

Система моделирования движения жидкости и газа

FlowVision Версия 3.07.00

Примеры решения типовых задач

© ООО "ТЕСИС", 1999-2009. Все права зарегистрированы. Москва, Россия

Оглавление

1 Введение	6
2 Обозначения	7
3 Подробное описание простейшей	
модели	9
3.1 Ламинарное течение в трубе	10
3 1 1 Создание проекта	10
3.1.2 Залание физической молепи	
. 3.1.2.1 Вещество	
. 3.1.2.2 Фаза	
3.1.2.3 Модель	16
3.1.3 Задание граничных условий	17
3.1.4 Генерация расчетной сетки	19
3.1.5 Задание параметров, управляющих расчетом	20
3.1.6 Запуск на расчет	21
3.1.7 Просмотр и анализ результатов	
3.1.7.1 Характеристики (динамика давления)	
3.1.7.2 График вдоль прямой (распределение давления)	27
	20
4 Физические процессы	JZ
4 Физические процессы 4.1 Течение	33
4 Физические процессы 4.1 Течение 4.1.1 Сверхзвуковое обтекание клина	33 33
4 Физические процессы 4.1 Течение 4.1.1 Сверхзвуковое обтекание клина 4.1.1.1 Физическая модель	32
4 Физические процессы 4.1 Течение 4.1.1 Сверхзвуковое обтекание клина 	33
4 Физические процессы 4.1 Течение 4.1.1 Сверхзвуковое обтекание клина 	33
 4 Физические процессы 4.1 Течение	33 33
 4 Физические процессы 4.1 Течение	33
 4 ФИЗИЧЕСКИЕ ПРОЦЕССЫ 4.1 Течение 4.1.1 Сверхзвуковое обтекание клина 4.1.1 Физическая модель 4.1.1.2 Граничные условия 4.1.1.3 Начальная сетка 4.1.1.4 Параметры расчета 4.1.1.5 Визуализация результатов 4.1.1.5.1 Распределение давления 	33 33 33 34 36 36 36 37 37
 4 Физические процессы 4.1 Течение	33 33 33 33 33 33 36 36 36 36 37 37 37
 4 ФИЗИЧЕСКИЕ ПРОЦЕССЫ 4.1 Течение 4.1.1 Сверхзвуковое обтекание клина 4.1.1 Физическая модель 4.1.1.2 Граничные условия 4.1.1.3 Начальная сетка 4.1.1.4 Параметры расчета 4.1.1.5 Визуализация результатов 4.1.1.5.1 Распределение давления 4.1.2 Течение в канале с использованием модели зазора 4.1.2.1 Физическая модель 4.1.2.2 Граничные условия 	33
 4 ФИЗИЧЕСКИЕ ПРОЦЕССЫ 4.1 Течение	33 33 33 34 36 36 36 37 37 37 38 39 39 39
 4 ФИЗИЧЕСКИЕ ПРОЦЕССЫ 4.1 Течение	33 33 33 34 36 36 36 36 37 37 37 37 37 37 37 38 39 39 39 41
 4 ФИЗИЧЕСКИЕ ПРОЦЕССЫ 4.1 Течение 4.1.1 Сверхзвуковое обтекание клина 4.1.1 Физическая модель 4.1.1.2 Граничные условия 4.1.1.3 Начальная сетка 4.1.1.4 Параметры расчета 4.1.1.5 Визуализация результатов 4.1.2 Течение в канале с использованием модели зазора 4.1.2.1 Физическая модель 4.1.2.2 Граничные условия 4.1.2.3 Начальная сетка 4.1.2.4 Параметры расчета 4.1.2.5 Визуализация результатов 	33 33 33 34 36 36 36 37 37 37 37 37 38 39 39 39 41 41
 4 ФИЗИЧЕСКИЕ ПРОЦЕССЫ 4.1 Течение	33 33 33 34 36 36 36 37 37 37 37 37 37 37 37 37 37 37 38 39 39 39 39 41 41 41 41
 4 ФИЗИЧЕСКИЕ ПРОЦЕССЫ 4.1 Течение	33 33 33 34 36 36 36 36 37 37 37 37 37 37 37 37
 4 Физические процессы 4.1 Течение	33 33 33 34 36 36 36 36 37 37 37 37 37 38 39 41 41 41 41 41 41 41 41
 4 ФИЗИЧЕСКИЕ ПРОЦЕССЫ 4.1 Течение	33 33 33 34 36 36 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
 4 ФИЗИЧЕСКИЕ ПРОЦЕССЫ 4.1 Течение	33 33 33 34 36 36 36 36 37 37 37 37 37 37 37 37

4.2.1.3 Начальная сетка	44
4.2.1.4 Параметры расчета	44
4.2.1.5 Визуализация результатов	44
4.2.1.5.1 Распределение температуры	45
4.2.2 Вынужденная конвекция	46
4.2.2.1 Физическая модель	46
. 4.2.2.2 Граничные условия	47
. 4.2.2.3 Начальная сетка	48
4.2.2.4 Параметры расчета	48
. 4.2.2.5 Визуализация результатов	48
4.2.2.5.1 Распределение температуры	. 49
4.2.3 Естественная конвекция	49
. 4.2.3.1 Физическая модель	50
4.2.3.2 Граничные условия	51
4.2.3.3 Начальная сетка	53
4.2.3.4 Параметры расчета	54
. 4.2.3.5 Визуализация результатов	54
4.2.3.5.1 Распределение скоростей	. 55
4.2.3.5.2 Распределение температуры	. 56
	67
	57
4.3.1 Турбулентное течение в трубе	57
4.3.1.1 Физическая модель	58
4.3.1.2 Граничные условия	58
4.3.1.3 Начальная сетка	59
4.3.1.4 Параметры расчета	59
4.3.1.5 Визуализация результатов	59
4.3.1.5.1 Динамика давления на входе	60
4.3.1.5.2 Распределение турбулентной вязкости	. 61
4.3.1.5.3 Распределение скорости	62
4.3.1.5.4 Распределение давления	. 63
4.3.2 Турбулентное обтекание пластины	64
4.3.2.1 Физическая модель	65
4.3.2.2 Граничные условия	66
4.3.2.3 Начальная сетка	67
4.3.2.4 Параметры расчета	68
4.3.2.5 Визуализация результатов	68
4.3.2.5.1 Распределение Ү+	69
4.3.2.5.2 Распределение вязкого трения	. 70
4.3.3 Турбулентное обтекание уступа	71
4.3.3.1 Физическая модель	71
4.3.3.2 Граничные условия	72
4.3.3.3 Начальная сетка	73
4.3.3.4 Параметры расчета	73
4.3.3.5 Визуализация результатов	73
4.3.3.5.1 Распределение скоростей	73
4.3.4 Турбулентное обтекание параллелепипеда	74
4.3.4.1 Физическая модель	74
4.3.4.2 Граничные условия	75
4.3.4.3 Начальная сетка	76
4.3.4.4 Адаптация расчетной сетки	78

2

owVision Tutorial	3
4.3.4.5 Параметры расчета	79
4.3.4.6 Визуализация результатов	79
4.3.4.6.1 Распределение Ү+	80
4.3.4.6.2 Распределение скорости	81
4.3.5 Дозвуковое обтекание крылового профиля	81
.4.3.5.1 Физическая модель	83
4.3.5.2 Граничные условия	83
4.3.5.3 Начальная расчетная сетка	85
. 4.3.5.4 Адаптация расчетной сетки	86
4.3.5.5 Параметры расчета	86
4.3.5.6 Визуализация результатов	86
4.3.5.6.1 Распределение значений числа Маха	87
4.3.5.6.2 Распределение давления	88
4.4 Свободная поверхность	89
4.4.1 Обрушение плотины	89
4.4.1.1 Физическая модель	89
4.4.1.2 Граничные условия	90
4.4.1.3 Задание столба жидкости	91
4.4.1.4 Начальная сетка	93
4.4.1.5 Параметры расчета	94
4.4.1.6 Визуализация результатов	94
4.4.1.6.1 Распределение жидкости	94
4.4.2 Свободная струя	95
4.4.2.1 Физическая модель	95
4.4.2.2 Граничные условия	96
4.4.2.3 Начальные условия	96
4.4.2.4 Начальная расчетная сетка	97
4.4.2.5 Параметры расчета	97
4.4.2.6 Визуализация результатов	97
4.4.2.6.1 Распределение жидкости	98
5 Дополнительные возможности	99
5.1 Сопряжение	00
5.1.1 Сопряженный конвективный теплообмен	00
5.1.1.1 Физическая модель 1	01
5.1.1.2 Граничные условия	02
5.1.1.3 Связывание подобластей	03
5.1.1.4 Начальная расчетная сетка	07
5.1.1.5 Адаптация расчетной сетки	07
5.1.1.6 Параметры расчета 1	80
5.1.1.7 Визуализация результатов	08
5.1.1.7.1 Распределение температуры 1	108
5.2 Вращение10	09
5.2.1 Ротор	09
5.2.1.1 Физические параметры	10
5.2.1.2 Вращение 1	10
5.2.1.3 Граничные условия	11
5.2.1.3 Граничные условия	11 13

5.2.1.6 Параметры расчета	114
5.2.1.7 Визуализация результатов	114
5.2.1.7.1 Динамика давления	114
5.2.1.7.2 Распределение скоростей	115
5.2.2 Бак	116
5.2.2.1 Физическая модель	116
5.2.2.2 Вращение	117
5.2.2.3 Граничные условия	118
5.2.2.4 Начальные условия	118
5.2.2.5 Начальная расчетная сетка	120
5.2.2.6 Адаптация расчетной сетки	120
5.2.2.7 Параметры расчета	121
5.2.2.8 Визуализация результатов	121
5.2.2.8.1 Поверхность жидкости	121
5.3 Подвижные тела	122
5.3.1 Сверхзвуковое обтекание крылового профиля	122
5.3.1.1 Физическая модель	123
5.3.1.2 Подвижное тело	123
5.3.1.3 Граничные условия	126
5.3.1.4 Начальная сетка	127
5.3.1.5 Адаптация расчетной сетки	128
5.3.1.6 Параметры расчета	128
5.3.1.7 Визуализация результатов	128
5.3.1.7.1 Распределение числа Маха	129
5.3.1.7.2 Распределение давления	130
5.3.1.7.3 Распределение Ср	130
5.3.1.7.3.1 Создание Ср	130
5.3.1.7.3.2 Создание графика вдоль кривой	133
5.3.2 Падение шара в вязкой жидкости	
5.3.2.1 Физическая модель	134
5.3.2.2 Подвижное тело	135
5.3.2.3 Граничные условия	136
5.3.2.4 Начальная расчетная сетка	137
5.3.2.5 Адаптация расчетной сетки	137
5.3.2.6 Параметры расчета	138
5.3.2.7 Визуализация результатов	138
5.3.2.7.1 Зависимость скорости шара от времени	138
5.3.3 Тело, плавающее на поверхности жидкости	139
5.3.3.1 Физическая модель	139
5.3.3.2 Подвижное тело	140
5.3.3.3 Граничные условия	141
5.3.3.4 Задание объема жидкости	142
5.3.3.5 Начальная расчетная сетка	142
5.3.3.6 Параметры расчета	143
5.3.3.7 Визуализация результатов	143
5.3.3.7.1 Поверхность жидкости	144
5.3.4 Винтовой компрессор	145
5.3.4.1 Физическая модель	146
5.3.4.2 Подвижные тела	146
5.3.4.3 Граничные условия	147

4

FlowVision Tutorial	5
5.3.4.4 Начальная расчетная сетка	148
5.3.4.5 Адаптация расчетной сетки	149
5.3.4.6 История расчета	149
5.3.4.7 Параметры расчета	149
5.3.4.8 Визуализация результатов	149
5.3.4.8.1 Распределение ячеек зазора	150
5.3.4.8.2 Распределение скоростей	151
5.3.4.8.3 Динамика поля скоростей	151
6 Сопряжение с Abaqus	153
6.1 Деформируемый клапан в канале	154
6.1.1 Подготовка проекта в Abaqus	
6.1.1.1 Модель	155
6.1.1.2 Интерфейсная поверхность	156
6.1.1.3 Модификация файла проекта	156
6.1.1.4 Создание геометрии для FlowVision	156
6.1.2 Подготовка проекта во FlowVision	157
6.1.2.1 Физическая модель	157
6.1.2.2 Подвижное тело	157
6.1.2.3 Граничные условия	158
6.1.2.4 Расчетная сетка	159
6.1.2.5 Адаптация	159
6.1.2.6 Параметры расчета	159
6.1.2.7 Модификация файла проекта	159
6.1.3 Подготовка проекта в МРМенеджере	159
6.1.3.1 Соединение с Солвер-Агентом FlowVision	160
6.1.3.2 Выбор проекта FlowVision	160
6.1.3.3 Общие параметры	160
6.1.3.4 Выбор проекта Abaqus	160
6.1.3.5 Запуск на расчет	161
6.1.4 Визуализация результатов	
6.1.4.1 Распределение скоростей	161
6.1.4.2 Распределение давления	162

1 Введение

В этом разделе обсуждаются примеры решения типичных задач в программном комплексе FlowVision **HPC**.

Структура этого пособия следующая:

- в первом разделе подробно обсуждаются все этапы задания варианта, расчета и анализа полученных результатов. В качестве простейшего примера выбрана задача моделирования ламинарного течения в трубе.
- 2. во втором разделе рассматривается использование различных физических процессов.
- 3. в третьем разделе рассматривается использование дополнительных возможностей.

Рекомендуется вначале ознакомиться с первым разделом и соответствующими разделами Справки.

2 Обозначения

Обозначение	Название	Название во FlowVision HPC	Размерность
а	Скорость звука		M C ⁻¹
ь	Начальная или входная турбулизация потока	Пульсация	
CFL _{impl}	Неявное число Куранта	CFL	
Cp	Удельная теплоемкость		м ² с ⁻² К ⁻¹
	Коэффициент сопротивления		
Cr	Константа шероховатости	Константа шероховатости	
D	Диаметр трубы		Μ
f	Скалярная переменная		
h _s	Эквивалентная песочная шероховатость	Шероховатость	НМ
$h_s^+ = \frac{u_\tau h_s}{\nu}$	Безразмерная эквивалентная песочная шероховатость		
k	Турбулентная энергия	Турбулентная Энергия	M ² C ⁻²
L	Длина трубы		М
1	Начальный или входной масштаб	Масштаб	М
	турбулентности	турбулентности, м	
M = U/a		ЧИСЛОШАХА	
n n		Парпонио	КГ
P Dr		давление	ПМ
Pf	Тирбидонтное число Пранд Ля	Процетен	
Pr _t	туроулентное число прандпля	прандшь	
$Re = \frac{UD\rho}{U}$	Число Рейнольдса		
Sc _t	Турбулентное число Шмидта	Шмидт	
Т	Температура	Температура	К
 U	Характерная скорость	1 21	м с ⁻¹
uτ	Скорость сдвига		M C ⁻¹
V _{inl}	Входная Скорость потока		M C ⁻¹
V _{ini}	Начальная Скорость потока		M C ⁻¹
У	Расстояние до ближайшей стенки	Расстояние До Стенки	М
$y^+ = \frac{u_\tau y}{v}$	Безразмерное расстояние до ближайшей стенки	Үплюс	
ε	Диссипативная доля турбулентной энергии	ТурбДиссипация	M ² C ⁻³
λ	Молекулярный теплоперенос		кг м с ⁻³ К ⁻¹
μ	Молекулярная динамическая вязкость		кг м ⁻¹ с ⁻¹
μ _t	Турбулентная динамическая вязкость	ТурбВязкость	кг м ⁻¹ с ⁻¹
$\nu = \mu / \rho$	Молекулярная кинематическая вязкость		M ² C ⁻¹
$v_t = \mu_t / \rho$	Турбулентная кинематическая вязкость		M ² C ⁻¹

Обозначение	Название	Название во FlowVision HPC	Размерность
ρ	Плотность	Плотность	кг м ⁻³
$\tau = \rho u_\tau^2$	Сила сопротивления вязкой жидкости на стенке	МодВязких Напряжений	Н м ⁻²
τ _{expl}	Явный шаг по времени		С
τ _{impl}	Неявный шаг по времени		С
$\omega = \frac{\varepsilon}{\beta^* k}$	Удельная диссипативная доля турбулентной энергии	ТурбДиссипация	C ⁻¹

3 Подробное описание простейшей модели

В этом примере подробно рассматриваются все этапы задания варианта во **FlowVision HPC**, расчета и анализа полученных результатов. Управляющие настройки находятся в Препроцессоре, средства для просмотра результатов - в Постпроцессоре

Рекомендуется вначале ознакомиться с этим разделом.

3.1 Ламинарное течение в трубе

В этом примере подробно рассматриваются все этапы задания варианта, расчета и анализа полученных результатов.

В качестве простейшего примера выбрана задача моделирования ламинарного движения вязкой жидкости по цилиндрической трубе.

Ламинарный режим течения характеризуется числом Рейнольдса Re<10³.

3.1.1 Создание проекта

Область расчета создается вне программного комплекса **FlowVision HPC** в системах геометрического моделирования.

Геометрическая модель расчетной области должна удовлетворять следующим требованиям:

- 1. объемы, составляющие геометрическую модель, должны быть замкнуты;
- 2. объемы, составляющие геометрическую модель, должны быть вложены друг в друга и не пересекаться.

Геометрическая модель передается во **FlowVision HPC** в одном из следующих стандартных форматов: 1. поверхностная сетка: WRML, STL, MESH (внутренний формат); 2. объемная сетка, на основе которой во FlowVision HPC строится соответствующая поверхностная сетка: ANSYS, NASTRAN, ABAQUS.

Загрузка геометрической модели во FlowVision HPC осуществляется через меню Файл — Новый..., где в окне диалога выбирается соответствующий файл. В данном варианте необходимо выбрать файл tube. wrl

😂 Открыть				×
<u>П</u> апка:	퉬 Geom	•	← 🗈 💣 🎟•	
A 122	Имя 🔺	- Дата изменения -	Тип	Размер 🔺
1	📮 FloatingBox_Box.STL	12.07.2004 17:59	Список доверия се	1 K
Недавние	🖻 FloatingBox_Domain.wrl	22.07.2008 12:40	Файл "WRL"	2 K
места	📮 FreeJet.STL	12.01.2007 13:08	Список доверия се	2 K
	🖻 Gap_Channel.wrl	02.11.2006 16:34	Файл "WRL"	3 K
	📮 Hose.STL	12.01.2007 13:08	Список доверия се	2 K
Рабочий стол	🖻 Klin. wrl	19.03.2003 11:57	Файл "WRL"	9 K
	🖳 NACA0012.STL	07.04.2006 15:40	Список доверия се	26 🕅
	🗾 Natur_Convect.wrl	31.10.2002 17:46	Файл "WRL"	68
(I)	🗾 Plate.wrl	23.10.2006 13:56	Файл "WRL"	28
Anastasya Shishaaya	📮 RAE_2822_Airfoil.STL	04.03.2008 19:04	Список доверия се	1 518 🕅
onisriaeva	📮 RAE_2822_Domain.STL	15.11.2007 15:18	Список доверия се	1 🕅
	📮 Rotor.STL	01.11.2006 16:56	Список доверия се	800 K
	🗾 test.wrl	05.02.2009 14:14	Файл "WRL"	43 K
Компьютер	Tube.wrl	05.04.2006 16:03	Файл "WRL"	4 K
	🗓 Wave.STL	12.05.2005 19:14	Список доверия се	1 K 🖵
. 🧶 I	•			
Сеть	<u>И</u> мя файла: Tube.wrl		•	<u>О</u> ткрыть
	<u>Т</u> ип файлов: Все пода	зерживаемые форматы	(*.STL; *.cdb; 💌	Отмена

После загрузки геометрической модели пользователю предлагается задать имя проекта и указать расположение папки с файлами проекта.

Сохранение проен	ста	×	
Имя новой папки:	Lam_tube		
<u>Р</u> асположение:	C:\FlowVision_307\Tutorial		
	ОК Отмена		

После этого будет создана соответствующая папка с файлами варианта и в графическом окне **FlowVision HPC** появится геометрическая модель, а в дереве Препроцессора появятся соответствующие подобласти.

Программа загружает геометрию в виде набора поверхностных треугольников. После загрузки треугольники геометрии автоматически объединяются в геометрические группы. Список геометрических групп каждой подобласти находится в папке **Подобласти** — **Подобласть#i** — **Геометрия** дерева Препроцессора.

Количество и границы групп зависит от формата геометрии и настроек ПреПостпроцессора. Формат геометрии WRL поддерживает информацию о цвете. Если файл геометрии имеет расширение WRL, то треугольники одного цвета будут объединены в одну группу. Формат STL не поддерживает информацию о цвете. Если файл геометрии имеет расширение STL, то треугольники будут объединены в группы в соответствие с величиной **Угла группировки**: если угол между треугольниками меньше угла группировки, то они объединяются в одну группу. Величина угла группировки задается в **Файл Настройки Угол группировки**.

3.1.2 Задание физической модели

Для того, чтобы задать физическую модель, необходимо задать:

- 1. Вещество
- 2. **Фазу**
- 3. <u>Модель</u>

3.1.2.1 Вещество

В данном примере будет проводиться моделирование течения воды, поэтому достаточно задать одно вещество - воду.

Для того, чтобы задать новое вещество, необходимо выполнить следующие действия:

• В контекстном меню папки Вещества выберите Создать.

После этого появится папка Вещество#0 с соответствующими параметрами.

• В окне Вещества #0 в поле Агрегатное состояние задайте Жидкость

• В папке Вещество #0 в перечне физических свойств вещества следует задать:

Плотность	=	1000	[кгэм⁻ ³]
Молекулярная вязкость	=	0.001	

Остальные параметры нам не понадобятся, поэтому их можно оставить по умолчанию равными 0.

Примечание:

От агрегатного состояния зависит набор физических свойств, способ вычисления скорости звука и уравнение состояния.

3.1.2.2 Фаза

Для того, чтобы задать фазу, необходимо:

• В контекстном меню папки Фазы выбрать пункт Создать непрерывную.

- В Фазе #0 в папке Вещества загрузить предварительно созданное вещество:
 - В контекстном меню папки Вещества выбрать Добавить/Убрать
 - Выбрать из списка Вещество#0 и добавить его в фазу.

🖃 🥘 Регион	Выберите вещества			X
— Р=С-1 Общие установки І Общие установки І Горановки Вещества	Невыбранные		Выбранные	
 Фазы Фазы Фазы Фазы Физи Добавить/убрать Добавить/убрать Добавить/убрать Свойства Объекты Характеристики Пользовательские переменные Подобласти Граничные связи 		Добавить >> << Убрать Добавить все >>> <<<Убрать все	Вещество #0	
····· IIII начальная сетка	,		ок	Отмена

 В папке Физические процессы в окне свойств выбрать моделируемые процессы. В данной задаче потребуются физические процессы:

Движение Ньютоновская жидкость

٠

3.1.2.3 Модель

В рамках одной **Модели** можно задавать одну **Фазу.** Для того, чтобы задать **Модель**, необходимо в контекстном меню выбрать **Создать**.

После этого появится папка **Модель#0** и вложенные в нее папки **Фазы** и **Взаимодействие фаз**. В данной задаче нам потребуется только одна фаза. Для того, чтобы добавить ее в **Модель** нужно в контекстном меню папки Фазы выбрать **Добавить/Убрать** и выбрать из списка Фазу#0.

• В папке **Нач. данные #0** в элементе **Скорость** необходимо задать начальную скорость по Z: Значение

Z 0.001

3.1.3 Задание граничных условий

Прежде чем задавать граничные условия, необходимо указать модель для расчетной подобласти. Задайте в окне свойств **Подобласти#0**

Модель = Модель #0

Граничные условия задаются для каждой из расчетных переменных.

В общем случае процедура задания граничных условий включает в себя следующие этапы:

- 1. Создание граничный условий
- 2. Расстановка граничных условий
- 3. Задание параметров граничных условий

Исходная геометрия для данной задачи была раскрашена при создании и сохранена в формате **wrl**, который поддерживает информацию о цвете. Поэтому, при загрузке геометрии приложение автоматически создало и расставило граничные условия на поверхностях разного цвета. По умолчанию все граничные условия имеют тип **Стенка**.

Изменение свойств граничных условий осуществляется в окнах свойств элементов папки Граничные условия дерева Препроцессора: Подобласти — Подобласть #і — Граничные условия — Граничное условие #i.

Задайте следующие параметры в окнах свойств граничных условий:

Граница 1 (ГУ#О)	
Тип	= Стенка
Переменные	
Скорость	= Прилипание
Граница 2 (ГУ#2)	
Тип	= Вход/Выход
Переменные	
Скорость	= Нормальная массовая скорость
Граница 3 (ГУ#1)	
Тип	= Свободный выход
Переменные	

Скорость = Давление Значение = 0

Задайте численное значение Массовой скорости:

3.1.4 Генерация расчетной сетки

Следующим необходимым шагом является задание расчетной сетки.

Расчетная сетка, используемая во FlowVision HPC является:

- 1. прямоугольной
- 2. адаптивной локально измельченной (АЛИС)¹
- 3. с подсеточным разрешением геометрии²

Задание **расчетной сетки** во FlowVision разделяется на задание начальной сетки (или сетки начального уровня)

и адаптацию сетки (как по поверхности, так и в объеме).

В этом примере нам необходимо задать равномерную расчетную сетку 20x20x50. Для этого необходимо в дереве **Препроцессора** в окне свойств элемента **Начальная сетка** задать:

nX = 20

nY = 20

nZ = 50

После задания в графическом окне отобразится начальная сетка:

Примечание:

¹ Адаптация позволяет разрешать малые детали геометрии расчетной области и высокие градиенты рассчитываемых величин

² Подсеточное разрешение геометрии позволяет аппроксимировать криволинейные границы на прямоугольной сетке.

3.1.5 Задание параметров, управляющих расчетом

Последним этапом подготовки проекта к расчету является задание параметров, управляющих расчетом. К таким параметрам относятся: шаг по времени, выбор схемы аппроксимации уравнений по пространству и по времени, частота автосохранения и др. Параметры, управляющие расчетом, задаются в дереве **Солвера**.

Предполагается, что для большинства задач (кроме особо оговоренных) пользователю не нужно изменять дополнительные настройки, заданные по умолчанию. Единственное, что требуется задать – это Шаг по времени. Во FlowVision HPC предусмотрены два способа задания шага: в секундах и числом КФЛ (Куранта-Фридрихса-Леви). Поскольку в данном случае мы имеем дело со стационарной задачей, то следует задавать шаг по времени в секундах - постоянный шаг по времени, выбираемый пользователем. Постоянный шаг по времени выбирается исходя из 1/10 пролетного времени для характерного размера задачи. В данном случае характерный размер - длина трубы L. Пролетное время - время, необходимое гипотетической частице, движущейся со средней скоростью потока V, преодолеть

3.1.6 Запуск на расчет

Запускать вариант на расчет можно из **Препостпроцессора** и из **Терминала**. В данном примере будет рассмотрен запуск варианта из **ПреПостпроцессора**. **Солвер-Агент** и **Лицензионный сервер** должны быть запущены.

Для того, чтобы начать расчет, необходимо авторизироваться на солвер-агенте:

- Нажать кнопку
- Ввести имя пользователя и пароль, под которыми пользователь зарегистрирован на лицензионном сервере.

Авторизация по	эльзовател:	я	×
Имя пользовател:	я:		
User			
Пароль:			

ОК	Отмена	Новый	
			_

Для того, чтобы подключиться к Солверу, необходимо:

- Нажать кнопку 🔄 .
- Запустить новый солвер, выбрать его из списка и подключиться к нему.

Выбор	солвера	1			×
Запуще	нные соле	зеры	:		
Солве	p	#п	Статус	Проект	Подключиться
411-12	253ef	1	ПУСТ		Многопроц. режим # проц-в: 1 Запустить новый Завершить
					Обновить список
					Отмена

• Загрузить проект на солвер:

Удалённый проект отсутствует	×	
Данный проект на солвере не обнаруже на солвер, либо разорвать/отменить со Выберите желаемое действие:	эн. Требуется либо загрузить файлы единение с солвером.	
Загрузить проект на солвер Разорвать соединение с солвером		

Файлы проекта будут находиться в двух директориях: клиентской и серверной. Увидеть результаты расчета можно только если проект подключен к солверу и синхнонизирован с ним. После загрузки проекта на солвер в **Серверной директории** появится папка с серверной частью проекта. Путь к директории с серверным частями проектов указывается при регистрации. При

необходимости, окно с регистрационной информацией можно вызвать кнопкой . Серверную директорию можно изменить

© ООО "ТЕСИС", 1999-2009. Все права зарегистрированы. Москва, Россия

22

Имя пользователя:
1
Пароль:
Подтверждение пароля:
*
Серверная директория:
c:/SolverProjects_307/
Лицензионное имя:
fvlic
Лицензионный пароль:

ОК Отмена

После загрузки проекта на солвер станет доступен запуск солвера на расчет. Чтобы запустить солвер на расчет, необходимо:

- Нажать кнопку
- Указать параметры запуска на расчет

Запуск на расчё	ÈT	×
🔲 Продолжать р	расчёт	
Использовать с	уществующие	7
☐ Сетку ☐ Маску ☐ Данные		
ОК	Отмена	
-		

Остановить расчет можно кнопкой 🍟

3.1.7 Просмотр и анализ результатов

Просмотр результатов расчета осуществляется в **Постпроцессоре**. Для того, чтобы можно было просмотреть результаты расчета, проект должен быть загружен на солвер и обязательно находится с ним на связи.

Постпроцессор предоставляет пользователю следующие возможности:

- 1. Набор стандартных методов визуализации течений в графическом окне;
- 2. Интерактивная настройка параметров методов визуализации;
- 3. Отображение интегральных значений переменных в окне Информация
- 4. Отображение легенды метода отрисовки в отдельном окне Информация;

Чтобы отобразить результаты расчетов, в Постпроцессоре необходимо:

• создать и настроить соответствующий объект;

- создать слой или характеристики требуемого типа на объекте;
- в слое выбрать переменную и выполнить необходимые настройки слоя или характеристик.

Элементы для отображения результатов следует выбирать в зависимости от типа данных, которые необходимо визуализировать:

Тип данных	Название элемента
Интегральные величины:	
Значение переменной на поверхности и в объеме	Характеристики
Локальные величины:	
Локальные значения скалярной переменной вдоль линии	График вдоль прямой
	График вдоль кривой
	График вдоль эллипса
Локальные значения скалярной переменной на поверхности	Цветовые контуры
Локальные значения скалярной переменной в объеме	Изоповерхность
Локальные значения и направления векторной переменной на	Векторы
поверхности и в объеме	

При проведении долговременных расчетов рекомендуется всегда визуализировать данные в процессе расчета, поскольку в этом случае пользователь получает возможность постоянного контроля над процессом сходимости решения и, если нужно, вмешаться в процесс расчета при возникновении численных неустойчивостей решения.

3.1.7.1 Характеристики (динамика давления)

Элемент **Характеристики** предоставляет доступ к информации об интегральных значениях переменной. Информация выводится в окно **Информация** и в текстовый файл. Запись в текстовый файл позволяет посмотреть изменение переменной во времени.

Воспользуемся элементом **Характеристики** для того, чтобы отслеживать динамику давления на входе. Для того, чтобы задать слой, первоначально необходимо создать из граничного условия **Вход (ГУ #2)** объект для визуализации. Для этого в контекстном меню граничного условия Вход нужно выбрать пункт **Создать супергруппу**—> В Постпроцессоре.

Супергруппа является объектом для визуализации данных с граничного условия, поэтому она автоматически помещается в Постпроцессор. Затем в контекстном меню Супергруппы необходимо

выбрать пункт Создать характеристики.

 ■ В 3D-сцена ■ р,† Физические пер ■ Объекты ■ Объекты ■ Объекты ■ Объекты ■ Объекты 	еменные 30 40
🖂 🕅 Характеристик	ана ТУ #2" Созвати свой
	Создать слои
🕀 🗠 🍋 Пользовательс	Создать характеристики
	Создать Копировать Копировать с элементами Удалить
	Свойства

По умолчанию, на характеристиках не задана переменная и характеристики не содержат основной части данных. Для того, чтобы сделать характеристики информативными, в окне **Характеристик #0** задайте переменную:

Характеристики

Переменная

Давление

После этого Характеристики становятся информативным. Содержимое **Характеристик** можно посмотреть в Информационном окне. Для того, чтобы вызвать Информационное окно, необходимо выделить

Характеристики в окне Постпроцессора и нажать кнопку в панели инструментов .

Переменная

Информационное окно[Хара	ктеристики #0 (Cy 🗵
é	
Имя	Значение
Данные с солвера	Есть
Номер шага	186
Время	37200
Переменная	PRES
Блок	Движение
Фаза	Все фазы
Подобласть	Подобласть #0
Площадь	0.0077644922767654
Поток массы+	0.0077644922767654
Поток массы-	0
Объёмный поток+	7.7644919005999e-006
Объёмный поток-	0
ИнтегралХ	0
Интеграл Ү	0
Интеграл Z	5.158264559777e-005
<f nos.=""></f>	0.0066434022675413
<f macca+=""></f>	0.0066434022675413
<f macca-=""></f>	0
<f масса+=""> * Поток массы+</f>	5.158264559777e-005
<f масса-=""> * Поток массы-</f>	0
Дисперсия по поверхности	3.6818897087816e-005
Дисперсия по потоку	3.6818897087707e-005
Тепловой поток	0
Ежидк.Х	0
Ежидк. Ү	0
Ежидк. Z	4.7545416112814e-005
МцентрХ	0
МцентрҮ	0
М центр Z	0
М жидк. Х	7.1987159056618e-014
М жидк. Ү	-2.2546098208647e-014
М жидк. Z	0

Для того, чтобы записывать содержимое Характеристик в файл, задайте в окне свойств **Характеристик #0**:

Сохранение в файл Тип

= Автоматически

Все данные записываются в текстовой формат GLO, который для построения графиков динамики величин можно экспортировать в формат Excel. GLO-файл по умолчанию записывается в папку проекта в директории пользователя на кластере.

3.1.7.2 График вдоль прямой (распределение давления)

Слой График вдоль прямой позволяет отображать распределение значений скалярной переменной вдоль выбранной прямой в виде графика.

В данном примере предлагается использовать слой **График вдоль прямой** на объекте **Линия** для визуализации распределения значений давления вдоль оси трубы.

Создайте объект Линия для визуализации:

- в контекстном меню папки Объекты выберите Создать
- в диалоговом окне Создать новый объект выберите Тип объекта = Линия

В окне Свойства созданного объекта **Линия #0** задайте: Объект

> Опорная точка X 0 Y 0 Z 0.001 Направление X 0 Y 0 Z 1

Создайте слой График вдоль прямой на Линии:

- в контекстном меню Линии #0 выберите Создать слой
- задайте Тип = График вдоль прямой

В окне свойств слоя График вдоль прямой задайте: Переменная

Переменная Давление

Для того, чтобы увеличить число узлов графика, задайте: Число точек 100

3.1.7.3 Вектора (распределение скоростей)

Слой **Вектора** служит для визуализации векторного поля. Направление вектора совпадает с направлением векторного поля в начальной точке вектора, а длина пропорциональна модулю поля в этой точке.

Воспользуемся слоем Вектора на Плоскости для того, чтобы визуализировать векторное поле скоростей в плоскости течения.

Для того, чтобы геометрия области не загораживала слой, задайте в окне свойств **Плоскости#0**: Секущий объект = Да

Создайте слой Вектора на Плоскости:

- в контекстном меню Плоскости выберите Создать слой
- задайте Тип = Вектора.

В окне свойств слоя задайте: Переменная = Скорость

В графическом окне отобразится распределение скоростей в плоскости течения:

Для того, чтобы увеличить количество векторов по обоим направлениям, в окне свойств слоя задайте: Сетка

Размер 1	= 10
Размер 2	= 50

	
\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow	> ·
$\longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$	\longrightarrow
$\longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$	\longrightarrow
	\rightarrow
$\longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$	\rightarrow
$\longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$	\rightarrow
$\rightarrow \rightarrow $	> ·
	.

Для того, чтобы раскрасить вектора по модулю скорости, в окне свойств слоя задайте: Раскраска = Скорость

Переменная

Имя	Значение
lанные с солвера	Есть
Номер шага	186
Время	37200
Теременная	VEL
Блок	Движение
Фаза	Все фазы
Лок. минимум	0.0005430071614682
Лок. максимум	0.001941500348039
Глоб. минимум	0
Глоб. максимум	0.0019415004644543
1оп. переменная	VEL
Блок	Движение
Фаза	Все фазы
Лок. минимум	0.0005430071614682
Лок. максимум	0.001941500348039
Глоб. минимум	0
Глоб. максимум	0.0019415004644543
Талитра:	
	0.001941500348039
	0.0018016510293819
	0.0016618017107248
	0.0015219523920678
	0.0013821030734107
	0.0012422537547536
	0.0011024044360965
	0.0009625551174394
	0.0008227057987824

3.1.7.4 Цветовые контуры (распределение модуля скорости)

Слой Цветовые контуры демонстрирует распределение скалярной переменной с помощью цветовых переходов.

В данном примере предлагается слой **Цветовые контуры** для визуализации величины скорости в плоскости кругового сечения трубы.

Создайте Плоскость для визуализации:

- в контекстном меню папки Объекты выберите Создать
- в диалоговом окне Создать новый объект выберите Тип объекта = Плоскость

В окне свойств созданной Плоскости #1 нажмите на кнопку Z, чтобы ориентировать нормаль вдоль Z:

Создайте слой Цветовые контуры на Плоскости #1:

- в контекстном меню Плоскости выберите Создать слой
- задайте Тип = Цветовые контуры.

В окне свойств слоя **Цветовые контуры** задайте: Переменная

Переменная = Скорость

Информационное он	кно[Цветовые ко <mark>×</mark>
,	
Имя	Значение
Данные с солвера	Есть
Номер шага	186
Время	37200
Переменная	VEL
Блок	Движение
Фаза	Все фазы
Лок. минимум	0.00017861314699985
Лок. максимум	0.0019389318767935
Глоб. минимум	0
Глоб. максимум	0.0019415004644543
Палитра:	
	0.0019389318767935
	0.0017629000038141
	0.0015868681308348
	0.0014108362578554
	0.001234804384876
	0.0010587725118967
	0.00088274063891731
	0.00070670876593795
	0.00053067689295858
	0.00035464501997922
	0.00017861314699985

4 Физические процессы

В данном разделе рассматриваются примеры моделирования основных физических процессов:

- 1. <u>Течение</u>.
- 2. Теплоперенос
- 3. Турбулентность
- 4. Свободная поверхность

4.1 Течение

Во FlowVision HPC реализована модель течения Ньютоновской жидкости при любых числах Маха.

4.1.1 Сверхзвуковое обтекание клина

Моделируется задача сверхзвукового обтекания 15-градусного клина

- В папке Фазы:
- Создайте непрерывную Фазу#0
- Добавьте Вещество#0 в папку Вещества Фазы#0
- Задайте в окне свойств папки Физические процессы:
 - Движение = Ньютоновская жидкость

Теплоперенос = Конвекция и теплопроводность

В папке Модели:

- Создайте Модель#0
- Добавьте Фазу#0 в папку Фазы Модель#0
- Задайте в папке Начальные данные#0: Скорость X = 600 [м с⁻¹]

4.1.1.2 Граничные условия

В окне свойств **Подобласти#0** задайте: **Модель = Модель#0**

Если при импорте геометрии не было создано необходимое число граничных условий, необходимо определить граничные условия вручную. Определение граничных условий состоит из 3 этапов:

- 1. Создание граничный условий
- 2. Расстановка граничных условий
- 3. Задание параметров граничных условий

Для того, чтобы создать новое граничное условие, необходимо в контекстном меню папки **Гр.условия**, выбрать пункт **Создать**.

Для того, чтобы установить граничное условие поверхности:

- перейдите в режим выбора поверхности, нажав кнопку
- выберите соответствующую поверхность в графическом окне
- вызовите контекстное меню правой кнопкой мыши
- выберите Граничное условие → ГУ#i

Скорость	Норм. скорость с давлением	
Скорость	600	[м с⁻¹]
Давление на бесконечности	0	[Па]
Температура	Значение	
Значение	0	[C]
Граница 3		
Тип	Свободный выход	
Переменные		
Скорость	Давление	
Давление	0	[Па]
Температура	Нулевой поток	

4.1.1.3 Начальная сетка

Задайте в окне Начальной сетки:

nX =150 nY =50 nZ =1

4.1.1.4 Параметры расчета

На закладке Солвер в	з окне свойств I	Шаг по	времени	задайте:
Способ	В секундах			
Постоянный шаг	= 10 ⁻⁴		[c]	

4.1.1.5 Визуализация результатов

Постройте Распределение давления в плоскости течения.

4.1.1.5.1 Распределение давления

Информационно	е окно[Цветовы×
<u>چە</u>	
Имя	Значение
Данные с солвера	Есть
Номер шага	1348
Время	1.348
Переменная	PRES
Блок	Движение
Фаза	Все фазы
Лок. минимум	-0.0081120803952217
Лок. максимум	189663.234375
Глоб. минимум	-0.01085776463151
Глоб. максимум	190088.15625
палитра.	189663 234375
	170696 91012629
	151730 58587758
	132764.26162888
	113797.93738017
	94831.61313146
	75865.288882752
	56898.964634044
	37932.640385336
	18966.316136628
	-0.0081120803952217
ļ	
2 ×	A ¥ F
Задайте в окне	е Свойства Плос
Объект	
	Нормаль
	. 7
Создайте слой	Цветовые конти

- В окне Свойства задайте:
 - Переменная

	Переменная	Давление
Метод		Изолинии

4.1.2 Течение в канале с использованием модели зазора

В данном примере рассматривается моделирование течения в узком двумерном канале с использованием модели зазора.

Модель зазора используется совместно с заданной моделью течения и предназначена для учета сопротивления, создаваемого узким каналом. Модель зазора позволяет избежать разрешения узкого канала сеткой. Модель зазора используется только в ячейках зазора. Ячейки зазора - ячейки, находящиеся между 2 зазорообразующими поверхностями. Поверхности являются зазорообразующими, если расстояние между ними не превышает заданную максимальную величину зазора. Ячейки зазора определяются **FlowVision HPC** автоматически.

Геометрия	Gap_Channel.WRL
Проект	Gap_Channel

4.1.2.1 Физическая модель

В папке Вещества:

- Создайте Вещество#0
- Задайте следующие свойства Вещества#0:

Агрегатное состояние	= Жидкос	ТЬ
Плотность		
Значение	= 1000	[м с ⁻¹]
Вязкость		
Значение	= 0.001	[кг м⁻¹ с⁻¹]

В папке Фазы:

- Создайте непрерывную Фазу#0
- В Фазе#0 добавьте в папку Вещества Вещество#0
- Задайте в Фазе#0 в окне свойств папки Физические процессы: Движение = Ньютоновская жидкость
- В папке Модели:
- Создайте Модель#0
- В Модели#0 добавьте в папку Фазы Фазу#0
- Задайте в окне свойств Модели#0: Использовать модель зазора = Стандартная модель зазора

4.1.2.2 Граничные условия

```
В окне свойств Подобласти#0 задайте:
Модель= Модель#0
```


Граница 1,2		
Тип	= Стенка	
Переменные		
Скорость	= Прилипание	
Граница 3		
Тип	= Симметрия	
Переменные		
Скорость	= Проскальзываение	
Граница 4		
Тип	= Вход/Выход	
Переменные		
Скорость	 Нормальная массовая скорость 	
Массовая скорость	= 10	[кг м⁻² с⁻¹]
Граница 5		
Тип	= Свободный выход	
Переменные		
Скорость	= Давление	
Значение	= 0	[Па]

4.1.2.3 Начальная сетка

В чтобы лучше разрешить поток в районе канала, в данном примере необходимо задать двумерную неравномерную расчетную сетку, сгущенную ближе к каналу.

Для задания неравномерной расчетной сетки во FlowVision HPC предусмотрен Редактор расчетной сетки. Генератор сетки вызывается кнопкой из свойств каталога Начальная сетка в дереве Постпроцессора.

В Редакторе расчетной сетки задайте параметры в следующем порядке:

OX

Параметры сетки: kh_max = 2 d_min = 0.1 [M] h_max = 0.00025 [M]

h_min	= 0.00005	[м]
Вставьте базовь	е линии с коор	одинатами
x1	= 0.0035	[м]
x2	= 0.0045	[м]
Параметры базо	вой линии	
Коорд.	= 0	[м]
h	= 0.00025	[м]
Коорд.	= 0.0035	[м]
h	= 0.00005	[м]
Коорд.	= 0.0045	[м]
h	= 0.00005	[м]
Коорд.	= 0.008	[м]
h	= 0.00025	[M]

После введения всех параметров нужно задать кнопку **ОК.** После этого появится появится окно **Статистика сетки**, в котором будут отображены параметры созданной сетки

Статистика сетн	ки				×
Общее количество ячеек: 12384					
Максимальное	е соотношен	ние: 30 (Х = 0.00775	i, Z = 0)		Отмена
	Nh	h_max	h_min	kh_max	
Ось Х	86	0.00025	5e-005	1.103	
Ось Ү	12	8.333e-005	8.333e-005	1	
Ось Z	12	8.333e-006	8.333e-006	1	Сохранить

При запуске **Генератора сетки** по ОУ и ОZ по умолчанию создается равномерная сетка из 12 линий. Поскольку в данном случае моделируется двумерная задача, то после выхода из **Генератора сетки** необходимо в свойствах **Начальной сетки** задать:

nY = 8

nZ = 1

После создания Начальной сетки в Постпроцессоре будет создан слой Начальная Сетка и в Графическом окне появится ее изображение:

4.1.2.4 Параметры расчета

Задайте на закладке **Управление** в окне свойств элемента **Шаг по времени**: Способ = В секундах Постоянный шаг = 0.001 [с]

4.1.2.5 Визуализация результатов

Постройте:

1. Распределение ячеек зазора

2. Распределение скоростей в плоскости течения

4.1.2.5.1 Распределение ячеек зазора

- Создайте слой Набор ячеек
- Задайте в окне слоя Набор ячеек:

Тип Зазорные

4.1.2.5.2 Распределение скоростей

начение Сть 7
СТЬ 7
7
027
027
EL
вижение
>asa#0
0027813082560897
20009990036488
20009990036488
EL
вижение
>аза#О
0027813082560897
20009990036488
20009990036488
2
10
10
14
19
1
1
00
00
04
02
· · · · · · · · · · · · · · · · · · ·

Ζ

- Создайте слой Векторы на Плоскости#0,
- В окне Свойства Векторов задайте:
- Переменная Скорость Переменная Раскраска

Переменная

Переменная Скорость

4.2 Теплоперенос

Во FlowVision HPC реализована конвективно-диффузионная модель теплопереноса.

4.2.1 Теплопроводность в твердом теле

Рассмотрим моделирование теплопереноса в твердом теле за счет теплопроводности.

4.2.1.2 Граничные условия

4.2.1.3 Начальная сетка

[c]

Задайте в окне свойств Начальной сетки:

nX = 100 nY = 1 nZ = 1

4.2.1.4 Параметры расчета

На закладке **Солвер** в окне свойств **Шаг по времени** задайте: Способ = в секундах

Постоянный шаг = 10000	

4.2.1.5 Визуализация результатов

Визуализируйте Распределение температуры по длине бруска

•

4.2.1.5.1 Распределение температуры

				Информа	ционное о.	×
				ěž		
				Имя	Значение	
				Палитра:		
					100	
					90	
					80	
					70	
					60	
					50	
					40	
					30	
					20	
					10	
					0	-
Задайте в окн	е Свойства Плоско	ости#0:	-			
Объект						
	Нормаль					

Нормаль Z

• Создайте слой Цветовые контуры на Плоскости,

1

• В окне Свойства Цветовых контуров задайте:

Переменная Переменная Температура

4.2.2 Вынужденная конвекция

Рассмотрим моделирование турбулентного течения холодного воздуха в трубе с нагретыми стенками.

аите следующие сво	оиства вещества#и :	
Агрегатное состоя	ние = Жидкость	
Плотность		
Значение	e = 1	[кг м ⁻³]
Вязкость		
Значение	e = 1.82*10⁻⁵	[кг м⁻¹ с⁻¹]
Теплопроводность		
Значение	e = 0.026	[Вт м ⁻¹ К ⁻¹]
Теплоемкость		
Значение	e = 1009	[Дж кг ⁻¹ К ⁻¹]

В папке Фазы:

- Создайте непрерывную Фазу#0
- Добавьте Вещество#0 в папку Вещества Фазы#0
- Задайте в Фазе#0 в окне свойств папки Физические процессы:
 - Движение Теплоперенос
 - Турбулентность
- Ньютоновская жидкость
 Конвекция и теплопроводность
- ть = Стандартная к-е модель

В папке Модели:

- Создайте Модель#0
- Добавьте Фазу#0 в папку Фазы Модель#0
- Задайте в папке Начальные данные#0:
 - Скорость Х

= 1	[м с ⁻¹]
= 0	[м с ⁻¹]
= 0	[м с ⁻¹]

4.2.2.2 Граничные условия

Y Z

В окне свойств **Подобласти#0** задайте: Модель= Модель#0

0		
Задаите следующие граничн	ные условия:	
Граница 1		
Тип	= Стенка	
Переменные		
Скорость	= Логарифмический закон	
Температура	= Значение	
Значение	= 100	[C]
ТурбЭнергия	= Значение в ячейке рядом со стенкой	
ТурбДиссипация	= Значение в ячейке рядом со стенкой	
Граница 2		
Тип	= Вход/Выход	
Переменные		
Скорость	 Нормальная массовая скорость 	
Значение	= 1	[кг м ⁻² с ⁻¹]
Температура	= Значение	
Значение	= 0	[C]
ТурбЭнергия	= Пульсации	
Значение	= 0	
ТурбДиссипация	= Масштаб турбулентности	
Значение	= 0	[M]

= Свободный выход

= Давление

= 0

- = Нулевой поток
- = Нулевой поток
- = Нулевой поток

4.2.2.3 Начальная сетка

Задайте в окне свойств Начальной сетки:

nX	= 20
nY	= 20

4.2.2.4 Параметры расчета

На закладке **Солвер** в окне свойств **Шаг по времени** задайте: Способ = в секундах Постоянный шаг = 0.2 [с]

4.2.2.5 Визуализация результатов

Визуализируйте распределение температуры в плоскости течения

[Па]

4.2.2.5.1 Распределение температуры

• Задайте в окне Свойства Плоскости#0: Объект

Нормаль 7

• Создайте слой Цветовые контуры на Плоскости#0,

1

• В окне **Свойства Цветовых контуров** задайте: Переменная Переменная Температура

4.2.3 Естественная конвекция

В этом примере рассматривается моделирование ламинарного течения воздуха в прямоугольной полости, вертикальные стенки которой поддерживаются при разных температурах (одна холодная, другая горячая), а горизонтальные стенки теплоизолированы. Под воздействием выталкивающей силы, обусловленной разностью температур, возникает двумерное конвективное движение.

Параметры задачи:			
Размеры области:	axb	=0.03x0.09	[мхм]
Входные параметры			
Температура горячей стенки:	Т	= 50	[C]
Температура холодной стенки:	Т	= 20	[C]
Параметры жидкости:			
Молярная масса	Μ	= 0.0289	[кг моль ⁻³]
Вязкость	μ	= 1.82*10e ⁻⁵	[кг м ⁻¹ с ⁻¹]
Теплопроводность	λ	= 0.026	[Вт (м К) ⁻¹]
Теплоемкость	c _p	= 1009	[Дж (кг К) ⁻¹]
Число Прандтля:	Pr=0.71		
Число Релея:	Ra=10 ⁵		

Геометрия	Natur_Convect.WRI
Проект	Natur_Convect

4.2.3.1 Физическая модель

В окне Общих установок задайте с	ледующие пара	метры:
Опорные величины		
Температура	= 293	[K]
Вектор гравитации		
Х	= 0	[м с ⁻²]
Y	= -9.8	[м с ⁻²]
Z	= 0	[м с ⁻²]

- В папке Вещества:
- Создайте Вещество#0
- Задайте следующие свойства Вещества#0:

Агрегатное состояние		= Газ	
Свойства			
	Молярная масса	= Константа	
	Значение	= 0.0289	[кг Моль ⁻¹]
	Плотность	= Закон идеального газа	
	Вязкость	= Константа	
	Значение	= 1.82*10 ⁻⁵	[кг м⁻¹ с⁻¹]
	Теплопроводность	= Константа	
	Значение	= 0.026	[Вт м ⁻¹ К ⁻¹]
	Теплоемкость	= Константа	
	Значение	= 1009	[Дж кг ⁻¹ К ⁻¹]

В папке Фазы:

- Создайте непрерывную Фазу#0
- Добавьте Вещество#0 в папку Вещества Фазы#0
- Задайте в Фазе#0 в окне свойств папки Физические процессы:
 - Движение = Ньютоновская жидкость Теплоперенос = Конвекция и теплопроводность
- В папке Модели:
- Создайте Модель#0
- Добавьте Фазу#0 в папку Фазы Модель#0

4.2.3.2 Граничные условия

В окне свойств **Подобласти#0** задайте: Модель= Модель#0

Задайте следующие граничны	ые условия:	
Граница 1		
Тип	= Стенка	
Переменные		
Скорость	= Прилипание	
Температура	= Значение	
Значение	= 30	[град]
Граница 2		
Тип	= Симметрия	
Переменные		
Скорость	= Проскальзывание	
Температура	= Нулевой поток	
Граница 3		
Тип	= Стенка	
Переменные		
Скорость	= Прилипание	
Температура	= Значение	
Значение	= 0	[град]
Граница 4		
Тип	= Стенка	
Переменные		
Скорость	= Прилипание	
Температура	= Нулевой поток	

4.2.3.3 Начальная сетка

В окне Свойств Начальной сетки нажмите на кнопку 🗰 вызовите **Редактор начальной сетки** Задайте в **Редакторе начальной сетки**:

OX

Параметры сетки: kh_max = 2 d_min = 0.1 [м] h_max = 0.00125 [м] h_min = 0.0004 [м] Вставьте базовые линии с координатами = 0.005 x1 [м] = 0.025 х2 [м] Параметры базовой линии Коорд. = 0 [м] = 0.0004 [м] h Коорд. = 0.005 [м]

h	= 0.00125	[м]
Коорд.	= 0.025	[м]
h	= 0.00125	[м]
Коорд.	= 0.03	[м]
h	= 0.0004	[м]

Задайте в окне свойств Начальной сетки:

nY = 73 nZ = 1

4.2.3.4 Параметры расчета

Задайте на закладке **Солвер** в окне свойств элемента **Шаг по времени**: Способ = В секундах Постоянный шаг = 0.2 [с]

4.2.3.5 Визуализация результатов

Визуализируйте следующие результаты:

- 1. Распределение скоростей в плоскости течения
- 2. Распределение температуры в плоскости течения

4.2.3.5.1 Распределение скоростей

	Инфо[Векторы #0 (Плоскость #0)] 🛛 본
	690	
	Имя	Значение
	Данные с солвера	Есть
1	Номер шага	97
	Время	19.4
1000 C	Переменная	VEL
**************************************	Блок	Движение
<pre>1.2.2.2.2.2.2.2.2.0.0.0.0.0.0.0.0.0.0.0.</pre>	Фаза	Все фазы
[]]	Лок. минимум	0.00013850185496267
l l l a second de la del 111 de la del 1	Лок. максимум	0.077352993190289
l i general de la companya de la TITI.	Глоб. минимум	0
↓↓↓ ↓↓↓	Глоб. максимум	0.077352993190289
↓ · · · · · · · · · · · · · · · · · · ·		
↓ ↓	Доп. переменная	VEL
↓↓↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Блок	Движение
↓ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆	Фаза	Все фазы
<u>ቀቀለ እስለ የቀቀ በ</u>	Лок. минимум	0.00013850186951458
◆半常	Лок. максимум	0.077352993190289
<u>***</u>	Глоб. минимум	0
¥≚1,	Глоб. максимум	0.077352993190289

i i a come de la come de la CIII.	Палитра:	
		0.08
		0.072
		0.064
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		0.056
444		0.048
***		0.04
		0.032
****		0.024
****		0.016
		0.008
		0
	1	

 Задайте в окне Свойства Плоскости#0: Объект

Нормаль Z 1 • Создайте слой **Векторы** на **Плоскости#0**,

В окне Свойства Векторов задайте:

Переменная

Переменная Скорость Раскраска Переменная Переменная Скорость

© ООО "ТЕСИС", 1999-2009. Все права зарегистрированы. Москва, Россия

4.2.3.5.2 Распределение температуры

Инфо[Цветовые контуры #0 (Пл			
690			
Имя	Значение		
Данные с солвера	Есть		
Номер шага	97		
Время	19.4		
Переменная	ТЕМР		
Блок	Теплоперенос		
Фаза	все фазы		
Лок. минимум	0.1815383583307		
Лок. максимум	29.818359375		
Глоб. минимум	0		
Глоб. максимум	30		
Палитра:			
	30		
	27		
	24		
	21		
	18		
	15		
	12		
	9		
	6		
	3		
	0		

- Создайте слой Цветовые контуры на Плоскости#0,
- В окне Свойства Цветовых контуров задайте: Переменная

	Переменная	Температура
Метод		Изолинии

4.3 Турбулентность

Во FlowVision HPC реализованы следующие модели турбулентности:

- 1. Стандартная к-е модель
- 2. Низкорейнольдсовая к-е модель
- 3. Квадратичная к-е модель
- 4. <u>SST модель</u>
- 5. <u>SA модель</u>

4.3.1 Турбулентное течение в трубе

Стандартная к-е модель турбулентности предназначена для моделирования течений с значениями 30<у+<300 и малыми градиентами давления.

Рассмотрим применение к-е модели турбулентности на примере моделирования турбулентного течения в трубе.

Турбулентный режим течения характеризуется числом Рейнольдса Re>10⁴.

4.3.1.1 Физическая модель

- В папке Вещества:
- Создайте Вещество#0
- Задайте следующие свойства Вещества#0:

Агрегатное состояние		= Жидкоо	СТЬ
Плотность	5		
	Значение	= 1000	[м с ⁻¹]
Вязкость			
	Значение	= 0.001	[кг м⁻¹ с⁻¹]

В папке Фазы:

- Создайте непрерывную Фазу#0
- В Фазе#0 добавьте в папку Вещества Вещество#0
- Задайте в Фазе#0 в окне свойств папки Физические процессы:

Движение	= Ньютоновская жидкость
Турбулентность	= Стандартная к-е модель

В папке Модели:

- Создайте Модель#0
- В Модели#0 добавьте в папку Фазы Фазу#0
- Задайте в папке Начальные данные#0: Скорость

= 1 Ζ [м с⁻¹]

4.3.1.2 Граничные условия

В окне свойств	Подобласти#0 задайте:
Модель	= Модель#0

- = Логарифмический закон
- = Значение в ячейке рядом со стенкой
- = Значение в ячейке рядом со стенкой

Граница 2 Тип

Переменные

ТурбЭнергия

ТурбДиссипация

= Вход/Выход

Скорост	ъ Иассовая скорость	Нормальная массовая скорость1000	[кг м ⁻² с ⁻¹]
Туроэне	ергия	= Пульсации	
· ·	значение	= 0	
ТурбДис	сипация	= Масштаб турбулентности	
	Значение	= 0	[м]
Граница 3			
Тип		= Свободный выход	
Переменные			
Скорост	Ъ	= Давление	
	Значение	= 0	[Па]
ТурбЭне	אסראק	= Нупевой поток	
Туроонс			
туродис	сипация		

4.3.1.3 Начальная сетка

Задайте в окне свойств Начальной сетки:

- nX =20
- nY =20
- nZ =50

4.3.1.4 Параметры расчета

Задайте на закладке Солвер в окне свойств элемента Шаг по времени:

Способ	= В секундах	
Постоянный шаг	= 0.01	[c]

4.3.1.5 Визуализация результатов

Визуализируйте следующие результаты:

- 1. Динамику давления на входе
- 2. Распределение турбулнетной вязкости в плоскости течения
- 3. Распределение скорости в плоскости течения
- 4. Распределение давления вдоль оси трубы

4.3.1.5.1 Динамика давления на входе

- Создайте Супергруппу в Постпроцессоре на базе ГУ Вход
- Создайте Характеристики на Супергруппе,
- В окне Свойства Характеристик задайте:
 - Характеристики

Переменная Переменная

Давление

Сохранение в файл Режим .

Автоматический

4.3.1.5.2 Распределение турбулентной вязкости

Информационное о	кно[Цветовые к <u>онт</u>	×
<u>چ</u>		_
Имя	Значение	
Данные с солвера	Есть	П
Номер шага	168	
Время	1.68	
Поромоциял		+
Баок		Η
Фере	Всо фары	Η
Пок минимум	9 9999999747524e-007	Η
Пок максимум	0.90489387512207	Η
Глоб минимум	9.9999999747524e-007	Η
Глоб. максимум	0.95602822303772	Η
		Η
Палитра:		Η
	0.9	Π
	0.81	Π
	0.72	П
	0.63	
	0.54	
	0.45	
	0.36	
	0.27	
	0.18	
	0.09	
	1.1102230246252e-016	Ц

 Задайте в окне Свойства Плоскости#0: Объект

Нормаль

Z

- Создайте слой Цветовые контуры на Плоскости#0,
- В окне Свойства Цветовых контуров задайте: Переменная

Переменная ТурбВязкость

1

4.3.1.5.3 Распределение скорости

Информационное	окно[Вектор 🗙											
Имя	Значение	1										
Данные с солвера	Есть											
Номер шага	168											
Время	1.68											
Переменная	VEL											
Блок	Движение											
Фаза	Все фазы											
Лок. минимум	8.2764682769775											
Лок. максимум	11.303968429565											
Глоб. минимум	0											
Глоб. максимум	11.315891265869											
Доп. переменная	VEL	: 주 주	孝孝	ネネ	孝孝	*	\$ \$: 孝	\Rightarrow	*	Ż	Ň
Блок	Движение		33	33	33	<u> </u>	-	83	3	M	×.	K
Фаза	Все фазы		\mathbb{A}	추孝	R	: - ≹	 ≹ =	≹₹	: 🔿	Ř	Ř	Ř
Лок. минимум	8.2764682769775	\$ 1 1 1 1	33	MM	33	1		≶₹	:3	M	M	Y
Лок. максимум	11.303968429565		\mathbb{A}	\mathbb{A}		÷ 💦		⋛⊒⋛	1	Ř	\geq	
Глоб. минимум	0		R	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	r a chair a ch	.	33	\$ 🗟	3	¥		YY
Глоб. максимум	11.315891265869	MAN MAN	WW WW	MM MM	MM MM	M	WW.	ΥΝ	MM	WW	MM	MM
Палитра:												
	11.5											
	11.15											
	10.8											
	10.45											
	10.1											
	9.75											
	9.4											
	9.05											
	8.7											
	8.35											
	8											

айте слой Векторы на Плоскости#0, Созд

• В окне Свойства Векторов задайте:

Переменная Переменная Раскраска Переменная Переменная Скорость

Скорость

62

4.3.1.5.4 Распределение давления

- Создайте Линию#0
- В окне Свойства Линии#0 задайте:

Объект

Опорная точка X 0 Y 0 Z 0.001 Направление X 0 Y 0 Z 1

- Создайте слой График вдоль прямой на Линии#0,
- В окне Свойства Графика вдоль прямой задайте:

Переменная Давление

4.3.2 Турбулентное обтекание пластины

Низкорейнольдсовая к-е модель турбулентности предназначена для моделирования течений с значениями 1<y+<300.

Рассмотрим применение низкорейнольдсовой модели турбулентности для моделирования динамического и теплового пограничного слоя на пластине

Теплопровод Теплоемкост	НОСТЬ Ь	$\lambda = 0.6$ $c_{n} = 42^{2}$	17	[Вт м ⁻¹ К ⁻¹] [Дж кг ⁻¹ К ⁻¹]
Число Рейнольдса		$Re = \frac{VI}{H}$	$\frac{1}{1} = \frac{1 \cdot 1 \cdot 1000}{0.001} = 10^6$	
Геометрия Вариант		Plate.V Plate	VRL	
4.3.2.1 Физическая	я модель			
В папке Вещества • Создайте Вещес • Задайте следую	тво#0 цие свойства Ве	щества#0:		
Агрегатное Плотность	состояние	= жидкост	Ь	
3 Вязкость	начение	= 1000	[кг м ⁻³]	
3	начение	= 0.001	[кг м ⁻¹ с ⁻¹]	
теплопрово 3	одность начение	= 0.6	[Вт м ⁻¹ К ⁻¹]	
З	начение	= 4217	[Дж кг ⁻¹ К ⁻¹]	
В папке Фазы : • Создайте непрер • Добавьте Вещес • Задайте в Фазея Движение Теплоперен Турбулентн	ывную Фазу#0 тво#0 в папку Ве #0 в окне свойсте юс ость Взаимодействи	ещества Фази папки Физич е со стенкой	ы#0 еские процессы: = Ньютоновская жи, = Конвекция и тепло = Низкорейнольдсой = Нет пристеночной	дкость эпроводность вая к-е модель функции
В папке Модели : • Создайте Модел • В Модели#0 доб • Задайте в папке Скорость X Y Z	њ#0 бавьте в папку Фа Начальные дан = 0 = 1 = 0	азы Фазу#0 ные#0: [М о [М о [М о	c ⁻¹] c ⁻¹] c ⁻¹]	

Примечание:

При значении у+<8 разрешается вязкий пограничный слой. Поэтому, рекомендуется использовать Тип взаимодействия со стенкой = Нет пристеночной функции и граничное условие для скорости на стенке = Прилипание.

4.3.2.2 Граничные условия

В окне свойств **Подобласти#0** задайте: Модель = Модель#0

Задайте следующие гр	аничные условия:
Граница 1	
Тип	= Стенка
Переменные	
Скорость	= Прилипание
Температура	= Значение
Значение	e = 20
ТурбЭнергия	= Фикс.значение
ТурбДиссипаци	я = Значение в ячейке рядом со стенкой
Граница 2	
Тип	= Симметрия
Переменные	
Скорость	= Проскальзывание
Температура	= Нулевой поток
ТурбЭнергия	= Нулевой поток
ТурбДиссипаци	я = Нулевой поток
Граница 3	

[C]

Тип		= Вход/Выход	
Переменны	ые		
Ск	орость	= Нормальная массовая скорость	
	Значение	= 1000	[кг м ⁻² с ⁻¹]
Те	мпература	= Значение	
	Значение	= 0	[C]
Ту	рбЭнергия	= Пульсации	
	Значение	= 0	
Ту	рбДиссипация	= Масштаб турбулентности	
	Значение	= 0	[M]
Граница 4			
Тип		= Свободный выход	
Переменны	ые		
Cł	корость	= Давление	
	Значение	= 0	[Па]
Те	емпература	= Нулевой поток	
Ту	ирбЭнергия	= Нулевой поток	
Ту	ирбДиссипация	= Нулевой поток	

4.3.2.3 Начальная сетка

В окне Свойств Начальной сетки нажмите на кнопку Задайте в **Редакторе начальной сетки**: ОХ

UX.				
	Параметры сетки:			
	kh_max	= 2		
	h_max	= 0.125	[м]	
	h min	= 0.0002	[M]	
	Параметры базовых линий			
	Коорд.	= 0	[м]	
	h	= 0.0002	[м]	
	kh+	= 1		
	Коорд.	= 1	[м]	
	h	= 0.125	[м]	
	kh-	= 0.5		
OY				
	Параметры сетки	1:		
	kh_max	= 2		
	h_max	= 0.125	[м]	
	h_min	= 0.002	[м]	
	Вставьте базовую линию с координатами			
	y1	= -0.5	[м]	
	y1	= 0.5	[м]	
	Параметры базовых линий			
	Коорд.	= -1	[м]	
	h	= 0.125	[м]	
	Коорд.	= -0.5	[м]	
	h	= 0.002	[м]	
	kh-	= 0.9		
	kh+	= 1.1		
	Коорд.	= 0.5	[м]	
	h	= 0.002	[м]	
	kh-	= 0.9		
	kh+	= 1.1		
	Коорд.	= 1	[м]	
	h	= 0.125	[м]	

В окне свойств **Начальной сетки** задайте: nZ =1

4.3.2.4 Параметры расчета

Задайте на закладке Солвер в окне свойств элемента Шаг по времени:

Способ	= В секундах	
Постоянный шаг	= 10	[c]

4.3.2.5 Визуализация результатов

Визуализируйте следующие результаты

- 1. Распределение Ү+ на поверхности стенки
- 2. Распределение вязкого трения вдоль пластины

4.3.2.5.1 Распределение Ү+

Информац 	ионное о 🗵
Имя	Значение 🔺
Палитра:	
	10
	9.5
	9
	8.5
	8
	7.5
	7
	6.5
	6
	5.5
	5
	-

- Создайте Супергруппу в Постпроцессоре на ГУ Стенка
- Создайте слой Цветовые контуры на Супергруппе,
- В окне Свойства Цветовых контуров задайте:

Переменная

Переменная Үплюс

• В окне Свойства Плоскости #0 задайте:

Объект

Опорная точка	
Х	= 0.01
Y	= -0.51
Z	= 0.05
Нормаль	
Х	= 0
Y	= 0
Z	= 1

• Создайте слой График вдоль Кривой на Плоскости,

• В окне Свойства Графика вдоль кривой задайте:

Переменная			
Переменная	Модуль вязких напряжений		
Сдвиг	= 0.0001		
Число точек	= 1000		
Угол поворота	= 180		

4.3.3 Турбулентное обтекание уступа

Квадратичная к-е модель турбулентности предназначена для предназначена для моделирования течений с значениями 30<у+<300 и возвратными зонами.

Рассмотрим применение квадратичной к-е модели турбулентности на примере моделирования течения с обратным уступом.

Геометрия:	BackwardFacingStep.W
Проект:	BackwardFacingStep

4.3.3.1 Физическая модель

В папке Веш • Создайте В	ества∶ Зещество#0		
 Задайте сл 	едующие свойс	тва Вещества#0 :	
Агрегатно	е состояние	= Жидкость	
Плотность	b		
	Значение	= 1	[м с ⁻¹]
Вязкость			
	Значение	= 2e-5	[кг м с ⁻¹]

В папке Фазы:

- Создайте непрерывную Фазу#0
- В Фазе#0 добавьте в папку Вещества Вещество#0
- Задайте в Фазе#0 в окне свойств папки Физические процессы: Движение = Ньютоновская жидкость Турбулентность = Квадратичная к-е модель

В папке Модели:

• Создайте Модель#0
- В Модели#О добавьте в папку Фазы Фазу#О
- Задайте в папке Начальные данные#0:

Скорость	
X	

X	= 1.76	[м с ⁻¹]
Y	= 0	[м с ⁻¹]
Z	= 0	[м с ⁻¹]
Пульсации	= 0.095	
Масштаб турбулентности	= 0.05	[м]

4.3.3.2 Граничные условия

В окне свойств **Подобласти#0** задайте: Модель = Модель#0

- = Давление
- = 0
- = Нулевой поток
- = Нулевой поток

4.3.3.3 Начальная сетка

4.3.3.4 Параметры расчета

Задайте на закладке Солвер в окне свойств элемента Шаг по времени:

Способ	= Числом КФЛ	
Число КФЛ	= 100	
Макс. шаг	= 1	[C]

4.3.3.5 Визуализация результатов

Визуализируйте Распределение скоростей в плоскости течения

4.3.3.5.1 Распределение скоростей

 Задайте в окне Свойства Плоскости#0: Объект

Нормаль

Z

- Создайте слой Векторы на Плоскости#0,
- В окне Свойства Векторов задайте:
 - Переменная

Переменная Скорость

1

Раскраска Переменная

Переменная

Скорость

[Па]

4.3.4 Турбулентное обтекание параллелепипеда

SST модель турбулентности предназначена для моделирования течений с высокой степенью турбулизации, с возвратными зонами и большими обратными градиентами давления, при этом также дает хорошие результаты для свободных течений и течений с небольшими градиентами давления.

Рассмотрим использование SST модели турбулентности на примере моделирования турбулентного обтекания куба.

- Создайте непрерывную Фазу#0
- В Фазе#0 добавьте в папку Вещества Вещество#0

 Задайте в Фазе#0 в окне свойств папки Физические процессы: 					
Движение	= Ньютоновская жидкость				
Турбулентность	= SST модель				
Взаимодействие со стенкой	= Нет пристеночной функции				

- В папке Модели:
- Создайте Модель#0
- В Модели#0 добавьте в папку Фазы Фазу#0
- Задайте в папке Начальные данные#0:

= 7.65	[м с ⁻¹]
= 0	[м с ⁻¹]
= 0	[м с ⁻¹]
= 0.05	
= 0.00254	[м]
	= 7.65 = 0 = 0 = 0.05 = 0.00254

4.3.4.2 Граничные условия

В окне свойств **Подобласти#0** задайте: Модель= Модель#0

	ТурбЭнергия ТурбЛиссилация	Фикс.значение	$[w^2 \circ^{-1}]$
Гранина 2	туродиссипация	Значение в яченке рядом со стенкой	
траница 2 Тип		Cummorplug	
		Симметрия	
Tiepe		_	
	Скорость	Проскальзывание	
	ТурбЭнергия	Нулевой поток	
	ТурбДиссипация	Нулевой поток	
Граница 3			
Тип		Вход/Выход	
Перем	енные		
	Скорость	Нормальная массовая скорость	
	Массовая скорост	ъ 9.38	[кг м ⁻² с ⁻¹]
	ТурбЭнергия	Пульсации	
	Значение	0	[M ² C ⁻¹]
	ТурбДиссипация	Масштаб турбулентности	
	Значение	0	
Граница 4			
Тип		Свободный выход	
Перем	енные		
	Скорость	Статическое давление	
	Значение	0	[∏a]
	ТурбЭнергия	Нулевой поток	
	ТурбДиссипация	Нулевой поток	

4.3.4.3 Начальная сетка

В окне Свойств Начальной сетки нажмите на кнопку 🗰 вызовите **Редактор начальной сетки** Задайте в **Редакторе начальной сетки**:

ΟХ

Параметры сетки:

	kh max	= 2	
	h max	= 0.03	[м]
	h_min	= 0.00075	[м]
	Вставьте базовук	о линию с координа	тами
	x1	= 0	[м]
	Параметры базов	ых линий	
	Коорд.	= -0.147	[м]
	h	= 0.03	[м]
	Коорд.	= 0	[м]
	h	= 0.00075	[м]
	kh+	= 1	
	Коорд.	= 0.3	[м]
	h	= 0.03	[м]
OY			
	Параметры сетки	:	
	kh_max	= 2	
	h_max	= 0.03	[м]
	h_min	= 0.00075	[м]
	Вставьте базовук	о линию с координа	тами
	y1	= 0	[м]
	Параметры базов	ых линий	
	. Коорд.	= -0.147	[м]
	h	= 0.03	[M]
	Коорд	= 0	[M]
	h	= 0 00075	[M]
	Коорд	= 0.147	[14]
	коорд.	= 0.03	[אין] [אין]
	11	- 0.05	LINI

В окне свойств Начальной сетки задайте: =1

nΖ

4.3.4.4 Адаптация расчетной сетки

В данной задаче необходимо разрешить зону вихреобразования. Для этого необходимо адаптировать сетку в объеме параллелепипеда вокруг куба.

Задание адаптации сетки в объекте состоит из 2 этапов:

- 1. Задание объекта адаптации
- 2. Задание критерия адаптации

Для того, чтобы задать объект адаптации:

• В контекстном меню папки Объекты выберите Создать

- В окне Создать новый объект задайте Тип объекта = Параллелепипед
- В окне свойств Параллелепипеда #0 задайте:

Расположение

Опорная точка

	Onop	пал п	Jaka	
		Х	= 0.01	[м]
		Y	= 0	[м]
		Ζ	= 0.005	[м]
Размер				
	Х		= 0.05	[м]
	Y		= 0.05	[м]
	Ζ		= 0.005	[м]

Для того, чтобы задать критерий адаптации:

- В контекстном меню папки Адаптация выберите Создать
- В окне свойств созданного элемента Адаптация #0 задайте:

Активность	= Да
Объект	= Параллелепипед#0
Макс.уровень	= 1
Разбить/Слить	= Разбить
Область	= В объеме

4.3.4.5 Параметры расчета

Задайте на закладке **Солвер** в окне свойств элемента **Шаг по времени**: Способ = В секундах Постоянный шаг = 0.0003 [c]

4.3.4.6 Визуализация результатов

Визуализируйте следующие результаты

- 1. Распределение у+ на поверхности параллелепипеда
- 2. Распределение скорости в плоскости течения

4.3.4.6.1 Распределение Ү+

1нформац 	ионное ок	<u>×</u>
Имя	Значение	
Палитра:		
	15	
	13.6	
	12.2	
	10.8	
	9.4	
	8	
	6.6	
	5.2	
	3.8	
	2.4	
	1	-

- Создайте Супергруппу на ГУ Стенка
- Создайте слой Цветовые контуры на Супергруппе,

Үплюс

• В окне Свойства Цветовых контуров задайте:

Переменная Переменная

4.3.4.6.2 Распределение скорости

		للراجبة جب جب	*							11	
	مد مد مد مد	ب جب جب جب جب	+ + +	الجب جب							- /
	مبر مبر مبر مبر	سرجند متداجير جبر	+++								1
	مر مر بد بر	ے جب میں میں میں	• • •						1.1.	1.1	1
Literation and the second			****	·							
информац	ионное окн.		** _*					1. 1.		1.1	4
690				~~~						44	1
Имя	Значение		-*****	~~~						14	1
Педитре		- 77.7		1						11	1
палитра.	10		<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(1,1)					11	1
	12	- Z	3.0	N N N	<u> </u>			11	1.1	11	
	10.8		1	2.8.8) } !			1.1.	1.1.	1.1	1
	9.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	5 8 8 -			11	1.1.	1.7	1.1	1
	8.4		1	1 1 1	$b \rightarrow b$		11.	1.1.	1.1	11	1
	7.2	•		7 i k.	とくこ		<u>/</u> ,	<i>',</i> ',	<i>'</i> , ',	1.1	1
	6		1		1 1 -			· , ,	4,	1.1	<i>.</i> .
	48	- N - N	N		、く~		4.	', ',	(₁)		ς,
	9.0 2.0				$\sim \sim \sim$	میں جب ، قبر ا		99	60	- ,	· - ,
	3.0	- N X 1 7 *			~ ~ ~			× ,	つつ	640	1
	2.4	\sim \sim \sim \sim	1 Same		<u> </u>			5.	シン	- 20	1
	1.2			· · · · ·		چر ور مارد چر و مارد چ		مرمر	シン	1	
	0			·		مدر مدر به	جرو میر	مرحر	سراحت		
				يسار جساري		جندحندة	جدر جدر	مبر جبر	بر جر	• / /	
				•+_+		جبر جبر ہ	مسر مسر	مر مر	سر جبر		
					بالرجيد جبد	جند حبد م	جبر مبر	مر مر	سر جسر		
			••-	•—•—•—•		جب جب ہ	جسر مسر	مبر جبر	سر جب		
				•		جند جند ہ	جبر جبر	مد مد	بر جر	بر جر ا	×
 Задайте в 	окне Свойс	тва Плоскости	1#0:								

Объект

Нормаль

Z 1

- Создайте слой Векторы на Плоскости#0,
- В окне Свойства Векторов задайте: Переменная Переменная
 Раскраска
 Переменная
 Скорость
 Скорость

4.3.5 Дозвуковое обтекание крылового профиля

SA модель является однопараметрической моделью и была разработана для аэрокосмических приложений. Эта модель дает хорошие результаты для пограничных слоев, характеризующихся положительными градиентами давлений. Традиционно эта модель эффективно работает в низкорейнольдсовом случае, т.е. когда вязкий пограничный слой достаточно разрешен расчетной сеткой (т.е. когда параметр у+ мал).

Рассмотрим применение SA модели на примере задачи дозвукового обтекания крылового профиля при Рейнольдса Re=1.8*10⁶ и числе Maxa M=0.8

Размеры:				
Длина х	орды:	с	= 0.1	[м]
Размерн	ы расчетной области		0.7 x 0.6 x	[мхмхм]
			0.01	
Угол ата	аки:		$\alpha = 0^{\circ}$	
Параметры в	вещества:			
Плотнос	ть:	ρ_{inl}	= 1.29	[кг м ⁻³]
Вязкост	ь:	μ	= 1.82 10 ⁻⁵	[кг м ⁻¹ с ⁻¹]
Теплопр	оводность	λ	= 0.026	[Вт (м К)⁻¹]
Теплоем	КОСТЪ	C _p	= 1009	[Дж (кг К) ⁻¹]
Скорост	ъ звука:	а	= 331.6	[м с ⁻¹]
Входные па	раметры:			
Давлени	е на бесконечности:	Р	= 101000	[Па]
Темпера	атура на бесконечности:	Т	=273	[K]
Скорост	ъ на входе:	V _{inl}	= 265.28	[M∋C⁻¹]
Число М	laxa:	Μ	= 0.8	
Число Р	ейнольдса:	$Re = \frac{V_{inl}L\rho}{\mu}$	$=\frac{265.28\cdot 0.1\cdot 1.2}{1.82\cdot 10^{-5}}$	$\frac{9}{2} = 1.8 \cdot 10^{6}$
Геометр	ия:	NACA0012.8	STL	
Проект:		NACA0012		

в •

4.3.5.1 Физическая модель

папке Вещества : Создайте Вещество#0		
В свойствах Вещества#0 задайте:		
Агрегатное состояние	= Газ	
Молярная масса		
Значение	= 0.0289	[кг моль ⁻¹]
Плотность	= Закон идеального газа	
Вязкость		
Значение	= 1.82*10 ⁻⁵	[кг (м с)⁻¹]
Теплопроводность		
Значение	= 0.026	[Вт (м К) ⁻¹]
Теплоемкость		
Значение	= 1009	[Дж (кг К)⁻¹]

В папке Фазы:

- Создайте непрерывную Фазу#0
- Добавьте Вещество#0 в папку Вещества Фазы#0
- Задайте в окне свойств папки Физические процессы:
 - Движение= Ньютоновская жидкостьТеплоперенос= Конвекция и теплопроводностьТурбулентность= SA модель

В папке Модели:

- Создайте Модель#0
- Добавьте Фазу#0 в папку Фазы Модель#0
- Задайте в папке Начальные данные#0:

Скорость	
----------	--

Х	= 265	[м с ⁻¹]
Y	= 0	[м с ⁻¹]
Z	= 0	[м с ⁻¹]
Пульсации	= 0.001	
Масштаб турбулентности	= 0.001	[м]

4.3.5.2 Граничные условия

В окне свойств Подобласти#0 задайте: Модель = Модель#0

Z		
Давление на	= 0	[Па]
бесконечности		
Температура	= Неотраж	
Значение	= 0	[C]
ТурбКинВязкость	= Значение	
Значение	= 0	[M ² C ⁻¹]

4.3.5.3 Начальная расчетная сетка

В окне Свойств Начальной сетки нажмите на кнопку 🕅 вызовите Редактор начальной сетки Задайте в Редакторе начальной сетки:

OX

Параметры сетки: = 2 kh_max h_max = 0.05 [м] h min = 0.002 [м] Вставьте базовые линии с координатами x1 = 0 [м] x2 = 0.2 [м] Параметры базовой линии Коорд. = -0.3 [м] = 0.05 [м] h = 0 [м] Коорд. = 0.0025 [м] h = 0.2 Коорд. [м] h = 0.0075 [м]

	Коорд.	= 0.4	[м]
	h	= 0.05	[м]
OY			
	Параметры сетки:		
	kh_max	= 2	
	h_max	= 0.05	[м]
	h_min	= 0.002	[м]
	Вставьте базовые	е линии с координат	ами
	y1	= 0	[м]
	Параметры базов	ой линии	
	Коорд.	= -0.3	[м]
	h	= 0.05	[м]
	Коорд.	= 0	[м]
	h	= 0.0025	[м]
	Коорд.	= 0.3	[м]
	h	= 0.05	[M]

В окне свойств Начальной сетки задайте: nz =1

4.3.5.4 Адаптация расчетной сетки

Задайте адаптацию по поверхности крыла Адаптация

Включить	= Да
Макс уровень	= 3
Слоев ячеек	= 2

4.3.5.5 Параметры расчета

На закладке **Солвер** в окне свойств **Шаг по времени** задайте: Способ = в секундах Постоянный шаг = 4*10⁻⁵ [с]

Примечание:

В данной задаче шаг по времени выбирается примерно равным 0.1 пролетного времени для хорды крыла

$$\tau_{\text{organ}} = 0.1 * \frac{L}{V} = 0.1 * \frac{0.1}{265} \approx 4 * 10^{-5} \text{ c}$$

4.3.5.6 Визуализация результатов

Визуализируйте следующие результаты

- 1. Распределение значений числа Маха в плоскости течения.
- 2. Распределение давления на поверхности крыла.

4.3.5.6.1 Распределение значений числа Маха

1111124	Значе		
Палитра:			
	1		
	0.95		
	0.9		
	0.05		
	0.75		
	0.7		
	0.65		
	0.6		\sim
	0.55	/	
	0.5	<u> </u>	
		· · · · · ·	
M Star			
ľ			

 Задайте в окне Свойства Плоскости#0: Объект

Нормаль Z

- Z 1
 Создайте слой Цветовые контуры на Плоскости#0,
- В окне Свойства Цветовых контуров задайте:
- Переменная

	Переменная	ЧислоМаха
Метод		Изолинии

4.3.5.6.2 Распределение давления

Информац	ционное ок
Имя	Значение
Палитра:	
	50000
	42000
	34000
	26000
	18000
	10000
	2000
	-6000
	-14000
	-22000
	-30000

- Создайте Супергруппу на ГУ Стенка
- Создайте слой Цветовые контуры на Супергруппе,
- В окне Свойства Цветовых контуров задайте:
 - Переменная

Переменная Давление

4.4 Свободная поверхность

Во FlowVision HPC для моделирования свободной поверхности реализован метод VoF.

4.4.1 Обрушение плотины

В этом примере моделируется двумерное обрушение плотины. Часть расчетной области заполнена водой, отделенной перегородкой. В начальный момент времени перегородка резко убирается и начинает распространятся волна.

4.4.1.1 Физическая модель

В папке Общие установки задайте:

Вектор гравитации

Х	= 0	[м с ⁻²]
Y	= -9.8	[м с⁻²]
Z	= 0	[м с⁻²]

- В папке **Вещества**:
- Создайте Вещество#0
- Задайте следующие свойства Вещества#0: Агрегатное состояние = Жидкость Плотность Значение = 1000 [м с⁻¹]

Вязкость [кг м⁻¹ с⁻¹] = 0.001 Значение

В папке Фазы:

• Создайте непрерывную Фазу#0

• В Фазе#0 добавьте в папку Вещества Вещество#0

- Задайте в Фазе#0 в окне свойств папки Физические процессы: Движение = Ньютоновская жидкость Турбулентность
 - = Стандартная к-е модель
- Создайте непрерывную Фазу#1
- Создайте Модель#0
- В Модели#0 добавьте в папку Фазы Фазу#0 и Фазу#1

Примечание:

В данной задаче движением вещества во второй фазе можно пренебречь, поэтому в Фазе#1 Физические процессы не задаются.

При загрузке Фазы#0 и Фазы#1 в Модель автоматически появится тип взаимодействия фаз -Сплошная-сплошная.

Это специальный тип взаимодействия, автоматически создающийся при расчете уравнения переноса фазы.

4.4.1.2 Граничные условия

В окне свойств Подобласти#0 задайте: Модель = Модель#0

Задайте следующие граничные	условия:
Граница 1	
Тип	= Стенка
Переменные	
Скорость	= Логарифмический закон
ТурбЭнергия	= Значение в ячейке рядом со стенкой
ТурбДиссипация	= Значение в ячейке рядом со стенкой
ОбъемФазы	= Нулевой поток
Граница 2	
Тип	= Симметрия
Переменные	
Скорость	= Проскальзывание
ТурбЭнергия	= Нулевой поток
ТурбДиссипация	= Нулевой поток
ОбъемФазы	= Нулевой поток

4.4.1.3 Задание столба жидкости

Процесс создания Начальных условий состоит из трех этапов:

- задание Начальных данных
- задание Объекта применения Начальных данных
- задание соответствия между Объектом и Начальными данными

Для того, чтобы задать Начальные данные в **Модели#0** в **Нач.данных#0** задайте: ОбъемФазы

Значение = 1

Для того, чтобы задать область применения начальных данных в папке Объекты:

- создайте Параллелепипед#0
- в окне свойств Параллелепипеда#0 задайте:

Расположение

	Опорная точка		
	X	= 1	[м]
	Y	= 1	[м]
	Z	= 0.025	[м]
Размер			
	Х	= 1.99	[м]
	Y	= 1.99	[м]
	Z	= 0.05	[м]

При этом в графическом окне появится изображение Параллелепипеда

Для того, чтобы задать соответствие между объектом и начальными данными, в **Подобласти #0** окне свойств **Нач. условия#0** задайте:

Объект Нач. данные = Параллелепипед #0 = Нач. данные #0

Таким образом, в объеме параллелепипеда установлено значение объема фазы VoF=1, что соответствует наличию в начальный момент времени в расчетной области столба воды с размерами 2x2.

Примечание:

Поскольку начальные данные присваиваются всем ячейкам, даже частично соприкасающимся с параллелепипедом, следует установить **Размер** параллелепипеда несколько меньше требуемого, чтобы не захватить лишние ячейки.

4.4.1.4 Начальная сетка

В окне Свойств Начальной сетки нажмите на кнопку 🗰 вызовите **Редактор начальной сетки** Задайте в **Редакторе начальной сетки**:

OX

Параметры сетки:			
kh_max	= 2		
d_min	= 0.05	[м]	
h_max	= 0.125	[м]	
h_min	= 0.03	[м]	
Вставьте базовые	е линии с координат	ами	
x1	= 1	[м]	
x2	= 4	[м]	
Параметры базовой линии			
Коорд.	= 0	[м]	
h	= 0.03	[м]	
Коорд.	= 1	[м]	
h	= 0.125	[м]	
Коорд.	= 4	[м]	
h	= 0.125	[м]	
Коорд.	= 5	[м]	
h	= 0.03	[м]	
_			

OY

параметры сетки:				
kh_max	= 2			
d_min	= 0.05	[м]		
h_max	= 0.1	[м]		
h_min	= 0.03	[м]		
Вставьте базовь	е линии с ко	ординатами		
x1	= 0.5	[м]		
x2	= 2.5	[м]		
Параметры базовой линии				
Коорд.	= 0	[м]		
h	= 0.03	[м]		
Коорд.	= 0.5	[м]		
h	= 0.1	[м]		
Коорд.	= 2.5	[м]		

h	= 0.1	[м]
Коорд.	= 2.5	[м]
h	= 0.03	[м]

Задайте в окне свойств **Начальной сетки**: nZ = 1

4.4.1.5 Параметры расчета

Задайте на закладке **Солвер** в окне свойств элемента **Шаг по времени**: Способ = Числом КФЛ Число КФЛ = 1 Макс. шаг = 0.1 [с]

4.4.1.6 Визуализация результатов

Визуализируйте распределение жидкости в плоскости симметрии.

4.4.1.6.1 Распределение жидкости

- Создайте слой Цветовые контуры на Плоскости#0,
- В окне Свойства Цветовых контуров задайте:

Переменная

Переменная ОбъемФазы

4.4.2 Свободная струя

В данном примере рассматривается движение свободной двумерной струи в поле силы тяжести

ачи: кости: Тлотность Зязкость етры: Скорость потока Начальный угол п			ρ μ	= 1000 = 0.001	[кг м ⁻³] [кг м ⁻¹ с ⁻¹]
ачи: кости: Тлотность Зязкость етры: Скорость потока Начальный угол п			ρ μ	= 1000 = 0.001	[кг м ⁻³] [кг м ⁻¹ с ⁻¹]
кости: Тлотность Зязкость етры: Скорость потока Начальный угол п			ρ μ	= 1000 = 0.001	[кг м ⁻³] [кг м ⁻¹ с ⁻¹]
Плотность Зязкость етры: Скорость потока Чачальный угол п			ρ μ	= 1000 = 0.001	[кг м ⁻³] [кг м ⁻¹ с ⁻¹]
Зязкость етры: Скорость потока Чачальный угол п			μ	= 0.001	[кг м ⁻¹ с ⁻¹]
етры: Скорость потока Начальный угол п					-
Скорость потока Начальный угол п					
Чачальный угол п				= 3	[м с ⁻¹]
	отока к г	оризонту		= 45	
			FreeJet.STL Free let		
установки зада итации	йте:				
=	• 0	[м с ⁻²]			
=	-9.8	[м с⁻²]			
=	• 0	[м с ⁻²]			
тва:					
цество#0					
ующие свойства	Веществ	ва#0:			
остояние	= Жи	1ДКОСТЬ			
	- 10	00	r		
начение	- 10	00	[мс]		
начение	= 0.0	001	[кг (м с)⁻¹]		
рерывную Фазу# бавьте в папку Ве в окне свой рерывную Фазу#	:0 ещества іств папкі = Ньютон :1	Вещести и Физич овская ж	во#0 еские процессы идкость	:	
	установки зада птации = тва: цество#0 ующие свойства остояние начение начение рерывную Фазу# бавьте в папку Ва зе#0 в окне свой = рерывную Фазу#	установки задайте: птации = 0 = -9.8 = 0 гва: цество#0 ующие свойства Вещести остояние = Жи начение = 10 начение = 0.0 рерывную Фазу#0 бавьте в папку Вещества зе#0 в окне свойств папк = Ньютон рерывную Фазу#1 цель#0	установки задайте: птации = 0 [м c ⁻²] = -9.8 [м c ⁻²] = 0 [м c ⁻²] тва: цество#0 ующие свойства Вещества#0: остояние = Жидкость начение = 1000 начение = 0.001 рерывную Фазу#0 бавьте в папку Вещества Вещест зе#0 в окне свойств папки Физич = Ньютоновская ж рерывную Фазу#1 цель#0	установки задайте: птации = 0 [м c ⁻²] = -9.8 [м c ⁻²] = 0 [м c ⁻²] гва: цество#0 ующие свойства Вещества#0: остояние = Жидкость начение = 1000 [м c ⁻¹] начение = 0.001 [кг (м c) ⁻¹] рерывную Фазу#0 бавьте в папку Вещества Вещество#0 зе#0 в окне свойств папки Физические процессы = Ньютоновская жидкость рерывную Фазу#1 дель#0	установки задайте: итации = 0 [м c ⁻²] = -9.8 [м c ⁻²] = 0 [м c ⁻²] тва: щество#0 ующие свойства Вещества#0: остояние = Жидкость начение = 1000 [м c ⁻¹] начение = 0.001 [кг (м с) ⁻¹] рерывную Фазу#0 бавьте в папку Вещества Вещество#0 вавьте в папку Фазу#1 тель#0

• В Модели#0 добавьте в папку Фазы Фазу#0 и Фазу#1

4.4.2.2 Граничные условия

4.4.2.3 Начальные условия

В задачах со свободной поверхностью необходимо, чтобы в начальный момент времени в области присутствовал объем жидкости.

Задайте начальный объем жидкости в районе входа:

• в свойствах элемента Нач.данные#0 в Модели #0:

Скорость		
X	= 1.7	[м с ⁻¹]
Y	= 1.7	[м с ⁻¹]
Z	= 0	[м с ⁻¹]
ОбъемФазы		

© ООО "ТЕСИС", 1999-2009. Все права зарегистрированы. Москва, Россия

Значение = 1

- в папке Объекты создайте Параллелепипед#0
- в окне свойств **Параллелепипеда#0** задайте: Расположение

Опорная точка				
Х	= 0.1	[M]		
Y	= 0.1	[м]		
Z	= 0.05	[м]		
Ось Х				
Х	= 1			
Y	= 1			
Z	= 0			
Размер				
Х	= 0.1	[м]		
Y	= 0.07	[м]		
Z	= 0.1	[м]		
• в Подобласти #0 окне свойств Нач. условия#0 задайте:				

	, , , , , , , , , , , , , , , , , , ,
Объект	= Параллелепипед #0
Нач. данные	= Нач. данные #0

Примечание:

После нажатия кнопки **Применить** в окне свойств **Параллелепипеда #0** вектора системы координат параллелепипеда будут автоматически переориентированы и проортонормированы.

4.4.2.4 Начальная расчетная сетка

Задайте в окне свойств Начальной сетки:

nX = 400 nY = 200

nZ = 1

4.4.2.5 Параметры расчета

Задайте на закладке Солвер в окне свойств элемента Шаг по времени:

Способ	= Числом КФГ	1
Число КФЛ	= 1	
Макс. шаг	= 0.01	[C]

4.4.2.6 Визуализация результатов

Визуализируйте распределение жидкости в плоскости симметрии.

4.4.2.6.1 Распределение жидкости

 Задайте в окне Свойства Плоскости#0: Объект

Нормаль Z

- Создайте слой Цветовые контуры на Плоскости#0,
- В окне Свойства Цветовых контуров задайте:

Переменная

Переменная ОбъемФазы

1

5 Дополнительные возможности

В данном разделе будут описаны следующие дополнительные возможности FlowVision HPC:

- 1. Сопряжение
- 2. Вращение
- 3. Подвижные тела

5.1 Сопряжение

Сопряженные задачи - задачи, в которых необходимо учитывать взаимодействие между различными подобластями или различными границами одной подобласти.

5.1.1 Сопряженный конвективный теплообмен

Рассмотрим моделирование ламинарного течения вязкого холодного воздуха в трубе с толстой металлической стенкой, нагретой с внешней стороны.

В подобных задачах возникает проблема подготовки геометрической модели – возникает ситуация так называемых Т-образных поверхностей.

Проблема загрузки геометрии в подобных задачах решается несколькими способами:

- a) Задать две трубу и жидкость внутри трубы как два отдельных твердых тела. Недостаток этого способа состоит в том, что таким образом вдвое увеличивается расчетная область.
- б) Изменить геометрию, добавив тонкие стенки там, где были Т-образные поверхности. На границе этих фиктивных стенок задаются адиабатические граничные условия (симметрия). Недостаток этого способа заключается в том, что он искажает физическую картину процесса. Если в задаче решается уравнение энергии, введение таких стенок приведет к возникновению тепловых мостов.

На сегодняшний день во FlowVision HPC реализован второй способ.

Параметры : Размеры:	задачи:				
	Длина т	рубы	L	= 0.1	[м]
	Радиус	внутренней части	R	= 0.015	[м]
	трубы т			0.005	
Pyonu io no	Іолщин	а стенок	d	= 0.005	[M]
входные па	Скорост	ъ на входе:	V	= 0.1	[мэс ⁻¹]
	Темпера	атура на входе	τ	= 0	[C]
	Темпера	атура внешней сте	нки T	= 100	[C]
Параметры	килкости.		w	100	[0]
Параметры	Плотнос	ть	ρ	= 1	[кг м⁻³]
	Вязкост	Ъ	μ	= 1.82e-5	[кг м⁻¹ с⁻¹]
	Теплопр	оводность	λ	= 0.026	[Вт м ⁻¹ К ⁻¹]
	Теплоем	икость	c _p	= 1009	[Дж кг ⁻¹ К ⁻¹]
Параметры т	гвердого те	ела			
	Плотнос	ть	ρ	= 7900	[кг м ⁻³]
	Теплопр	оводность	λ	= 45	[Вт м ⁻¹ К ⁻¹]
	Теплоем	ИКОСТЬ	C _p	= 457	[Дж кг ⁻¹ К ⁻¹]
Число Рейно	ольдса:		Re =	$\frac{2\mathrm{RV}_{\mathrm{inl}}\rho}{\mu} = \frac{2\cdot0.02}{1.82}$	15 +0.1 +1 2 +10 ⁻⁵ ≈ 165
Геометрия: Проект:			Conji Conji	ugate_Convec ugate_Convec	tion.STL tion
5.1.1.1 Физич	еская м	одель			
В папке Ве ц • Создайте	цества: Вещество	#0			
 Задайте с. 	ледующие	свойства Вещест	ва#0:		
Назв	вание		= Сталь		
Агре Плот	гатное сос ность	тояние	= Твердо	е тело	
		Значение	= 7900		[кг м ⁻³]
Тепл	юпроводно	СТЬ			11
-		Значение	= 45		[Вт м-ї К-ї]
Іепл	ЮЕМКОСТЬ	Значение	= 457		[Дж кг ⁻¹ К ⁻¹]

• Создайте Вещество#1

• Задайте следующие свойства Вещества#0:

Название		= Воздух	
Агрегатное состояние		= Жидкость	
Плотность			
	Значение	= 1	[кг м ⁻³]
Вязкость			
	Значение	= 1.82*10 ⁻⁵	[кг м ⁻¹ с ⁻¹]
Теплопроводно	СТЬ		
	Значение	= 0.026	[Вт м ⁻¹ К ⁻¹]
Теплоемкость			
	Значение	= 1009	[Дж кг ⁻¹ К ⁻¹]

- В папке Фазы:
- Создайте непрерывную Фазу#0
- В папку Вещества Фазы#0 загрузите Сталь.
- В окне свойств папки Физические процессы задайте: Теплоперенос = Конвекция и теплопроводность
- Создайте непрерывную Фазу#1
- В папку Вещества Фазы#1 загрузите Воздух.
- В окне свойств папки Физические процессы задайте:
 - Движение = Ньютоновская жидкость
 - Теплоперенос = Конвекция и теплопроводность
- В папке Модели:
- Создайте Модель#0
- В папку Фазы Модели#0 загрузите Фазу#0
- Создайте Модель#1
- В папку Фазы Модели#1 загрузите Фазу#1

2

5

• В Нач.данных#0 задайте:

Скорость

х	= 0	[м]
Y	= 0	[м]
Z	= 0.1	[м]

5.1.1.2 Граничные условия

В окне свойств подобласти между внешней и внутренней трубами задайте:

Название = Труба Модель = Модель#0

= Стенка
= Стенка
= Нулевой поток
= Внутренняя стенка
= Связанный

В окне свойств **Подобласти#1** задайте: Название = Жидкость

Модель = Модель#1

Задайте следующие граничные условия:

Граница 1		
Название	= Вход	
Тип	= Вход/Выход	
Переменные		
Скорость	= Нормальная массовая скорость	
Значение	= 0.1	[кг (м ² с) ⁻¹]
Температура	= Значение	
Значение	= 0	[C]
Граница 2		
Название	= Выход	
Тип	= Свободный выход	
Переменные		
Скорость	= Давление	
Значение	= 0	[Па]
Температура	= Нулевой поток	
Граница 3		
Название	= Стенка	
Тип	= Связанный	

5.1.1.3 Связывание подобластей

Связывание граничных условий состоит из следующих этапов:

- Создание Связки из 2 граничных условий и типом Связанный
- Создание Условия связи
- Установление соответствия между Связкой и Условием связи

Создайте Связку#0:

- Выберите Создать в контекстном меню папки Связки
- В окне Образование связки задайте:

Создайте Условие связи#0:

- Выберите Создать в контекстном меню папки Условия связи
- В окне Образование условия связи задайте:
 - Тип связи = Сопряженный теплообмен
 - Модель#1 Модель#2
- = Труба
- = Жидкость

 Регион Регион Регион Регион Регион Регион Регион Регион Фазы Фазы Фодели Докальные системы координат Объекты Добъекты Добъекты Пользовательские переменные Подобласти Граничные связи Связки Создать Несвязанни Начальная сет 	 Регион Регион Рег. Общие установки Рег. Общие установки Рег. Общие установки Фазы Фазы Фазы Локальные системы координат Локальные системы координат Объекты Локальные системы координат Подобласти Подобласти Локальные связи Локальные связи Локальные связи Локальные связи Подобласти Локальные связи Подобласти Локальные связи Подобласти Подобласти
Образование условия Тип связи Сопряженный теплоо Модель #1 Модель #0 Модель #2 ОК Отг	аначальная сетка Комен Комен

Установите соответствие между Связкой и Условием связи:

- В папке Условие связи#0 в контекстном меню папки Связки выберите Добавить/Убрать
- Добавьте Связку#0

5.1.1.4 Начальная расчетная сетка

Задайте в окне свойств Начальной сетки:

- nX = 25 nY = 25
- nZ = 25

5.1.1.5 Адаптация расчетной сетки

В данном примере необходимо проадаптировать сетку внутри подобласти твердых стенок трубы и около стенки в подобласти течения.

Для того, чтобы проадаптировать сетку внутри Подобласти#0, создайте критерий адаптации:

- В Подобласти0 в контекстном меню папки Адаптация выберите Создать
- В окне свойств созданного элемента Адаптация# 0 задайте:

Активность	= Да
Объект	= Пространство
Макс.уровень	= 1
Разбить/Слить	= Разбить
Область	= В объеме

В Подобласти#1 в свойствах Границы 3 (в интерфейсе ГУ#2) задайте:

Адаптация

Включить	= Да
Макс.уровень	= 1
Слоев ячеек	= 1
5.1.1.6 Параметры расчета

На закладке **Солвер** в окне свойств **Шаг по времени** задайте: Способ = в секундах Постоянный шаг = 2 [с]

5.1.1.7 Визуализация результатов

Визуализируйте распределение температуры в плоскости течения

5.1.1.7.1 Распределение температуры

Information window 🗵		
Name	Value 🔺	
Palette:		
	100	
	90	
	80	
	70	
	60	
	50	
	40	
	30	
	20	
	10	
	0 -	

- Создайте слой Цветовые контуры на Плоскости,
- В окне Свойства задайте:

Переменная Переменная

Температура

5.2 Вращение

FlowVision HPC позволяет учитывать вращение поверхностей в выбранной системе координат. При этом, приложение позволяет учитывать как нормальную и тангенциальную составляющую скорости вращения, так и только тангенциальную.

5.2.1 Ротор

В этом примере моделируется турбулентное вязкое движение несжимаемой жидкости между лопатками вращающегося ротора.

Параметры за,	дачи:			
Размеры:				
	Длина входного участка	L	= 0.17	[м]
	Радиус ротора	R	= 0.1	[м]
	Толщина лопатки	d	= 0.05	
Входные пара	метры			
	Скорость на входе:	V _{inl}	= 20	[мэс⁻¹]
	Скорость вращения	ω	= 300	[рад с ⁻¹]
Параметры жи	ідкости:			
	Плотность	ρ	= 1	[кг м⁻³]
	Вязкость	μ	= 1.82*10 ⁻⁵	[кг м⁻¹ с⁻¹]
Число Рейнол	ьдса:	$Re = \frac{V_{inl}D\rho}{\mu} =$	$\frac{20 \cdot 0.05 \cdot 1}{1.82 \cdot 10^{-5}} \approx 5 * 10^{4}$	
Геометрия: Проект:		Rotor.STL Rotor		

5.2.1.1 Физические параметры

- В папке Вещества:
- Создайте Вещество#0

•	Задайте следующие свойства Вещества#0:			
	Агрегатно	е состояние	= Жидкость	
	Плотность	b		
		Значение	= 1	[м с ⁻¹]
	Вязкость			
		Значение	= 1.82*10 ⁻⁵	[кг м⁻¹ с⁻¹]

В папке Фазы:

- Создайте непрерывную Фазу#0
- В Фазе#0 добавьте в папку Вещества Вещество#0
- Задайте в Фазе#0 в окне свойств папки Физические процессы:

Движение	= Ньютоновская жидкость
Турбулентность	= Стандартная к-е модель

В папке Модели:

- Создайте Модель#0
- В Модели#0 добавьте в папку Фазы Фазу#0

5.2.1.2 Вращение

Для того, чтобы задать вращение поверхности, необходимо:

- Создать **Локальную систему координат**, в которой относительно которой будет происходить вращение
- Задать Вращение в Локальной системе координат
- Установить Вращение на поверхности

Создайте Локальную систему координат:

В контекстном меню папки Локальные системы координат выберите Создать

Задайте Вращение:

- В контекстном меню Локальной СК#0 выберите Добавить вращение
- Задайте в окне свойств Вращения#0

Скорость		= 300	[рад с ⁻¹]
Направле	ение		
	Х	= 0	
	Y	= 0	
	Z	= 1	

Для того, чтобы включить учет нормальной компоненты скорости при вращении, в свойствах Региона задайте:

= Локальная СК#0 Локальная СК Вращение = Вращение#0

5.2.1.3 Граничные условия

Граница 1

В окне свойств Подобласти#0 задайте: Модель = Модель#0

Г	Теременные		
	Скорость	= Логарифмический закон	
	ТурбЭнергия	= Значение в ячейке рядом со стен	ІКОЙ
	ТурбДиссипация	= Значение в ячейке рядом со стен	ІКОЙ
Граница	2		
· ٦	Гип	= Вход/Выход	
Г	Теременные		
	Скорость	= Нормальная массовая скорость	
	Массовая скорость	= 20	[кг м ⁻² с ⁻¹]
	ТурбЭнергия	= Пульсации	
	Значение	= 0.01	
	ТурбДиссипация	= Масштаб түрбүлентности	
	Значение	= 0.01	[M]
Граница	3		
·	Гип	= Свободный выход	
Γ	Теременные		
	Скорость	= Давление	
	Значение	= 0	[Па]
	ТүрбЭнергия	= Пульсации	
	Значение	= 0.01	
	ТурбДиссипация	= Масштаб түрбүлентности	
	Значение	= 0.01	[M]
Граница	4		
י 'ד	Гип	= Стенка	
l	Токальная СК	= Локальная СК#0	
E	Зращение	= Вращение#0	
Г	Теременные		
	Скорость	= Логарифмический закон	
	ТурбЭнергия	= Значение в ячейке рядом со стен	ІКОЙ
	ТурбДиссипация	= Значение в ячейке рядом со стен	ІКОЙ

5.2.1.4 Начальная расчетная сетка

Задайте при помощи **Редактора начальной сетки**: OZ

Параметры сетки:

kh_max	= 2	
d_min	= 0.05	[м]
h_max	= 0.01	[м]
h_min	= 0.0025	[м]
Параметры базо	вой линии	
Коорд.	= 0	[м]
h	= 0.0025	[м]
kh+	= 1	
Коорд.	= 0.189	[м]
h	= 0.01	[м]
kh-	= 0.5	

Задайте в окне свойств Начальной сетки:

- nX = 50
- nY = 50

5.2.1.5 Адаптация расчетной сетки

В свойствах Границы 4 (ГУ#3) задайте:

Адаптация

Включить	= Да
Макс.уровень	= 1
Слоев ячеек	= 1

5.2.1.6 Параметры расчета

На закладке **Солвер** в окне свойств **Шаг по времени** задайте: Способ = в секундах Постоянный шаг = 0.0001 [с]

5.2.1.7 Визуализация результатов

Визуализируйте следующие результаты:

1. Динамику давления на входе

2. Распределение скоростей в плоскости вращения лопаток

5.2.1.7.1 Динамика давления

- Создайте Супергруппу в Постпроцессоре на базе ГУ Вход
- Создайте Характеристики на Супергруппе,
- В окне Свойства Характеристик задайте:

Характеристики

Переменная Переменная

Давление

Сохранение в файл Режим

Автоматический

5.2.1.7.2 Распределение скоростей

• В окне Свойства Плоскости#0 задайте Объект

Опорная точка	
Х	= 0
Y	= 0
Z	= 0.01
Нормаль	
Х	= 0
Y	= 0
Z	= 1
	_

- Создайте слой Векторы на Плоскости#0,
- В окне Свойства Векторов задайте:

Переменная Скорость Раскраска Переменная Скорость Переменная Скорость

© ООО "ТЕСИС", 1999-2009. Все права зарегистрированы. Москва, Россия

5.2.2 Бак

В данном примере моделируется вращение бака, наполовину заполненного жидкостью.

5.2.2.1 Физическая модель

В папке **Общие установки** задайте: Вектор гравитации X = 0 [м с⁻²]

Y	= -9.8	[м с ⁻²]
Z	= 0	[м с ⁻²]

- В папке Вещества:
- Создайте Вещество#0

Задайте следующие свойства Вещества#0:				
	Агрегатно	е состояние	= Жидкость	
	Плотность)		
		Значение	= 1000	[м с ⁻¹]
	Вязкость			
		Значение	= 100	[кг (м с) ⁻¹]

- В папке Фазы:
- Создайте непрерывную Фазу#0
- В Фазе#0 добавьте в папку Вещества Вещество#0
- Задайте в Фазе#0 в окне свойств папки Физические процессы:
 - Движение = Ньютоновская жидкость
- Перенос фазы = Модель VoF
- Создайте непрерывную Фазу#1
- Создайте Модель#0
- В Модели#0 добавьте в папку Фазы Фазу#0 и Фазу#1

5.2.2.2 Вращение

- Создайте Локальную систему координат:
- В контекстном меню папки Локальные системы координат выберите Создать

Задайте Вращение:

- В контекстном меню Локальной СК#0 выберите Добавить вращение
- Задайте в окне свойств Вращения#0

Скорость	= 10	[рад с ⁻¹]
Направление		
Х	= 0	
Y	= 1	
Z	= 0	

5.2.2.3 Граничные условия

В окне свойств Подобласти#0 задайте:

Модель = Модель#0

5.2.2.4 Начальные условия

Задайте начальный объем жидкости:

- в свойствах элемента Нач.данные#0 в Модели #0:
 - ОбъемФазы

Значение = 1

- в папке Объекты создайте Параллелепипед#0
- в окне свойств **Параллелепипеда#0** задайте: Расположение

	Опорная точка		
	Х	= 0	[м]
	Y	= 0.5	[м]
	Z	= 0	[м]
Размер			
	Х	= 1	[м]
	Y	= 0.99	[м]
	Z	= 1	[м]

• в Подобласти #0 окне свойств Нач. условия#0 задайте:

Объект	= Параллелепипед #0	
Нач. данные	= Нач. данные #0	

5.2.2.5 Начальная расчетная сетка

Задайте в окне свойств Начальной сетки:

- **nX** = 20
- **nY** = 40
- nZ = 20

5.2.2.6 Адаптация расчетной сетки

В свойствах Границы 1 (ГУ#0) задайте:

Адаптация

Включить	= Да
Макс.уровень	= 2
Слоев ячеек	= 1

5.2.2.7 Параметры расчета

Задайте на закладке **Солвер** в окне свойств элемента **Шаг по времени**: Способ = Числом КФЛ Число КФЛ = 1 Макс. шаг = 1 [c]

5.2.2.8 Визуализация результатов

Визуализируйте поверхность жидкости.

5.2.2.8.1 Поверхность жидкости

• Создайте слой Объем фазы на Пространстве

5.3 Подвижные тела

FlowVision HPC позволяет изменять начальное положение и моделировать движение (поступательное или вращательное) отдельных деталей геометрии. Для этого используется модуль Подвижные тела. Геометрия подвижного тела загружается из файлов, аналогичных файлам с основной геометрией.

5.3.1 Сверхзвуковое обтекание крылового профиля

В данном примере рассматривается сверхзвуковое обтекание крылового профиля RAE 2822 под углом атаки 5 градусов.

в •

5.3.1.1 Физическая модель

папке Вещества :		
Создайте Вещество#0		
В свойствах Вещества#0 задайте:		
Агрегатное состояние	= Газ	
Молярная масса		
Значение	= 0.0289	[кг моль ⁻¹]
Плотность	= Закон идеального газа	
Вязкость		
Значение	= 1.82*10 ⁻⁵	[кг (м с) ⁻¹]
Теплопроводность		
Значение	= 0.026	[Вт (м К) ⁻¹]
Теплоемкость		- 、 / -
Значение	= 1009	[Дж (кг К)⁻¹]

- В папке Фазы:
- Создайте непрерывную Фазу#0
- Добавьте Вещество#0 в папку Вещества Фазы#0
- Задайте в окне свойств папки Физические процессы:
 - Движение = Ньютоновская жидкость Теплоперенос = Конвекция и теплопроводность Турбулентность = SA модель
- В папке Модели:
- Создайте Модель#0
- Добавьте Фазу#0 в папку Фазы Модель#0
- Задайте в папке Начальные данные#0:
 - Скорость

Х	= 663.2	[м с ⁻¹]
Y	= 0	[м с ⁻¹]
Z	= 0	[м с ⁻¹]
Пульсации	= 0.001	
Масштаб турбулентности	= 0.003	[м]

5.3.1.2 Подвижное тело

Для того, чтобы иметь возможность задавать угол атаки профиля через интерфейс, необходимо задать профиль как **Подвижное тело**.

Создание подвижного тела состоит из следующих этапов:

- Загрузка Импортированного объекта
- Создание модификатора Подвижное тело

Для того, чтобы создать Подвижное тело, необходимо:

- Выберите Создать в контекстном меню папки Объекты
- Задайте Тип объекта = Импортированный объект
- Загрузите геометрию подвижного тела из файла RAE_2822_Airfoil.STL

Для того, чтобы присвоить импортированному объекту статус подвижного тела в **Подобласти#0** в папке **Модификаторы** создайте новый модификатор **Подвижное тело** на базе **Импортированного объекта#0**

В окне Подвижного тела задайте:

Обновление		
Тип		= Отключено
Начальное полож	кение	
Ось Х		
	Х	= 0.9962
	Y	= -0.0871

5.3.1.3 Граничные условия

В окне свойств **Подобласти#0** задайте: Модель= Модель#0

Граница 2	
Тип	= Симметрия
Переменные	
Скорость	= Проскальзывание
Температура	= Нулевой поток
ТурбКинВязкость	= Нулевой поток
Граница 3	
Тип	= Стенка
Переменные	
Скорость	= Логарифмический закон
Температура	= Нулевой поток
ТурбКинВязкость	= Фикс. значение

5.3.1.4 Начальная сетка

В окне Свойств Начальной сетки нажмите на кнопку 🗰 вызовите **Редактор начальной сетки** Задайте в **Редакторе начальной сетки**:

ΟХ

Параметры сетки: kh_max = 2

	h_max	= 0.25	[м]
	h_min	= 0.005	[м]
	Вставьте базовые	е линии с координата	ами
	x1	= 0	[м]
	Параметры базов	ой линии	
	Коорд.	= -1	[м]
	h	= 0.25	[м]
	Коорд.	= 0	[м]
	h	= 0.005	[м]
	Коорд.	= 1.3	[м]
<u></u>	h	= 0.25	[M]
ΟY			
	параметры сетки:	0	
	kh_max	= 2	
	h_max	= 0.25	[M]
	h_min	= 0.005	[м]
	Вставьте базовые	е линии с координат	ами
	y1	= 0	[м]
	Параметры базов	ой линии	
	Коорд.	= -1	[м]
	h	= 0.25	[м]
	Коорд.	= 0	[м]
	h	= 0.005	[м]
	Коорд.	= 1	[м]
	ĥ	= 0.25	[м]
			_

В окне свойств **Начальной сетки** задайте: nz = 1

5.3.1.5 Адаптация расчетной сетки

Задайте адаптацию по поверхности крыла Адаптация

Включить = Да Макс уровень = 3

5.3.1.6 Параметры расчета

На закладке **Солвер** в окне свойств **Шаг по времени** задайте: Способ = В секундах Постоянный шаг = 0.000001 [c]

5.3.1.7 Визуализация результатов

Отобразите следующие результаты:

- 1. Распределение значений числа Маха в плоскости течения
- 2. Распределение давления на поверхности профиля
- 3. Распределение Ср на поверхности профиля

5.3.1.7.1 Распределение числа Маха

 Задайте в окне Свойства Плоскости#0: Объект

> Нормаль Z

- Z 1
 Создайте слой Цветовые контуры на Плоскости#0,
- В окне Свойства Цветовых контуров задайте:

переменная				
	Переменная	ЧислоМаха		
Метод		Изолинии		

5.3.1.7.2 Распределение давления

е ок 🗵	ионное о	Информац ട്ര
ние 🔺	Значение	Имя
		Палитра:
	400000	
	354000	
	308000	
	262000	
	216000	
	170000	
	124000	
	78000	
	32000	
	-14000	
	-60000	
•		

- Создайте Супергруппу в Постпроцессоре на ГУ Стенка
- Создайте слой Цветовые контуры на Супергруппе,
- В окне Свойства Цветовых контуров задайте: Переменная

Переменная Давление

5.3.1.7.3 Распределение Ср

Построение распределения Ср по поверхности профиля состоит из следующих этапов:

- 1. Создание переменной Ср
- 2. Создание слоя График вдоль кривой по Ср

5.3.1.7.3.1 Создание Ср

Создайте переменную Ср в Постпроцессоре:

• В папке Пользовательские переменные - Локальные в контекстном меню выберите Создать - Скаляр

e- 👪	3D-сцена		
÷	p,t Физические пе	ременные	
÷···	🎒 Объекты		
÷	🗈 Характеристик	и	
÷	🏹 Пользовательс	кие переменные	
	— 📄 Локальные		1
	🛄 Глобальны	Создать 🕨	Скаляр
÷	📕 Слои	C	Вектор
		Своиства	Вектор, заданный покомпонентно

• В окне Свойства созданной переменной вызовите Редактор формул (кнопка 🖍 в поле Значение)

= 🔥 :	3D-сцена			
	,t Физические переменные			
÷	🌖 Объекты			
÷ [🖹 Характеристики			
ė)	💊 Пользовательские переменные 🖝	Название	UV #0	
Ė	🗠 📄 Локальные		01.110	
	🄀 UV #0	— Значение	U	(×)
	— 🧰 Глобальные			
÷	Слои			

- В Редакторе формул идентифицируйте переменную Давление (Фаза#0).
 - в меню Переменные и константы на закладке Все в Фазе #0 выберите переменную Давление и вызовите окно Идентификации переменной
 - в окне Идентификации переменной задайте имя, под которым переменная будет участвовать в формуле

Редакто	р форм	ул													x
0	О Принять														
	Отменить					ы									
													On	гм, Пов	эт,
I	Компиляция														
						к	Славиатур)a							
1	2	3	+	·	*		sin	cos	ta	cta	min	max	sum	prod	
4				0,		cart	avecia		arcte	precto		00	VOR	NOT	
	3		*		<u> </u>	sqrt	arcsin	arccos	arcig	arccig	AND				
	8	9	abs	sign	linear	root	sh	Ch	th	cth	11	In	_==	!=	
0	<u> </u>	E	vec	.x.	.у	.z	arsh	arch	arth	arcth	<	<=	>=	>	
()	=	len	norm	refl	clamp	exp	In	lg	log	{	}	- :	- ;	
Переменные и константы															
Все Физические Интегральные Пользовательские Ссылки Константы															
	раза жо 💋 Үплн	ос		\sim	Иден	тифика	ция пер	еменна	й						
	💋 Вязко	сть			Вве,	дите имя	я, под кот	орым да	анная по	еременн	ая будет	участво	вать в	формуле	э:
	🛃 Давл	ение 📕	лоостат	ическое		ES0									
	💋 Моду	ль вязки	их напря:	жений	,									- 1	
	💋 Моля	рная мас	ca							ок]	_	Отмен	a	
	🌶 Моме	нтЛок													_
							Операции	1							
	Логические Внешние Специальные														
Bce		Ариф	метическ	кие	Экс	поненци	альные	T	ригоно	метриче	ские	Гип	ерболич	неские	
Операция Ид			ідент.	Синта	аксис испо)льзован	ния						4		
Изменение знака -			_	"-s"; "-v"											
Сложение -				s1+s2 ; v1+v2 "s1-s2"; "v1-v2"											
Умножение *			•	"s1*s2	.,	ли "∨*s"	; "v1*v2	2" (поком	понентно	е умно»	кение)				
Деление			1		"s1/s2	"; "v/s"; "	v1/v2" (r	юкомпа	нентное	е деление)	,			
Скалярн	юе прои	зведени	ie	4	t	"v1 # v	2" или "v)	l dot v2"							
Векторн	юе прои	зведени	e	9	6	"v1%v	v2" или "v	1 cross v	/2"						-
¥Î.						0.1.2			1		~			- FÍ	

• В окне редактора формул задайте PRES0/(1.28*663.2^2/2)

Редактор формул РRE50/(1.28*663.2^2/2)	Принять Отменить Отм. Пов					
PRES0/(1.28*663.2^2/2)	Принять Отменить Отм. Пов					
	Отменить Отм. Пов					
	Отменить Отм. Пов					
	Отм. Пов					
	Отм. Пов					
	Отм. Пов					
	Компиляци					
Клавиатура						
1 2 3 + - * / sin cos tg ctg min max su	m prod					
4 5 6 # % ^ sqrt arcsin arccos arctg arcctg AND OR XC	RNOT					
7 8 9 abs sign linear root sh sh th sth if in -						
0 . E vec .x .y .z arsh arch arth arcth < <= >	= >					
() = len norm refl clamp exp In lg log { }						
Переменные и константы						
Все Физические Интегральные Пользовательские Ссылки Константы						
🖻 🔆 Φasa #0						
И Палини И П						
🌈 Вязкость						
— 🌈 Давление [PRES0]						
Давление (гидростатическое)						
📈 Модуль вязких напряжений						
💋 Молярная масса						
П. Л. МоментЛок						
	_					
Операции						
Потические Статистические Внешние Специал	- 46.10					
Все Аритиские Зистеми Тологические Специал						
ССС Арифметические Экспоненциальные Григонометрические Гиперо	лические					
Операция Идент. Синтаксис использования						
Изменение знака - "-s"; "-v"						
Сложение + "s1+s2"; "v1+v2"	"s1+s2"; "v1+v2"					
Вычитание - "s1-s2"; "v1-v2"						
Умножение т "s1"s2"; "sтV" или "V"s"; "V1"V2" (покомпонентное умножени	e)					
Деление / s1/s2"; "V/s"; "V1/V2" (покомпонентное деление)						
Скалярное произведение # VI#V2_ИЛИ_VI dot V2						

• Нажмите кнопку Принять

© ООО "ТЕСИС", 1999-2009. Все права зарегистрированы. Москва, Россия

132

5.3.1.7.3.2 Создание графика вдоль кривой

• В окне Свойства Плоскости#0 задайте:

Объект Опо

орная точка	
Х	= -0.05
Y	= -0.1
Z	= -0.005

• Создайте слой График вдоль кривой на Плоскости #0

• В окне Свойства Графика вдоль кривой задайте:

Переменная

Категория Переменная	= Пользовательская переменная = UV #0
Сдвиг	= 0.0001
Число точек	= 100
Распределить по	= Каждой кривой
Угол поворота	= 90
Ось Х	
Длина	= 0.5
Отображение	
Графики	
Видимые	= 1

5.3.2 Падение шара в вязкой жидкости

В этом примере рассматривается задача о падении шара под действием силы тяжести внутри столба вязкой несжимаемой жидкости.

На падающий в жидкости шарик действует сила тяжести и сила сопротивления.

В течении некоторого времени достигается стационарный режим, при котором скорость движения тела относительно жидкости постоянна.

і іараметры за	адачи:			
Размеры области			= 30x30	[мхм]
Параметры ш	ара			
	Радиус	R	= 0.5	[M]
	Плотность	ρ	= 1500	[кгэм⁻¹эс⁻¹]
Параметры ж	идкости:			
	Плотность	ρ	= 1000	[кгэм⁻ ³]
	Вязкость	μ	= 1000	[кгэм⁻ ¹ эс⁻ ¹]

Геометрия	FallingBall_Domain.STL
Вариант	Falling_Ball

5.3.2.1 Физическая модель

В окне свойств папки Общие установки:

•	Добавьте гидростатический Слой, нажав кнопку 🙆
•	Задайте следующие параметры:

Вектор гравитации

Х	= 0	[м с ⁻²]
Υ	= -9.8	[м с ⁻²]
Z	= 0	[м с ⁻²]

g-точка			
-	Х	= 0	[M]
	Y	= 5	[M]
	Z	= 0	[M]
Слой			
	<u>д-толщина</u>	= 30	[м]
	g-плотность	= 1000	[кг м ⁻³]

В папке Вещества:

• Создайте Вещество#0

• Задайте следующие свойства Вещества#0:

Агрегатно Ппотность	е состояние	= Жидкос	ТЪ
Ражоот	Значение	= 1000	[M C ⁻¹]
БИЗКОСТЬ	Значение	= 1000	[кг м ⁻¹ с ⁻¹]

В папке Фазы:

- Создайте непрерывную Фазу#0
- В Фазе#0 добавьте в папку Вещества Вещество#0
- Задайте в **Фазе#0** в окне свойств папки Физические процессы: Движение = Ньютоновская жидкость

В папке Модели:

- Создайте Модель#0
- В Модели#0 добавьте в папку Фазы Фазу#0

Комментарий: Значение Вязкости = 1000 задается для ускорения сходимости.

5.3.2.2 Подвижное тело

Создайте подвижное тело:

- Загрузите геометрию Импортированного объекта из файла FallingBall_Ball.STL
- Создайте Подвижное тело на базе Импортированного объекта

В окне свойств Подвижного тела#0 задайте:

Массовые характери	СТИКИ		
Macca		=785.4	[кг]
Поступательное дви>	кение		
ГидроСила			
2	Х	= Нет	
Ň	Y	= Да	
-	Z	= Нет	

Примечание:

1. Величину ГидроСилы и ГидроМомента программа рассчитывает автоматически.

5.3.2.3 Граничные условия

В окне свойств Подобласти#0 задайте:

Модель = Модель#0

Задайте следующие граничные ус Граница 1	словия:
Тип	= Своболный выхол
	- овосодный выход
Переменные	
Скорость	= Давление
Значен	1e = 0 [Πa]
Граница 2	
Тип	= Стенка
Переменные	
Скорость	= Прилипание

5.3.2.4 Начальная расчетная сетка

Задайте в окне свойств Начальной сетки:

nX = 15

nY = 15 nZ = 15

5.3.2.5 Адаптация расчетной сетки

В данном варианте следует адаптировать сетку по поверхности движущегося шара и сливать ранее адаптированные ячейки, находящиеся вдали от шара. Для этого необходимо задать два условия адаптации:

- 1. Разбиение ячеек по поверхности шара
- 2. Слитие ячеек в объеме вдали от шара
- Задайте адаптацию по поверхности шара

Адаптация

Включить	= Да
Макс уровень	= 4
Слоев ячеек	= 3

- Создайте критерий адаптации в папке Адаптация.
- Задайте в окне Адаптации: Активность = Да Объект = Пространство

Макс.уровень	= 0
Разбить/Слить	= Слить
Область	= В объеме

5.3.2.6 Параметры расчета

Задайте на закладке Солвер

В окне свойств элемента	Шаг по времени:	
Способ	= Числом КФЛ	
Число КФЛ	= 1	
Макс. шаг	= 0.01	[c]
В окне свойств эпемента	Лоп настройки	

 В окне свойств элемента Доп.настройки: Численный метод Интерг. по времени = Г

= Предиктор-корректор

5.3.2.7 Визуализация результатов

Визуализируйте зависимость скорости шара от времени.

5.3.2.7.1 Зависимость скорости шара от времени

• Создайте Характеристики на Импортированном объекте

• В окне Свойства Характеристик задайте:

• •
Характеристики
Переменная
Переменная
Сохранение в файл

Режим

Давление

Автоматический

5.3.3 Тело, плавающее на поверхности жидкости

В данном примере рассматривается движение тела со смещенным центром масс (=центр инерции) на поверхности воды и генерация волны на поверхности под воздействием движения тела.

Геометрия	FloatingBox_Domain.WRL
Вариант	FloatingBox

5.3.3.1 Физическая модель

В окне свойств папки Общие установки:

 Добавьте гидростатически 	ий Слой , нажав кнопку	/@
• Задайте следующие пара	аметры:	
Вектор гравитации		
Х	= 0	[м с ⁻²]
Y	= -9.8	[м с ⁻²]
Z	= 0	[м с ⁻²]
д-точка		
X	= 0	[м]
Y	= 0	[м]
Z	= 0	[м]
Слой		
g-толщина	= 0.15	[м]
д-плотность	= 1000	[кг м ⁻³]

- В папке Вещества:
- Создайте Вещество#0
- Задайте следующие свойства Вещества#0:

Агрегатное состоя	яние	= Жидкость	
Плотность			
Значен	ие	= 1000	[м с ⁻¹]
Вязкость			
Значен	ие	= 0.001	[кг м ⁻¹ с ⁻¹]
Коэффициент сжи	маемости		
Значен	ие	= 4.44e-10	[м2 с⁻¹]

- В папке Фазы:
- Создайте непрерывную Фазу#0
- В Фазе#0 добавьте в папку Вещества Вещество#0
- Задайте в Фазе#0 в окне свойств папки Физические процессы: Движение = Ньютоновская жидкость
- Создайте непрерывную Фазу#1

В папке Модели:

- Создайте Модель#0
- В Модели#0 добавьте в папку Фазы Фазу#0 и Фазу#1

5.3.3.2 Подвижное тело

Создайте Подвижное тело:

- Загрузите геометрию подвижного тела из файла FloatingBox_Box.slt
- Создайте модификатор Подвижное тело на Импортированном объекте #0

Задайте в окне свойств элемента Подвижное тело:

	VODOUTODUOTUU	
массовые	характеристики	

Macca	=0.5	[кг]
Центр инерции		
Х	= 0	[м]
Y	= -0.005	[M]
Z	= 0	[м]
Момент инерции0		
X	= 0.00846	[кг м ²]
Y	= 0	[кг м ²]
Z	= 0	[кг м ²]
Момент инерции1		
x	= 0	[кг м ²]
Y	= 0.00333	[кг м ²]
Z	= 0	[кг м ²]
Момент инерции2		[]
X	= 0	[кг м ²]
Y	= 0	[кг м ²]
7	= 0.00333	[кг м ²]
ГидроСила		
Х	= Нет	
Ŷ	= Да	
Z	= Нет	
Вращение		
ГидроМомент		
X	= Да	
Y	= Нет	
Z	= Нет	
Начальное положение		
Опорная точка		
X	= 0.3	[M]

Y	= 0.05	[м]
Z	= 0.15	[м]

Примечание:

Для того, чтобы поместить тело в начальное положение, необходимо нажать кнопку 🔝

5.3.3.3 Граничные условия

В окне свойств **Подобласти#0** задайте: Модель= Модель#0

Задайте следую	цие граничные усло	зия:
Граница 1		
Тип		= Стенка
Перемен	ные	
	Скорость	= Прилипание
	ОбъемФазы	= Нулевой поток
Граница 2		
Тип		= Свободный выход
Перемен	ные	
	Скорость	= Давление
	Значение	e = 0
	ОбъемФазы	= Значение
	Значение	e = 1
Граница 2		
Тип		= Свободный выход
Перемен	ные	
	Скорость	= Давление
	Значение	e = 0
	ОбъемФазы	= Значение
	Значение	e = 0

141

5.3.3.4 Задание объема жидкости

В Фазе #0 в Нач.данных#0 задайте:

ОбъемФазы

Значение = 1

В папке Объекты:

• создайте Параллелепипед#0

• в окне свойств Параллелепипеда#0 задайте:

Расположение

	Опорная точка		
	Х	= 0.3	[M]
	Y	= -0.075	[м]
	Z	= 0.15	[M]
Размер			
	Х	= 0.6	[M]
	Y	= 0.149	[M]
	Z	= 0.3	[M]

В Подобласти #0 окне свойств Нач. условия#0 задайте:

Объект	= Параллелепипед #0
Нач. данные	= Нач. данные #0

5.3.3.5 Начальная расчетная сетка

Задайте при помощи **Генератора сетки**: ОХ

	Параметры сетки:			
	kh_max	= 2		
	h_max	= 0.05	[м]	
	h_min	= 0.03	[м]	
	Вставьте базовую линию с координатами			
	Х	= 0.3	[м]	
	Параметры базовой линии			
	Коорд.	= 0	[м]	
	h	= 0.05	[м]	
	Коорд.	= 0.3	[м]	
	h	= 0.03	[м]	
	Коорд.	= 0.6	[м]	
	h	= 0.05	[м]	
OY	_			
	Параметры сетки:			
	kh_max	= 2		
	n_max	= 0.025	[M]	
	n_min	= 0.004	[M]	

	Вставьте базовую линию с координатами			
	Х	= 0	[м]	
	Параметры базовой линии			
	Коорд.	= -0.15	[м]	
	h	= 0.025	[м]	
	Коорд.	= 0	[м]	
	h	= 0.004	[м]	
	Коорд.	= 0.025	[м]	
	h	= 0.15	[M]	
ΟZ				
	Параметры сетки:			
	kh_max	= 2		
	h_max	= 0.0375	[M]	
	h_min	= 0.006	[M]	
	Вставьте базовую линию с координатами			
	Х	= 0.15	[м]	
	Гараметры базовой линии			
	Коорд.	= 0	[M]	
	h	= 0.0375	[M]	
	Коорд.	= 0.15	[M]	
	h	= 0.006	[M]	
	Коорд.	= 0.3	[м]	
	h	= 0.0375	[м]	

5.3.3.6 Параметры расчета

На закладке Солвер:					
• В окне элемента Шаг по времени задайте:					
Способ	= Числом ŀ	(ФЛ			
Число КФЛ	= 1				
Макс. шаг	= 0.1	[c]			
• В окне элемента Доп.настройн	ки:				

Численный метод

Интерг. по времени Метод = Предиктор-корректор

5.3.3.7 Визуализация результатов

Визуализируйте Поверхность жидкости
5.3.3.7.1 Поверхность жидкости

• Создайте слой Объем фазы на Пространстве

5.3.4 Винтовой компрессор

В этом примере рассматривается моделирование течения в гидравлическом насосе.

Геометрия Вариант

Compressor_Domain Compressor

5.3.4.1 Физическая модель

146

- В папке Вещества:
- Создайте Вещество#0

•	задание следующие своиства в	ещества#0.
	Агрегатное состояние	= Г аз

Молярная масс	a		
	Значение	= 0.0289	[кг моль ⁻¹]
Плотность		= Закон идеального газа	
Вязкость			
	Значение	= 1.82*10 ⁻⁵	[кг м ⁻¹ с ⁻¹]
Теплопроводно	СТЬ		
	Значение	= 0.026	[Вт м ⁻¹ К ⁻¹]
Теплоемкость			
	Значение	= 1009	[Дж кг ⁻¹ К ⁻¹]
Теплоемкость	Значение	= 1009	[Дж кг ⁻¹ К ⁻¹]

В папке Фазы:

• Создайте непрерывную Фазу#0

• Добавьте Вещество#0 в папку Вещества Фазы#0

• Задайте в окне свойств папки Физические процессы:

- Движение= Ньютоновская жидкостьТеплоперенос= Конвекция и теплопроводностьТурбулентность= Стандартная к-е модель
- В папке Модели:
- Создайте Модель#0
- Добавьте Фазу#0 в папку Фазы Модель#0
- Задайте в окне свойств Модели#0:
- Использовать модель зазора = Стандартная модель зазора • Задайте в папке **Начальные данные#0**:
 - Скорость

Х	= 0	[м с ⁻¹]
Y	= -10	[м с ⁻¹]
Z	= 0	[м с ⁻¹]

5.3.4.2 Подвижные тела

Создайте Левый ротор:

- Загрузите геометрию подвижного тела из файла Compressor_Male.stl
- Создайте фильтр Подвижное тело на Импортированном объекте

Задайте в окне свойств элемента Подвижное тело:

Массовые характеристики

Вращение

Скорость вращения

Х	= 0	[рад с ⁻¹]
Y	= 0	[рад с ⁻¹]
Z	= 600	[рад с ⁻¹]

Создайте Правый ротор:

- Загрузите геометрию подвижного тела из файла Compressor_Female.slt
- Создайте фильтр Подвижное тело на Импортированном объекте

Задайте в окне свойств элемента Подвижное тело:

Массовые характеристики

Центр инерции

X	= 0.085	[м]
Y	= 0	[м]
Z	= 0	[м]

Вращение

Скорость вращения				
X	= 0	[рад с ⁻¹]		
Y	= 0	[рад с ⁻¹]		
Z	= -400	[рад с ⁻¹]		

5.3.4.3 Граничные условия

В окне свойств Подобласти#0 задайте: Модель = Модель#0

Граница 4 Тип Переменные

Переменные

ТурбЭнергия

ТурбДиссипация

Тип

= Вход/Выход

= Значение в ячейке рядом со стенкой

= Значение в ячейке рядом со стенкой

Скорость Значение Температура Значение ТурбЭнергия Значение ТурбДиссипация Значение	 Давление на входе 0 Значение 0 Пульсации 0 Масштаб турбулентности 0 	[Па] [С] [м]
Граница 5 Тип	= Своболный выхол	
Переменные	овоодный выход	
Скорость	= Давление	
Значение	= 1000	[Па]
Температура	= Значение	
Значение	= 0	[C]
ТурбЭнергия	= Пульсации	
Значение	= 0	
ТуроДиссипация	= Масштаб турбулентности	
Значение	= 0	[M]

5.3.4.4 Начальная расчетная сетка

Задайте в окне свойств Начальной сетки:

nX = 18

nY	= 22
nZ	= 5

5.3.4.5 Адаптация расчетной сетки

Задайте адаптацию в районе шестеренок:

Создайте объект для адаптации:

• создайте Параллелепипед#0 в папке Объекты

• задайте следующие параметры в окне свойств Параллелепипеда#0:

Расположение

	Опорная точка		
	Х	= 0.0427	[м]
	Y	= 0	[м]
	Z	= 0.005	[м]
Размеры			
	Х	= 0.2	[м]
	Y	= 0.12	[м]
	Z	= 0.012	[M]

Создайте критерий адаптации

- Создайте элемент Адаптация#0 в папке Адаптация
- В окне свойств созданного элемента Адаптация#0 задайте:

Активность	= Да
Объект	= Параллелепипед#0
Макс.уровень	= 1
Разбить/Слить	= Разбить
Область	= В объеме

5.3.4.6 История расчета

В данной задаче предлагается отобразить историю расчета во времени. Для того, чтобы отобразить историю расчета, необходимо:

- сохранить историю расчета
- создать слой для визуализации
- запустить последовательную загрузку результатов расчета с сохранением изображений в файл

5.3.4.7 Параметры расчета

На закладке **Солвер** в окне **Шага по времени** задайте: Способ = В секундах Постоянный шаг = 0.0001 [c]

в окне Автосохранение данных задайте:

История	= Да	
Частота		
Тип	= По времени	
Число секунд	= 0.0005	[c]

5.3.4.8 Визуализация результатов

Визуализируйте следующие результаты:

- 1. Распределение ячеек зазора
- 2. Мнгновенное распределение скоростей в плоскости симметрии
- 3. Динамику поля скоростей во времени

5.3.4.8.1 Распределение ячеек зазора

- Создайте слой Набор ячеек на Пространстве
- Задайте в окне слоя Набор ячеек:

Тип Зазорные

Примечание:

Алгоритм выбора зазорных ячеек смотри главу Течение в канале с использованием модели зазора

5.3.4.8.2 Распределение скоростей

Переменная

Переменная

Скорость

Раскраска Переменная Переменная onopoon

Скорость

5.3.4.8.3 Динамика поля скоростей

Для того, чтобы отобразить динамику поля скоростей во времени:

- перейдите на первый сохраненный шаг посредством кнопки
- запустите последовательное сохранение изображений Графического окна в файл посредством кнопки
 - оставьте размеры окна по умолчанию

Захват изобра	жения	>
Размер:		
🖲 Исходный	Ширина:	822
🔘 Заданный	Высота:	719
🔽 Сохранить исходные пропорции		
🔲 Устранение	ступенчатос	ти
ОК	Отм	ена

• задайте имя файла изображения

Save As					<u>?</u> ×
Save <u>i</u> n:	C Render		▼	← 🗈 💣 🎟▼	
My Recent Documents					
Desktop					
My Documents					
IV My Computer					
My Network Places					
	File <u>n</u> ame:	vectors		•	<u>S</u> ave
	Save as type:	Побитовые изображения (*.b	mp)	•	Cancel

- запустите последовательную загрузку данных с промежуточных сохраненных шагов посредством кнопки
- после окончания последовательной загрузки данных остановите сохранение изображений

Графического окна в файл посредством кнопки 💻

6 Сопряжение с Abaqus

6.1 Деформируемый клапан в канале

Моделируется течение в двумерном канале, частично перекрытом деформируемым клапаном. Деформация клапана моделируется в Abaqus.

Входные параметры			
Скорость	V	=10	[м с⁻¹]
Параметры жидкости:			
Плотность	ρ	= 1000	[кг м⁻³]
Вязкость	μ	= 0.001	[кг м⁻¹ с⁻¹]
Параметры клапана			
Плотность		= 3500	гк м ⁻³
Модуль Юнга		= 3*10 ⁹	
Коэффициент		= 0.3	Па
Пуассона			

Геометрия	Valve_Channel.WRL
Проект Abaqus	Valve.INP
Проект FlowVision	Valve_Channel

6.1.1 Подготовка проекта в Abaqus

В Abaqus моделируются деформации клапана.

Требования к модели Abaqus:

- 1. Элементы модели, участвующие в связанной задаче, должны моделироваться трехмерной сеткой.
- 2. В модели должны быть определены интерфейсные поверхности для связанного расчета (direct coupling).
- 3. Интерфейсная поверхность должна быть:
 - замкнутой;
 - не иметь дыр;

- создана на сплошной сетке (не должна строиться по поверхности двух сеток, сшитых TIE-контактом);

Создайте клапан со следующими параметрами: Размеры

Х	= 0.05	М
Y	= 0.02	М
Z	= 0.005	М
Параметры материала		
Плотность	= 3500	гк м⁻ ³
Модуль Юнга	= 3*10 ⁹	Па
Коэффициент Пуассона	= 0.3	
Граничное условие на нижней	= Encastre	

поверхн	ЮСТИ	(Врезка)
Centa	Количество элементов Тип элементов	= 800 = C3B8R
Солвер		= Standard

6.1.1.2 Интерфейсная поверхность

Задайте интерфейсную поверхность для совместного расчета: Assembly> Tools> Surface> Create> Name: DC_SURF, Type: Mash

6.1.1.3 Модификация файла проекта

Откройте файл проекта INP в текстовом редакторе. Добавьте в модуль STEP следующие строки:

```
*CO-SIMULATION, PROGRAM=DIRECT, NAME=FV_TEST, CONTROLS=COSIM_CONTROLS
**
*CO-SIMULATION REGION, IMPORT
DC-surf, CF
**
*CO-SIMULATION REGION, EXPORT
DC-surf, COORD
**
*CO-SIMULATION CONTROLS, NAME= COSIM_CONTROLS, TIME INCREMENTATION=LOCKSTEP, TIME
MARKS=YES
```

6.1.1.4 Создание геометрии для FlowVision

Создайте из INP файла Abaqus файл, содержащий только данные по конечноэлементной сетке импортируемых объектов. Т.о. в INP файле остается только содержимое следующих модулей:

```
*Part, name=velve
*Node
*Element, type=C3D8R
```

```
*End Part
**
**
**
ASSEMBLY
**
*Assembly, name=Assembly
**
*Instance, name=velve-1, part=velve
*End Instance
**
```

*End Assembly

6.1.2 Подготовка проекта во FlowVision

Во FlowVision моделируется движение жидкости в канале.

Требования к проекту FlowVision:

- Во FlowVision из Abaqus должна быть загружена геометрия деформируемого тела, полностью соответствующая деформируемой геометрии в проекте Abaqus.
- Геометрия деформируемого тела, загружаемая во FlowVision должна соответствовать требованиям, предъявляемым к геометрии во FlowVision (см. Руководство пользователя)

6.1.2.1 Физическая модель

В папке Вещества:

• Создайте Вещество#0

•	Задайте сл	педующие свойс	гва Вещества#	0 :
	Агрегатно	е состояние	= Жидкос	ТЬ
	Плотность	.		
		Значение	= 1000	[м с ⁻¹]
	Вязкость			
		Значение	= 0.001	[кг м⁻¹ с⁻¹]

В папке Фазы:

- Создайте Фазу#0
- В Фазе#0 добавьте в папку Вещества Вещество#0
- Задайте в Фазе#0 в окне свойств папки Физические процессы:
 Движение = Ньютоновская жидкость
 - Турбулентность = Стандартная к-е модель

В папке Модели:

- Создайте Модель#0
- В Модели#0 добавьте в папку Фазы Фазу#0
- Задайте в папке Начальные данные#0: Скорость X = 10 [м с⁻¹]

6.1.2.2 Подвижное тело

Создайте подвижное тело:

- Загрузите геометрию Импортированного объекта из файла VALVE.INP
- Создайте Подвижное тело на базе Импортированного объекта
- В окне Свойства Подвижного тела задайте:

Начальное положение

Опорная точка

х	0	[м]
Y	-0.001	[м]
Z	-0.01	[м]

6.1.2.3 Граничные условия

3		
Граница 1		
Тип	= Стенка	
Переменные		
Скорость	= Логарифмический закон	
ТурбЭнергия	= Значение в ячейке рядом со стенкой	
ТурбДиссипация	 Значение в ячейке рядом со стенкой 	
Граница 2		
Тип	= Симметрия	
Переменные		
Скорость	= Проскальзывание	
ТурбЭнергия	= Нулевои поток	
туродиссипация	= нулевои поток	
граница з Тип		
Переменные		
Скорость	= Нормальная массовая скорость	
Значение	= 10000	[кг м ⁻² с ⁻¹]
ТурбЭнергия	= Пульсации	
Значение	= 0	
ТурбДиссипация	= Масштаб турбулентности	
Значение	= 0	[M]
Граница 4		
Тип	= Свободный выход	
Переменные		
Скорость	= Давление	
Значение	= 0	[Па]
ТурбЭнергия	= Нулевой поток	
ТурбДиссипация	= Нулевой поток	
Граница 5	-	
Тип	= Стенка	
Переменные		
Скорость	- логарифмический закон	

- ТурбЭнергия ТурбДиссипация
- = Значение в ячейке рядом со стенкой
- = Значение в ячейке рядом со стенкой

6.1.2.4 Расчетная сетка

Задайте в окне свойств Начальной сетки:

nX = 60

nY = 1

nZ = 20

6.1.2.5 Адаптация

В данной задаче необходимо проводить адаптацию сетки по поверхности клапана и сливать ранее проадаптированные ячейки вдали от клапана

• Задайте адаптацию по поверхности клапана. В окне Свойств ГУ#4 (Клапан) задайте:

Адаптация

•····	
Включить	= Да
Макс уровень	= 3
Слоев ячеек	= 4

• Создайте критерий адаптации в папке Адаптация.

• Задайте в окне Адаптации:

Активность	= Да
Объект	= Пространство
Макс.уровень	= 0
Разбить/Слить	= Слить
Область	= В объеме

6.1.2.6 Параметры расчета

Задайте на закладке **Солвер** в окне свойств элемента **Шаг по времени**: Способ = В секундах Постоянный шаг = 0.05 [c]

6.1.2.7 Модификация файла проекта

Откройте файл проекта FVINP в текстовом редакторе. Добавьте внутрь модуля <FVPROJECT> следующую строку:

<ConnectorID>MpmConnector</ConnectorID>

6.1.3 Подготовка проекта в МРМенеджере

MPМенеджер - модуль, предназначенный для подготовки совместного расчета Abaqus и FlowVision. В MPМенеджере осуществоляется:

- Задание соединения с Солвер-Агентом FlowVision
- Выбор проекта FlowVision
- Задание параметров обмена (общих параметров)

- Выбор проекта Abaqus
- Запуск на расчет

6.1.3.1 Соединение с Солвер-Агентом FlowVision

Задайте в окне MPManagerDirect:	
Выберите режим работы	Режим online (на связи с солвер агентом)
FlowVision Солвер-Агент	
IP	IP машины, на которой установлены Солвер и
	Солвер-Агент
Порт	Порт для соединения с Солвер-Агентом

Нажмите кнопку **Дальше** Задайте в окне Авторизация: Имя Имя пользователя на Солвер-Агенте Пароль Пароль пользователя на Солвер-Агенте

6.1.3.2 Выбор проекта FlowVision

Задайте в окне **Выбор проекта**: Использовать существующий проект Имя проекта Имя проекта FlowVision (серверная часть)

Нажмите кнопку Дальше

Внимание:

Перед началом расчета необходимо создать серверную часть проекта. Нельзя запустить на расчет проект, загруженный на Солвер, к которому подключен Пре-Постпроцессор.

6.1.3.3 Общие параметры

Задайте в окне	Общие	параметры:
Illar of Moura		

Абсолютны шаг обмена, с	0.05
Коэффициенты пересчета	
Нагрузка	1
Параметры релаксации по нагрузке	
R1	0
R2	1
N1	0
N2	1

Нажмите кнопку Дальше

6.1.3.4 Выбор проекта Abaqus

Задайте в окне Параметры Abaqus

Запуск Abaqus		
	Запускать Abaqus автоматически	
	МРМ-Агент ІР	IP адрес машины, на которой установлен MPM Агент и Abaqus
	МРМ-Агент порт	Порт для соединения с МРМ-Агентом
Прямое соедин	ение	
	Abaqus порт	Порт для прямого соединения Abaqus и FlowVision
Проект Abaqus		
	Файл проекта Параметры	Локальный путь к проекту Abaqus double

Нажмите кнопку Дальше

Примечание: Имя файла проекта Abaqus приводится без расширения.

6.1.3.5 Запуск на расчет

Задайте в окне Запуск солвера Запустить FlowVision солвер и начать расчет проекта Начать расчет сначала

Примечания:

- 1. Количество процессоров, на которых запускается проект, определяется пользователем.
- 2. Если параметры совместного расчета Abaqus FlowVision уже были однажды заданы, расчет может быть запущен с помощью Терминала.

6.1.4 Визуализация результатов

Визуализируйте следующие результаты:

- 1. Распределение скорости в плоскости течения.
- 2. Распределение давления по поверхности клапана

6.1.4.1 Распределение скоростей

- Создайте слой Векторы на Плоскости,
- В окне Свойства задайте: Переменная

Переменная Скорость Раскраска Переменная Переменная Скорость

6.1.4.2 Распределение давления

- Создайте слой Цветовые контуры на Супергруппе с ГУ Клапан,
- В окне Свойства задайте:

Переменная

Переменная Давление