
Pallas MPI Benchmarks -
PMB, Part MPI-1

Pallas GmbH
Hermülheimer Str. 10
D-50321 Brühl
Phone: +49-(0)2232-1896-0
Fax: +49-(0)2232-1896-29
http://www.pallas.com

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 1 of 34

1 INTRODUCTION 3

2 INSTALLATION AND QUICK START OF PMB-MPI1 4

2.1 Download 4

2.2 Installation 4

2.3 Running PMB-MPI1 6

3 OVERVIEW OF PMB-MPI1 6

3.1 General 6

3.2 The Benchmarks 6

3.3 Version changes 7
3.3.1 Version 2.1 vs. 2.0 7
3.3.2 Version 2.2 vs. 2.1 7

3.4 PMB-MPI1 vs. PMB1.x Definitions 7
3.4.1 Changed Definitions 8
3.4.2 Throughput Calculations 8
3.4.3 Corrected Methodology 8

4 PMB-MPI1 BENCHMARK DEFINITIONS 9

4.1 Benchmark Classification 9
4.1.1 Single Transfer Benchmarks 10
4.1.2 Parallel Transfer Benchmarks 10
4.1.3 Collective Benchmarks 11

4.2 Definition of Single Transfer Benchmarks 11
4.2.1 PingPong 12
4.2.2 PingPing 13

4.3 Definition of Parallel Transfer Benchmarks 14
4.3.1 Sendrecv 15
4.3.2 Exchange 16

4.4 Definition of Collective Benchmarks 16
4.4.1 Reduce 17
4.4.2 Reduce_scatter 17
4.4.3 Allreduce 17
4.4.4 Allgather 18
4.4.5 Allgatherv 18
4.4.6 Alltoall 18
4.4.7 Bcast 18
4.4.8 Barrier 19

5 BENCHMARK METHODOLOGY 19

5.1 Running PMB, Command Line Control 20

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 2 of 34

5.1.1 Default Case 20
5.1.2 Command Line Control 20

5.2 PMB Parameters and Hard Coded Settings 22
5.2.1 Parameters Controlling PMB 22
5.2.2 Communicators, Active Processes 24
5.2.3 Message Lengths 24
5.2.4 Buffer Initialization 24
5.2.5 Warm-up Phase 25
5.2.6 Synchronization 25
5.2.7 The Actual Benchmark 25

6 OUTPUT 26

6.1 Sample 1 27

6.2 Sample 2 29

6.3 Sample 3 31

7 FURTHER DETAILS 33

7.1 Memory Requirements 33

7.2 SRC Directory 33

7.3 Results Checking 33

7.4 Use of MPI 34

8 REVISION HISTORY 34

REFERENCES 34

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 3 of 34

1 Introduction

In an effort to define a standard API for message-passing programming, a
forum of HPC vendors, researchers and users has developed the Message
Passing Interface. MPI-1 [1] and MPI-2 [2] are now firmly established as the
premier message-passing API, with implementations available for a wide
range of platforms in the high-performance and general computing area, and
a growing number of applications and libraries using MPI. To help compare
the performance of various computing platforms and/or MPI implementa-
tions, the need for a set of well-defined MPI benchmarks arises.

This document presents the Pallas MPI Benchmarks (PMB) suite. Its objec-
tives are:

• provide a concise set of benchmarks targeted at measuring the most
important MPI functions.

• set forth a precise benchmark methodology.

• don’t impose much of an interpretation on the measured results: report
bare timings instead. Show throughput values, if and only if these are
well defined.

This document accompanies the version 2.2 of PMB. The code is written in
ANSI C plus standard MPI (about 10 000 lines of code, 100 functions in 48
source files).

The PMB 2.2 package consists of 3 separate parts:

• PMB-MPI1 (the focus of this document)

• PMB-MPI2 (see [3]), subdivided into
PMB-EXT (Onesided Communications benchmarks),
PMB-IO (I/O benchmarks).

For each part, a separate executable can be built. Users who don’t have the
MPI-2 extensions available, can install and use just PMB-MPI1. Only stan-
dard MPI-1 functions [1] are used, no dummy library is needed.

This document is dedicated to PMB-MPI1.

Section 2 is a brief installation guide, in section 3 an overview of the suite is
given.

Section 4 defines the single benchmarks in detail. PMB introduces a classifi-
cation of its benchmarks. Single Transfer, Parallel Transfer, Collective are
the classes. Roughly speaking, Single transfers run dedicated, without ob-
structions from other transfers, undisturbed results are to be expected
(PingPong being the most well known example). Parallel transfers test the
system under global load, with concurrent actions going on. Finally, Collec-
tive is a proper MPI classification, these benchmarks test the quality of the
implementation for the higher level collective functions.

Section 5 defines the methodology and rules of PMB, section 6 shows the
output tables format. In section 7, further important details are explained, in
particular a results checking mode for PMB.

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 4 of 34

2 Installation and Quick Start of PMB-MPI1

In order to run PMB-MPI1, one needs:

• cpp, ANSI C compiler, make.

• Full MPI-1 installation, including startup mechanism for parallel MPI
programs.

See 7.1 for the memory requirements of PMB-MPI1.

2.1 Download

Get PMB.tar.gz at http://www.pallas.de/pages/pmbd.htm

2.2 Installation

After unpacking, on the current directory is created:

PMB2 (directory)

PMB2/SRC (subdirectory containing sources and Makefile, see 7.2)

PMB2/RESULTS (subdirectory with sample results from various machines)

PMB2/DOC (subdirectory containing this document in postscript format)

The installation is performed in the SRC subdirectory to keep the structure
easy. Here, a generic Makefile can be found. All rules and dependencies
are defined there. Only a few (7, precisely) machine dependent variables
have to be set, whereafter an easy
make

will perform the installation.

For defining the machine dependent settings, the section

is provided in the Makefile header. The listed make_* files are on the direc-
tory and have been used successfully on certain systems. First check
whether one of these can be used for your purpose (with no or marginal
changes).

However, usually the user will have to edit an own make_mydefs file. This
has to contain 7 variable assignments used by Makefile:

User configurable options

#include make_i86

#include make_solaris

#include make_dec

#include make_sp2

#include make_sr2201

#include make_vpp

#include make_t3e

#include make_sgi

#include make_sx4

End User configurable options

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 5 of 34

Activate these flags by editing the Makefile header:
User configurable options

include make_mydefs

#include make_i86

#include make_solaris

#include make_dec

#include make_sp2

#include make_sr2201

#include make_vpp

#include make_t3e

#include make_sgi

#include make_sx4

End User configurable options

User flags will be used in the following way:
$(CC) -I$(MPI_INCLUDE) $(CPPFLAGS) $(OPTFLAGS) -c

(for compilation)
$(CLINKER) -o <exe-name> [.o’s] $(LIB_PATH) $(LIBS)

(for linking).

Of course, the user may define own auxiliary variables in make_mydefs.
Now, type
make [PMB-xxx]

Compilation should be quite short, and executable PMB-xxx will be gener-
ated.

CC = <name of the ANSI C compiler>

CLINKER = <name of the ANSI C linker>

OPTFLAGS = <flags for $(CC) compilation step>

CPPFLAGS = <cpp flags>

/*

Allowed values: -DnoCHECK, -DCHECK (see 7.3;

check that proper benchmarks are always with the cpp
flag -DnoCHECK!)

*/

LIB_PATH = <path of libraries (libmpi.a,...)>,

/* in the form ″-L<path1> -L<path2> ..″ */

LIBS = <lib flags for link step>, e.g. -lmpi -l....

MPI_INCLUDE = <directory containing MPI include file
 mpi.h>

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 6 of 34

2.3 Running PMB-MPI1

Check the right way of running parallel MPI programs on your system. Usu-
ally, a startup procedure has to be invoked, like
mpirun -np P PMB-MPI1

(P being the number of processes to load; P=1 is allowed!). This will run all of
PMB on a varying number of processes (2,4,8,..,2x<P,P) and output
results on stdout. Also is possible
mpirun -np P PMB-MPI1 [Benchmark names]

where the names are one or more of (PingPong, PingPing, Sen-
drecv, Exchange, Reduce, Reduce_scatter, Allreduce,
Bcast, Allgather, Allgatherv, Alltoall, Barrier). The se-
lected benchmarks will run, their meaning should be clear to MPI experts.

For the details, see 5.1.

3 Overview of PMB-MPI1

3.1 General

The idea of PMB is to provide a concise set of elementary MPI benchmark
kernels. With one executable, all of the supported benchmarks, or a subset
specified by the command line, can be run. The rules, such as time meas-
urement (including a repetitive call of the kernels for better clock synchroni-
zation), message lengths, selection of communicators to run a particular
benchmark (inside the group of all started processes) are program parame-
ters.

PMB has a standard and an optional configuration. In the standard case, all
parameters mentioned above are fixed and must not be changed.

For certain systems, it may be interesting to extend the results tables (in
particular, run larger message sizes than provided in the standard case). For
this, the user can set certain parameters at own choice. See 5.2.1.

The minimum P_min and maximum number P of processes can be selected
by the user via command line, the benchmarks run on P_min, 2P_min,
4P_min, ... 2xP_min<P and P processes. See chapter 5 for the details.

3.2 The Benchmarks

The current version of PMB-MPI1 contains the benchmarks
• PingPong

• PingPing

• Sendrecv

• Exchange

• Bcast

• Allgather

• Allgatherv

• Alltoall

• Reduce

• Reduce_scatter

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 7 of 34

• Allreduce

• Barrier

The exact definitions will be given in section 4. Section 5 describes the
benchmark methodology.

PMB-MPI1 allows for running all benchmarks in more than one process
group. E.g., when running PingPong on N≥4 processes, on user request
(see 5.1.2.3) N/2 disjoint groups of 2 processes each will be formed, all and
simultaneously running PingPong.

Note that these multiple versions have to be carefully distinguished from their
standard equivalents. They will be called

• Multi-PingPong

• Multi-PingPing

• Multi-Sendrecv

• Multi-Exchange

• Multi-Bcast

• Multi-Allgather

• Multi-Allgatherv

• Multi-Alltoall

• Multi-Reduce

• Multi-Reduce_scatter

• Multi-Allreduce

• Multi-Barrier

For a distinction, sometimes we will refer to the standard (non Multi)
benchmarks as primary benchmarks.

The way of interpreting the timings of the Multi-benchmarks is quite easy,
given a definition for the primary cases: per group, this is as in the standard
case. Finally, the max timing (min throughput) over all groups is displayed.
On request, all per group information can be reported, see 5.1.2.3, 6.3.

3.3 Version changes

3.3.1 Version 2.1 vs. 2.0
• Alltoall added (see 4.4.6)

• Optional settings mode included (see 5.2.1.)

3.3.2 Version 2.2 vs. 2.1
Default variable initializations (function set_default) were added (March
2000).

3.4 PMB-MPI1 vs. PMB1.x Definitions

Compared to older PMB1.x releases, all primary benchmark names except
Sendrecv and Alltoall are the same. Cshift and Xover of PMB1.x
have been removed. PMB1.x did not support the Multi versions.

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 8 of 34

Most important is that certain definitions have changed. Please check care-
fully.

Table 2 shows an overview of the changes.

3.4.1 Changed Definitions
The main changes are in PingPing and Exchange. PingPing even uses
a different pattern (elementary messages rather than Sendrecv, see 4.3.1).
Moreover, the scaling of timings and throughput data has changed.

Table 1: Scaling factors PMB-MPI1 vs. PMB1.x

Thus, the corresponding tables show different values when comparing
PMB1.x and PMB-MPI1 on a particular system.

The PMB1.x scaling factors for the timings gives confusing answers for the
startup components (small message sizes). The scaling of PingPing
throughputs by 2 is reasonable (bi-directional throughput), however PMB
imposes a different interpretation, leaving the bi-directional throughput
measurement to the Sendrecv benchmark.

Sendrecv and Alltoall are new benchmarks. Functionally, Sendrecv
exactly corresponds to the Cshift benchmark of PMB1.x, however, dis-
plays timings with a different scaling. The Xover benchmark of PMB1.x has
been removed, as it has shown no significant information on any tested sys-
tem.

3.4.2 Throughput Calculations
Throughput results are based on real MBytes (1048576 bytes) in PMB-MPI1,
in contrast to PMB1.x, which used 1 MByte = 1000000 bytes.

In contrast to PMB1.x, PMB-MPI1 does not display throughput values for the
global operations Bcast, Allgather and Allgatherv.

3.4.3 Corrected Methodology
PMB1.x was not cleanly defined in the case that a certain benchmark was
run in a process group strictly smaller than the group of all started MPI proc-
esses.

In PMB-MPI1, all non active processes will wait for the active ones in an
MPI_Barrier(MPI_COMM_WORLD).

In PMB1.x, non active processes immediately went through the output-
collecting phase (MPI_Gather) and then, eventually, switched to the follow-
ing benchmark(s). This may induce unpredictable obstructions of the active
processes. The MPI_Barrier may also, but now the way is well defined
and reasonable.

See 5 for precise definitions of the methodology.

Timings Throughputs

PMB-MPI1 PMB1.x PMB-MPI1 PMB1.x

PingPing 1 0.5 1 2

Exchange 1 0.25 4 4

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 9 of 34

Table 2: PMB-MPI1 vs. PMB1.x benchmarks

4 PMB-MPI1 Benchmark Definitions

In this chapter, the single benchmarks are described. Here we focus on the
elementary patterns of the benchmarks. The methodology of measuring
these patterns (message lengths, sample repetition counts, timer, synchroni-
zation, number of processes and communicator management, display of
results) are defined in chapters 5 and 6.

4.1 Benchmark Classification

For a clear structuring of the set of benchmarks, PMB now introduces
classes of benchmarks: Single Transfer, Parallel Transfer, and Collective.
This classification refers to different ways of interpreting results, and to a
structuring of the code itself. It does not actually influence the way of using
PMB. Also holds this classification hold for the PMB-MPI2 part [3].

PMB-MPI1
Benchmark name

Contained in
releases 1.x

Compared to PMB-
1.x, in PMB-MPI1
there is

PingPong × slight change in
throughput data
due to re-definition
of
1MByte = 1048576
bytes

PingPing × other pattern,
no scaling
expectation:
timings doubled,
throughputs halved

Sendrecv

Exchange × 4 fold timings,
equal throughputs

Bcast × no output of
throughput data

Allgather × no output of
throughput data

Allgatherv × no output of
throughput data

Alltoall

Reduce × no change

Reduce_scatter × no change

Allreduce × no change

Barrier × no change

PMB1.x benchmarks that are no longer in PMB-MPI1

Cshift Sendrecv benchmark is a full substitute

Xover Has shown no significant information

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 10 of 34

PMB-MPI1

Single Transfer Parallel Transfer Collective

PingPong Sendrecv Bcast

PingPing Exchange Allgather

Allgatherv

Multi-PingPong Alltoall

Multi-PingPing Reduce

Multi-Sendrecv Reduce_scatter

Multi-Exchange Allreduce

Barrier

Multi-versions of these

4.1.1 Single Transfer Benchmarks
The benchmarks in this class are to focus on a single message transferred
between two processes. As to PingPong, this is the usual way of looking at.
In PMB interpretation, PingPing measures the same as PingPong, under
the particular circumstance that a message is obstructed by an oncoming
one (sent simultaneously by the same process that receives the own one).

Single transfer benchmarks, roughly speaking, are local mode. The particular
pattern is purely local to the participating processes, there is no concurrency
with other message passing activity. Best case message passing results are
to be expected. Important for this is that single transfer benchmarks only run
with 2 active processes (see 3.4.3, 5.2.2 for the definition of active).

For PingPing, and this is in contrast to PMB1.x and other code systems
containing this benchmark, pure timings will be reported, and the throughput
is related to a single message. Expected numbers, very likely, are between
half and full PingPong throughput. With this, PingPing determines the
throughput of messages under non optimal conditions (namely, oncoming
traffic).

See 4.2.1 and 4.2.2 for exact definitions.

4.1.2 Parallel Transfer Benchmarks
Benchmarks focusing on global mode, say, patterns. The activity at a certain
process is in concurrency with other processes, the benchmark measures
message passing efficiency under global load.

For the interpretation of Sendrecv and Exchange, more than 1 message
(per sample) counts. As to the throughput numbers, the total turnover (the
number of sent plus the number of received bytes) at a certain process is
taken into account. E.g., for the case of 2 processes, Sendrecv becomes
the bi-directional test: perfectly bi-directional systems are rewarded by a
double PingPong throughput here.

Thus, the throughputs are scaled by certain factors. See 4.3.1 and 4.3.2 for
exact definitions. As to the timings, raw results without scaling will be re-
ported.

The Multi mode secondarily introduces into this class
• Multi-PingPong

• Multi-PingPing

• Multi-Sendrecv

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 11 of 34

• Multi-Exchange

4.1.3 Collective Benchmarks
This class contains all benchmarks that are collective in proper MPI conven-
tion. Not only is the message passing power of the system relevant here, but
also the quality of the implementation.

For simplicity, we also include the Multi versions of these benchmarks into
this class.

Raw timings and no throughput are reported.

Note that certain collective benchmarks (namely the reductions) play a par-
ticular role as they are not pure message passing tests, but also depend on
an efficient implementation of certain numerical operations.

4.2 Definition of Single Transfer Benchmarks

This section describes the single transfer benchmarks in detail. Each
benchmark is run with varying message lengths X bytes, and timings are
averaged over multiple samples. See 5 for the description of the methodol-
ogy. Here we describe the view of one single sample, with a fixed message
length X bytes. Basic MPI datatype for all messages is MPI_BYTE.

Throughput values are defined in MBytes / sec = 220 bytes / sec scale
(i.e. throughput = X / 220 * 106 / time = X / 1.048576 / time, when
time is in µsec).

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 12 of 34

4.2.1 PingPong

PingPong is the classical pattern used for measuring startup and throughput
of a single message sent between two processes.

Figure 1: PingPong pattern

Measured pattern As symbolized between in Figure 1; two ac-
tive processes only (Q=2, see 5.2.2)

based on MPI_Send, MPI_Recv

MPI_Datatype MPI_BYTE

reported timings time = ∆t/2 (in µsec) as indicated in Figure 1

reported throughput X/1.048576/time

PROCESS 1

MPI_Send

MPI_Recv

PROCESS 2

MPI_Recv
MPI_Send

∆t

time=∆∆∆∆t/2

X bytes

X bytes

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 13 of 34

4.2.2 PingPing

As PingPong, PingPing measures startup and throughput of single mes-
sages, with the crucial difference that messages are obstructed by oncoming
messages. For this, two processes communicate
(MPI_Isend/MPI_Recv/MPI_Wait) with each other, with the
MPI_Isend’s issued simultaneously.

Figure 2: PingPing pattern

Measured pattern As symbolized between in

Figure 2;

two active processes only (Q=2, 5.2.2)

based on MPI_Isend/MPI_Wait, MPI_Recv

MPI_Datatype MPI_BYTE

reported timings time = ∆t (in µsec) as indicated in

Figure 2

reported throughput X/1.048576/time

PROCESS 2

MPI_Isend(request=R)

MPI_Recv
MPI_Wait(R)

PROCESS 1

MPI_Isend(request=R)

MPI_Recv
MPI_Wait(R)

∆t
X bytes X bytes

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 14 of 34

4.3 Definition of Parallel Transfer Benchmarks

This section describes the parallel transfer benchmarks in detail. Each
benchmark is run with varying message lengths X bytes, and timings are
averaged over multiple samples. See 5 for the description of the methodol-
ogy. Here we describe the view of one single sample, with a fixed message
length X bytes. Basic MPI datatype for all messages is MPI_BYTE.

The throughput calculations of the benchmarks described here take into
account the (per sample) multiplicity nmsg of messages outgoing from or
incoming at a particular process. In the Sendrecv benchmark, a particular
process sends and receives X bytes, the turnover is 2X bytes, nmsg=2. In
the Exchange case, we have 4X bytes turnover, nmsg=4.

Throughput values are defined in MBytes/sec = 220 bytes / sec scale
(i.e.
throughput = nmsg*X/220 * 106/time = nmsg*X / 1.048576 / time,
when time is in µsec).

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 15 of 34

4.3.1 Sendrecv

Based on MPI_Sendrecv, the processes form a periodic communication
chain. Each process sends to the right and receives from the left neighbor in
the chain.

The turnover count is 2 messages per sample (1 in, 1 out) for each process.

Sendrecv is equivalent with the Cshift benchmark and, in case of 2 proc-
esses, the PingPing benchmark of PMB1.x. For 2 processes, it will report
the bi-directional bandwidth of the system, as obtained by the (optimized)
MPI_Sendrecv function.

Figure 3: Sendrecv pattern

Measured pattern As symbolized between in Figure 3

based on MPI_Sendrecv

MPI_Datatype MPI_BYTE

reported timings time = ∆t (in µsec) as indicated in Figure 3

reported throughput 2X/1.048576/time

PR. I+1

MPI_
Sendrecv

PR. I-1

MPI_
Sendrecv

PR. I

MPI_
Sendrecv

......

X bytesX bytes∆t

Periodic chain

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 16 of 34

4.3.2 Exchange

Exchange is a communications pattern that often occurs in grid splitting
algorithms (boundary exchanges). The group of processes is seen as a peri-
odic chain, and each process exchanges data with both left and right neigh-
bor in the chain.

The turnover count is 4 messages per sample (2 in, 2 out) for each process.

Figure 4: Exchange pattern

4.4 Definition of Collective Benchmarks

This section describes the Collective benchmarks in detail. Each benchmark
is run with varying message lengths X bytes, and timings are averaged over
multiple samples. See 5 for the description of the methodology. Here we
describe the view of one single sample, with a fixed message length X bytes.
Basic MPI datatype for all messages is MPI_BYTE for the pure data move-
ment functions, and MPI_FLOAT for the reductions.

For all Collective benchmarks, only bare timings and no throughput data is
displayed.

Measured pattern As symbolized between in Figure 4

based on MPI_Isend/MPI_Waitall, MPI_Recv

MPI_Datatype MPI_BYTE

reported timings time = ∆t (in µsec) as indicated in Figure 4

reported throughput 4X/1.048576/time

PR. I+1

MPI_Isend
MPI_Isend
MPI_Recv
MPI_Recv
MPI_Waitall

PR. I-1

MPI_Isend
MPI_Isend
MPI_Recv
MPI_Recv
MPI_Waitall

PR. I

MPI_Isend
MPI_Isend
MPI_Recv
MPI_Recv
MPI_Waitall

......

Periodic chain

Each carries X bytes

∆t

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 17 of 34

measured pattern MPI_Reduce_scatter

MPI_Datatype MPI_FLOAT

MPI_Op MPI_SUM

reported timings bare time

reported throughput none

4.4.1 Reduce

Benchmark of the MPI_Reduce function. Reduces a vector of length
L = X/sizeof(float) float items. The MPI datatype is MPI_FLOAT, the
MPI operation is MPI_SUM.

The root of the operation is changed cyclically, see 5.2.7

See also the remark in the end of 4.1.3.

measured pattern MPI_Reduce

MPI_Datatype MPI_FLOAT

MPI_Op MPI_SUM

root changing

reported timings bare time

reported throughput none

4.4.2 Reduce_scatter

Benchmark of the MPI_Reduce_scatter function. Reduces a vector of
length
L = X/sizeof(float)float items. The MPI datatype is MPI_FLOAT, the MPI
operation is MPI_SUM. In the scatter phase, the L items are split as evenly as
possible. Exactly, when
np = #processes, L = r*np+s (s = L mod np),

then process with rank i gets r+1 items when i<s, and r items when i≥s.

See also the remark in the end of 4.1.3.

4.4.3 Allreduce

Benchmark of the MPI_Allreduce function. Reduces a vector of length
L = X/sizeof(float) float items. The MPI datatype is MPI_FLOAT, the
MPI operation is MPI_SUM.

See also the remark in the end of 4.1.3.

measured pattern MPI_Allreduce

MPI_Datatype MPI_FLOAT

MPI_Op MPI_SUM

reported timings bare time

reported throughput none

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 18 of 34

Measured pattern MPI_Allgather

MPI_Datatype MPI_BYTE

reported timings bare time

reported throughput none

Measured pattern MPI_Allgatherv

MPI_Datatype MPI_BYTE

reported timings bare time

reported throughput none

measured pattern MPI_Bcast

MPI_Datatype MPI_BYTE

root changing

reported timings bare time

reported throughput none

4.4.4 Allgather

Benchmark of the MPI_Allgather function. Every process inputs X bytes
and receives the gathered X*(#processes) bytes.

4.4.5 Allgatherv

Functionally the same as Allgather, however with the MPI_Allgatherv
function. Shows whether MPI produces overhead due to the more compli-
cated situation as compared to MPI_Allgather.

4.4.6 Alltoall

Benchmark of the MPI_Alltoall function. Every process inputs
X*(#processes) bytes (X for each process) and receives X*(#processes)
bytes (X from each process).

Measured pattern MPI_Alltoall

MPI_Datatype MPI_BYTE

reported timings bare time

reported throughput none

4.4.7 Bcast

Benchmark of MPI_Bcast. A root process broadcasts X bytes to all.

The root of the operation is changed cyclically, see 5.2.7.

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 19 of 34

measured pattern MPI_Barrier

reported timings bare time

reported throughput none

5 Benchmark Methodology

Recall that in chapter 4 only the underlying patterns of each benchmark have
been defined. In this section, the measuring method for those patterns is
explained.

Some control mechanisms are hard coded (like the selection of process
numbers to run the benchmarks on), some are set by preprocessor pa-
rameters in a central include file. Important is that (in contrast to the previ-
ous release 2.0) there is a standard and an optional mode to control PMB.
In standard mode, all configurable sizes are predefined and should not be
changed. This assures comparability for a result tables in standard mode. In
optional mode, the user can set those parameters at own choice. For in-
stance, this mode can be used to extend the results tables as to larger mes-
sage size.

The following graph shows an overview of the flow of control inside PMB. All
emphasized items will be explained in more detail.

Figure 5: Control flow in PMB

The control parameters obviously necessary are either command line argu-
ments (see 5.1) or parameter selections inside the PMB include file set-
tings.h (see 5.2).

4.4.8 Barrier

For (all_selected_benchmarks)

For (all_selected_process_numbers)

Select MPI communicator MY_COMM to run the benchmark, (see 5.2.2)

For (all_selected_message_lengths X) (see 5.2.3)

Initialize communication buffers (see 5.2.4)
 X == first_selected_message_length
Yes
No

Warm_up (see 5.2.5)
MY_COMM != MPI_COMM_NULL

Yes No

Synchronize processes of MY_COMM

(see 5.2.6)

Execute benchmark

(message size = X) (see 5.2.7)

MPI_Barrier (MPI_COMM_WORLD)

Output results (see 6)

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 20 of 34

5.1 Running PMB, Command Line Control

After installation, see 2.2, an executable PMB-MPI1 should exist.

Given P, the (normally user selected) number of MPI processes to run PMB-
MPI1, a startup procedure has to load parallel PMB-MPI1. Lets assume, for
sake of simplicity, that this done by
mpirun –np P PMB-MPI1 [arguments]

P=1 is allowed, will be ignored only by Single Transfer benchmarks. Control
arguments (in addition to P) can be passed to PMB-MPI1 via (argc,argv)
which will be read by PMB-MPI1 process 0 (in MPI_COMM_WORLD ranking)
and then distributed to all processes.

5.1.1 Default Case
Just invoke
mpirun –np P PMB-MPI1

All primary (non Multi) benchmarks will run on
Q=2, 4, 8, ..., largest 2x<P, P processes

(E.g P=11, then 2,4,8,11 processes will be selected). The Q<=P processes
running the benchmark are called active processes. A communicator is
formed out of a group of Q processes, see 5.2.2., which is used as communi-
cator argument to the MPI functions crucial for the benchmark.

5.1.2 Command Line Control
The general syntax is
mpirun –np P PMB-MPI1

[Benchmark1 [Benchmark2 [...]]]

[-npmin P_min]

[-multi Outflag]

[-input <File>]

(where the 4 major [] may appear in any order).

Examples:
mpirun –np 8 PMB-MPI1

mpirun –np 10 PMB-MPI1 PingPing Reduce

mpirun –np 11 PMB-MPI1 –npmin 5

mpirun –np 4 PMB-MPI1 –npmin 4 –input PMB_SELECT_MPI1

mpirun –np 14 PMB-MPI1 –multi 0 PingPong Barrier
 –npmin 7

5.1.2.1 Benchmark Selection Arguments
A set of blank-separated strings, each being the name of one primary (non
Multi) PMB benchmark (in exact spelling, case insensitive).

Default (no benchmark selection): select all primary benchmark names.

Given a name selection, either

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 21 of 34

5.1.2.2 –npmin Selection
The argument after –npmin has to be an integer P_min, specifying the mini-
mum number of processes to run all selected benchmarks.

• P_min may be 1

• P_min > P is handled as P_min = P

• Default (no –npmin selection): as P_min = 2

Given P_min, the selected process numbers are
Q=P_min, 2P_min, 4P_min, ..., largest 2xP_min <P, P.

Exception: Single Transfer benchmarks will only run on Q=2 and ignore
P_min when P_min≠2.

Now, running on a subset of Q<=P processes means that a communicator
with a group of Q active processes is formed (or eventually several such
communicators in the Multi cases), see 5.2.2. This communicator is used
as argument to the MPI functions crucial for the benchmark.

5.1.2.3 –multi Outflag Selection
-multi activates the Multi versions of the benchmarks. The argument after
–multi has to be an integer Outflag, either 0 or 1. This flag just controls
the way of displaying results.

• Outflag = 0: only display max timings (min throughputs) over all ac-
tive groups

• Outflag = 1: report on all groups separately (may become longish)

• Default (no –multi selection): run primary (non Multi) versions.

See also 6.2, 6.3.

-multi flag is missing,

in which case all selected primary benchmarks are run, or

-multi flag is selected,

and then the Multi- versions of all selected benchmarks are executed.

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 22 of 34

5.1.2.4 –input <File> Selection
An ASCII input file is used to select the benchmarks to run, e.g. a file
PMB_SELECT_MPI1 looking as follows:

mpirun PMB-MPI1 –input PMB_SELECT_MPI1

would run benchmarks PingPing and Allreduce.

5.2 PMB Parameters and Hard Coded Settings

5.2.1 Parameters Controlling PMB
There are 9 parameters (set by preprocessor definition) controlling PMB. The
definition is the files settings.h (PMB-MPI1, PMB-EXT) and set-
tings_io.h (PMB-IO).

A complete list and explanation of the parameters is in Figure 6 below.

Only settings.h is relevant here. It is important that (in contrast to PMB
2.0) PMB 2.2 allows for two sets of parameters: standard and optional.

#

PMB benchmark selection file

#

every line must be a comment (beginning with #), or it

must contain exactly 1 PMB benchmark name

#

PingPong

PingPing

Allreduce

Alltoall

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 23 of 34

Figure 6: PMB parameters

Figure 7 below shows a sample of file settings.h. Here, PMB_OPTIONAL
is set, so that user defined parameters are used. Message sizes 8 and 16
MBytes are selected, extending the standard mode tables.

If PMB_OPTIONAL is deactivated, the obvious standard mode values are
taken.

Note:

PMB has to be re-compiled after a change of settings.h.

Parameter
(standard mode value)

Meaning

PMB_OPTIONAL
(not set)

has to be set when user optional settings are to be acti-
vated

MINMSGLOG
(0)

second smallest data transfer size is max(unit,2MINMSGLOG)
(the smallest always being 0), where
unit = sizeof(float) for reductions, unit = 1 else

MAXMSGLOG
(22)

largest message size is 2MAXMSGLOG

Sizes 0, 2i (i=MINMSGLOG,..,MAXMSGLOG) are used

MSGSPERSAMPLE
(1000)

max. repetition count for all PMB-MPI1 benchmarks

MSGS_NONAGGR
(100)

max. repetition count for non aggregate benchmarks (cf.
[3], irrelevant for PMB-MPI1)

OVERALL_VOL
(40 MBytes)

for all sizes < OVERALL_VOL, the repetition count is
eventually reduced so that not more than OVERALL_VOL
bytes overall are processed. This avoids unnecessary
repetitions for large message sizes. Finally, the real repeti-
tion count for message size X is

MSGSPERSAMPLE (X=0),

min(MSGSPERSAMPLE,max(1,OVERALL_VOL/X))
(X>0)

NOTE: OVERALL_VOL does not restrict the size of the
max. data transfer. 2MAXMSGLOG is the largest size, inde-
pendent of OVERALL_VOL

N_WARMUP
(2)

Number of Warmup sweeps (see 5.2.5)

N_BARR
(2)

Number of MPI_Barrier for synchronization (see 5.2.6)

TARGET_CPU_SECS
(0.01)

CPU seconds (as float) to run concurrent with nonblocking
benchmarks (currently irrelevant for PMB-MPI1)

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 24 of 34

Figure 7: file settings.h

5.2.2 Communicators, Active Processes
Communicator management is repeated in every select MY_COMM step in
Figure 5. If exists, the previous communicator is freed.

Given Q≤P as in 5.1.2.2, subcommunicators are formed out of the groups
consisting of the MPI_COMM_WORLD ranks

{0,..,Q-1} (non Multi case),

{0,..,Q-1}, {Q,..,2Q-1} ... (Multi case).

All processes belonging to such a group are called active processes, the
corresponding communicator is called MY_COMM in Figure 5. It is used as
communicator argument to the MPI functions defining the pattern.

All non active processes get MY_COMM=MPI_COMM_NULL.

5.2.3 Message Lengths
Set in settings.h, see 5.2.1

5.2.4 Buffer Initialization
Communication buffers are dynamically allocated as void* and used as
MPI_BYTE buffers for all (non reduction) benchmarks. See 7.1 for an esti-
mate of the memory requirement. To assign the buffer contents, a cast to an
assignment type is performed. On the one hand, a sensible datatype is man-
datory for reduction benchmarks. On the other hand, this facilitates results
checking which may become necessary eventually (see 7.3).

#define PMB_OPTIONAL

#ifdef PMB_OPTIONAL

#define MINMSGLOG 23

#define MAXMSGLOG 24

/* etc as below */

#else

/*

DON’T change anything below here !!

*/

#define MINMSGLOG 0

#define MAXMSGLOG 22

#define MSGSPERSAMPLE 1000

#define MSGS_NONAGGR 100

#define OVERALL_VOL 40*1048576

#define N_WARMUP 2

#define N_BARR 2

#define TARGET_CPU_SECS 0.01

#endif

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 25 of 34

PMB sets the buffer assignment type by typedef assign_type in set-
tings.h. Currently, float is selected for PMB-MPI1 (as this is sensible
for reductions). The values are set by a CPP macro, currently
#define BUF_VALUE(rank,i) (0.1*((rank)+1)+(float)(i)

In each initialization, communication buffers are seen as typed arrays and
initialized as to
((assign_type*)buffer)[i] = BUF_VALUE(rank,i);

where rank is the MPI rank of the calling process.

5.2.5 Warm-up Phase
Before starting the actual benchmark measurement, the selected benchmark
is executed N_WARMUP (defined in settings.h, see 5.2.1) times with the
maximum message length. This is to hide eventual initialization overheads of
the message passing system.

5.2.6 Synchronization
Before the actual benchmark, N_BARR (defined in settings.h, see 5.2.1)
many MPI_Barrier(MY_COMM) (ref. Figure 5) are used for process syn-
chronization.

5.2.7 The Actual Benchmark
In order to reduce inaccuracies due to insufficient clock resolutions, every
benchmark is run repeatedly. The repetition count is MSGSPERSAMPLE (con-
stant defined in settings.h, see 5.2.1). In order to avoid an excessive run
time in case of large message lengths X, an upper bound is set to
OVERALL_VOL / X (OVERALL_VOL defined in settings. H). Finally,
n_sample = MSGSPERSAMPLE (X=0)

n_sample = max(1,min(MSGSPERSAMPLE,OVERALL_VOL/X)) (X>0)

is the repetition count for all benchmarks, given message size X. Now, the
key measurement is performed according to
for (i=0; i<N_BARR; i++) MPI_Barrier(MY_COMM)

time = MPI_Wtime()

for (i=0; i<n_sample; i++)

execute MPI pattern

time = (MPI_Wtime()-time)/n_sample

Important to stress is that execute MPI pattern really means the pure pattern
as specified in 4, without any further function call. (Bcast and Reduce need a
root process for their operation. In both cases, the root process is changed
so that in iteration i the root rank is i%(#processes in group). This is an
additional integer operation inside the loop, looked upon as negligible.)

The communicator argument to the MPI_XX functions constituting the pat-
tern is as defined in 5.2.2.

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 26 of 34

6 Output

Most easily, output is explained by sample outputs, see the tables below
(generated with the previous version 2.1, looking identical with 2.2). What
one sees is the following.

• General information
Machine, System, Release, Version are obtained by the code
g_info.c:

• Non multi case numbers
After a benchmark, 3 time values are available: Tmax, Tmin, Tavg,
the maximum, minimum and average time, resp., extended over the
group of active processes. Time unit is µsec.
Single Transfer Benchmarks:
Display X = message size [bytes], T=Tmax[µsec],
bandwidth = X / 1.048576 / T
Parallel Transfer Benchmarks:
Display X = message size, Tmax, Tmin and Tavg, bandwidth
based on time = Tmax
Collective Benchmarks:
Display X = message size (except for Barrier), Tmax, Tmin and
Tavg

• Multi case numbers
–multi 0: the same as above, with max, min, avg over all
groups.
–multi 1: the same for all groups, max, min, avg over single
groups.

 #include <sys/utsname.h>

 void make_sys_info()

 {

 struct utsname info;

 int err;

 err = uname(&info);

 fprintf(unit, ″# Machine : %s″ ,info.machine);

 fprintf(unit, ″# System : %s\n″,info.sysname);

 fprintf(unit, ″# Release : %s\n″,info.release);

 fprintf(unit, ″# Version : %s\n″,info.version);

 }

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 27 of 34

6.1 Sample 1

mpirun –np 2 PMB-MPI1 PingPong Allreduce

#---

PALLAS MPI Benchmark Suite V2.1, MPI-1 part

#---

Date : Thu Sep 10 10:22:58 1998

Machine : alpha# System : OSF1

Release : V4.0

Version : 564

#

Minimum message length in bytes: 0

Maximum message length in bytes: 4194304

#

MPI_Datatype : MPI_BYTE

MPI_Datatype for reductions : MPI_FLOAT

MPI_Op : MPI_SUM

#

#

List of Benchmarks to run:

PingPong

Allreduce

#---

Benchmarking PingPong

(#processes = 2)

#---

 #bytes #repetitions t[usec] Mbytes/sec

 0 1000 4.51 0.00

 1 1000 5.41 0.18

 2 1000 5.41 0.35

 4 1000 5.41 0.70

 8 1000 5.41 1.41

 16 1000 5.00 3.05

 32 1000 5.84 5.23

 64 1000 8.34 7.32

 128 1000 8.76 13.94

 256 1000 9.59 25.46

 512 1000 12.51 39.03

 1024 1000 18.35 53.22

 2048 1000 30.44 64.16

 4096 1000 57.55 67.88

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 28 of 34

 8192 1000 105.03 74.38

 16384 1000 226.09 69.11

 32768 1000 407.32 76.72

 65536 640 793.45 78.77

 131072 320 1564.79 79.88

 262144 160 3089.89 80.91

 524288 80 6224.01 80.33

 1048576 40 13533.05 73.89

 2097152 20 29867.15 66.96

 4194304 10 64889.35 61.64

#---

Benchmarking Allreduce

(#processes = 2)

#---

 #bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]

 0 1000 1.43 1.46 1.45

 4 1000 25.85 25.85 25.85

 8 1000 26.69 26.69 26.69

 16 1000 26.69 26.69 26.69

 32 1000 27.52 27.52 27.52

 64 1000 31.69 31.69 31.69

 128 1000 32.53 32.53 32.53

 256 1000 35.86 35.86 35.86

 512 1000 42.53 42.53 42.53

 1024 1000 62.55 62.55 62.55

 2048 1000 98.25 98.25 98.25

 4096 1000 180.54 180.54 180.54

 8192 1000 309.07 309.07 309.07

 16384 1000 630.30 630.30 630.30

 32768 1000 1180.77 1180.77 1180.77

 65536 640 2571.14 2571.14 2571.14

 131072 320 4929.39 4929.39 4929.39

 262144 160 9909.67 9909.67 9909.67

 524288 80 20586.26 20596.66 20591.46

1048576 40 46326.08 46326.08 46326.08

2097152 20 105728.35 105728.35 105728.35

4194304 10 235253.11 235253.11 235253.11

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 29 of 34

6.2 Sample 2

mpirun –np 7 PMB-MPI1 reduce –npmin 3 –multi 0

(PMB_OPTIONAL mode)
#---

PALLAS MPI Benchmark Suite V2.1, MPI-1 part

#---

Date : Thu Sep 10 10:30:49 1998

Machine : alpha# System : OSF1

Release : V4.0

Version : 564

#

Minimum message length in bytes: 0

Maximum message length in bytes: 1024

#

MPI_Datatype : MPI_BYTE

MPI_Datatype for reductions : MPI_FLOAT

MPI_Op : MPI_SUM

#

#

!! Attention: results have been achieved in

!! PMB_OPTIONAL mode.

!! Results may differ from standard case.

#

#

List of Benchmarks to run:

(Multi-)Reduce

#---

Benchmarking Multi-Reduce

(2 groups of 3 processes each running simultaneous)

Group 0 : 0 1 2

Group 1 : 3 4 5

(1 additional process waiting in MPI_Barrier)

#---

 #bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]

 0 1000 0.64 0.83 0.77

 4 1000 142.84 145.34 143.54

 8 1000 141.61 142.44 141.75

 16 1000 141.61 142.44 142.03

 32 1000 142.44 143.28 142.72

 64 1000 161.66 161.66 161.66

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 30 of 34

 128 1000 164.30 164.30 164.30

 256 1000 173.47 174.31 174.03

 512 1000 197.22 198.89 198.06

 1024 1000 246.03 246.03 246.03

#---

Benchmarking Reduce

(#processes = 6)

(1 additional process waiting in MPI_Barrier)

#---

 #bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]

 0 1000 0.64 0.83 0.78

 4 1000 246.64 247.47 246.92

 8 1000 232.96 233.79 233.65

 16 1000 188.43 189.26 188.57

 32 1000 169.73 169.73 169.73

 64 1000 195.52 196.35 195.66

 128 1000 197.30 198.14 197.72

 256 1000 204.92 205.75 205.61

 512 1000 218.65 220.31 219.62

 1024 1000 266.56 266.56 266.56

#---

Benchmarking Reduce

(#processes = 7)

#---

 #bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]

 0 1000 0.64 0.83 0.78

 4 1000 223.25 224.08 223.61

 8 1000 209.92 210.75 210.39

 16 1000 208.65 209.48 209.13

 32 1000 211.58 212.41 211.82

 64 1000 235.74 235.74 235.74

 128 1000 238.39 239.23 238.51

 256 1000 250.20 251.03 250.68

 512 1000 279.79 279.79 279.79

 1024 1000 331.10 332.77 331.69

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 31 of 34

6.3 Sample 3

mpirun –np 5 PMB-MPI1 pingping –multi 1

(PMB_OPTIONAL mode)
#---

PALLAS MPI Benchmark Suite V2.1, MPI-1 part

#---

Date : Thu Sep 10 10:37:46 1998

Machine : alpha# System : OSF1

Release : V4.0

Version : 564

#

Minimum message length in bytes: 0

Maximum message length in bytes: 256

#

MPI_Datatype : MPI_BYTE

MPI_Datatype for reductions : MPI_FLOAT

MPI_Op : MPI_SUM

#

#

!! Attention: results have been achieved in

!! PMB_OPTIONAL mode.

!! Results may differ from standard case.

#

#

List of Benchmarks to run:

(Multi-)PingPing

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 32 of 34

#---

Benchmarking Multi-PingPing

(2 groups of 2 processes each running simultaneous)

Group 0 : 0 1

Group 1 : 2 3

(1 additional process waiting in MPI_Barrier)

#---

 Group #bytes #repetitions t[usec] Mbytes/sec

 0 0 1000 9.98 0.00

 1 0 1000 78.21 0.00

 0 1 1000 9.98 0.10

 1 1 1000 70.59 0.01

 0 2 1000 9.15 0.21

 1 2 1000 71.40 0.03

 0 4 1000 9.15 0.42

 1 4 1000 70.74 0.05

 0 8 1000 9.17 0.83

 1 8 1000 70.69 0.11

 0 16 1000 9.16 1.67

 1 16 1000 70.80 0.22

 0 32 1000 10.00 3.05

 1 32 1000 71.53 0.43

 0 64 1000 17.49 3.49

 1 64 1000 86.63 0.70

 0 128 1000 19.99 6.11

 1 128 1000 89.02 1.37

 0 256 1000 22.06 11.07

 1 256 1000 92.74 2.63

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 33 of 34

7 Further details

7.1 Memory Requirements

Benchmarks Standard mode memory
demand per process
 (Q active processes)

Optional mode memory de-
mand per process
(X = 2MAXMSGLOG)

Alltoall Q × 8 MBytes Q × 2X bytes

Allgather, All-
gatherv

(Q+1) × 4 MBytes (Q+1) × X bytes

All other benchmarks 8 MBytes 2X bytes

Table 3 : Memory Requirements

7.2 SRC Directory

The following source files are on the directory:

PMB-MPI1 benchmark kernels:
PingPing.c, PingPong.c, Exchange.c, Sendrecv.c, All-
gather.c, Allgatherv.c, Allreduce.c, Alltoall.c,
Bcast.c, Reduce.c, Reduce_scatter.c, Barrier.c

PMB-MPI2 benchmark kernels (irrelevant here):
Window.c, OneS_accu, OneS_bidir.c, OneS_unidir.c
Write.c, Read.c, Open_Close.c

Driver routines:
pmb.c, pmb_init.c, Output.c, BenchList.c, Warm_Up.c, de-
clare.c, g_info.c, Err_Handler.c, strgs.c,
Mem_Manager.c, chk_diff.c, Parse_Name_EXT.c,
Parse_Name_IO.c, Parse_Name_MPI1.c

Init_File.c, Init_Transfer.c, User_Set_Info.c,
CPU_Exploit.c

Include files:
Benchmark.h, Comments.h, appl_errors.h, comm_info.h, de-
clare.h, err_check.h, settings.h, settings_io.h,
Bnames_EXT.h, Bnames_IO.h, Bnames_MPI1.h

7.3 Results Checking

By activating the cpp flag –DCHECK through the CPPFLAGS variable (see
2.2), and recompiling, at PMB runtime every message passing result will be
checked against the expected outcome (note that the contents of each buffer
is well defined, see 5.2.4). Output tables will contain an additional column
displaying the diffs as floats (named defects).

Attention: -DCHECK results are not valid as real benchmark data! Don’t for-
get to deactivate DCHECK and recompile in order to get proper results.

Pallas MPI Benchmarks - PMB, Part MPI-1

2000-03-09 34 of 34

7.4 Use of MPI

Except ist documented use in the benchmark kernels, MPI is used to the
following extent in PMB-MPI1:

MPI_Init

MPI_Bcast, MPI_Recv, MPI_Get_count, MPI_Send, MPI_Gather

MPI_Comm_size, MPI_Comm_rank, MPI_Comm_group,

MPI_Group_translate_ranks, MPI_Comm_split, MPI_Comm_free

MPI_Error_string, MPI_Errhandler_create,
MPI_Errhandler_set,

MPI_Errhandler_free, MPI_Abort

MPI_Finalize

8 Revision History

Release
No.

Date Content Related Software
Releases

1.0 1997/06 draft documenta-
tion

PMB 1.0, 1.1, 1.2, 1.3

2.0 1998/06 complete defini-
tion

PMB 2.0

2.1 1998/09 4.4.6 added
5.2.1 added
Minor textual
changes

PMB 2.1

2.2 2000/03 3.3 updated PMB 2.2

9 References

1 MPI: A Message-Passing Interface Standard. Message Passing Inter-
face Forum, 1995

2 MPI-2: Extensions to the Message-Passing Interface. Message Pass-
ing Interface Forum, 1997

3 Pallas MPI Benchmarks - PMB, part MPI-2

	Introduction
	Installation and Quick Start of PMB-MPI1
	Download
	Installation
	Running PMB-MPI1

	Overview of PMB-MPI1
	General
	The Benchmarks
	Version changes
	Version 2.1 vs. 2.0
	Version 2.2 vs. 2.1

	PMB-MPI1 vs. PMB1.x Definitions
	Changed Definitions
	Throughput Calculations
	Corrected Methodology

	PMB-MPI1 Benchmark Definitions
	Benchmark Classification
	Single Transfer Benchmarks
	Parallel Transfer Benchmarks
	Collective Benchmarks

	Definition of Single Transfer Benchmarks
	PingPong
	PingPing

	Definition of Parallel Transfer Benchmarks
	Sendrecv
	Exchange

	Definition of Collective Benchmarks
	Reduce
	Reduce_scatter
	Allreduce
	Allgather
	Allgatherv
	Alltoall
	Bcast
	Barrier

	Benchmark Methodology
	Running PMB, Command Line Control
	Default Case
	Command Line Control
	Benchmark Selection Arguments
	–npmin Selection
	–multi Outflag Selection
	–input <File> Selection

	PMB Parameters and Hard Coded Settings
	Parameters Controlling PMB
	Communicators, Active Processes
	Message Lengths
	Buffer Initialization
	Warm-up Phase
	Synchronization
	The Actual Benchmark

	Output
	Sample 1
	Sample 2
	Sample 3

	Further details
	Memory Requirements
	SRC Directory
	Results Checking
	Use of MPI

	Revision History
	References

