = r1, r2 ;;
 (p1) mov r4 = 2
 (p3) br.cond.sptk L
 (p2) mov r4 = 5

In this case, there is no write-after-write dependency violation on r4. IAS does not report a violation because the mutex
relation still exists.

Page 71 of 73

Glossary
absolute address A virtual (not physical) address within the process’ address space that is computed as an

absolute number.
alias One identifier becomes equivalent to another identifier.
application registers Special purpose registers for various functions. Some of the more commonly used

registers have assembler aliases. For example, ar66 is used as the Epilogue Counter and
is also called ar.ec. See alias.

assembler A program that translates Assembly language into machine language.
Assembly language A low level symbolic language closely resembling machine-code language.
big-endian A method of storing a number so that the most significant byte is stored in the first byte

addressed.
binding The process of resolving a symbolic reference in one module by finding the definition of

the symbol in another module, and substituting the address of the definition in place of
the symbolic reference. The linker binds relocatable object modules together, and the
DLL loader binds executable load modules. When searching for a definition, the linker
and DLL loader search each module in a certain order, so that a definition of a symbol in
one module has precedence over a definition of the same symbol in a later module. This
order is called the binding order.

bundle 128 bits that include three instructions and a template field.
COFF Common Object File Format; an object-module format.
data elements Data elements can be bytes, words, doublewords, or quadwords. The MMX‘ technology

packs data elements into newly defined packed data types: groups of 8 bytes, 4 words, or
2 doublewords, packed into 64-bit quantities.

directive An assembly language statement that does not produce executable code.
GB Gigabytes.
global symbol Symbol visible outside the compilation unit in which it is defined.
IA-32 Intel Architecture-32; the name for Intel’s 32-bit Instruction Set Architecture (ISA).
IA-32 system environment The system environment as defined by the Pentium(R) and Pentium Pro processors.
index register Any of these general registers: eax, ebc, ecx, edx, ebp, esp, esi, and edi.
instruction An operation code (opcode) that performs a specific machine operation.
instruction group Itanium(R) architecture instructions are organized in instruction groups. Each instruction

group contains one or more statically contiguous instructions that execute in parallel. An
instruction group must contain at least one instruction; there is no upper limit on the
number of instructions in an instruction group.

An instruction group is terminated statically by a stop, and dynamically by taken
branches. Stops are represented by a double semi-colon (;;). You can explicitly define
stops. Stops immediately follow an instruction, or appear on a separate line. They can be
inserted between two instructions on the same line, as a semi-colon (;) is used to
separate two instructions.

Instruction Pointer (IP) A 64-bit instruction that holds the address of the bundle which contains the currently
executing instruction. The IP is incremented as instructions are executed and can be set
to a new value with a branch.

Instruction Set Architecture The architecture that defines application level resources, including user-level instructions
and user-visible register files.

IP See instruction pointer.
IP-relative addressing Code that uses its own address (commonly called the program counter, or "PC"; in

Itanium architecture this is also called the instruction pointer, or IP) as a base register for
addressing other code and data.

ISA See Instruction Set Architecture.
KB Kilobytes.
little-endian A method of storing a number so that the least significant byte is stored at the lowest

addressed byte.
load module An executable unit produced by the linker, either a main program or a DLL. A program

consists of at least a main program, and may also require one or more DLLs to satisfy its

Page 72 of 73

dependencies.
MB Megabytes.
nop A "no operation" instruction is a real instruction for the processor, where the processor

takes no action.
OMF Object Module Format. Object module's internal structure and content. COFF is an

example of an OMF.
predicate registers 64 1-bit predicate registers that control the execution of instructions. The first register, P0,

is always treated as 1.
predication The conditional execution of an instruction used to remove branches from code.
privileged instruction section Portions of object file, such as code or data, bound into one unit.
shared symbol Symbols that can be exported by or imported to all object files combined by the dynamic

linker.
statement An Assembly-language program consists of a series of statements. There are five

primary types of Assembly-language statements:

instruction statements
label statements
data allocation statements
directive statements
assignment and equate statements

stop Indicates the end of an instruction group.
symbol declaration The symbol address is resolved, not necessarily based on the current module. Declare

symbols using a .global or .weak directive.
token A minimal lexical element of Assembly language. A token consists of a sequence of one

or more adjacent characters.

Page 73 of 73

